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Abstract

We prove the existence of three-dimensional steady gravity-capillary waves
with vorticity on water of finite depth. The waves are periodic with respect to a
given two-dimensional lattice and the relative velocity field is a Beltrami field,
meaning that the vorticity is collinear to the velocity. The existence theory is based
on multi-parameter bifurcation theory.

1. Introduction

1.1. Statement of the Problem

This paper is concerned with three-dimensional steady water waves driven by
gravity and surface tension. An inviscid fluid of constant unit density occupies the
domain

�η = {(x′, z) ∈ R
2 × R : −d < z < η(x′)}

for some function η : R2 → R and constant d > 0, where x′ = (x, y). Let
u : �η → R

3 be the (relative) velocity field and p : �η → R the pressure. In
a frame of reference moving with the wave, the fluid motion is governed by the
stationary Euler equations

(u · ∇)u = −∇ p − ge3 in �η,

∇ · u = 0 in �η,

with a kinematic boundary condition on the top and bottom boundaries:

u · n = 0 on ∂�η,
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and a dynamic boundary condition on the free surface:

p = patm − 2σ KM on z = η(x′).

Here e3 = (0, 0, 1), KM is the mean curvature of the free surface, given by

2KM = ∇ ·
(

∇η√
1 + |∇η|2

)
,

while σ > 0 is the coefficient of surface tension and patm the constant atmospheric
pressure. Supposing that the wave is moving with constant velocity ν = (ν1, ν2)

in the original stationary frame of reference, then in this frame the travelling wave
is given by z = η(x′ − νt) and the corresponding velocity field is given by v =
u(x′ − νt, z) + (ν, 0). Note that v satisfies ∇ × v = αv − α(ν, 0) and is therefore
not a Beltrami field in general.

Almost all previous studies of three-dimensional steady water waves have been
restricted to the irrotational setting, where ∇ × u = 0. It is desirable to relax
this condition in order to model interactions of surface waves with non-uniform
currents. In the present paper we consider the special case when the velocity and
vorticity fields are collinear, that is,

∇ × u = αu in �η

for some constant α. In other words, we assume that u is a (strong) Beltrami field.
Such fields are well-known in solar and plasma physics (see e.g. Boulmezaoud,
Maday& Amari [5], Freidberg [16] and Priest [30]) and are also called (linear)
force-free fields. The adjectives ‘strong’ and ‘linear’ refer to the fact that α is
assumed to be constant. The more complicated case when α is variable has been
investigated by several authors (see e.g. Boulmezaoud & Amari [4], Enciso &
Peralta-Salas [15] and Kaiser, Neudert & von Wahl [26]), but will not be
considered herein. Any divergence-free Beltrami field generates a solution to the
stationary Euler equations with pressure

p = C − |u|2
2

− gz.

The governing equations are thus replaced by

∇ × u = αu in �η, (1.1a)

∇ · u = 0 in �η, (1.1b)

u · n = 0 on ∂�η, (1.1c)

1

2
|u|2 + gη − σ∇ ·

(
∇η√

1 + |∇η|2
)

= Q on z = η, (1.1d)

where Q is the Bernoulli constant. Condition (1.1b) is actually redundant forα �= 0,
but we retain it since we want to allow that α = 0. For a given η there can be more
than one solution to the above equations and we will therefore later append integral
conditions in order to enforce uniqueness.
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Fig. 1. A laminar flow in different horizontal sections of the fluid domain

The choice of Beltrami flows is mainly motivated by mathematical considera-
tions, since it gives rise to an elliptic free boundary problem. From a physical point
of view, the choice is quite specific and it would be desirable to treat more general
flows. One interesting feature of Beltrami flows is that they include laminar flows
whose direction varies with depth (see Section 1.2.1 and Figure 1). This could po-
tentially be of interest when considering a wind-induced surface current interacting
with a subsurface current in a different direction.

1.2. Special Solutions

1.2.1. Laminar Flows Let us consider a fluid domain with a flat boundary, that
is η ≡ 0:

�0 = {(x′, z) ∈ R
3 : −d < z < 0, x′ ∈ R

2}.

In this case we find a two-parameter family of ‘trivial’ solutions given by laminar
flows

U[c1, c2] = c1U (1) + c2U (2), c1, c2 ∈ R,

where

U (1) = (cos(αz),− sin(αz), 0), U (2) = (sin(αz), cos(αz), 0),

and the corresponding Bernoulli constant Q in (1.1d) is given by

Q(c1, c2) = 1

2
[c21 + c22].

The laminar flow U is constant in every horizontal section of the fluid domain but
the direction of the flow depends on the vertical coordinate (see Figure 1). The
constants c1, c2 will be used later as bifurcation parameters.
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1.2.2. Two-and-a-Half-DimensionalWaves There is a connectionbetweenprob-
lem (1.1) and the two-dimensional steady water wave problem with affine linear
vorticity function. Indeed, let η(x̄) be the surface and ψ(x̄, z) be the stream func-
tion for a two-dimensional wave with vorticity function α2ψ + αβ traveling in
the ē-direction, where α and β are real constants, ē is a horizontal unit vector and
x̄ = x · ē. Then

∂2x̄ ψ + ∂2z ψ + α2ψ + αβ = 0 in �
η
2D,

ψ(x̄,−d) = m1, ψ(x̄, η(x̄)) = m2, x̄ ∈ R,

1

2
|∇ψ |2 + gz − σ∂x̄

(
∂x̄η√

1 + (∂x̄η)2

)
= Q0, z = η(x̄),

(1.2)

where m1, m2, Q0 are constants, while

�
η
2D = {(x̄, z) ∈ R

2 : −d < z < η(x̄)}
is the two-dimensional fluid region. The corresponding velocity field is given by

u(x̄, z) = −ψz(x̄, z)ē + ψx̄ (x̄, z)e3.

We can turn this into a solution of the stationary Euler equations in the three-
dimensional domain by letting η and u equal the two-dimensional solution for
every ȳ = x · e⊥, where e⊥ = e3 × ē. However, this solution is clearly still
two-dimensional in the sense that it is independent of ȳ and the velocity vector is
collinear with the direction of propagation, and hence there is no fluid motion in
the perpendicular horizontal direction e⊥. On the other hand, we can put

u(x̄, ȳ, z) = −ψz(x̄, z)ē + (αψ(x̄, z) + β)e⊥ + ψx̄ (x̄, z)e3. (1.3)

One verifies that u solves (1.1) in

�η := {x̄ ē + ȳe⊥ + ze3 : −d < z < η(x̄), x̄, ȳ ∈ R}.
The flow generated by u is called 21/2-dimensional, since u only depends on the
two variables x̄ and z but has a non-zero ȳ-component; see Majda & Bertozzi
[28, Sect. 2.3]. Note that every laminar solutionU[c1, c2] can be written in the form
(1.3) for some stream function 
(z). Note also that one can get rid of the constant
β when α �= 0 by introducing the new stream function ψ + α−1β.

Conversely, any 21/2-dimensional Beltrami flow arises from a solution to the
two-dimensional steady water wave problem with affine linear vorticity function.
Indeed, assume that we have a solution (u, η) to (1.1) depending only on one
horizontal variable x̄ . Then (ū, u3) is divergence free with respect to the variables
(x̄, z), where ū = u · ē, and hence there exists a stream function ψ(x̄, z) such
that u3 = ψx̄ and ū = −ψz . Now, equation (1.1a) gives u⊥ = αψ + β for some
constant β, as well as

ψx̄ x̄ + ψzz + α2ψ + αβ = 0.

On the other hand, u is subject to (1.1c), which implies that ψ is constant on the
boundaries. Using this fact we recover the Bernoulli equation for ψ from (1.1d).
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Problem (1.2) with zero surface tension has for example been studied byAasen
& Varholm [1], Ehrnström, Escher & Wahlén [13], Ehrnström, Escher &
Villari [12] and Ehrnström&Wahlén [14]. The gravity-capillary problem has
been considered for a general class of vorticity functions (including affine) but
restricted to flows without stagnation points by several authors; see e.g. Wahlén
[33] and Walsh [35,36]. These two-dimensional existence results immediately
yield the existence of 21/2-dimensional waves on Beltrami flows. In this paper we
will instead take the opposite approach. As a part of the analysis wewill directly ob-
tain the existence of 21/2-dimensional waves, which generate solutions of problem
(1.2) by the above correspondence; see Remark 4.7.

1.3. Previous Results

The theory of three-dimensional steady waves with vorticity is a relatively new
subject of studies. In contrast to the two-dimensional case (see e.g. Constantin
[9]) one cannot, in general, reformulate the problem as an elliptic free bound-
ary problem. At the moment there are no existence results, save for some explicit
Gerstner-type solutions for edge waves along a sloping beach and equatorially
trapped waves; see Constantin [8,10] and Henry [23] and references therein.
Wahlén [34] showed that the assumption of constant vorticity prevents the ex-
istence of genuinely three-dimensional traveling gravity waves on water of finite
depth. A variational principle for doubly periodic waves whose relative velocity is
given by a Beltrami vector field was obtained by Lokharu &Wahlén [27].

The irrotational theory is on the other hand much more developed. The first
existence proofs for doubly periodic, irrotational, gravity-capillary waves in the
‘non-resonant’ case are due to Reeder & Shinbrot [31] and Sun [32]. These
papers consider periodic lattices for which the fundamental domain is a ‘symmetric
diamond’. The resonant case was investigated by Craig & Nicholls [11] using a
combination of topological and variational methods. They proved the existence of
small-amplitude periodic waves for an arbitrary fundamental domain. A different
approach known as spatial dynamics was developed by Groves & Mielke [20].
The idea is to choose one spatial variable for the role of time and think of the
problem as a Hamiltonian system with an infinite dimensional phase space. Using
this approach, Groves & Mielke constructed symmetric doubly periodic waves.
The asymmetric case was later investigated by Groves & Haragus [18]; see also
Nilsson [29]. One of the strengths of spatial dynamics is that is not restricted to the
doubly periodic setting. It can also be used to construct waveswhich e.g. are solitary
in one direction and periodic or quasi-periodic in another; see Groves [17] for a
survey of different results.One type of solutionswhich have so far elluded the spatial
dynamics method is fully localised solitary waves, that is, solutions which decay
in all horizontal directions. Such solutions have however been constructed using
variationalmethods; seeBuffoni,Groves,Sun&Wahlén [6],Buffoni,Groves
& Wahlén [7] and Groves & Sun [21]. Finally, note that the doubly periodic
problem with zero surface tension is considerably harder since one has to deal with
small divisors. Nevertheless, Iooss& Plotnikov [24,25] proved existence results
for symmetric and asymmetric waves using Nash-Moser techniques. It might be
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Fig. 2. A sketch of a doubly periodic wave

possible to deal with the zero surface tension version of problem (1.1) in a similar
way.

1.4. The Present Contribution

The main contribution of our paper is an existence result for small-amplitude
doubly periodic solutions of problem (1.1). Given two linearly independent vectors
λ1,λ2 ∈ R

2 we define the two-dimensional lattice

� = {λ = m1λ1 + m2λ2 : m1, m2 ∈ Z}.
We assume that

η(x′ + λ) = η(x′) (1.4a)

and

u(x′ + λ, z) = u(x′, z) (1.4b)

for λ ∈ �, so that the fluid domain �η and velocity field are periodic with respect
to the lattice � (see Figure 2). In addition, we impose the symmetry conditions

η(−x′) = η(x′), (1.5a)

u(−x′, z) = (u1(x′, z), u2(x′, z),−u3(x′, z)). (1.5b)

For later use it is convenient to define

Bl j = {(a1 + l)λ1 + (a2 + j)λ2 : a1, a2 ∈ (0, 1)}, l, j ∈ Z,

and

�
η
l j = {(x′, z) : −d < z < η(x′), x′ ∈ Bl j }, l, j ∈ Z,

which splits the domain�η into simple periodic cells.We denote the top and bottom
boundaries of �

η
l j by ∂�

η,s
l j and ∂�

η,b
l j respectively (see Figure 3).

We study solutions bifurcating from laminar flows U[c1, c2], where c1 and
c2 act as bifurcation parameters and therefore vary along the family of nontrivial
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Fig. 3. A three-dimensional periodic cell of the domain (left) and the corresponding two-
dimensional periodic cell (right)

solutions thatwe find.We look for solutions satisfying (1.1d)with the same constant
Q = Q(c1, c2) as the underlying laminar flow U[c1, c2]. Therefore, the Bernoulli
constant Q will vary along the bifurcation set. For purposes of uniqueness we also
impose integral conditions relating the total (relative) horizontal momentum in the
x and y directions to that of U[c1, c2]. This results in the system

∇ × u = αu in �η, (1.6a)

∇ · u = 0 in �η, (1.6b)

u · n = 0 on ∂�η, (1.6c)∫
�

η
00

u j dV =
∫

�
η
00

U j [c1, c2] dV j = 1, 2, (1.6d)

1

2
|u|2 + gη − σ∇ ·

(
∇η√

1 + |∇η|2
)

= Q(c1, c2) on z = η. (1.6e)

In Section 2 we introduce a suitable functional-analytic framework. Since we
are dealing with a free boundary problem it is convenient to transform the problem
to a fixed domain. After a sequence of changes of variables we derive an equivalent
version, problem (2.5), which is amenable to further analysis.We also show that it is
possible to reduce the governing equations to a single nonlinear pseudodifferential
equation for the free surface (cf. Theorem 2.1 and equation (2.6)). In Section 3
we study the linearisation of the problem and identify bifurcation points (c�

1, c�
2)

at which its solution space is two-dimensional. In doing so, we derive a dispersion
relation ρ(c, k) = 0 (see equation (3.3)) which shows how the parameters c =
(c1, c2) are related to the wave vector k of a solution to the linearised problem. The
bifurcation points are those for which ρ(c�, k1) = ρ(c�, k2) = 0 for two linearly
independent wave vectors k1, k2. The conclusions can be found in Propositions 3.1
and 3.3. In Section 4 we finally give a precise formulation and proof of the main
result, Theorem 4.1. While the main interest of this paper lies in the case α �= 0, the
existence result also covers the case α = 0 and therefore yields another existence
proof for doubly periodic irrotational gravity-capillary waves. In the irrotational
case there is an additional symmetrywhich allows one to treat the case of symmetric
fundamental domains using classical one-dimensional bifurcation theory. The lack
of this symmetry is one of the reasons for using a multi-parameter bifurcation
approach. We have formulated the main result in terms of the relative velocity field.
It is worth keeping in mind that in the original stationary frame the solution is a
small perturbation of the laminar flow U + (ν, 0), where ν is the velocity vector.
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2. Functional-Analytic Framework

2.1. Function Spaces and Notation

Suppose that � is an open subset of Euclidean space and let Ck,γ (�), with k ∈
N0 := {0, 1, 2, . . .} and γ ∈ (0, 1), denote the class of functions u : � → Rwhose
partial derivatives up to order k are bounded and uniformly γ -Hölder continuous
in �. This is a Banach space when equipped with the norm

‖u‖Ck,γ (�) := max|β|≤k
sup
x∈�

|∂βu(x)| + max|β|=k
[∂βu]0,γ ,

with

[v]0,γ := sup
x �= y∈�

|v(x) − v( y)|
|x − y|γ

andβ denotingmultiindices.Wewill consider surfaceprofiles in the spaceCk,γ
per,e(R

2),
consisting of η ∈ Ck,γ (R2) which satisfy the periodicity condition (1.4a) and
the evenness condition (1.5a), and velocity fields in the space (Ck,γ

per,e(�
η))2 ×

Ck,γ
per,o(�

η) consisting of u ∈ (Ck,γ (�η))3 which satisfy (1.4b) and (1.5b).
We let

�′ := {k = n1k1 + n2k2 : n1, n2 ∈ Z, ki · λ j = 2πδi j , i, j = 1, 2}

denote the lattice dual to �. Note that any η ∈ Ck,γ
per,e(R

2) can be expanded in a
Fourier series

η(x′) =
∑
k∈�′

η̂(k)eik·x′
,

with Fourier coefficients

η̂(k) = 1

|B00|
∫

B00

η(x′)eik·x′
dx dy

satisfying η̂(k) = η̂(−k) ∈ R. If on the other hand η ∈ Ck,γ
per,o(R

2), then η̂(k) is

purely imaginary with η̂(k) = −η̂(−k). Functions in Ck,γ
per,e(�

0) or Ck,γ
per,o(�

0) have
a similar expansion, with Fourier coefficients depending on z. Note that all of the
analysis can also be done in Sobolev spaces.

If X and Y are normed vector spaces and G : X → Y is a Fréchet differentiable
mapping, we will denote its Fréchet derivative at x ∈ X by DG[x].
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2.2. Flattening Transformation

Since (1.6) is a free boundary problem, it is convenient to perform a change of
variables which fixes the domain. Under the ‘flattening’ transformation

F : (ẋ, ẏ, ż) �→ (x, y, z) =
(

ẋ, ẏ, ż + η(ẋ, ẏ)

(
ż

d
+ 1

))
,

the fluid domain�η becomes the image of the ‘flat’ domain�0. In the new variables
ẋ = (ẋ, ẏ, ż) we introduce the position dependent basis f 1(ẋ) = ∂F(ẋ)

∂ ẋ , f 2(ẋ) =
∂F(ẋ)

∂ ẏ , f 3(ẋ) = ∂F(ẋ)
∂ ż given explicitly by

f 1 =
⎛
⎝ 1

0
ηx

ż+d
d

⎞
⎠ , f 2 =

⎛
⎝ 0

1
ηy

ż+d
d

⎞
⎠ , f 3 =

⎛
⎝ 0

0
η+d

d

⎞
⎠ .

Note that the vectors f j (ẋ) are tangent to the coordinate curves. In the new vari-
ables, the vector field u is given by

u̇(ẋ) = (u̇1(ẋ), u̇2(ẋ), u̇3(ẋ)),

where the coordinate functions are determined by

u̇1(ẋ) f 1(ẋ) + u̇2(ẋ) f 2(ẋ) + u̇3(ẋ) f 3(ẋ)

= J (F−1(x))[u1(x)e1 + u2(x)e2 + u3(x)e3],
in which

J (ẋ) = det F′(ẋ) = η(ẋ) + d

d
.

Note that under this change of variables the space (Ck,γ
per,e(�

η))2 × Ck,γ
per,o(�

η) is

mapped bijectively to (Ck,γ
per,e(�

0))2×Ck,γ
per,o(�

0) if η ∈ Ck+1,γ
per,e (R2)with min η >

−d. The divergence and curl take the following forms in the new coordinates:

∇ · u = [J (ẋ)]−1∇ẋ · u̇ (2.1)

and

∇ × u = 1

J (ẋ)
det

⎛
⎝ f 1 f 2 f 3

∂ẋ ∂ẏ ∂ż

f 1 · u(F(ẋ)) f 2 · u(F(ẋ)) f 3 · u(F(ẋ))

⎞
⎠ . (2.2)

Thus, in view of (2.1) and (2.2) problem (1.6) transforms into

∇ × u̇ − αu̇ = ∇ × N(u̇, η) in �0, (2.3a)

∇ · u̇ = 0 in �0, (2.3b)

u̇3 = 0 on ∂�0, (2.3c)∫
�0
00

u̇ j dV =
∫

�
η
00

U j [c1, c2] dV j = 1, 2, (2.3d)
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1

2
B(u̇, η) + gη − σ∇ ·

(
∇η√

1 + |∇η|2
)

= Q(c1, c2) on ż = 0, (2.3e)

where the divergence and curl are now with respect to the dotted variables and the
nonlinearities B and N = (N1, N2, N3) are given by

N j (u̇, η) = u̇ j −
3∑

l=1

f j · f l

J
u̇l , j = 1, 2, 3,

B(u̇, η) = 1

J 2

[
u̇2
1 + u̇2

2 +
(

ηx
ż + d

d
u̇1 + ηy

ż + d

d
u̇2 + η + d

d
u̇3

)2
]

.

Note that N is linear in u̇ and that N(u̇, 0) = 0. From now on we drop the dots on
x , y and z to simplify the notation.

Since we are interested in solutions that are close to a laminar flow U[c1, c2],
we write

u̇ = U + ṽ.

Thus, equations (2.3) transform into

∇ × ṽ − αṽ = ∇ × L̃(η) + ∇ × Ñ(ṽ, η) in �0, (2.4a)

∇ · ṽ = 0 in �0, (2.4b)

v3 = 0 on ∂�0, (2.4c)∫
�0
00

ṽ j dV =
∫

�
η
00

U j dV −
∫

�0
00

U j dV j = 1, 2, (2.4d)

−[c21 + c22]
η

d
+ c1ṽ1 + c2ṽ2 + gη − σ�η = B̃(ṽ, η) on z = 0. (2.4e)

Here

L̃(η) =
⎛
⎝

η
d U1
η
d U2

−ηx
z+d

d U1 − ηy
z+d

d U2

⎞
⎠ , Ñ(ṽ, η) = N(U + ṽ, η) − DN[U, 0](ṽ, η)

and

B̃(ṽ, η) = − 1

2
[B(U + ṽ, η) − DB[U, 0](ṽ, η) − Q(c1, c2)]z=0

+ σ∇ ·
(

∇η|∇η|2√
1 + |∇η|2(√1 + |∇η|2 + 1)

)
.

Note that Ñ(ṽ, 0) = 0 and D Ñ[0, 0] = 0. Similarly, B̃(0, 0) = 0 (since B(U, 0) =
Q(c1, c2)) and DB̃[0, 0] = 0.

We can simplify the linear part of problem (2.4) by introducing the new variable

v = ṽ − wη − Ũ
η
, where wη =

⎛
⎝

η
d U1 + αη z+d

d U2
η
d U2 − αη z+d

d U1

−ηx
z+d

d U1 − ηy
z+d

d U2

⎞
⎠ ,
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and Ũ
η = U[c̃η

1 , c̃η
2 ] with∫

�0
00

Ũη
j dV =

∫
�

η
00

U j dV −
∫

�0
00

U j dV −
∫

�0
00

w
η
j dV

=
∫

�0
00

U j

(
z + η(x′)

( z

d
+ 1

)) η(x′) + d

d
dV

−
∫

�0
00

U j (z)
η(x′) + d

d
dV

−
∫

�0
00

U ′
j (z)

η(x′)(z + d)

d
dV, j = 1, 2.

This is a linear system of equations for c̃η
1 , c̃η

2 , which is uniquely solvable if and
only if αd �∈ 2πZ \ {0}, since∫

�0
00

Ũη
1 dV = sin(αd)

α
c̃η
1 + (cos(αd) − 1)

α
c̃η
2

and ∫
�0
00

Ũη
2 dV = − (cos(αd) − 1)

α
c̃η
1 + sin(αd)

α
c̃η
2 ,

with obvious modifications if α = 0. We shall make this assumption from now on.
The transformation then gives

∇ × v − αv = G(v, η) in �0, (2.5a)

∇ · v = 0 in �0, (2.5b)

v3 = c1ηx + c2ηy on z = 0, (2.5c)

v3 = 0 on z = −d, (2.5d)∫
�0
00

v j dV = 0 j = 1, 2, (2.5e)

c1v1 + c2v2 + gη − σ�η = R(v, η) on z = 0. (2.5f)

Here G(v, η) = ∇ × Ñ(v + wη + Ũ
η
, η) and R(v, η) = B̃(v + wη + Ũ

η
, η) −

c1c̃η
1 − c2c̃η

2 . Note that G is affine linear in its first argument. We have G(v, 0) = 0
and DG[0, 0] = 0 as well as R(0, 0) = 0 and DR[0, 0] = 0. Therefore, the
linearisation of (2.5) is the same as the formal linearisation of (1.6).

2.3. Reduction to the Surface

We now go on to show that problem (1.6) (or, equivalently, problem (2.5)) can
be reduced to a nonlinear pseudodifferential equation for the surface elevation η

in a neighbourhood of a laminar flow. To do this, we eliminate the vector field v

from equation (2.5f) by solving (2.5a)–(2.5e) for v. The solution v = v(η, c) is
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expressed as an analytic operator of η and cwith v(0, c) = 0. Substituting this into
(2.5f), we can rewrite problem (2.5) as the single equation

c1[v1(η, c)]z=0 + c2[v2(η, c)]z=0 + gη − σ�η − R(v(η, c), η) = 0. (2.6)

In order for the procedure to work, we need to impose the non-resonance condition√
α2 − |k|2 �∈ π

d
Z+ for all k ∈ �′ such that |k| < |α|, (2.7)

where Z+ = {1, 2, 3, . . .}.
Theorem 2.1. Let d > 0, α ∈ R and �′ be given and assume that condition (2.7)
holds. There exists a constant r0 > 0 such that for any η ∈ C2,γ

per,e(R
2) and any c ∈

R
2 problem (2.5a)–(2.5e) admits a unique solution v ∈ (C1,γ

per,e(�
0))2×C1,γ

per,o(�
0)

provided ‖η‖C2,γ (R2) < r0. The constant r0 depends only on α and d. Furthermore,
the vector field v depends analytically on η and c. If η is constant in the direction
λ j , then so is v.

The proof is based on a perturbative approach. We first define suitable Banach
spaces and prove a technical lemma for the unperturbed problem. After that we
deal with the perturbed problem, thus proving the theorem.

In the analysis of (2.5a)–(2.5e) we assume that v ∈ Y , where

Y :=
{

v∈(C1,γ
per,e(�

0))2 × C1,γ
per,o(�

0) : ∇ · v=0 in �0, v3|∂�0,b =0,
∫

�0
00

v j dV =0, j = 1, 2

}
.

The corresponding range space for the operator

Cα : v �→ (∇ × v − αv, v3|∂�0,s
)

is given by

Z :=
{
(w, f ) ∈ ((C0,γ

per,e(�
0))2 × C0,γ

per,o(�
0)) × C1,γ

per,o(R
2) : ∇ · w = 0 in �0

}
.

Lemma 2.2.

(i) The operator C0 : Y → Z is a linear isomorphism.
(ii) The operator Cα : Y → Z is Fredholm of index zero for all α ∈ R.

(iii) If
√

α2 − |k|2 /∈ π
d Z+ for all k ∈ �′, then Cα : Y → Z is a linear isomorphism.

Proof. Let us prove the first claim. We start with the injectivity. For a given v ∈ Y
such that

∇ × v = 0 in �0, (2.8)

and

v3 = 0 on ∂�0,s,

we find that

�v3 = 0 in �0,
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while v3 = 0 on ∂�0. Thus, v3 = 0 identically. Using this fact and equation (2.8)
restricted to the boundary, we obtain

∂zv1 = ∂zv2 = 0 on ∂�0.

Thus, the components v1 and v2 must be constant throughout �0 as they solve
�v1 = �v2 = 0 with homogeneous Neumann conditions. But the integral as-
sumptions in the definition of the space Y require these constants to be zero and so
v vanishes everywhere in �0 and we obtain the injectivity.

Next we turn to the surjectivity. We need to solve the equations

∇ × v = w in �0, (2.9a)

and

v3 = f on ∂�0,s (2.9b)

for (w, f ) ∈ Z with v ∈ Y . Classical elliptic theory (see for instance Agmon,
Douglis & Nirenberg [2, Theorem 6.30]) provides the existence of solutions A j ∈
C2,γ

per (�
0) to the equations

�A j = w j in �0, j = 1, 2, 3,

A1 = A2 = ∂z A3 = 0 on ∂�0

(note that integral ofw3 over�0
00 vanishes due to oddness). Furthermore, it’s easily

seen that A1 and A2 are even in x′ and that A3 can be chosen odd. We put

A = ∇ · A, A = (A1, A2, A3)

and note that A ∈ C1,γ
per (�

0) solves

�A = 0 in �0, A = 0 on ∂�0.

The unique solvability of the Dirichlet problem implies ∇ · A = 0 everywhere in
�0. Moreover, we let ϕ ∈ C2,γ

per (�
0) be the unique odd solution to

�ϕ = 0 in �0,

∂zϕ = f on ∂�0,s,

∂zϕ = 0 on ∂�0,b,

and set

v = −∇ × A + ∇ϕ.

It is straightforward to verify that v satisfies (2.9a). Furthermore, the boundary
conditions (2.9b) and

v3 = 0 on ∂�0,b
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follow from the relation

v3 = −∂x A2 + ∂y A1 + ∂zϕ.

On the other hand, we find that

v1 = −∂y A3 + ∂z A2 + ∂xϕ, v2 = −∂z A1 + ∂x A3 + ∂yϕ.

Now because A1 = A2 = 0 on the boundary, we find that∫
�0
00

v j dV = 0, j = 1, 2.

Finally, the formulas also reveal that v1 and v2 are even in x′, while v3 is odd.
Thus, v ∈ Y and the surjectivity is verified. To complete our proof of the first
statement we use the inverse mapping theorem which ensures that C0 : Y → Z is
an isomorphism.

The second claim follows from an observation that the composition

C−1
0 ◦ Cα : Y → Y

is a sum of the identity and a compact operator. Thus it is Fredholm of index zero
and so is Cα .

The last statement (iii) follows from (ii) since under the given assumption the
kernel of Cα is trivial. Indeed, if Cα(v) = 0 for some v ∈ X , then the Fourier
coefficients solve

(v̂
(k)
j )′′ + (α2 − |k|2)v̂(k)

j = 0 in �0

for all k ∈ �′ and j = 1, 2, 3. The component v̂
(k)
3 also satisfies homogeneous

Dirichlet boundary conditions both at z = −d and z = 0. According to the assump-
tion of the claim, we see that α2 − |k|2 is not an eigenvalue and hence v̂

(k)
3 must

be zero everywhere in �0. Using this fact, we can compute the third coordinate of
∇ × v − αv to find

k1v̂
(k)
2 − k2v̂

(k)
1 = 0

for all z ∈ [−d, 0], where k j = k · e j , j = 1, 2. Moreover, since v is divergence
free, we have

k1v̂
(k)
1 + k2v̂

(k)
2 = 0.

Taken together, this shows that

|k|2v̂(k)
j = 0, j = 1, 2.

Thus, v = 0 identically and the kernel is trivial. This finishes the proof of the
lemma. �

We are now ready to treat the perturbed problem.
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Proof of Theorem 2.1. Note that Cα : Y → Z is an isomorphism by the hypothe-
ses of the theorem and Lemma 2.2. We can therefore rewrite problem (2.5a)–(2.5e)
as

v − C−1
α (G(v, η) − G(0, η), 0) = C−1

α (G(0, η), c1ηx + c2ηy),

where the left-hand side is a bounded linear operator on Y (since v �→ G(v, η) is
affine linear), which is analytic in η ∈ U := {η ∈ C2,γ

per (R
2) : min η > −d}, and

the right hand side is an analytic mapping U × R
2 → Y . Since ‖C−1

α (G(v, η) −
G(0, η), 0)‖Y = O(‖η‖C2,γ (R2))‖v‖Y it follows by the analytic implicit-function
theorem that the equation has a unique solution v = v(η, c) which is analytic in
η and c for ‖η‖C2,γ (R2) < r0 with r0 sufficiently small. To prove the last claim,
we repeat the analysis in the subspace of Y consisting of vector fields which are
constant in the direction λ j , noting that Cα and G preserve this property if η also
shares it. �

3. Analysis of the Linearised Problem

3.1. Dispersion Equation

In this section we analyse the linearisation of (2.5).We choose to work with this
problem rather than the reduced equation (2.6) since it is slightly more general (see
condition (2.7)) and since it also gives direct information about the velocity field.
However, it is of course straightforward to draw conclusions concerning the lineari-
sation of problem (2.6) from this analysis. We aim to show that for a broad range
of parameters the kernel of the linearised problem is exactly four-dimensional (and
therefore two-dimensional when restricting to solutions satisfying the symmetry
conditions (1.5)). For the convenience of the reader, the results are summarised in
Proposition 3.1 at the end of the section.

The kernel of the linearisation of problem (2.5) is described by the system

∇ × v − αv = 0 in �0, (3.1a)

∇ · v = 0 in �0, (3.1b)

v3 = c1ηx + c2ηy on z = 0, (3.1c)

v3 = 0 on z = −d, (3.1d)∫
�0
00

v j dV = 0, for j = 1, 2, (3.1e)

c1v1 + c2v2 + gη − σ�η = 0 on z = 0. (3.1f)

By Fourier analysis, it is enough to consider the Ansatz

η = η̂eik·x′
, v = (v̂1(z), v̂2(z), v̂3(z))e

ik·x′

with k = (k, l) ∈ �′ in order to find periodic solutions of these equations. We split
the analysis into four cases, in which

√· denotes the principal branch of the square
root.
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Case I:
√

α2 − |k|2 /∈ π
d Z+ and k �= (0, 0).

The first two equations (3.1a) and (3.1b) imply that

v̂′′
3 (z) + (α2 − |k|2)v̂3(z) = 0, z ∈ (−d, 0). (3.2)

Taking into account the boundary conditions (3.1c) and (3.1d), we find

v̂3(z) = λη̂φ(z),

where λ = i(c · k) and

φ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(
√

α2−|k|2(z+d))

sin(
√

α2−|k|2d)
if |α| > |k|,

z+d
d if |α| = |k|,

sinh(
√

|k|2−α2(z+d))

sinh(
√

|k|2−α2d)
if |α| < |k|.

Now since k �= (0, 0), we obtain

v̂1(z) = iλ|k|−2η̂(kφ′(z) + αlφ(z)),

v̂2(z) = iλ|k|−2η̂(lφ′(z) − αkφ(z)).

Note that (3.1e) is satisfied automatically since k �= (0, 0). Substituting v into (3.1f)
and assuming η̂ �= 0 (otherwise v vanishes), we arrive at the dispersion equation

ρ(c, k) := g + σ |k|2 − (c · k)2
|k|2 κ(|k|) + α

(c · k)(c · k⊥)

|k|2 = 0, (3.3)

where

κ(|k|) := φ′(0; |k|) =

⎧⎪⎨
⎪⎩

√
α2 − |k|2 cot(√α2 − |k|2d) if |α| > |k|,

1
d if |α| = |k|,√|k|2 − α2 coth(

√|k|2 − α2d) if |α| < |k|
(3.4)

and

k⊥ = (−l, k).

This is an equation for k which will be analysed below.
Case II: |α| /∈ π

d Z+ and k = (0, 0).
This corresponds to the constant function η = η̂. The vector field v solving

(3.1a)–(3.1d) with no x′-dependence must coincide with a laminar flow U[c̃1, c̃2]
for some constants c̃1, c̃2 ∈ R, but the condition (3.1e) forces them to be zero.
Finally, condition (3.1f) forces η̂ = 0. Thus, in this case we find no non-trivial
solutions to the linearised problem.
Case III:

√
α2 − |k|2 ∈ π

d Z+ and k �= (0, 0).
Just as in Case I, we find that v̂3 solves (3.2). The condition v̂3(−d) = 0 is

implied by (3.1d) and, since
√

α2 − |k|2 ∈ π
d Z+, we necessarily have v̂3(0) = 0.

Thus, v̂3(z) = λφ0(z), where λ is an arbitrary constant and φ0(z) = sin(πnz/d),
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n ∈ Z+, solves (3.2) with homogeneous Dirichlet boundary conditions. Further-
more, (3.1c) reduces to (c·k)η̂ = 0. Thus, either η̂ or c·k vanishes. The functions v̂1
and v̂2 are given by the same formulas as in Case I but with the function φ replaced
by φ0 and without η̂. Again (3.1e) follows from k �= (0, 0). Finally, relation (3.1f)
leads to

iλ(c · k)
|k|2 φ′

0(0) + η̂[g + σ |k|2] = 0.

If c · k = 0, we see from this that η̂ = 0 while there are no restrictions on λ. If on
the other hand, c · k �= 0, we saw before that η̂ = 0 and this forces λ = 0 (note that
φ′
0(0) �= 0) and hence v = 0. Thus η = 0, but v need not vanish if c · k = 0.

Case IV: |α| ∈ π
d Z+ and k = (0, 0).

As in Case II, we get that η = η̂ is constant and v = U[c̃1, c̃2] for some
constants c̃1, c̃2 ∈ R. If |α| is an odd multiple of π/d, (3.1e) forces c̃1 = c̃2 = 0
and then (3.1f) leads to η̂ = 0. However, in the even case c̃1 and c̃2 are arbitrary
and (3.1f) leads to

η̂ = − c · c̃
g

.

The last two cases are included for completeness and future reference, but we
will avoid them in the further analysis by assuming the non-resonance condition
(2.7). A complete analysis of equation (3.3) is a complicated problem. Our aim here
is to find sufficient conditions on the problem parameters that guarantee that there
exists some c = c� such that the dispersion equation ρ(c�, k) = 0 has exactly four
different roots in the dual lattice �′. Note that the roots come in pairs ±k, so that
the dimension of the solution space is halved when we consider solutions with the
symmetries (1.5). We use a geometric approach and restrict ourselves to the case
when the roots are generators of�′. We will also restrict attention to the case α �= 0
in the main part of the analysis and leave the irrotational case to Remarks 3.2, 3.5
and 4.2 (see also the references mentioned in the introduction). Let us assume that
the constants α, σ and d are fixed. Then for a given k �= 0 we want to describe the
set of all c ∈ R

2 such that (3.3) holds true. In other words, we are going to analyse
the zero level set

ρ(c, k) = 0, (3.5)

where the vector k is fixed. For this purpose we put

x = c · k
|k| , y = c · k⊥

|k|
and write equation (3.5) in the form

κ(|k|)x2 = a(|k|) + αxy, a(|k|) := g + σ |k|2.
We can solve for y and get a curve of solutions in the xy-plane given by

y = κ(|k|)
α

x − a(|k|)
αx

.
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(a) (b)

Fig. 4. The hyperbolas are solutions to the dispersion equation (3.3) in the xy-plane for
α > 0

The curve can be recognised as a hyperbola with the y-axis as one asymptote. We
denote by

γ = π

2
+ arctan

(
κ(|k|)
|α|

)

the angle between the asymptotes of one branch of the hyperbola (Figure 4). It
is clear that γ ∈ (0, π) and that γ is obtuse if κ(|k|) is positive and acute if it
is negative. We call the open set {(x, y) : κ(|k|)x2 > αxy}, which contains the
hyperbola and is delimited by its asymptotes, the set between the asymptotes. It is
the shaded set in Figures 4a and 4b.

To express this curve in (c1, c2) coordinates we note that x = c1 cos(θ) +
c2 sin(θ) and y = −c1 sin(θ) + c2 cos(θ), where θ is the angle that k makes with
e1. Hence (

c1
c2

)
=

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
x
y

)
,

so going from (x, y) to (c1, c2) is a counterclockwise rotation by the angle θ . We
denote this curve of solutions in the (c1, c2) plane by C(k). Note that the equation
ρ(c, k j ) = 0 can also be written in the form

cT A j c = 1, j = 1, 2, (3.6)

where A j are real indefinite symmetric 2×2 matrices. The set between the asymp-
totes of C(k j ) is therefore given by {c : cT A j c > 0}. Now we want to find linearly
independent vectors k1 and k2 so that there is a point of intersection of C(k1) and
C(k2). Clearly a sufficient condition is that

the sets between the asymptotes of C(k1) and C(k2) have

nonempty intersection, but one is not contained in the other. (3.7)
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(b)(a) (c)

Fig. 5. Intersection points of the hyperbolas correspond to common solutions c = (c1, c2) of
the dispersion equation (3.3) for two different wave vectors k1 and k2. The figures illustrate
the sufficient condition (3.8) for an intersection in the case α, κ(|k1|), κ(|k2|) > 0

We now analyse this in more detail in the special case when α, κ(|k1|) and
κ(|k2|) are all positive. In that case we get two hyperbolas of the kind shown in
Figure 4a. Note that if α �= 0 we we can always assume that it is positive by
interchanging x and y, and u1 and u2. Without loss of generality we can assume
that k1 is parallel with e1 and that k2 makes an angle θ with k1. Moreover we
can always choose the generators in such a way that 0 < θ < π by changing
k2 to −k2 if necessary. By possibly relabelling, we may assume that γ1 ≥ γ2
where γi is the angle between the asymptotes of C(ki ). We see in Figure 5a that
if 0 < θ ≤ γ1 − γ2 then the set between the asymptotes of C(k2) is completely
contained in the set between the asymptotes of C(k1); in Figures 5b and 5c we see
that if γ1−γ2 < θ < π then condition (3.7) is satisfied (note that γ1−γ2 < π −γ2).
In summary we necessarily get intersection between C(k1) and C(k2) if

γ1 − γ2 < θ < π. (3.8)

In the subsequent analysis it will be important to make sure that the only so-
lutions to the dispersion equation (3.5) for a fixed c = c� are the generators ±k1
and ±k2. This property is expected to hold for generic values of the parameters
since three hyperbolas in the plane generally don’t have a common point of in-
tersection. However, verifying it analytically is non-trivial. We content ourselves
with analysing the case of a symmetric lattice, |k1| = |k2| = k > 0. In that
case γ1 = γ2 and as before we assume that the angles are obtuse (meaning that
κ(k) = κ(|k1|) = κ(|k2|) > 0) and that α > 0. Condition (3.8) is clearly satisfied.

It’s convenient to assume that the generators have the form

k1 = k(cosω, sinω), k2 = k(cosω,− sinω),

with ω ∈ (0, π/2), which can always be achieved after rotating and relabelling.
Note that the angle between k1 and k2 is 2ω. Similarly, we write

c = c(cosϕ, sin ϕ).
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The dispersion equation ρ(c, k j ) = 0 then takes the form

c2
(
κ(k)(cosω cosϕ + sinω sin ϕ)2

− α(cosω cosϕ + sinω sin ϕ)(cosω sin ϕ − sinω cosϕ)
)

= g + σk2

and

c2
(
κ(k)(cosω cosϕ − sinω sin ϕ)2

− α(cosω cosϕ − sinω sin ϕ)(cosω sin ϕ + sinω cosϕ)
)

= g + σk2

for j = 1 and j = 2, respectively. It follows that (c�)2 is proportional to g + σk2

(with proportionality constant independent of g and σ ) for any solution c�.
Expanding the two equations we obtain

ν = cos2 ω(κ(k) cos2 ϕ − α cosϕ sin ϕ) + sin2 ω(κ(k) sin2 ϕ + α cosϕ sin ϕ)

+ cosω sinω(2κ(k) cosϕ sin ϕ + α(cos2 ϕ − sin2 ϕ))

= cos2 ω(κ(k) cos2 ϕ − α cosϕ sin ϕ) + sin2 ω(κ(k) sin2 ϕ + α cosϕ sin ϕ)

− cosω sinω(2κ(k) cosϕ sin ϕ + α(cos2 ϕ − sin2 ϕ)),

where

ν = g + σk2

(c�)2
.

Taking the difference of the two different expressions for ν and using the fact that
sinω cosω �= 0, we obtain that

2κ(k) cosϕ sin ϕ + α(cos2 ϕ − sin2 ϕ) = 0

and hence

tan(2ϕ) = − α

κ(k)
. (3.9)

In particular, we note that c� is not parallel with either of the coordinate axes if
α �= 0, in contrast to the irrotational case. We also note that we get

ν = cos2 ω(κ(k) cos2 ϕ − α cosϕ sin ϕ) + sin2 ω(κ(k) sin2 ϕ + α cosϕ sin ϕ)

= (1 − 2 sin2 ω)(κ(k) cos2 ϕ − α cosϕ sin ϕ) + κ(k) sin2 ω. (3.10)

The dispersion equation ρ(c�, k) = 0 for a general lattice vector

k = k((n1 + n2) cosω, (n1 − n2) sinω), n1, n2 ∈ Z,

can be written as

(c�)2
(
(n1 + n2) cosω cosϕ + (n1 − n2) sinω sin ϕ)2κ(kqn1n2)

− α((n1 + n2) cosω cosϕ + (n1 − n2) sinω sin ϕ)((n1 + n2) cosω sin ϕ

− (n1 − n2) sinω cosϕ)
)

= (g + σk2q2
n1n2)q

2
n1n2 ,
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where

qn1n2 =
√

(n1 + n2)2 cos2 ω + (n1 − n2)2 sin2 ω.

Since the left hand side of the dispersion equation is proportional to g + σk2, we
either get equality for all σ or for at most one σ > 0. However, the former can
happen only if qn1n2 = 1 and the proportionality constant is 1. We have

q2
n1n2 ≥ (|n1| − |n2|)2

with equality only if either n1 or n2 vanishes or if both are non-zero and ω is
an integer multiple of π/2. It follows that the only way to get qn1n2 = 1 is if
(n1, n2) = (±1, 0) or (0,±1), or if n1 = ±n2. The former is the trivial case when
k = ±k j , j = 1, 2. In the latter case, we get

q2
n1n2 = q2

n1n1 = 4n2
1 cos

2 ω = 1

or

q2
n1n2 = q2

n1(−n1) = 4n2
1 sin

2 ω = 1.

We shall now show that this leads to a contradiction. For simplicity we restrict
attention to the case n1 = n2, the other one being completely analogous. The
dispersion equation simplifies to

ν = κ(k) cos2 ϕ − α cosϕ sin ϕ. (3.11)

Substituting this into (3.10), we get

ν = (1 − 2 sin2 ω)ν + κ(k) sin2 ω,

and hence,

ν = κ(k)

2
.

Substituting this result into (3.11), we get

κ(k)(2 cos2 ϕ − 1) = 2α cosϕ sin ϕ

or

tan(2ϕ) = κ(k)

α
,

which contradicts (3.9).
We can summarise the results of this section as follows:
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Proposition 3.1.

(i) Assume that the non-resonance condition (2.7) is satisfied for the dual lattice
�′. Then the dimension of the space of solutions (v, η) ∈ ((C1,γ

per,e(�
0))2 ×

C1,γ
per,o(�

0)) × C2,γ
per,e(R

2) to the linearised problem (3.1) is equal to half the
number of solutions k ∈ �′ of the dispersion equation (3.3) (since solutions to
the dispersion relation occur in pairs ±k).

(ii) If, in addition, α �= 0 and the sufficient condition (3.7) holds for the generators
k1 and k2 of �′, then there exists a constant c� such that the solution space is
at least two-dimensional when c = c�.

(iii) If α, κ(|k1|) and κ(|k2|) are positive, where κ is defined in (3.4), then condition
(3.7) is satisfied if the angle θ between the generators satisfies (3.8).

(iv) If, in addition to the conditions in (i) and (iii), the lattice is symmetric, that
is, |k1| = |k2|, then the solution space is exactly two-dimensional for all but
countably many values of σ .

Remark 3.2. In the irrotational case,α = 0, the hyperbolas instead become straight
lines, x = ±√

a(|k|)/κ(|k|). The rotated linesC(k1) andC(k2)will clearly intersect
as soon as k1 and k2 are not parallel. Themultiplicity analysis for symmetric lattices
applies also in the irrotational case, but can then be simplified and expanded; see
Section 7 of Reeder & Shinbrot [31].

3.2. Transversality Condition

The local bifurcation theory that we are going to apply requires the bifurcation
point (a laminar flow in our case) to satisfy a transversality condition. This can be
stated as the condition that the vectors

∇cρ(c�, k1) and ∇cρ(c�, k2) are not parallel, (3.12)

where±k1 and±k2 are assumed to be only solutions to the equation ρ(c�, k) = 0.
It turns out that (3.12) is automatically satisfied under the conditions discussed
above.

Proposition 3.3. Condition (3.7) is sufficient for the transversality condition (3.12).

Proof. Assume instead that C(k1) and C(k2) intersect tangentially at c�. Writing
the equations ρ(c, k j ) = 0 in the form (3.6), we see that A1c� = λA2c� for
some λ ∈ R, and from (c�)T A jc� = 1, j = 1, 2, we get that λ = 1. Hence,
(A1 − A2)c� = 0. We now either get A1 ≥ A2 or vice versa, depending on
whether the other eigenvalue of the symmetric matrix A1 − A2 is nonnegative
or nonpositive. For definiteness, we shall assume the former since it is consistent
with the assumptions in the previous section. But this implies that the hyperbola
cT A2c = 1 is contained in the set cT A1c ≥ 1. Moreover, the set {c : cT A2c > 0}
between the asymptotes of C(k2) is contained in the set {c : cT A1c > 0} between
the asymptotes of C(k1), contradicting (3.7). �
Remark 3.4. In particular, condition (3.8) is sufficient for transversality in the
special case α, κ(|k1|), κ(|k2|) > 0 by the discussion in the previous section.
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Remark 3.5. In the irrotational case, α = 0, the transversality condition is auto-
matically satisfied as soon as k1 and k2 are not parallel since the lines ρ(c�, k j ) = 0
then intersect transversally.

4. Main Result

Nowwe formulate ourmain theorem, providing the existenceof three-dimensional
steady gravity-capillary waves with vorticity.

Theorem 4.1. Let α ∈ R, σ > 0 and the depth d > 0 be given, as well as a laminar
flow U[c�

1, c�
2]. Furthermore, let �′ be the dual lattice generated by the linearly

independent vectors k1, k2 ∈ �′. Assume that

(i) the non-resonance condition (2.7) holds;
(ii) within the lattice �′, the dispersion equation (3.3) with c1 = c�

1, c2 = c�
2 has

exactly four roots ±k1 and ±k2;
(iii) the transversality condition (3.12) holds.

Then there exists a neighbourhood of zero W = Bε(0;R2) ⊂ R
2 and real-analytic

functions δ1, δ2 : W → R satisfying δ1, δ2 = O(|t|2) as |t| → 0, and such that for
any t = (t1, t2) ∈ W there is a solution (v, η) ∈ ((C1,γ

per,e(�
0))2 × C1,γ

per,o(�
0)) ×

C2,γ
per,e(R

2) of problem (2.5) with

c1 = c�
1 + δ1(t), c2 = c�

2 + δ2(t), Q = Q(c1, c2)

such that

η(x′) = t1 cos(k1 · x′) + t2 cos(k2 · x′) + O(|t|2), t ∈ W.

Furthermore, the solution depends analytically on t ∈ W . In a neighbourhood of
(0, 0, c�) in ((C1,γ

per,e(�
0))2 × C1,γ

per,o(�
0)) × C2,γ

per,e(R
2) × R

2, these are the only
non-trivial solutions, except for two two-parameter families of 21/2-dimensional
solutions which can be obtained by simple bifurcation from nearby points where
the kernel of the linearisation is one-dimensional.

Remark 4.2. Propositions 3.1 and 3.3 show that it is possible to satisfy the as-
sumptions of the theorem. Indeed for any α > 0 and d > 0, we can choose the

lengths |k1| and |k2| so that
√

α2 − n2|k j |2 /∈ π
d Z+ and κ(|k j |) > 0 for j = 1, 2

and n ∈ Z. Since γ j depends only on the lengths |k j |, we can then choose θ , the
angle between k1 and k2, so that (3.8) is fulfilled. We also choose it so that (2.7) is
satisfied, that is

2n1n2|k1||k2| cos(θ) �= α2 − n2
1|k1|2 − n2

2|k2|2 − n2
3π

2

d2 .

for all n1, n2 ∈ Z and n3 ∈ Z+. Note that we only have to avoid finitely many
angles and that the case when either n1 or n2 vanishes is already satisfied by the
choice of |k1| and |k2|. Then there exists a c = c� such that k1 and k2 are roots
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of the dispersion equation. Moreover, the transversality condition is satisfied. At
least in the case of a symmetric lattice, |k1| = |k2|, we can then choose σ outside
some countable set, which depends only on k1, k2, α and d, such that the dispersion
equation has exactly the four roots ±k1, ±k2 in the lattice �′.

In the irrotational case, α = 0, the first and third conditions are always satisfied
(see Remark 3.5). As above, the second condition can be verified outside an excep-
tional set of parameter values in the case of a symmetric lattice; see Remark 3.2
and Reeder & Shinbrot [31].

Remark 4.3. In the proof of this result we will work with the reduced equation
(2.6) for the surface profile. We loose a little bit of generality in doing this since
we have to impose the non-resonance condition (2.7) which might be a bit stronger
than needed if we were to work directly with problem (2.5) (see Cases III and IV
in Section 3.1). On the other hand, we gain the elegance of the reduced equation
and the bifurcation conditions become simpler to state.

Before giving the proof of the theorem we start with some technical lemmas.
In what follows it will be useful to introduce the notation

Xk := Ck,γ
per,e(R

2).

We rewrite (2.6) in the form

H(η, c) :=
2∑

j=1

c j [Dηv j [0, c](η)]z=0 + gη − σ�η − S(η, c) = 0,

where

S(η, c) := R(v(η, c), η) −
2∑

j=1

c j ([v j (η, c) − Dηv j [0, c](η)]z=0)

satisfies S(0, c) = 0 and DηS[0, c] = 0. Note that

H : Br0(0; X2) × R
2 → X0

is analytic with respect to η and c by Theorem 2.1. It is convenient to represent

H(η, c) = Dη H [0, c�](η) + D2
η,c1 H [0, c�](η, c1 − c�

1)

+ D2
η,c2 H [0, c�](η, c2 − c�

2) + Hr (η, c)

= L(η) + (c1 − c�
1)L1(η) + (c2 − c�

2)L2(η) + Hr (η, c).

Here L , L1 and L2 are linear operators of η, given by

L(η) =
2∑

j=1

c�
j [Dηv j [0, c�](η)]z=0 + gη − σ�η
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and

L1(η) = ∂c1

⎛
⎝ 2∑

j=1

c j [Dηv j [0, c](η)]z=0

⎞
⎠∣∣∣∣

c=c�

= [Dηv1[0, c�](η)]z=0 +
2∑

j=1

c�
j [Dηv j [0, c1 − c�

1, 0](η)]z=0,

L2(η) = ∂c2

⎛
⎝ 2∑

j=1

c j [Dηv j [0, c](η)]z=0

⎞
⎠∣∣∣∣

c=c�

= [Dηv2[0, c�](η)]z=0 +
2∑

j=1

c�
j [Dηv j [0, 0, c2 − c�

2](η)]z=0,

(note that Dηv[0, c](η) is linear in c), while the remainder

Hr (η, c) :=
2∑

j=1

(c j − c�
j )[Dηv j [0, c− c�](η)]z=0 − S(η, c) (4.1)

satisfies the estimate

‖Hr (η, c)‖X0 ≤ C(‖η‖X2 + |c− c�|2)‖η‖X2 .

We will later use the fact that if η is constant in the direction λ j , then so are L(η),
L1(η), L2(η), Hr (η, c), and hence H(η, c). Indeed, this follows directly from the
definitions and the last part of Theorem 2.1.

Let us study the action of the operator Dη H [0, c] in terms of the Fourier co-

efficients of η. Abbreviating the Fourier coefficients of Dη H [0, c] to D̂η H
(k)

, we
find that

D̂η H
(k) = ρ(c, k)η̂(k), k ∈ �′ \ {0},

where

ρ(c, k) = g + σ |k|2 − (c · k)2
|k|2 φ′(0; |k|) + α

(c · k)(c · k⊥)

|k|2
is the expression from the dispersion equation (3.3), and

D̂η H
(0) = gη̂(0).

Similarly, we find that

L̂(η)
(k) = ρ(c�, k)η̂(k), L̂ j (η)

(k) = ∂c j ρ(c�, k)η̂(k), k ∈ �′ \ {0}.
By the assumptions of the theorem, ρ(c�, k j ) = 0, j = 1, 2 and ρ(c�, k) �=

0, k �= ±k1, k �= ±k2. Using this together with standard properties of Fourier
multiplier operators on Hölder spaces (see e.g. Bahouri, Chemin& Danchin [3,
Prop. 2.78]), one obtains the following lemma.
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Lemma 4.4. The operator L : X2 → X0 is Fredholm of index 0. Its kernel ker L
is two-dimensional and spanned by the functions

η j (x′) = cos(k j · x′), j = 1, 2,

and the operator L : X̃2 → X̃0 is invertible, where X̃k denotes the orthogonal
complement of ker L in Xk with respect to the L2

per inner product.

This allows us to use the Lyapunov-Schmidt reduction. For this purpose we
split

η = t1η1 + t2η2 + η̃, (4.2)

where η̃ ∈ X̃2. Thus the problem is written as

H(t1η1 + t2η2 + η̃, c) = 0. (4.3)

Let Pj be the orthogonal projection in L2
per (R

2) on the one-dimensional subspace

spanned by η j and let P̃ = I − ∑2
j=1 Pj . Taking projections in (4.3) we obtain

the 2 × 2 system

(c1 − c�
1)t1P1L1(η1) + (c2 − c�

2)t1P1L2(η1) + P1Hr (t1η1 + t2η2 + η̃, c) = 0,

(c1 − c�
1)t2P2L1(η2) + (c2 − c�

2)t2P2L2(η2) + P2Hr (t1η1 + t2η2 + η̃, c) = 0,

(4.4)

and an equation for the orthogonal part

L(η̃) + (c1 − c�
1)L1(η̃) + (c2 − c�

2)L2(η̃) + P̃ Hr (t1η1 + t2η2 + η̃, c) = 0.

(4.5)

Applying the implicit function theorem to (4.5), noting that L is an isomorphism
from X̃2 to X̃0, we obtain the following reduction.

Lemma 4.5. There exist constants ε̃, δ̃0 > 0, a neighbourhood V of the origin
in X̃2 and a function ψ : Bε̃ (0;R2) × Bδ̃0

(c�;R2) → V such that (4.2), with

(t, c, η̃) ∈ Bε̃ (0;R2)× Bδ̃0
(c�;R2)× V solves (4.3) if and only if η̃ = ψ(t, c) and

t1η1 + t2η2 ∈ ker L solves the finite-dimensional problem (4.4) with η̃ = ψ(t, c).
The function ψ has the properties ψ(0, c) = 0 and Dtψ[0, c] = 0.

For convenience we write η̃(t, c) instead of ψ(t, c) below. Note that η̃(0, t2, c)
is constant in the direction λ1 and therefore independent of k1 · x′. Indeed, this
follows by repeating the analysis in subspaces consisting of functions which only
depend on k2 · x′ and using the mapping properties of the operators involved.
Similarly, η̃(t1, 0, c) is independent of k2 · x′. We need one more technical lemma
before the proof of the main result.
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Lemma 4.6. The remainder term Hr satisfies

Hr (t1η1 + t2η2 + η̃(t, c), c) = a1t21 cos (2k1 · x′) + a2t1t2 cos ((k1 + k2) · x′)
+a3t1t2 cos ((k1 − k2) · x′) + a4t22 cos (2k2 · x′)
+a5t21 + a6t22 + O(|t|(|t|2 + |c− c�|2)) (4.6)

as (t, c− c�) → 0, where a j = a j (c), j = 1, . . . , 6, are real constants depending
on c.

Proof. Considering formula (4.1) for Hr , we see that the first term is quadratic in
c− c� and linear in η. Therefore, when replacing η by t1η1 + t2η2 + η̃(t, c) we get
a contribution to the remainder of order O(|t||c− c�|2). The second term in (4.1) is
quadratic in η to lowest order. The quadratic part is obtained by forming products
of terms involving e±ik j ·x′

and by evenness and realness we obtain precisely the
above expression. �
Proof of Theorem 4.1. We think of the reduced system (4.4) with η̃ = η̃(t, c) as a
system of two scalar equations with respect to c1 and c2, while t1, t2 are parameters.
Abusing notation, we identify the projection Pj f of f ∈ X0 with the coefficient in
front of η j in its cosine series. We then obtain a 2 × 2 system of scalar equations

t1ν11(c1 − c�
1) + t1ν12(c2 − c�

2) + P1Hr (t1η1 + t2η2 + η̃(t, c), c) = 0,

t2ν21(c1 − c�
1) + t2ν22(c2 − c�

2) + P2Hr (t1η1 + t2η2 + η̃(t, c), c) = 0,

where

νl j = Pl L j (ηl) = ∂c j ρ(c�, kl).

We next note that

Pj

([
Hr (t1η1 + t2η2 + η̃(t, c), c)

]
t j =0

)
= 0, j = 1, 2. (4.7)

Indeed, as remarked after Lemma 4.5, η̃(0, t2, c) depends only on k2 · x′ and the
same is true for

Hr (t2η2 + η̃(0, t2, c), c).

Thus, its cosine series does not contain the mode η1, which explains (4.7). A similar
argument works for j = 2. It follows that

Pj (Hr (t1η1 + t2η2 + η̃(t, c), c)) = t j
 j (t, c), j = 1, 2,

where
 j is analytic in Bε̃ (0;R2)× Bδ̃0
(c�;R2)with
 j (t, c) = O(|t|2+|c−c�|2)

in view of (4.6). We can thus rewrite the system as

t1(ν11(c1 − c�
1) + ν12(c2 − c�

2) + 
1(t, c)) = 0,

t2(ν21(c1 − c�
1) + ν22(c2 − c�

2) + 
2(t, c)) = 0.
(4.8)
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We obtain a solution by solving the system

ν11(c1 − c�
1) + ν12(c2 − c�

2) = −
1(t, c),

ν21(c1 − c�
1) + ν22(c2 − c�

2) = −
2(t, c).

The determinant of the coefficients in the left-hand side is

∂c1ρ(c�, k1)∂c2ρ(c�, k2) − ∂c1ρ(c�, k2)∂c2ρ(c�, k1).

This is non-zero if and only if the transversality condition (3.12) is fulfilled. Since
the right-hand side is O(|t|2 + |c − c�|2), it follows from the implicit function
theorem that we can solve this system for c if |t| < ε for some ε > 0, and that

c(t) = c� + O(|t|2).
This results in a two-parameter family of solutions

η(x′; t) = t1η1(x′) + t2η2(x′) + η̃(x′; t, c(t)), |t| < ε,

for which the vector field

v(x; η(t), c(t))

solves problem (2.5).
Let us discuss the special case when t1 = 0. If so, then (4.8) reduces to the

scalar equation

ν21(c1 − c�
1) + ν22(c2 − c�

2) = −
2(0, t2, c)

(and the additional trivial solution t1 = t2 = 0). Under the non-degeneracy con-
dition at least one of the coefficients ν2 j in the left-hand side is non-zero, and we
may solve for the corresponding parameter c j , thus obtaining a two-dimensional
family of non-trivial solutions parametrised by t2 and the other parameter c j ′ .
We claim that these solutions are 21/2-dimensional. Indeed, this follows since we
could repeat the analysis in a space of functions that only depend on x̄ = x′ · k j .
The same of course applies if t2 = 0. These solutions can also be obtained by
one-dimensional bifurcations from points c close but not equal to c�, where the
kernel is spanned by either η1 or η2. The two-parameter family of genuinely three-
dimensional solutions parametrised by t1 and t2 intersects these two-parameter fam-
ilies of 21/2-dimensional waves along the curves t1 = 0, c = c(0, t2) and t2 = 0,
c = c(t1, 0) in the four dimensional parameter space (t1, t2, c1, c2) ∈ R

4. Thus the
family of genuinely three-dimensional waves connects different 21/2-dimensional
waves through what can be described as ‘dimension breaking bifurcations’ (see
e.g. Groves, Haragus & Sun [19] and Groves, Sun & Wahlén [22]). This
completes the proof. �
Remark 4.7. The last observation in the proof holds more generally. If we have a
kernel spanned by cos(x′ · k0), k0 ∈ �′, for some value of c, then we can fix one of
the parameters and apply local bifurcation theory with a one-dimensional kernel.
The resulting family of solutions will be 21/2-dimensional since we can consider the
same problem but for functions that depend only on x̄ = x′ · k0. This explains why
one has to consider at least two-dimensional kernels in order to construct genuinely
three-dimensional waves.
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