Arch. Rational Mech. Anal. 238 (2020) 1-45
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-020-01537-z

l‘)

Check for
updates

Thermoviscoelasticity in
Kelvin—Voigt Rheology
at Large Strains

ALEXANDER MIELKE® & ToMAS ROUBICEK

Communicated by G. DAL MAsO

Abstract

The frame-indifferent thermodynamically-consistent model of thermoviscoelas-
ticity at large strain is formulated in the reference configuration by using the con-
cept of the second-grade nonsimple materials. We focus on physically correct vis-
cous stresses that are frame indifferent under time-dependent rotations. Also elastic
stresses are frame indifferent under rotations and respect positivity of the determi-
nant of the deformation gradient. The heat transfer is governed by the Fourier law
in the actual deformed configuration, which leads to a nontrivial description when
pulled back to the reference configuration. The existence of weak solutions in the
quasistatic setting, that is inertial forces are ignored, is shown by time discretization.

1. Introduction

For a long time, thermoviscoelasticity was considered as a quite difficult prob-
lem even at small strains, mainly because of the nonlinear coupling with the heat-
transfer equation which has no obvious variational structure; hence special tech-
niques had to be developed. It took about two decades after the pioneering work
by DAFERMOS [14] in one space dimension that first three-dimensional studies oc-
curred (cf. for example [7,12,43]). The basic new ingredient was the L'-theory
for the nonlinear heat equation developed in [9,11]. At large strains, in simple
materials, the problem is still recognized to be very difficult even for the case of
mere viscoelasticity without coupling with temperature, and only few results are
available if the physically relevant frame-indifference is respected, as articulated by
BaLL [2], see also [3,4]. In particular, local-in-time existence [27] or existence of
measure-valued solutions [15, 18] are known for simple materials. Further examples
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in this direction are [52] for a general three-dimensional theory, but not respecting
frame indifference and the determinant constraints, or [34] for a one-dimensional
theory using the variational structure. While the static theory for large-strain elas-
ticity developed rapidly after [2], there are still only few result for time-dependent
processes respecting frame indifference as well as the determinant constraint. The
first cases were restricted to rate-independent processes, such as elastoplasticity
(cf. [31,36]) or crack growth (cf. [16], see [35, Sec.4.2] for a survey. Recently the
case of viscoplasticity was treated in [38].

The main features of the model discussed in this work can be summarized in
brief as follows: the thermoviscoelastic continuum is formulated at large strains in a
reference configuration, that is the Lagrangian approach. The concepts of 2nd-grade
nonsimple material is used, which gives higher regularity of the deformation. The
heat transfer is modeled by the Fourier law in the actual deformed configuration,
but transformed (pulled back) into the reference configuration for the analysis. Our
model respects both static frame-indifference of the free energy and dynamic frame
indifference for the dissipation potential. Moreover, the local non-selfpenetration
is realized by imposing a blowup of the free energy if the determinant of the de-
formation gradient approaches 0 from above, however we do not enforce global
non-selfpenetration. Also, we neglect inertial effects; cf. Remark 6.6 for more de-
tailed discussion.

Let us highlight the important aspects of the presented model and their conse-
quences:

() The temperature-dependence of the free energy creates adiabatic effects involv-
ing the rate of the deformation gradient. To handle this, the Kelvin—Voigt-type
viscosity is used to control the rate of the deformation gradient. In addition,
we separate the purely mechanical part, cf. (2.15) below, which allows us to
decouple the singularities of large-strain elasticity from the heat equation.

(P) The heat transfer itself [and also the viscosity from ()] is clearly rate depen-
dent and the technique of rate-independent processes supported by a variation-
ally efficient energetic-solution concept cannot be used (which also prevents us
from excluding possible global selfpenetration).

(v) The equations for the solid continuum need to be formulated and analyzed
in the fixed reference configuration but transport processes (here only the heat
transfer) happen rather in the actual configuration and the pull-back procedure
needs the determinant of the deformation gradient to be well away from 0. To
achieve this, we exploit the concept of 2nd-grade nonsimple materials together
with the results of HEALEY and KROMER [24], which allow us to show that
the determinant for the deformation gradient is bounded away from O, see
Section 3.1.

(&) The transport coefficients depend on the deformation gradient because of the
reasons in point (y). For this, measurability in time is needed and thus the con-
cept of global quasistatic minimization of deformation (as in rate-independent
systems [35] or in viscoplasticity in [38]) would not be satisfactory; therefore
we rather control the time derivative of the deformation, which can be done
either by inertia (which is neglected in our work) or by the Kelvin—Voigt-type
viscosity from ().
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(€) The viscosity from () must satisfy time-dependent frame indifference as
explained in [1], thus it is dependent on the rate of the right Cauchy—Green
tensor rather than on the rate of the deformation gradient itself. However, the
adiabatic heat sources/sinks involve terms where the rate of the deformation
gradient occurs directly. To control the latter by the former, we exploit results of
NEFF [39] in the extension by PoMPE [41] for generalized Korn’s inequalities,
see Section 3.2. Here, again the mentioned concept of 2nd-grade nonsimple
materials is used to control the determinant of the deformation gradient, see

).

As mentioned above, our model heavily relies on the strain-gradient theories
to describe materials, referred as nonsimple, or also multipolar or complex. This
concept has been introduced long time ago, cf. [51] or also for example [8, 19,28,40,
46,50] and in the thermodynamical concept also [6]. In the simplest scenario, which
is also used here, the stored-energy density depends only on the strain F = Vy
and on the first gradient V F of the strain. This case is called 2nd-grade nonsimple
material. Possible generalization using only certain parts of the 2nd gradient in the
spirit of [25] still need to be explored.

The structure of the paper is as follows: in Section 2 we present the model
in physical and mathematical terms. After the precise definition of our notion of
solution, Theorem 2.2 provides the main existence result for global-in-time solu-
tions for the large-strain thermoviscoelastic system, while Corollary 2.3 gives the
corresponding existence result for viscoelasticity at large strain and at constant
temperature, which, to the knowledge of the authors, is also new. A related result
for isothermal large-strain viscoelasticity is derived in [20], but there the limit of
small strains is treated.

After proving some auxiliary results about local invertibility of deformations
and the Euler—Lagrange equations, a generalized Korn’s inequality, and about Chain
rules in Section 3, we start the proof of the main result in Section 4 by introducing
certain regularizations as well as a time-incremental approach. This is particularly
constructed in such a split (sometimes called staggered) way that the deformation is
first updated at fixed temperature from the previous time level and then the temper-
ature is updated, where in some terms the old and in others the new deformation is
used. Another important step in the analysis is the usage of an energy-like variable
w = 10(Vy, 0) instead of temperature 6, which enables us to exploit the balance-
law structure of the heat equation; cf. [30,32] for arguments for the preference of
energy in favor of temperature. After proving existence and a-priori estimates for
such approximate solutions in Section 4, we continue by convergence in Section 5
by limiting the time discretization. Thus, as an intermediate result, Proposition 5.1
provides the existence of solutions (ye, 6;) of the regularized problem. Eventually,
in Section 6 we finally show that the limite; — Ofor (y, , 6;,) — (v, 8) canbe con-
trolled in such a way that (y, ) are the desired solutions. We conclude with a few re-
marks concerning potential generalizations and further applications of the methods.
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2. Modeling of Thermoviscoelastic Materials in the Reference Configuration

We will use the Lagrangian approach and formulate the model in the reference
(fixed) domain £2 C RY being bounded with a Lipschitz boundary I'. In fact,
occasionally we will assume " smooth in order to reveal the classical formulation
of the problem, cf. (2.13)—(2.14) based on the arguments (2.28)—(2.29) below. We
assume d = 2 although, of course, the rather trivial case d = 1 works too if p = 2
is assumed, additionally to p > d, in (2.30) below. We will consider a fixed time
horizon T > 0 and use the notation / := [0, T], Q := 1 x§2,and X' := I x I". For
readers’ convenience, Table 1 summarizes the main nomenclature used throughout
the paper.

y deformation, y(z, x) € R4, W thermal energy,
6 absolute temperature, ¢ potential of dissipative forces,
(+)" time derivative, & rate of dissipation (=heat production),
Y = ¢ + ¢ free energy, K = K(#) material heat conductivity,
oel = dp Y elastic stress, K = KC(F, 6) pulled-back heat
ovi = 0. viscous stress, conductivity,
F = Vy deformation gradient, ~ C = F'F right Cauchy—Green tensor,
G=VF=V? y « heat-transfer coefficient on I,
valued in R4*4*d g : Ix2 — R? a time-dependent
w heat part of internal energy, dead force,
cy = cy(F, 0) heat capacity, fiIxIN— RY a boundary traction,
g heat flux, £ an external mechanical loading,
M = &g + 'H main £2 the reference domain,
mechanical energy, I’ the boundary of 2, " = Ip N I,
hel = 0gA7 elastic hyperstress, [ := [0, T] the fixed time interval,
S = A (VF)thepotential of he|, Q := I x £2,
‘H strain-gradient energy, Y:=IxT,
®.p1 coupling energy, Yo, Viq sets of admissible deformations,
¥ = M + @ free energy, GLt(d) := {A e R4 det A > 0},
& = M + W total energy, SO(d) :={A eGLt(d); ATA=1
=AAT).

Table 1. Summary of the basic notation used throughout the paper.

To introduce our model in a broader context, we may define the fotal free energy
and the fotal dissipation potential

W(y,0) = / ¥ (Vy,0) + A (V*y) dx and
22

R(y,y,0) = /Q ¢(Vy,Vy, ) dx, (2.1)
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respectively. The mechanical evolution part can then be viewed as an abstract gra-
dient flow

Dy-R(y, y,0) +DyW(y,0) = £(t) with (£(1), y)

=/g(x,t)'y(X)dx+/ fx,0)-y(x)dS, (2.2)
(2} IN

cf. also [34,52] for the isothermal case and [29] for the general case. The sum of the
conservative and the dissipative parts corresponds to the Kelvin—Voigt rheological
model in the quasistatic variant (neglecting inertia). The notation “9 ” is used for
partial derivatives (here functional or later in Euclidean spaces), while (-)" will
occasionally be used for functions of only one variable.

Writing (2.2) locally in the classical formulation, one arrives at the nonlinear
parabolic 4th-order partial differential equation expressing quasistatic momentum
equilibrium

divo+g=0 with o =0y + ge — div e, (2.3)

where the viscous stress is oy = oyi(F, F ,0) and the elastic stress is og =
oel(F, 0), while ] is a so-called hyperstress arising from the 2nd-grade nonsimple
material concept, cf. for example [40,46,51]. In view of the local potentials used
in (2.2), we have

0i(F, F,0)=00(F, F,0), oa(F,0)=0py/(F,0), and ha(G)=#"(G),
(2.4)

where G € R4*4*4 j5 a placeholder for VF.
An important physical requirement is static and dynamic frame indifference.

For the elastic stresses, static frame indifference means that
0el(RF,0) = Roe(F,0) and bhei(RG) = Rbe(G) (2.52)

for all R € SO(d), F and G. For the viscous stresses, dynamic frame indifference
means that

0vi(RF, RFERF,0) = Row(F, F, ) (2.5b)

for all smoothly time-varying R:t — R(t) € SO(d), cf. [1]. Note that R may
depend on ¢ but not on x € 2, since frame-indifference relates to superimposing
time-dependent rigid-body motions.

In terms of the thermodynamic potentials ¢, v, and 7, these frame indiffer-
ences read as

W(RF,0) = ¥ (F,0), #(RVF)=#(VF), and (2.6a)
¢(RF,(RF),0) = C(RF, RF+RF,0) = ¢(F, F, 6) (2.6b)
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for R, F and V F as above. These frame indifferences imply the existence of reduced
potentials v, ¢, and 7 such that

¢(F,F,0)=¢(C,C.0), W(F,0) =v(C,0), and #(G)=#B) Q2.7

where B = GT-G € R@x)x(dxd) and C ¢ ngﬁi is the right Cauchy—Green tensor
C = FTF with time derivative C = FTF + FTF. More specifically, denoting
G = [Gq;j] the placeholder for %Fai with Fy; the placeholder for aix,-ya’ the
exact meaning is [G T - Gliju == Zgzl GuijGyn and [FTF],:,' = ZZ:I FyiFyj.
The ansatz (2.7) also means that

0el(F, 0) := dpy (F; 0) = 2F 3% (F ' F,0) = 2Fa. ¥ (C,0), (2.8a)

hel(G) := a6 (G) = 2Gag# (G- G) = 2Gdg.#(B), (2.8b)

ovi(F, F,0) = 2,¢(F, F,0) = 2F9.L(F'F, FTF+FTF,0)
=2F).2(C, C,0). (2.8¢)

The simplest choice, which is adopted in this paper for avoiding unnecessary

technicalities, is that the viscosity oy; is linear in C. This is the relevant model-
ing choice for non-activated dissipative processes with rather moderate rates (in
contrast to activated processes like plasticity having nonsmooth potentials that are
homogeneous of degree 1 in a small-rate approximation). This linear viscosity leads

to a potential which is quadratic in C, viz.
. 1. .
Z(C,C,0) :=§C:D(C,6)C. (2.9)

Although for this choice the material viscosity is linear, the geometrical nonlinearity
arising from large strains is still a vital part of the problem due to the requirement of

frame indifference. Note that oy;(F, F , 0) necessarily depends on F' if we express
C in terms of the velocity gradients F, even if DD is constant: oi(F, F,0) =
2FD(C, 0)(F T F+FTF). While we will be able to handle general dependence on

F, it will be a crucial restriction that Fis ovi(F, F , 0) is linear.
Furthermore, the specific dissipation rate can be simply identified in terms of
¢ as

E(F, F,0) = oy(F, F,0):F = 2F0.L(FF, FTF+FTF,0). F
= 0:C(F'F, FTF+FTF,0): (FTF+FTF)
=09:2(C, C,0):C. (2.10)

For our choice (2.9), we simply have &(F, F 0) =D(C, G)C.':C" = ZE(C, C 0) =
2C(F, F,0).
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In brief, the standard thermodynamical arguments start from the free energy
density ¥ and the definition of entropy vias = —d,y (here .7# does play no role
as it is chosen to be independent of 6) and the entropy equation

Os =& —div g (2.11)
with the dissipation rate & from (2.10) and the heat flux g. We further use the
formula s = —agel/f 0 — B%OW:F and the Fourier law formulated in the reference
configuration

g =—K(F,0)V0, (2.12)

which will be specified later in (2.24). Altogether, we arrive at the coupled system
div(0wi(Vy, V3. 0) + 0ci(Vy. ) — divhe(V?y)) + ¢

with owi(F. F.6) = 0, ¢(F, F.6) and ou(F.6) = 0,9/ (F.6),
(2.13a)

cv(Vy, 0)0 = div(K(Vy, 0)V0) + E(Vy, V3, 0) + 097, ¥(Vy, 0):V5
with ¢y (F,0) = —980291#(F, 0) and & from (2.10) (2.13b)
on Q. We complete (2.13) by some boundary conditions. For simplicity, we only
consider a mechanically fixed part I/ time independent undeformed (that is iden-

tity) while the whole boundary is thermally exposed with a phenomenological
heat-transfer coefficient « = 0:

(0vi(Vy, V3,0) + 01 (Vy, 0))ii — divg(het (V2y)ii) = £ on I'v, (2.14a)

y(x) = x (identity) on Ip, (2.14b)
het(V2y): (7 @ 1) = 0 on I, (2.14c)
K(Vy,0)VO -1+ k6 = k6, on I, (2.144d)

where 7 is the outward pointing normal vector, and 6, is a given external tempera-
ture. Moreover, following [10] the surface divergence “divg” in (2.14a) is defined as
divg(-) = tr(VS (-)), where tr(-) denotes the trace and V; denotes the surface gradient
given by Vv = (I — n®n)Vv = Vv — g%ifi See (2.29) for a short mathematical
derivation of the boundary conditions (2.14a) and (2.14c), and [48, pp.358-359]
for the mechanical interpretation in second-order materials.

In order to facilitate the subsequent mathematical analysis, we assume a rather
weak thermal coupling through the free energy (together with the coupling through
the temperature-dependent viscous dissipation). To distinguish the particular cou-
pling thermo-mechanical term from the purely mechanical one, we consider the
explicit ansatz

V(F,0)=¢(F)+¢(F,0) with ¢(F,0)=0. (2.15)
In applications, the internal energy e given by Gibbs’ relation

e=e(F,0)=Y(F,0)+60s =y (F,0)—00py(F,0) =y(F,0) —00¢(F,0)
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is often balanced. Here, we rather use the thermal part of the internal energy w :=
e — ¢(F). In view of the ansatz (2.15), we have

w="10(F,0) =y (F,0) =009 (F,0) —y(F,0) =¢(F,0) —03¢(F,0).
(2.16)

Note that 10 (F, -) is the primitive function of the specific heat ¢y (F, -) calibrated
as 1o (F, 0) = 0, in accord with the fact that w = ¢ — @(F) = e — ¥ (F, 0). The
heat-transfer equation (2.13b) simplifies as

W — div (K(Vy, 0)V6) = £(Vy, V3, 0) + 8:¢(Vy, 0):V with w = to(F, 0).
2.17)

In particular, the purely mechanical stored energy ¢ does not occur in (2.16) and
does not influence the heat production and transfer in (2.17). This is crucial because
in the first step of the analysis we are not able to control the determinant of Vy,
but drp(Vy, ) blows up for det Vy \ 0. In contrast, we are able to assume that
F — 0p¢(F, 0) behaves globally nicely, see (2.30b) and (2.30c).

The energetics of the system (2.13)—(2.14) can be best described by introducing
additional energy functionals as follows:

H(y) = / H (V2y) dx strain-gradient energy,
! (2.18a)
M(y) = H)+Pe1(y) with Dei(y) := / ®(Vy)dx  main mech. energy,
? (2.18b)
Pepi(y, 0) 1= /Q ¢(Vy,0)dx coupling energy, (2.18c)
V(y,0) =M©G)+ Pepi(y,6) free energy, (2.184)
R, ,0) = / ¢(Vy, Vy, 0)dx dissipation potential,
¢ (2.18e)
W(y,0) := /Q to(Vy, 6)dx thermal energy,  (2.18f)
Ey,0) = M(y)+W(,0) total energy. (2.18g)

A mechanical energy balance is revealed by testing (2.13a) by y and (2.13b) by 1,
and using the boundary conditions after integration over £2 and using the Green
formula twice together with another (d —1)-dimensional Green formula over I" for
(2.13a) and once again Green’s formula for (2.13b). The last mentioned technique
is related with the concept of nonsimple materials; for the details about how the
boundary conditions are handled see for example [44, Sect.2.4.4]. This test of
(2.13a) gives the mechanical energy balance:

. . d . .
E(Vy,Vy,0)+ 0o:Vy dx + —H(y) = / g-ydx + f-y ds. (2.19)
7 S N — dr P IN ———
dissipation  mechanical power of the power of
rate power bulk force the traction
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Using 0¢] = dr@ + dr¢ and integrating in time leads to the relation
t
M)+ [ ([ 6009500+ 0569y, 0:95) ax e
0Je Mo

t
= MGO) + /O (€, 3) dr, (2.20)

which will be very useful for obtaining a priori estimates in the sections to follow.

Next, we test the heat equation in its simplified form (2.17) together with the
boundary conditions (2.14d) by the constant function 1 (that is we merely integrated
over £2) and add the result to (2.20). After major cancellations we obtain the total
energy balance:

d . .
—&(y,0) :/ g-y dx + f-y dS—/ k(6—6,) dS. (2.21)
dt 2 — IN —— MN— —~

power of mecha- power of power of the

nical bulk load  the traction external heating

In particular, we see that the total energy is conserved up to the work induced by
the external loadings or the flux of heat through the boundary.

From the entropy equation (2.11), we can read the total entropy balance (the
Clausius—Duhem inequality):

i[s(l,x)dx:/ Md
dr Jo

1 Ve
f——ICVGV d)c+/lC -n dS
r

KvVe-vo Kve |
5 + ———dx + f n dS
02 r
~—
entropy-production
rate

f —154s. (2.22)

entropy ﬂux
through boundary

This articulates, in particular, the second law of thermodynamics that the total
entropy in the isolated systems (that is here ¢ = 0 on I') is nondecreasing with
time provided X = K(Vy, 0) is positive semidefinite and the dissipation rate is
non-negative.

It is certainly a very natural modeling choice that Fourier’s law is formulated
in the actual (also called the deformed) configuration in a simple form, namely the
actual heat flux is given by

G=—K(0)V.0, wherez = y(x)and0(z) =0(y '(2)) forz € y(2) (2.23)

with the heat-conductivity tensor K = K(x, 0) considered as a material parame-
ter possibly dependent on x € 2. We transform (that is pull back) this Fourier
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law to the reference configuration via § = (Cof F7)q, because fluxes should
be considered as (d—1)-forms. Writing Fourier’s law in material coordinates as
g(x) = K(x)V6 a comparison with (2.23) leads to the usual transformation rule
for 2nd-order contra-variant tensors, namely

K(x, F,0) = (Cof FN)K(x,0)F~ "
_ (Cof FT)K(x, 6)Cof F

det F
= (detF)F'K(x,0)F~" (2.24)

if det F > 0, whereas the case det F < 0 is considered nonphysical, so K is
then not defined. Here we used the standard shorthand notation F~ T = [F~1]T =
[F 717! and also the algebraic formula F~! = (Cof F)/det F. In what follows,
we omit explicit x-dependence for notational simplicity. Let us emphasize that in
our formulations V@ is not treated as a vector, but a contravariant 1-form. Starting
from 6 (x) = 8(y(x)) the chain-rule gives VO(x) = Vy(x) T Vy@(y(x)). It should
be noted that (2.23) is a rather formal argumentation, assuming injectivity of the
deformation y and thus existence of y~!, which is however not guaranteed in our
model; anyhow, handling only local non-selfpenetration while ignoring possible
global selfpenetration is our modeling approach often accepted in engineering, too,
see for example [49, p.433], [47, Sec.3.1], and [48, p.293].

For the isotropic case K(0) = s(0)I, relation (2.24) can also be written by
using the right Cauchy—Green tensor C = FTF as IC = det(F)s(0)C~!, cf. for
example [17, Formula (67)] or [23, Formula (3.19)] for the mass instead of the heat
transport. In principle, K in (2.23) itself may also depend on C = F T F, which we
omitted to emphasize that /C in (2.24) will depend on F even if K itself will not.

In what follows, we will use the (standard) notation for the Lebesgue L?”-
spaces and W57 for Sobolev spaces whose kth distributional derivatives are in
LP-spaces and the abbreviation H* = WX, The notation W];’p will indicate the
closed subspace of W!” with zero traces on I'p and set p’ = p/(p—1). Thus, for
example,

HY(2;RY) = {v e L2(2: RY); Vv e LY (2;RT), v|p, =0}, (2.25)

For the fixed time interval I = [0, T'], we denote by L? (I; X) the standard Bochner
space of Bochner-measurable mappings / — X with X a Banach space. Also,
WK-P(I; X) denotes the Banach space of mappings from L”(I; X) whose k-th
distributional derivative in time is also in L”(/; X). The dual space to X will be
denoted by X*. Moreover, Cy,(I; X) denotes the Banach space of weakly continu-
ous functions / — X. The scalar product between vectors, matrices, or 3rd-order

TR IENTRL] [}

tensors will be denoted by “-”, “:”, or “:”, respectively. Finally, in what follows,
K denotes a positive, possibly large constant.
We consider an initial-value problem, imposing the initial conditions

v(0,)=y9 and 6(0,-) =6y on £2. (2.26)

Having in mind the form (2.17) of the heat equation, we can now state the
following definition for a weak solution:
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Definition 2.1 (Weak solution). A couple (y,0) : Q = [0,T]x2 — RY x R is
called aweak solution to the initial-boundary-value problem (2.13) & (2.14) & (2.26)
if (y,0) € Co(I; W2P(2; RY)) x LY(I; WI1(2)) with Vy e L*(Q; R4*9), if
ming det Vy > 0 and y|z, = identity, and if it satisfies the integral identity

T
//(avi(Vy,V)'),G)+061(Vy,0)):Vz+be1(V2y):sz dx dr
0 JR
= / gz dxdr + / fzdSde (2.27a)
0 N

for all smooth z : Q — R¢ with z = 0 on Zp together with y(0, -) = yo, and if

/ K(Vy,0)V0-Vv — (£(Vy, V3, 0) + 8;¢(Vy,0): Vy)v — 10(Vy, 6)d dx d
0

+/ KOV dez:/ KOV der+[ 10(Vy0, 60)v(0) dx (2.27b)
X P 2

for all smooth v: Q — R with v(T) = 0, where 1V is defined in (2.16).

At first sight, it seems that (2.27a) is not suited to apply the test function z = y,
which is the natural and necessary choice for deriving energy bounds. Obviously,
we will not be able to obtain enough control on V2y. However, using the abstract
chain rules provided in Section 3.3 this problem can be handled by extending
H(y) = f o (V32 y) dx to a lower semicontinuous and convex functional on
HY(£2; RY) by setting it oo outside W2P(82; RY), see the rigorous proof of (5.9)
in Step 3 of the proof of Proposition 5.1.

It will be somewhat technical to see that the weak formulation (2.27a) is indeed
selective enough, in the sense that for sufficiently smooth solutions one can in-
deed obtain the classical formulation (2.13) together with the boundary conditions
(2.14), cf. also [44, Sect.2.4.4]. In particular, abbreviating o = 0vi(Vy, Vy, 8) +
oe1(Vy, 0), integrating by part once, and using the boundary conditions (2.14a,c)
yields

/ ((a— div ber (V2y)):Vz — g~z> dx dr
0

= [ f-zdSdr — / el (V2y) (Vz@h) dS dt. (2.28)
2N P

We now want to show how the strong form (2.13a) and the associated boundary
conditions (2.14a,c) follow from (2.28). For this goal, we apply Green’s formula
in the opposite direction to remove V in front of the test function z. Using also the
orthogonal decomposition of Vz = V,z+ %z ®1 involving the surface gradient V,z

and writing shortly ) for het(V2y) € R4*4%d relation (2.28) leads to the identity

—div o +div’h — g)-z dx dr
0

= / ((a— div h) (z®n) — []E(Vz@ﬁ)) dx dr + f-zdSdr
x N
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= / ((o— divh)i-z + (b : (i®@n)) - a—i + bn: Vsz)) dsdr — f-zdSdt
> on N

Using the surface divergence divg and the projection P, : A > A — A @ 7i to
the tangential part, we obtain the integration by parts formula (cf. [10] or [48,
pp-358-359])

/A:VSzdSzf(PsA):VszdSz—/ divg(P,A) - zdS,
r r r

where the surface I" is now assumed to be sufficiently smooth. Using this with
A = bii for the previous relation we find

/ (=div o +div’h — g)-z dx dr
0

2/ ((o—div it — divg(By (b)) — f)~zdet
D)

N

+ /(h:(ﬁ@)ﬁ)).a—dedr, (2.29)
> on

where we have used z = 0 on Xp = X\ XN. Now, taking z’s with a compact
support in Q, we obtain the equilibrium (2.13a) in the bulk. Next taking z’s with
zero traces on X but general %, we obtain (2.14c). Note that the latter condition
implies Py(hii) = bii — (b : (i®#H)) ® ii = hi. Hence, taking finally general s,
we obtain (2.14a), as P can be dropped because of (2.14c).

Moreover, also note that, from the integral identity (2.27b), one can read
t(Vy(0),6(0)) = to(Vyp, 0g) from which 8(0) = 6y follows when taken the
invertibility of WO (F, -) and y(0) = yq into account.

Now we exploit the decomposition (2.15) of i into ¢ and ¢, which allows us
to impose coercivity assumptions for the purely elastic part ¢ that are independent
of those for ¢:

dpeld,oo[N[2,00[, s >2, ¢ = pd/(p—d) a, K, T > 0:
@: GLT(d) — RT twice continuously differentiable, V F € GLt(d):
@(F) Z2|F|° +72/(det F)7, (2.30a)
¢: GL+(d)><R+ — R twice continuously differentiable,
VF,F eGL"(d), 6 = 0:
|6 (F,0)—¢(F,0)| < K(1+|F ">+ F|*/?)| F-F, (2.30b)
2pd(F,0) S K, [002,¢(F.0)| <K, §<-005,0(F,0) <K,  (2.300)
. R4 _ R convex, continuously differentiable, VG € RY*4x4.
EIG|P < (G) £ K(+IGIP), (2.30d)

7:REXd yrdxd y R 5 RY s continuous and V (C, C, ) € REXd xRxRIxd.

sym sym sym sym

T(C. -, 0): R — RY quadratic(cf. (2.9)), «|C> £T(C.C.0) < K|CP,
(2.30e)
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K:R — R4*4 5 continuous, uniformly positive definite, and bounded; (2.30f)
ge LX(Q:;RY), feLl?’(Zn:iRY), k>0, (2.30g)
Y0 € Vig == {y € WHP(2:RY); ylpy, =identity}, det(Vyo) 2%, .  (2.30h)
0, e LX), 6,20, 6oL (), 6p=0, ¥(Vyy 0y €L (), (2.301)

where GLT (d) denotes the set of matrices in R?*¢ with positive determinant. The
last assumption in (2.30c) means that ¢y together with ¢ I are bounded, which is a
major restriction. However, it allows for a rather simple estimation in Lemma 6.3;
for alternative, more general situations dealing with increasing c¢y(-) we refer to
[26, Sec.8.3].

The function w = 10(F, 0) defined in (2.16) satisfies 10 (F, 0) = 0 by (2.15).
Moreover, we have dgt0(F,0) = —98§9¢(F ,0). Hence assumption (2.30c) im-
plies, for all F € GL*(R?), the two-sided estimates

20 S1W(F,0) < KO foralld =0,

2.31)
€101—602| = [V (F, 01)—10(F, 0,)| < K|01—6| forall 61,6, = 0.

Assumptions (2.30b,c) make the thermomechanical coupling through ¢ rather
weak in order to allow for a simple handling of the mechanical part independently
of the temperature. These restrictive assumptions are needed for our specific and
simple way of approximation method rather than for the problem itself. E.g. the
assumption in (2.30b) is used to facilitate the estimate (4.12), which allows us to
control the difference between [, ¢(Vy¥, 6) dx and [, ¢(Vy*~!, 0) dx in terms of
MGF), M1, and [ Vyk—Vyk-! ||%2. Moreover, after having derived uniform
bounds on |V y¥| it will be exploited to show that the thermo-coupling stress df ¢ is
bounded. Finally, (2.30d) and (2.30h) make the stored energy finite at time t = 0.

It will be important that 9,¢ (F, 6) vanishes for & = 0 [which follows from
(2.15)], so that temperature stays non-negative if 6y = 0 and 6, = 0, as assumed.

We now state our main existence results, which will be proved in the following
Sections 4—6. The method will be constructive, avoiding non-constructive Schauder
fixed-point arguments, however some non-constructive attributes such as selections
of converging subsequences will remain. More specifically, the proof is obtained
by first making the a priori estimates for time-discretized solutions in Proposi-
tion 4.2, and then deriving an existence result for time-continuous solutions of
an e-regularized problem, see Proposition 5.1. Finally, Proposition 6.4 provides
convergence for ¢ — 0.

Theorem 2.2 (Existence of energy-conserving weak solutions). Assume that the
conditions in (2.30) hold. The original initial-boundary-value problem (2.13)-
(2.14)—(2.26) with K from (2.24) possesses at least one weak solution (y, 0) in
the sense of Definition 2.1. In addition, these solutions satisfy VO € L' (Q; R?) for
all1 < r < (d+2)/(d+1), the mechanical energy balance (2.19), and the total
energy balance (2.21).

As mentioned in the introduction, a lot of publications are devoted to the simpler
isothermal viscoelasticity at large strain, yet, in the multi-dimensional case, they
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do not satisfy all the necessary physical requirements. It is therefore worthwhile to
present a version of our existence result by restricting it to this isothermal case, for
which a lot of assumptions are irrelevant or simplify. In particular, (2.15) simplifies
as Y (F,0) = ¢(F). Of course, our theory only works because we are using a
non-degenerate second-grade material, where the energy contribution H(y) :=
/, o (V2y) dx generates enough regularity to handle the geometric and physical
nonlinearities. To the best of the authors knowledge, even the result for isothermal
viscoelasticity is new.

A similar regularization approach to isothermal large-strain viscoelasticity was
considered in [20], where the H(y) is multiplied with a small parameter that van-
ishes slower than the loading. Hence, the authors are able to show that their solutions
are sufficiently close to the identity which allows them to exploit a simpler Korn’s
inequality obtained by a perturbation argument. Hence, to the best of the authors’
knowledge the following result is the first that allows for truly large strains:

Corollary 2.3 (Viscoelasticity at constant temperature). Let ¢ satisfy (2.30a), and
let (2.30d-e,g-h) be satisfied withz = Z(C, é) and with y = . Then, the initial-
boundary-value problem (2.13a)—(2.14a)—(2.26) (with 6 ignored) possesses at least
one weak solution y in the sense that the integral identity (2.27a) holds. In addition,
the mechanical energy balance (2.20) holds with & = &(F, F ) and without the last
term involving 9.

Before going into the proof of our main result, we show that our conditions are
general enough for a series of nontrivial applications:

Example 2.4 (Classical thermomechanical coupling). The classical example of a
free energy in thermomechanical coupling is given in the form

V(F,0) = ¢@(F) —a®) ¢1(F) + cf(1—logh), (2.32)

that is ¢ (F, 0) involves a term in the product form —a(6)¢;(F). For the purely
mechanical part we may take the polyconvex energy ¢ (F) = c1|F|* 4+ c2/(det F)4
for det F > 0 and oo otherwise. For the thermomechanical coupling we obtain
cey(F,0) = —980201#(F, 0) = ¢ + a”(0)p1(F), thus to have positivity of the heat
capacity ¢y, we assume a”’ () = 0 and ¢1(F) = 0. Moreover, we have

w =10(F,0) = c + (0a' (0)—a(6))¢i(F) and dr¢(F,60) = a(®)¢}|(F).

Thus, we see that all assumptions in (2.30) can easily be satisfied, for example by
choosing a(0) = (1+0)~% with @ > 0, which is smooth bounded and convex, and
taking any ¢ € C2(R9*9).

Example 2.5 (Phase transformation in shape-memory alloys). An interesting exam-
ple of a free energy i occurs in the modeling of austenite-martensite transformation
in so-called shape-memory alloys:

Y (F,0) = (1-a(0)p, (F) + a@)gy (F) + ¥0(0),
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cf. for example [42] and references therein. Here a denotes the volume fraction of
the austenite versus martensite which is supposed to depend only on temperature.
Of course, this is only a rather simplified model. For, ¥o(0) = cO(1—1og0) it
complies with the ansatz (2.32) with ¢ (F) = ¢, (F) and 1 (F) = ¢, (F)—¢, (F).
The heat capacity then reads as

ov(F,0) = 0a"0) g, —eyu](F) — 09 (©0).

To ensure its positivity, 1o has to be strictly concave in such a way that yj(0) <
K /6 and then inf (r gy 0a” (0)[¢, —¢y1(F) + K > 0 has to (and can) be ensured
by suitable modeling assumptions.

Remark 2.6 (Thermal expansion). Multiplicative decomposition F = Fg) Fy, with
the “thermal strain” Fy, = I/ (0) and the elastic strain F,] which enters the elastic
part of the stored energy ¢. This would lead to

Y (F,0) = BO)p(Fe) +¢©) = B(6) p(w(O)F) — ¢ (6). (2.33)

Unfortunately, (2.33) is inconsistent with the ansatz (2.15) because the contribution
¢ which has been important for our analysis due to uniform coercivity, cannot be
identified in (2.33).

3. A Few Auxiliary Results

In this subsection we provide a series of auxiliary results that are crucial to
tackle the difficulties arising from large-strain theory. First, we show how the theory
developed by HEALEY and KROMER [24] allows us to derive a positive lower bound
for det Vy from the a priori bounds for the elastic energy M(y, 0). This can then
be used to establish the validity of the Euler—Lagrange equations and a useful A-
convexity result, which is needed for obtaining optimal energy estimates. Second,
we provide a version of Korn’s inequality from PoMPE [41] that allows us to obtain
dissipation estimates via D(y, y,0) = c0||)'1||i[,(9). Finally, in Section 3.3 we
provide abstract chain rules as derived in [37, Sec.2.2] that allow us to derive
energy balances like (2.20) from the corresponding weak equations.

3.1. Local Invertibility and Euler—Lagrange Equations

A crucial point in the large-strain theory is the blow-up of the energy density
Y(F,0) for det F N\ 0. Thus, it is desirable to find a suitable positive lower
bound for det Vy(t, x). The following theorem is an adaptation of the result in [24,
Thm.3.1].

Theorem 3.1 (Positivity of determinant). Assume that the mechanical energy
M:W2P(2; RY) — R satisfies the assumptions in (2.30a) and (2.30d). Then,
for each Cyy > 0 there exists Cyx > 0 such that all y € Yiq with M(y) £ Cy
satisfy

Iyllw2r = Cuk, lIyllicri-a/p = Cuk, detVy(x)
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‘

> YY) Mlerap < Ck. (3.1)

Q

HK

Proof. We give the full proof, since our mixed boundary conditions are not covered
in [24]. From M(y) < Cy and the coercivities of ¢ and 7 we obtain det Vy = 0
almost everywhere in £2 and the a priori bounds

- 1
IVyllzs + 11(det(Vy)) Il + IV2y e £ CYp.

Together with the Dirichlet boundary conditions in }ig we obtain an a priori bound
for y in W2P(£2; R?) and hence also in C1*(£2; RY), where A = 1 — d/p > 0.
This proves the first two assertions.

In particular, the function 6: x +— det(Vy(x)) is Holder continuous as well with
18llce < Cz(vzl)' Since §2 is a bounded Lipschitz domain, there exist a radius r, > 0
and a constant oy, > 0 such that for all x € 2 the sets B, (x) N £2 contain an interior
cone C(x) = {x—i—z ;0 < |z] < 1y, %z € A(x)} where the set A(x) C S9!
of cone directions has a surface measure f Ax) 1dS 2 . Thus, using the Holder
continuity

§(y) £8(x) + Cl(é)lx—yV‘ forall x, y € £2,

A=1-d/p =2 d/q [see (2.30)], and |y—x| = r < r, for y € C(x), we can
estimate as follows:

s / dy > / ! d
= y =
M= g sy veCw) (8(x) + Cp lx—y[*)*

1\

T rd=1 dr T rd=1 dr
® ara 40 2 o @ d
weA) Jr=0 (8(x) + C;,/rd/7) r=0 CH(8(x)7 +rd)
=clog (1 +rd/8(x)7) with ¢® = o,/ (dCP).

This yields the lower bound §(x)? = rf exp (—C I(V;) / c(S)), viz. the third assertion
in (3.1).
The last assertion follows via the implicit function theorem. O

The most important part of the above result is that the determinant of Vy
is bounded away from 0. Hence, the function f +— @(F), which blows up for
det F \ 0, is evaluated only in a compact subset of GLT (d) € R?*¢ such that 9y ¢
and 8°¢ exist. Again following [24, Cor. 3.3] we obtain the Gateaux differentiability
of M and as well as a useful A-semiconvexity result.

Proposition 3.2 (Gateaux derivative and A-semiconvexity). Assume that M satis-
fies (2.30a) and (2.30d). Then, at each point y € Yiq with M(y) < oo the Gateaux
derivative of M in all directions h € )y = { v e WEP(2: RY); vl } exists
and has the form

DM()[h] = / (D%(sz)fvzh + app(Vy): Vh) dx (3.2)
2
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Moreover, for each Cpr > 0 there exists A(Cpy) > 0 such that for all y, y@ ¢
Via with M(yP) < Cy and [VyD = Vy@ | g.rey S 1/Cy we have
A (Cpr)—convexity

M@G?) 2 MyD) + DMD)[y@ —y D]

—ACIIVYP-vy V|7, (3.3)

(2;Rd)
Proof. We decompose M = H+ @, see (2.18b). The differentiability of the con-
vex functional y +— H(y) on W2P(£2; RY) is standard and follows from (2.30d).
For treating ®¢] we use the embedding WP (2) c CH*(£2) and exploit the result
det Vy(x) = 1/Cpng from Theorem 3.1. Forall i € WI%]’DP(Q; RY) wefindat, > 0

such that det (V(y+th)(x)) > 1/(2Cuk) for all t € [—ty,1,] and all x € £2.
Hence,

.1
D@ (y)[h] = tlg% ;(q)el (y+th)

1
— Da(y)) = }g%/g ;(w(Verch) — ¢(Vy))dx,

and the limit passage is trivial as the convergence in the integrand is uniform.
To derive (3.3) we observe that the convexity of .7 implies

HO®) 2 HOD) + [ DAY DR = 7y 0) d
2

To treat the functional @, we apply Theorem 3.1 to yI) and y®, which implies
the pointwise bounds

IVyP(x)] £ Cux  and  det VyY)(x) = 1/Cpk.
Clearly there is a § > 0 such that

VF, F, e R vs e[0,1]:

|Fil, |F>| < Cuk, |Fa—Fi] £6

_ >
det Fy,det F» 2 1/Cyuk } = det ((1 ) +SF2) = 1/C2ChHK)-

We denote by — A . the minimum of the smallest eigenvalue of the matrices 812F ro(F)

where F € R?* runs through the compact set given by |F| < Cyx and det F >
1/(2Cyk). Hence, assuming ||Vy® —Vy® || « < § we find

Pa(y?) — e (yV) = DB (y )y =y
= [ (63) = 0750 ~ 07y 1 (73D -9y ) aa
2
1 1
=/Q§/ 0B%Fw((l—s)Vy(l)+sVy(2))[Vy(z)—Vy(l),Vy(z)—Vym]dsdx
S=
Ay @ _gy0p2
Z—— [ [Vy*¥=Vy | dx.
2 Ja

This establishes the result with A(Cjpy) := max{Cyk, 1/8, Ax/2}. O
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3.2. A Generalized Korn’s Inequality

The following result will be crucial to show that the nonlinear viscosity de-
pending on F = Vy really controls the H'-norm of the rate y. It relies on Neff’s
generalization [39] of the Korn inequality, in the essential improvement obtained
by PompE [41].

Theorem 3.3 (Generalized Korn’s inequality). For a fixed A € 10, 1[ and positive
constants K > 1 define the set

Fx :={F e C*"2; R |Fllen K, min det F(x) > 1/K }.

Then, for all K > 1 there exists a constant cx > 0 such that for all F € Fg we
have

Vv e H'(2; RY) with v|r, = 0: / |FTVU+(VU)TF|2dx > cxllvll3,-
2
(3.4)

Proof. In [41, Thm.2.3] it is shown that (3.4) holds for each fixed F € Fg with
ck possibly dependent on F'. Let us denote by c(F) > 0 the best possible constants
for the given F. By a perturbation argument it is easy to see that the mapping
F > ¢(F) is continuous with respect to the L> norm in C°(£2; R?*%). Since Fg
is a compact subset of C 0(£2; R?*4) the infimum of ¢ on F is attained at some
F, € Fg by WeierstraB3’ extremum principle. Because of ¢(F) 2 ¢(Fy) > 0, we
conclude that (3.4) holds with cx = ¢(Fy). 0O

We emphasize that estimate (3.4) is not valid if F is not continuous, see [41,
Thm. 4.2]. This shows that the W??-regularity of y is crucial to control the rate
of the strain Vy, which is necessary to handle the thermomechanical coupling.
The following corollary combines Theorems 3.1 and 3.3, by using the compact
embedding W27 (£2; RY) c C1*(£2; RY).

Corollary 3.4 (Uniform generalized Korn’s inequality on sublevels). Given any
Cy > Othere existsacg > 0such that forall y € YViq with M(y) < Cy we have

Vv e H'(2;RY) with v|p, = 0:

2 _
/Q|(Vy)TVU+(Vv)TVy| dx = eg[vl3,:. (3.5)

3.3. Chain Rules for Energy Functionals

Abstract chain rules for energy functionals 7: X — Ry, := RU{oo} on a Ba-
nach space concern the question under what conditions for an absolutely continuous
curve z:[0, T] — X the composition ¢t — 7 (z(t)) is absolutely continuous and
satisfies %J(z(t)) = (E(1), z(t)) for & € 37 (z(t)), where 9 denotes a suitable
subdifferential. In particular, this implies

1

J(z(t) = T (z(10)) +/ (E@),zm)dt for0=19<n=T.

fo
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The case that X is a Hilbert space and 7 is convex and lower semicontinuous
goes back to [13, Lem. 3.3], see also [5, Lemma 4.4].

Proposition 3.5 (Chain rule for convex functionals in a Hilbert space). Let X be a
Hilbert space and J: X — Ry := RU{00} a lower semicontinuous and convex
Sfunctional. If the functions 7:[0, T] — X and E:[0, T1 — X* satisfy
ze HY([0,T]; X), & e L*([0,T]; X*), and
E(t) € 0J (z(t)) almost everywhere in [0, T,
where 07 denotes the convex subdifferential, then
t > J(z(0)) liesin W0, T) and
d .
EJ(Z(I)) = (E (1), z(t)) almost everywhere in [0, T].

A first generalization to Banach spaces X with separable dual X* is given
in [53, Prop.X1.4.11]. We provide a slight generalization of the results in [37,
Sec.2.2] that work for arbitrary reflexive Banach spaces and include also certain
nonconvex functionals. The functional 7 is called locally semiconvex, if for all z
with J(z) < oo there exist A(z) =2 Oandaball B,(z) ={Z € X; |[z—zllx £r}
with r =7(z) such that the restriction J|p, (z) 1S A-semiconvex, Viz.

V20,21 €B,(2) Vs €0, 11: T ((1—s)z0+521)
2

s—s
2

By 8.7 we denote the Fréchet subdifferential which is defined by

3T @) ={EeX*; T@2T(@)+(E.7-2)—2A@)|Z—zl} forZe B (2) }.

The next results follows by a simple adaptation of the proof of [37, Prop.2.4].

= (1-9)J (z0) + 5T (z1) + A(2) lz1—zollk-

Proposition 3.6 (Chain rule for locally semiconvex functionals). Consider a sep-
arable reflexive Banach space, g € 11, oo[ with q¢' = q/(q—1), and T: X — Ry
a lower semicontinuous and locally semiconvex functional. If the functions 7 €
Wh4([0, T1; X) and & € L9 ([0, T1; X*) satisfy

sup{J(z(1); 1 €[0,T]1} < oo and
E (1) € 0T (z(1)) almost everywhere in [0, T,

then

d .
t— J@)) liesin WH1(0,T) and 57 @0) =(E 0, 20)
almost everywhere in [0, T].

Proof. The result follows by the fact that the image of z lies in domJ = {z €
X; J(z) < oo} and is compact in X. Hence there is one A, < oo and one
rs« > 0 that provides A, semiconvexity on B, (z(t)) for all t € [0, T']. Thus, the
results in the proof of [37, Prop.2.4] can be applied when choosing w®(Z, z) =
A4|lZ—z|lx there and using the fact that all needed arguments are local and rely
only on information of 7 in a neighborhood of the image of the curve ¢t +— z(¢). O
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4. Time Discretization of a Regularized Problem

Before we construct solutions by a suitable time-discretization, we introduce
regularizations in two points. Firstly, we add a linear viscous damping which allows
us to obtain simple a priori bounds for the strain rate Vy, because in the first steps
of the construction we are not yet in a position to exploit the generalized Korn
inequality of Theorem 3.3. Secondly, we modify the heat production induced by
the viscous damping, which in the physically correct form leads to an L'-source
term, that cannot be handled in the first steps of the construction below.

Hence, introducing the regularization parameter ¢ > 0 we consider the coupled
system

div (0vi(Vy, Vy,0) +&Vy + 0a(Vy, ) — div f)el(sz)) +¢=0, (4.1a)
w — div(K(Vy, 0)VO) = & (Vy, Vy,0) + 3p¢(Vy, 0):Vy, (4.1b)
w=1w(Vy,0), (4.1c)
. F,F,0
with &°8(F, F, 0) := M
1+c&(F, F,0)

where 10 is from (2.16) and X from (2.24). This system is defined on Q and is
complemented with regularized boundary and initial conditions

(0vi(Vy, V3, 0)+eVi+0a(Vy, 0))ii — divg(her(V2y)ii) = f on In, (4.2a)

y = identity on Xp, her(V2y): (i) = 0 onX, (4.2b)
- . 0
K(Vy,0)V0 -ii + k6 = kb, . With 6, = —>— onY, (4.2¢)
’ ' 146,
o

y(0,)=7yo and 6(0,) =6, := on 2. (4.2d)

14-¢6y

This system is solved by a time discretization. For this, we consider a constant
time step T > 0 such that T/t is an integer, leading to an equidistant partition
of the considered time interval [0, T']. (However, varying time-steps can be easily
implemented because we will always consider only first-order time differences and
one-step formulas.)

For the time discretization of the regularized system (4.1)-(4.2) we use the
difference notation

8‘[fk — %(fk _ fk—l)

and define a staggered scheme, where first y%~! is updated to y*_ while keeping %!
fixed, and then 6 is updated implicitly by updating w*-! to wX, = ro(Vyk_, 6%).

More precisely, in the domain £2 we ask for

— div <avi(vy§r‘ L8, Vyk eg;‘) + &8, Vyk
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B ) 1 kt
+ o (Vyk,, 6571 — div he1<v2y’;,>) =gk i=- / g(r) dr, (4.3a)
¢

T k—1)t
Srwk, — div(K(Vyk ' 05 Vel = &5 (Vyl ! Vet 057
+ 3pp(Vyk,, 08 )8, V5 (4.3b)
with wlgcr = m(v)’§p 95{)7 (43C)

together with the discrete variant of the boundary conditions (4.2) in the form

(o (Vo 8Vt 0T) + 68, Vv, + ou(Vak, 05 )i

) . 1 kt
— divg (her (V2y5i) = f5 = = f f(r) dr on I\,
T Jk—Dr
(4.42)
Y&, =identity on I'p,  ba(VZyE,) @ (i) = 0 on T,
(4.4b)
k—1 1 - K [k
K(Vy”_ ,9&_ )Vegr n +K9§r = Kebk,s,t = ;/ O, (1) dt on I
k—Dt
(4.4¢)

The main advantage is that the boundary-value problem (4.3a), (4.4a), and (4.4b)
for yé‘, is the Euler-Lagrange equation of a functional, so that solutions can be
obtained by solving the global minimization problem

(1 _ _ _ 3 _
Vi € Arg Mm{ —ROG =y 0D + VY=Y g e

+ V0L — () |y e Vi ) (4.5)

where R is from (2.18e) and where (€5, y) = [ g5y dx+ [ f¥-y dS.Clearly, the
Euler-Lagrange equation may have more solutions, however for deriving suitable
a priori bounds, we will exploit the minimizing properties.

Similarly, the boundary value problem (4.3b) and (4.4c) for 6%, where y*~!
and y¥, are given, 