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Abstract

The frame-indifferent thermodynamically-consistentmodel of thermoviscoelas-
ticity at large strain is formulated in the reference configuration by using the con-
cept of the second-grade nonsimple materials. We focus on physically correct vis-
cous stresses that are frame indifferent under time-dependent rotations. Also elastic
stresses are frame indifferent under rotations and respect positivity of the determi-
nant of the deformation gradient. The heat transfer is governed by the Fourier law
in the actual deformed configuration, which leads to a nontrivial description when
pulled back to the reference configuration. The existence of weak solutions in the
quasistatic setting, that is inertial forces are ignored, is shown by time discretization.

1. Introduction

For a long time, thermoviscoelasticity was considered as a quite difficult prob-
lem even at small strains, mainly because of the nonlinear coupling with the heat-
transfer equation which has no obvious variational structure; hence special tech-
niques had to be developed. It took about two decades after the pioneering work
by Dafermos [14] in one space dimension that first three-dimensional studies oc-
curred (cf. for example [7,12,43]). The basic new ingredient was the L1-theory
for the nonlinear heat equation developed in [9,11]. At large strains, in simple
materials, the problem is still recognized to be very difficult even for the case of
mere viscoelasticity without coupling with temperature, and only few results are
available if the physically relevant frame-indifference is respected, as articulated by
Ball [2], see also [3,4]. In particular, local-in-time existence [27] or existence of
measure-valued solutions [15,18] are known for simplematerials. Further examples
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in this direction are [52] for a general three-dimensional theory, but not respecting
frame indifference and the determinant constraints, or [34] for a one-dimensional
theory using the variational structure. While the static theory for large-strain elas-
ticity developed rapidly after [2], there are still only few result for time-dependent
processes respecting frame indifference as well as the determinant constraint. The
first cases were restricted to rate-independent processes, such as elastoplasticity
(cf. [31,36]) or crack growth (cf. [16], see [35, Sec. 4.2] for a survey. Recently the
case of viscoplasticity was treated in [38].

The main features of the model discussed in this work can be summarized in
brief as follows: the thermoviscoelastic continuum is formulated at large strains in a
reference configuration, that is the Lagrangian approach. The concepts of 2nd-grade
nonsimple material is used, which gives higher regularity of the deformation. The
heat transfer is modeled by the Fourier law in the actual deformed configuration,
but transformed (pulled back) into the reference configuration for the analysis. Our
model respects both static frame-indifference of the free energy and dynamic frame
indifference for the dissipation potential. Moreover, the local non-selfpenetration
is realized by imposing a blowup of the free energy if the determinant of the de-
formation gradient approaches 0 from above, however we do not enforce global
non-selfpenetration. Also, we neglect inertial effects; cf. Remark 6.6 for more de-
tailed discussion.

Let us highlight the important aspects of the presented model and their conse-
quences:

(α)The temperature-dependence of the free energy creates adiabatic effects involv-
ing the rate of the deformation gradient. To handle this, the Kelvin–Voigt-type
viscosity is used to control the rate of the deformation gradient. In addition,
we separate the purely mechanical part, cf. (2.15) below, which allows us to
decouple the singularities of large-strain elasticity from the heat equation.

(β) The heat transfer itself [and also the viscosity from (α)] is clearly rate depen-
dent and the technique of rate-independent processes supported by a variation-
ally efficient energetic-solution concept cannot be used (which also prevents us
from excluding possible global selfpenetration).

(γ) The equations for the solid continuum need to be formulated and analyzed
in the fixed reference configuration but transport processes (here only the heat
transfer) happen rather in the actual configuration and the pull-back procedure
needs the determinant of the deformation gradient to be well away from 0. To
achieve this, we exploit the concept of 2nd-grade nonsimple materials together
with the results of Healey and Krömer [24], which allow us to show that
the determinant for the deformation gradient is bounded away from 0, see
Section 3.1.

(δ) The transport coefficients depend on the deformation gradient because of the
reasons in point (γ). For this, measurability in time is needed and thus the con-
cept of global quasistatic minimization of deformation (as in rate-independent
systems [35] or in viscoplasticity in [38]) would not be satisfactory; therefore
we rather control the time derivative of the deformation, which can be done
either by inertia (which is neglected in our work) or by the Kelvin–Voigt-type
viscosity from (α).
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(ε) The viscosity from (α) must satisfy time-dependent frame indifference as
explained in [1], thus it is dependent on the rate of the right Cauchy–Green
tensor rather than on the rate of the deformation gradient itself. However, the
adiabatic heat sources/sinks involve terms where the rate of the deformation
gradient occurs directly. To control the latter by the former, we exploit results of
Neff [39] in the extension by Pompe [41] for generalized Korn’s inequalities,
see Section 3.2. Here, again the mentioned concept of 2nd-grade nonsimple
materials is used to control the determinant of the deformation gradient, see
(γ).

As mentioned above, our model heavily relies on the strain-gradient theories
to describe materials, referred as nonsimple, or also multipolar or complex. This
concept has been introduced long time ago, cf. [51] or also for example [8,19,28,40,
46,50] and in the thermodynamical concept also [6]. In the simplest scenario, which
is also used here, the stored-energy density depends only on the strain F = ∇ y
and on the first gradient ∇F of the strain. This case is called 2nd-grade nonsimple
material. Possible generalization using only certain parts of the 2nd gradient in the
spirit of [25] still need to be explored.

The structure of the paper is as follows: in Section 2 we present the model
in physical and mathematical terms. After the precise definition of our notion of
solution, Theorem 2.2 provides the main existence result for global-in-time solu-
tions for the large-strain thermoviscoelastic system, while Corollary 2.3 gives the
corresponding existence result for viscoelasticity at large strain and at constant
temperature, which, to the knowledge of the authors, is also new. A related result
for isothermal large-strain viscoelasticity is derived in [20], but there the limit of
small strains is treated.

After proving some auxiliary results about local invertibility of deformations
and theEuler–Lagrange equations, a generalizedKorn’s inequality, and aboutChain
rules in Section 3, we start the proof of the main result in Section 4 by introducing
certain regularizations as well as a time-incremental approach. This is particularly
constructed in such a split (sometimes called staggered) way that the deformation is
first updated at fixed temperature from the previous time level and then the temper-
ature is updated, where in some terms the old and in others the new deformation is
used. Another important step in the analysis is the usage of an energy-like variable
w = w(∇ y, θ) instead of temperature θ , which enables us to exploit the balance-
law structure of the heat equation; cf. [30,32] for arguments for the preference of
energy in favor of temperature. After proving existence and a-priori estimates for
such approximate solutions in Section 4, we continue by convergence in Section 5
by limiting the time discretization. Thus, as an intermediate result, Proposition 5.1
provides the existence of solutions (yε, θε) of the regularized problem. Eventually,
inSection6wefinally show that the limit εk → 0 for (yεk , θεk )→ (y, θ) canbe con-
trolled in such away that (y, θ) are the desired solutions.We concludewith a few re-
marks concerning potential generalizations and further applications of themethods.
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2. Modeling of Thermoviscoelastic Materials in the Reference Configuration

We will use the Lagrangian approach and formulate the model in the reference
(fixed) domain Ω ⊂ R

d being bounded with a Lipschitz boundary Γ . In fact,
occasionally we will assume Γ smooth in order to reveal the classical formulation
of the problem, cf. (2.13)–(2.14) based on the arguments (2.28)–(2.29) below. We
assume d � 2 although, of course, the rather trivial case d = 1 works too if p � 2
is assumed, additionally to p > d, in (2.30) below. We will consider a fixed time
horizon T > 0 and use the notation I := [0, T ], Q := I ×Ω , andΣ := I ×Γ . For
readers’ convenience, Table 1 summarizes the main nomenclature used throughout
the paper.

y deformation, y(t, x) ∈ R
d ,

θ absolute temperature,
(·)· time derivative,
ψ = φ + ϕ free energy,
σel = ∂Fψ elastic stress,
σvi = ∂ .

F
ζ viscous stress,

F = ∇ y deformation gradient,
G = ∇F = ∇2y
valued in R

d×d×d ,
w heat part of internal energy,
cv = cv(F, θ) heat capacity,
�q heat flux,
M = Φel + H main
mechanical energy,

hel = ∂GH elastic hyperstress,
H = H (∇F) the potential of hel,
H strain-gradient energy,
Φcpl coupling energy,
Ψ = M +Φcpl free energy,
E = M + W total energy,

W thermal energy,
ζ potential of dissipative forces,
ξ rate of dissipation (=heat production),
K = K(θ) material heat conductivity,
K = K(F, θ) pulled-back heat
conductivity,

C = F�F right Cauchy–Green tensor,
κ heat-transfer coefficient on Γ ,
g : I×Ω → R

d a time-dependent
dead force,

f : I×ΓN → R
d a boundary traction,

� an external mechanical loading,
Ω the reference domain,
Γ the boundary of Ω , Γ = ΓD ∩ ΓN,
I := [0, T ] the fixed time interval,
Q := I ×Ω ,
Σ := I × Γ ,
Y0,Yid sets of admissible deformations,
GL+(d) := {A ∈ R

d×d; det A > 0},
SO(d) := {A ∈ GL+(d); A� A = I

= AA�}.
Table 1. Summary of the basic notation used throughout the paper.

To introduce our model in a broader context, wemay define the total free energy
and the total dissipation potential

Ψ (y, θ) =
∫
Ω

ψ(∇ y, θ)+ H (∇2y) dx and

R(y, .y, θ) =
∫
Ω

ζ(∇ y,∇ .y, θ) dx, (2.1)
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respectively. The mechanical evolution part can then be viewed as an abstract gra-
dient flow

D.yR(y,
.
y, θ)+ DyΨ (y, θ) = �(t) with 〈�(t), y〉

=
∫
Ω

g(x, t)·y(x) dx +
∫
ΓN

f (x, t)·y(x) dS, (2.2)

cf. also [34,52] for the isothermal case and [29] for the general case. The sum of the
conservative and the dissipative parts corresponds to the Kelvin–Voigt rheological
model in the quasistatic variant (neglecting inertia). The notation “ ∂ ” is used for
partial derivatives (here functional or later in Euclidean spaces), while (·)′ will
occasionally be used for functions of only one variable.

Writing (2.2) locally in the classical formulation, one arrives at the nonlinear
parabolic 4th-order partial differential equation expressing quasistatic momentum
equilibrium

div σ + g = 0 with σ = σvi + σel − div hel, (2.3)

where the viscous stress is σvi = σvi(F,
.
F, θ) and the elastic stress is σel =

σel(F, θ), while hel is a so-called hyperstress arising from the 2nd-grade nonsimple
material concept, cf. for example [40,46,51]. In view of the local potentials used
in (2.2), we have

σvi(F,
.
F, θ)=∂ .

F
ζ(F,

.
F, θ), σel(F, θ)=∂Fψ(F, θ), and hel(G)=H ′(G),

(2.4)

where G ∈ R
d×d×d is a placeholder for ∇F .

An important physical requirement is static and dynamic frame indifference.
For the elastic stresses, static frame indifference means that

σel(RF, θ) = R σel(F, θ) and hel(RG) = Rhel(G) (2.5a)

for all R ∈ SO(d), F and G. For the viscous stresses, dynamic frame indifference
means that

σvi(RF,
.
RF+R

.
F, θ) = R σvi(F,

.
F, θ) (2.5b)

for all smoothly time-varying R: t �→ R(t) ∈ SO(d), cf. [1]. Note that R may
depend on t but not on x ∈ Ω , since frame-indifference relates to superimposing
time-dependent rigid-body motions.

In terms of the thermodynamic potentials ζ , ψ , and H , these frame indiffer-
ences read as

ψ(RF, θ) = ψ(F, θ), H (R∇F) = H (∇F), and (2.6a)

ζ(RF, (RF)·, θ) = ζ(RF,
.
RF+R

.
F, θ) = ζ(F, .F, θ) (2.6b)



6 Alexander Mielke & Tomáš Roubíček

for R, F and∇F as above. These frame indifferences imply the existence of reduced
potentials ψ̂ , ζ̂ , and Ĥ such that

ζ(F,
.
F, θ) = ζ̂ (C, .C, θ), ψ(F, θ) = ψ̂(C, θ), and H (G) = Ĥ (B) (2.7)

whereB = G�·G ∈ R
(d×d)×(d×d), andC ∈ R

d×d
sym is the rightCauchy–Green tensor

C = F�F with time derivative
.
C = .

F�F + F� .F . More specifically, denoting
G = [Gαi j ] the placeholder for ∂

∂x j
Fαi with Fαi the placeholder for ∂

∂xi
yα , the

exact meaning is [G�· G]i jkl := ∑d
α=1Gαi jGαkl and [F�F]i j := ∑d

α=1 Fαi Fα j .
The ansatz (2.7) also means that

σel(F, θ) := ∂Fψ(F; θ) = 2F∂C ψ̂(F
�F, θ) = 2F∂C ψ̂(C, θ), (2.8a)

hel(G) := ∂GH (G) = 2G∂BĤ (G
�· G) = 2G∂BĤ (B), (2.8b)

σvi(F,
.
F, θ) := ∂ .

F
ζ(F,

.
F, θ) = 2F∂ .

C
ζ̂ (F�F,

.
F�F+F� .F, θ)

= 2F∂ .
C
ζ̂ (C,

.
C, θ). (2.8c)

The simplest choice, which is adopted in this paper for avoiding unnecessary

technicalities, is that the viscosity σvi is linear in
.
C . This is the relevant model-

ing choice for non-activated dissipative processes with rather moderate rates (in
contrast to activated processes like plasticity having nonsmooth potentials that are
homogeneous of degree 1 in a small-rate approximation). This linear viscosity leads

to a potential which is quadratic in
.
C , viz.

ζ̂ (C,
.
C, θ) := 1

2

.
C : D(C, θ) .C . (2.9)

Although for this choice thematerial viscosity is linear, the geometrical nonlinearity
arising from large strains is still a vital part of the problem due to the requirement of

frame indifference. Note that σvi(F,
.
F, θ) necessarily depends on F if we express.

C in terms of the velocity gradients
.
F , even if D is constant: σvi(F,

.
F, θ) =

2FD(C, θ)(
.
F�F+F� .F). While we will be able to handle general dependence on

F , it will be a crucial restriction that
.
F �→ σvi(F,

.
F, θ) is linear.

Furthermore, the specific dissipation rate can be simply identified in terms of
ζ̂ as

ξ(F,
.
F, θ) = σvi(F,

.
F, θ): .F = 2F∂ .

C
ζ̂ (F�F,

.
F�F+F� .F, θ): .F

= ∂ .
C
ζ̂ (F�F,

.
F�F+F� .F, θ): ( .F�F+F� .F)

= ∂ .
C
ζ̂ (C,

.
C, θ): .C . (2.10)

For our choice (2.9), we simply have ξ(F,
.
F, θ) = D(C, θ)

.
C : .C = 2̂ζ (C,

.
C, θ) =

2ζ(F,
.
F, θ).
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In brief, the standard thermodynamical arguments start from the free energy
density ψ and the definition of entropy via s = −∂θψ (here H does play no role
as it is chosen to be independent of θ ) and the entropy equation

θ
.
s = ξ − div �q (2.11)

with the dissipation rate ξ from (2.10) and the heat flux �q . We further use the

formula
.
s = −∂2θθψ

.
θ − ∂2Fθψ : .F and the Fourier law formulated in the reference

configuration

�q = −K(F, θ)∇θ, (2.12)

which will be specified later in (2.24). Altogether, we arrive at the coupled system

div
(
σvi(∇ y,∇ .y, θ)+ σel(∇ y, θ)− div hel(∇2y)

) + g

with σvi(F,
.
F, θ) = ∂ .

F
ζ(F,

.
F, θ) and σel(F, θ) = ∂Fψ(F, θ),

(2.13a)

cv(∇ y, θ)
.
θ = div

(K(∇ y, θ)∇θ) + ξ(∇ y,∇ .y, θ)+ θ∂2Fθψ(∇ y, θ):∇ .y
with cv(F, θ) = −θ∂2θθψ(F, θ) and ξ from (2.10) (2.13b)

on Q. We complete (2.13) by some boundary conditions. For simplicity, we only
consider a mechanically fixed part ΓD time independent undeformed (that is iden-
tity) while the whole boundary is thermally exposed with a phenomenological
heat-transfer coefficient κ � 0:

(
σvi(∇ y,∇ .y, θ)+ σel(∇ y, θ)

)�n − divS
(
hel(∇2y)�n) = f on ΓN, (2.14a)

y(x) = x (identity) on ΓD, (2.14b)

hel(∇2y):(�n ⊗ �n) = 0 on Γ, (2.14c)

K(∇ y, θ)∇θ · �n + κθ = κθ� on Γ, (2.14d)

where �n is the outward pointing normal vector, and θ� is a given external tempera-
ture. Moreover, following [10] the surface divergence “divS” in (2.14a) is defined as
divS(·) = tr

(∇S(·)
)
, where tr(·) denotes the trace and∇S denotes the surface gradient

given by ∇Sv = (I − �n⊗�n)∇v = ∇v − ∂v
∂ �n �n. See (2.29) for a short mathematical

derivation of the boundary conditions (2.14a) and (2.14c), and [48, pp. 358–359]
for the mechanical interpretation in second-order materials.

In order to facilitate the subsequent mathematical analysis, we assume a rather
weak thermal coupling through the free energy (together with the coupling through
the temperature-dependent viscous dissipation). To distinguish the particular cou-
pling thermo-mechanical term from the purely mechanical one, we consider the
explicit ansatz

ψ(F, θ) = ϕ(F)+ φ(F, θ) with φ(F, 0) = 0. (2.15)

In applications, the internal energy e given by Gibbs’ relation

e = e(F, θ) = ψ(F, θ)+ θs = ψ(F, θ)− θ∂θψ(F, θ) = ψ(F, θ)− θ∂θφ(F, θ)
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is often balanced. Here, we rather use the thermal part of the internal energy w :=
e − ϕ(F). In view of the ansatz (2.15), we have

w = w(F, θ) = ψ(F, θ)− θ∂θφ(F, θ)− ψ(F, 0) = φ(F, θ)− θ∂θφ(F, θ).
(2.16)

Note that w(F, ·) is the primitive function of the specific heat cv(F, ·) calibrated
as w(F, 0) = 0, in accord with the fact that w = e − ϕ(F) = e − ψ(F, 0). The
heat-transfer equation (2.13b) simplifies as
.
w − div

(K(∇ y, θ)∇θ) = ξ(∇ y,∇ .y, θ)+ ∂Fφ(∇ y, θ):∇ .y with w = w(F, θ) .
(2.17)

In particular, the purely mechanical stored energy ϕ does not occur in (2.16) and
does not influence the heat production and transfer in (2.17). This is crucial because
in the first step of the analysis we are not able to control the determinant of ∇ y,
but ∂Fϕ(∇ y, θ) blows up for det∇ y ↘ 0. In contrast, we are able to assume that
F �→ ∂Fφ(F, θ) behaves globally nicely, see (2.30b) and (2.30c).

The energetics of the system (2.13)–(2.14) can be best described by introducing
additional energy functionals as follows:

H(y) :=
∫
Ω
H (∇2y) dx strain-gradient energy,

(2.18a)

M(y) := H(y)+Φel(y) with Φel(y) :=
∫
Ω
ϕ(∇ y) dx main mech. energy,

(2.18b)

Φcpl(y, θ) :=
∫
Ω
φ(∇ y, θ) dx coupling energy, (2.18c)

Ψ (y, θ) := M(y)+Φcpl(y, θ) free energy, (2.18d)

R(y, .y, θ) :=
∫
Ω
ζ(∇ y,∇ .y, θ) dx dissipation potential,

(2.18e)

W(y, θ) :=
∫
Ω
w(∇ y, θ) dx thermal energy, (2.18f)

E(y, θ) := M(y)+ W(y, θ) total energy. (2.18g)

A mechanical energy balance is revealed by testing (2.13a) by
.
y and (2.13b) by 1,

and using the boundary conditions after integration over Ω and using the Green
formula twice together with another (d−1)-dimensional Green formula over Γ for
(2.13a) and once again Green’s formula for (2.13b). The last mentioned technique
is related with the concept of nonsimple materials; for the details about how the
boundary conditions are handled see for example [44, Sect. 2.4.4]. This test of
(2.13a) gives the mechanical energy balance:∫
Ω

ξ(∇ y,∇ .y, θ)︸ ︷︷ ︸
dissipation

rate

+ σel:∇ .y︸ ︷︷ ︸
mechanical

power

dx + d

dt
H(y) =

∫
Ω

g · .y︸︷︷︸
power of the
bulk force

dx +
∫
ΓN

f · .y︸ ︷︷ ︸
power of
the traction

dS. (2.19)
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Using σel = ∂Fϕ + ∂Fφ and integrating in time leads to the relation

M(y(T ))+
∫ t

0

∫
Ω

( ∫
Ω

ξ(∇ y,∇ .y, θ)+ ∂Fφ(∇ y, θ):∇ .y
)
dx dt

= M(y(0))+
∫ t

0
〈�, .y〉 dt, (2.20)

which will be very useful for obtaining a priori estimates in the sections to follow.
Next, we test the heat equation in its simplified form (2.17) together with the

boundary conditions (2.14d) by the constant function 1 (that is wemerely integrated
over Ω) and add the result to (2.20). After major cancellations we obtain the total
energy balance:

d

dt
E(y, θ) =

∫
Ω

g · .y︸︷︷︸
power of mecha-
nical bulk load

dx +
∫
ΓN

f · .y︸ ︷︷ ︸
power of
the traction

dS −
∫
Γ

κ(θ−θ�)︸ ︷︷ ︸
power of the

external heating

dS. (2.21)

In particular, we see that the total energy is conserved up to the work induced by
the external loadings or the flux of heat through the boundary.

From the entropy equation (2.11), we can read the total entropy balance (the
Clausius–Duhem inequality):

d

dt

∫
Ω

s(t, x) dx =
∫
Ω

ξ + div(K∇θ)
θ

dx

=
∫
Ω

ξ

θ
− K∇θ ·∇ 1

θ
dx +

∫
Γ

K∇θ
θ

·�n dS

=
∫
Ω

ξ

θ
+ K∇θ ·∇θ

θ2︸ ︷︷ ︸
entropy-production

rate

dx +
∫
Γ

K∇θ
θ

·�n dS

�
∫
Γ

−�q
θ

·�n
︸ ︷︷ ︸

entropy flux
through boundary

dS. (2.22)

This articulates, in particular, the second law of thermodynamics that the total
entropy in the isolated systems (that is here �q = 0 on Γ ) is nondecreasing with
time provided K = K(∇ y, θ) is positive semidefinite and the dissipation rate is
non-negative.

It is certainly a very natural modeling choice that Fourier’s law is formulated
in the actual (also called the deformed) configuration in a simple form, namely the
actual heat flux is given by

�q = −K(θ)∇zθ, where z = y(x) and θ(z) = θ(y−1(z)) for z ∈ y(Ω) (2.23)

with the heat-conductivity tensor K = K(x, θ) considered as a material parame-
ter possibly dependent on x ∈ Ω . We transform (that is pull back) this Fourier
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law to the reference configuration via �q = (Cof F�)�q, because fluxes should
be considered as (d−1)-forms. Writing Fourier’s law in material coordinates as
�q(x) = K(x)∇θ a comparison with (2.23) leads to the usual transformation rule
for 2nd-order contra-variant tensors, namely

K(x, F, θ) = (Cof F�)K(x, θ)F−�

= (Cof F�)K(x, θ)Cof F

det F
= (detF)F−1

K(x, θ)F−� (2.24)

if det F > 0, whereas the case det F � 0 is considered nonphysical, so K is
then not defined. Here we used the standard shorthand notation F−� = [F−1]� =
[F�]−1 and also the algebraic formula F−1 = (Cof F�)/ det F . In what follows,
we omit explicit x-dependence for notational simplicity. Let us emphasize that in
our formulations ∇θ is not treated as a vector, but a contravariant 1-form. Starting
from θ(x) = θ(y(x)) the chain-rule gives ∇θ(x) = ∇ y(x)�∇Y θ(y(x)). It should
be noted that (2.23) is a rather formal argumentation, assuming injectivity of the
deformation y and thus existence of y−1, which is however not guaranteed in our
model; anyhow, handling only local non-selfpenetration while ignoring possible
global selfpenetration is our modeling approach often accepted in engineering, too,
see for example [49, p. 433], [47, Sec. 3.1], and [48, p. 293].

For the isotropic case K(θ) = κ(θ)I, relation (2.24) can also be written by
using the right Cauchy–Green tensor C = F�F as K = det(F)κ(θ)C−1, cf. for
example [17, Formula (67)] or [23, Formula (3.19)] for the mass instead of the heat
transport. In principle, K in (2.23) itself may also depend on C = F�F , which we
omitted to emphasize that K in (2.24) will depend on F even if K itself will not.

In what follows, we will use the (standard) notation for the Lebesgue L p-
spaces and W k,p for Sobolev spaces whose kth distributional derivatives are in
L p-spaces and the abbreviation Hk = W k,2. The notation W 1,p

D will indicate the
closed subspace of W 1,p with zero traces on ΓD and set p′ = p/(p−1). Thus, for
example,

H1
D(Ω; R

d) := {
v ∈ L2(Ω; R

d); ∇v ∈ L2(Ω; R
d×d), v|ΓD = 0

}
. (2.25)

For the fixed time interval I = [0, T ], we denote by L p(I ; X) the standard Bochner
space of Bochner-measurable mappings I → X with X a Banach space. Also,
W k,p(I ; X) denotes the Banach space of mappings from L p(I ; X) whose k-th
distributional derivative in time is also in L p(I ; X). The dual space to X will be
denoted by X∗. Moreover, Cw(I ; X) denotes the Banach space of weakly continu-
ous functions I → X . The scalar product between vectors, matrices, or 3rd-order

tensors will be denoted by “ · ”, “:”, or “ ... ”, respectively. Finally, in what follows,
K denotes a positive, possibly large constant.

We consider an initial-value problem, imposing the initial conditions

y(0, ·) = y0 and θ(0, ·) = θ0 on Ω. (2.26)

Having in mind the form (2.17) of the heat equation, we can now state the
following definition for a weak solution:
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Definition 2.1 (Weak solution). A couple (y, θ) : Q = [0, T ]×Ω → R
d × R is

called aweak solution to the initial-boundary-valueproblem (2.13)&(2.14)&(2.26)
if (y, θ) ∈ Cw(I ; W 2,p(Ω; R

d)) × L1(I ; W 1,1(Ω)) with ∇ .y ∈ L2(Q; R
d×d), if

minQ det∇ y > 0 and y|ΣD = identity, and if it satisfies the integral identity
∫ T

0

∫
Ω

(
σvi(∇ y,∇ .y, θ)+ σel(∇ y, θ)

): ∇z + hel(∇2y)
...∇2z dx dt

=
∫

Q
g·z dx dt +

∫
ΣN

f ·z dS dt (2.27a)

for all smooth z : Q → R
d with z = 0 on ΣD together with y(0, ·) = y0, and if∫

Q
K(∇ y, θ)∇θ ·∇v − (

ξ(∇ y,∇ .y, θ)+ ∂Fφ(∇ y, θ): ∇ .y)
v −w(∇ y, θ)

.
v dx dt

+
∫
Σ

κθv dS dt =
∫
Σ

κθ�v dS dt +
∫
Ω

w(∇ y0, θ0)v(0) dx (2.27b)

for all smooth v: Q → R with v(T ) = 0, wherew is defined in (2.16).

At first sight, it seems that (2.27a) is not suited to apply the test function z = .
y,

which is the natural and necessary choice for deriving energy bounds. Obviously,
we will not be able to obtain enough control on ∇2 .y. However, using the abstract
chain rules provided in Section 3.3 this problem can be handled by extending
H(y) = ∫

Ω
H (∇2y) dx to a lower semicontinuous and convex functional on

H1(Ω; R
d) by setting it ∞ outside W 2,p(Ω; R

d), see the rigorous proof of (5.9)
in Step 3 of the proof of Proposition 5.1.

It will be somewhat technical to see that the weak formulation (2.27a) is indeed
selective enough, in the sense that for sufficiently smooth solutions one can in-
deed obtain the classical formulation (2.13) together with the boundary conditions
(2.14), cf. also [44, Sect. 2.4.4]. In particular, abbreviating σ = σvi(∇ y,∇ .y, θ)+
σel(∇ y, θ), integrating by part once, and using the boundary conditions (2.14a,c)
yields ∫

Q

((
σ− div hel(∇2y)

):∇z − g·z
)
dx dt

=
∫
ΣN

f ·z dS dt −
∫
Σ

hel(∇2y)
... (∇z⊗�n) dS dt. (2.28)

We now want to show how the strong form (2.13a) and the associated boundary
conditions (2.14a,c) follow from (2.28). For this goal, we apply Green’s formula
in the opposite direction to remove ∇ in front of the test function z. Using also the
orthogonal decomposition of∇z = ∇Sz+ ∂

∂ �n z⊗�n involving the surface gradient∇Sz
and writing shortly h for hel(∇2y) ∈ R

d×d×d , relation (2.28) leads to the identity∫
Q

(− div σ + div2 h − g
)·z dx dt

=
∫
Σ

((
σ− div h

): (z⊗�n)− h
... (∇z⊗�n)

)
dx dt +

∫
ΣN

f ·z dS dt
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=
∫
Σ

(
(σ− div h)�n·z + (

h : (�n⊗�n)) · ∂z
∂ �n + h�n: ∇Sz)

)
dS dt −

∫
ΣN

f ·z dS dt

Using the surface divergence divS and the projection PS : A �→ A − A�n ⊗ �n to
the tangential part, we obtain the integration by parts formula (cf. [10] or [48,
pp. 358–359])

∫
Γ

A: ∇Sz dS =
∫
Γ

(PS A): ∇Sz dS = −
∫
Γ

divS(PS A) · z dS,

where the surface Γ is now assumed to be sufficiently smooth. Using this with
A = h�n for the previous relation we find

∫
Q

(− div σ + div2 h − g
)·z dx dt

=
∫
ΣN

(
(σ− div h)�n − divS

(
PS(h�n)) − f

)
·z dS dt

+
∫
Σ

(
h:(�n⊗�n)) · ∂z

∂ �n dS dt, (2.29)

where we have used z = 0 on ΣD = Σ\ΣN. Now, taking z’s with a compact
support in Q, we obtain the equilibrium (2.13a) in the bulk. Next taking z’s with
zero traces on Σ but general ∂z

∂ �n , we obtain (2.14c). Note that the latter condition
implies PS(h�n) = h�n − (

h : (�n⊗�n)) ⊗ �n = h�n. Hence, taking finally general z’s,
we obtain (2.14a), as PS can be dropped because of (2.14c).

Moreover, also note that, from the integral identity (2.27b), one can read
w(∇ y(0), θ(0)) = w(∇ y0, θ0) from which θ(0) = θ0 follows when taken the
invertibility ofw(F, ·) and y(0) = y0 into account.

Now we exploit the decomposition (2.15) of ψ into ϕ and φ, which allows us
to impose coercivity assumptions for the purely elastic part ϕ that are independent
of those for φ:

∃ p ∈ ]d,∞[ ∩ [2,∞[, s > 2, q � pd/(p−d) ∃α, K , ε̂ > 0:
ϕ:GL+(d)→ R

+ twice continuously differentiable, ∀ F ∈ GL+(d):
ϕ(F) � ε̂|F |s + ε̂/(det F)q , (2.30a)

φ:GL+(d)×R
+ → R

+ twice continuously differentiable,

∀ F, F̃ ∈ GL+(d), θ � 0:∣∣φ(F, θ)−φ(F̃, θ)∣∣ � K
(
1+|F |s/2+|F̃ |s/2)|F−F̃ |, (2.30b)

∂2F Fφ(F, θ) � K , |θ∂2Fθφ(F, θ)| � K , ε̂ � −θ∂2θθφ(F, θ) � K , (2.30c)

H : Rd×d×d → R
+ convex, continuously differentiable, ∀ G ∈ R

d×d×d :
ε̂|G|p � H (G) � K (1+|G|p), (2.30d)

ζ̂ : Rd×d
sym ×R

d×d
sym ×R → R

+ is continuous and ∀ (C, .C, θ) ∈ R
d×d
sym ×R×R

d×d
sym :

ζ̂ (C, ·, θ): Rd×d
sym → R

+ quadratic( cf. (2.9)), α| .C|2 � ζ̂ (C,
.
C, θ) � K | .C|2,

(2.30e)
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K: R → R
d×d is continuous, uniformly positive definite, and bounded; (2.30f)

g ∈ L2(Q; R
d ), f ∈ L2(ΣN; R

d ), κ > 0, (2.30g)

y0 ∈ Yid := { y ∈ W 2,p(Ω; R
d ) ; y|ΓD = identity }, det(∇ y0) � ε̂, , (2.30h)

θ� ∈ L1(Σ), θ� � 0, θ0 ∈ L1(Ω), θ0 � 0, ψ(∇ y0, θ0) ∈ L1(Ω), (2.30i)

where GL+(d) denotes the set of matrices in R
d×d with positive determinant. The

last assumption in (2.30c) means that cv together with c−1
v are bounded, which is a

major restriction. However, it allows for a rather simple estimation in Lemma 6.3;
for alternative, more general situations dealing with increasing cv(·) we refer to
[26, Sec. 8.3].

The function w = w(F, θ) defined in (2.16) satisfiesw(F, 0) = 0 by (2.15).
Moreover, we have ∂θw(F, θ) = −θ∂2θθφ(F, θ). Hence assumption (2.30c) im-
plies, for all F ∈ GL+(Rd), the two-sided estimates

ε̂θ � w(F, θ) � K θ for all θ � 0,

ε̂|θ1−θ2| � |w(F, θ1)−w(F, θ2)| � K |θ1−θ2| for all θ1, θ2 � 0.
(2.31)

Assumptions (2.30b,c) make the thermomechanical coupling through φ rather
weak in order to allow for a simple handling of the mechanical part independently
of the temperature. These restrictive assumptions are needed for our specific and
simple way of approximation method rather than for the problem itself. E.g. the
assumption in (2.30b) is used to facilitate the estimate (4.12), which allows us to
control the difference between

∫
Ω
φ(∇ yk, θ) dx and

∫
Ω
φ(∇ yk−1, θ) dx in terms of

M(yk),M(yk−1), and ‖∇ yk−∇ yk−1‖2
L2 . Moreover, after having derived uniform

bounds on |∇ yk | it will be exploited to show that the thermo-coupling stress ∂Fφ is
bounded. Finally, (2.30d) and (2.30h) make the stored energy finite at time t = 0.

It will be important that ∂Fφ(F, θ) vanishes for θ = 0 [which follows from
(2.15)], so that temperature stays non-negative if θ0 � 0 and θ� � 0, as assumed.

We now state our main existence results, which will be proved in the following
Sections 4–6. Themethodwill be constructive, avoiding non-constructive Schauder
fixed-point arguments, however some non-constructive attributes such as selections
of converging subsequences will remain. More specifically, the proof is obtained
by first making the a priori estimates for time-discretized solutions in Proposi-
tion 4.2, and then deriving an existence result for time-continuous solutions of
an ε-regularized problem, see Proposition 5.1. Finally, Proposition 6.4 provides
convergence for ε→ 0.

Theorem 2.2 (Existence of energy-conserving weak solutions). Assume that the
conditions in (2.30) hold. The original initial-boundary-value problem (2.13)–
(2.14)–(2.26) with K from (2.24) possesses at least one weak solution (y, θ) in
the sense of Definition 2.1. In addition, these solutions satisfy ∇θ ∈ Lr (Q; R

d) for
all 1 � r < (d+2)/(d+1), the mechanical energy balance (2.19), and the total
energy balance (2.21).

Asmentioned in the introduction, a lot of publications are devoted to the simpler
isothermal viscoelasticity at large strain, yet, in the multi-dimensional case, they
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do not satisfy all the necessary physical requirements. It is therefore worthwhile to
present a version of our existence result by restricting it to this isothermal case, for
which a lot of assumptions are irrelevant or simplify. In particular, (2.15) simplifies
as ψ(F, θ) = ϕ(F). Of course, our theory only works because we are using a
non-degenerate second-grade material, where the energy contribution H(y) :=∫
Ω
H (∇2y) dx generates enough regularity to handle the geometric and physical

nonlinearities. To the best of the authors knowledge, even the result for isothermal
viscoelasticity is new.

A similar regularization approach to isothermal large-strain viscoelasticity was
considered in [20], where the H(y) is multiplied with a small parameter that van-
ishes slower than the loading.Hence, the authors are able to show that their solutions
are sufficiently close to the identity which allows them to exploit a simpler Korn’s
inequality obtained by a perturbation argument. Hence, to the best of the authors’
knowledge the following result is the first that allows for truly large strains:

Corollary 2.3 (Viscoelasticity at constant temperature). Let ϕ satisfy (2.30a), and

let (2.30d-e,g-h) be satisfied with ζ̂ = ζ̂ (C, .
C) and with ψ = ϕ. Then, the initial-

boundary-value problem (2.13a)–(2.14a)–(2.26) (with θ ignored) possesses at least
one weak solution y in the sense that the integral identity (2.27a) holds. In addition,

the mechanical energy balance (2.20) holds with ξ = ξ(F, .
F) and without the last

term involving ∂Fφ.

Before going into the proof of our main result, we show that our conditions are
general enough for a series of nontrivial applications:

Example 2.4 (Classical thermomechanical coupling). The classical example of a
free energy in thermomechanical coupling is given in the form

ψ(F, θ) = ϕ(F)− a(θ) ϕ1(F)+ cθ(1− log θ), (2.32)

that is φ(F, θ) involves a term in the product form −a(θ)ϕ1(F). For the purely
mechanical part we may take the polyconvex energy ϕ(F) = c1|F |s +c2/(det F)q

for det F > 0 and ∞ otherwise. For the thermomechanical coupling we obtain
cv(F, θ) = −θ∂2θθψ(F, θ) = c + a′′(θ)ϕ1(F), thus to have positivity of the heat
capacity cv, we assume a′′(θ) � 0 and ϕ1(F) � 0. Moreover, we have

w = w(F, θ) = c θ + (
θa′(θ)−a(θ)

)
ϕ1(F) and ∂Fφ(F, θ) = a(θ)ϕ′

1(F).

Thus, we see that all assumptions in (2.30) can easily be satisfied, for example by
choosing a(θ) = (1+θ)−α with α > 0, which is smooth bounded and convex, and
taking any φ1 ∈ C2

c (R
d×d).

Example 2.5 (Phase transformation in shape-memory alloys). An interesting exam-
ple of a free energyψ occurs in themodeling of austenite-martensite transformation
in so-called shape-memory alloys:

ψ(F, θ) = (1−a(θ))ϕA(F)+ a(θ)ϕM(F)+ ψ0(θ),
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cf. for example [42] and references therein. Here a denotes the volume fraction of
the austenite versus martensite which is supposed to depend only on temperature.
Of course, this is only a rather simplified model. For, ψ0(θ) = cθ(1− log θ) it
complies with the ansatz (2.32) with ϕ(F) = ϕA(F) and ϕ1(F) = ϕM(F)−ϕA(F).
The heat capacity then reads as

cv(F, θ) = θa′′(θ)[ϕA−ϕM ](F)− θψ ′′
0 (θ).

To ensure its positivity, ψ0 has to be strictly concave in such a way that ψ ′′
0 (θ) �

K/θ and then inf(F,θ) θa′′(θ)[ϕA−ϕM ](F) + K > 0 has to (and can) be ensured
by suitable modeling assumptions.

Remark 2.6 (Thermal expansion). Multiplicative decomposition F = FelFth with
the “thermal strain” Fth = I/μ(θ) and the elastic strain Fel which enters the elastic
part of the stored energy ϕ. This would lead to

ψ(F, θ) = β(θ)ϕ(Fel)+ φ(θ) = β(θ) ϕ
(
μ(θ)F

) − φ(θ). (2.33)

Unfortunately, (2.33) is inconsistent with the ansatz (2.15) because the contribution
ϕ which has been important for our analysis due to uniform coercivity, cannot be
identified in (2.33).

3. A Few Auxiliary Results

In this subsection we provide a series of auxiliary results that are crucial to
tackle the difficulties arising from large-strain theory. First, we show how the theory
developed byHealey andKrömer [24] allows us to derive a positive lower bound
for det∇ y from the a priori bounds for the elastic energy M(y, θ). This can then
be used to establish the validity of the Euler–Lagrange equations and a useful λ-
convexity result, which is needed for obtaining optimal energy estimates. Second,
we provide a version of Korn’s inequality from Pompe [41] that allows us to obtain
dissipation estimates via D(y, .y, θ) � c0‖ .y‖2

H1(Ω)
. Finally, in Section 3.3 we

provide abstract chain rules as derived in [37, Sec. 2.2] that allow us to derive
energy balances like (2.20) from the corresponding weak equations.

3.1. Local Invertibility and Euler–Lagrange Equations

A crucial point in the large-strain theory is the blow-up of the energy density
ψ(F, θ) for det F ↘ 0. Thus, it is desirable to find a suitable positive lower
bound for det∇ y(t, x). The following theorem is an adaptation of the result in [24,
Thm.3.1].

Theorem 3.1 (Positivity of determinant). Assume that the mechanical energy
M: W 2,p(Ω; R

d)→ R∞ satisfies the assumptions in (2.30a) and (2.30d). Then,
for each CM > 0 there exists CHK > 0 such that all y ∈ Yid with M(y) � CM

satisfy

‖y‖W 2,p � CHK, ‖y‖C1,1−d/p � CHK, det∇ y(x)
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� 1

CHK
, ‖(∇ y)−1‖C1−d/p � CHK. (3.1)

Proof. Wegive the full proof, since our mixed boundary conditions are not covered
in [24]. FromM(y) � CM and the coercivities of ϕ andH we obtain det∇ y � 0
almost everywhere in Ω and the a priori bounds

‖∇ y‖Ls + ‖( det(∇ y)
)−q‖L1 + ‖∇2y‖L p � C (1)M .

Together with the Dirichlet boundary conditions in Yid we obtain an a priori bound
for y in W 2,p(Ω; R

d) and hence also in C1,λ(Ω; R
d), where λ = 1 − d/p > 0.

This proves the first two assertions.
In particular, the function δ: x �→ det(∇ y(x)) is Hölder continuous as well with

‖δ‖Cα � C (2)M . SinceΩ is a bounded Lipschitz domain, there exist a radius r∗ > 0
and a constant α∗ > 0 such that for all x ∈ Ω the sets Br∗(x)∩Ω contain an interior
cone C(x) = {

x+z ; 0 < |z| < r∗, 1
|z| z ∈ A(x)

}
where the set A(x) ⊂ S

d−1

of cone directions has a surface measure
∫

A(x) 1 dS � α∗. Thus, using the Hölder
continuity

δ(y) � δ(x)+ C (2)M |x−y|λ for all x, y ∈ Ω,
λ = 1 − d/p � d/q [see (2.30)], and |y−x | = r � r∗ for y ∈ C(x), we can
estimate as follows:

C (1)M �
∫
Ω

1

δ(y)q
dy �

∫
y∈C(x)

1(
δ(x)+ C (2)M |x−y|λ)q dy

�
∫
ω∈A(x)

∫ r∗

r=0

rd−1 dr(
δ(x)+ C (3)M rd/q

)q dω � α∗
∫ r∗

r=0

rd−1 dr

C (4)
(
δ(x)q + rd

)
= c(5) log

(
1 + rd∗ /δ(x)q

)
with c(5) = α∗/(dC (4)).

This yields the lower bound δ(x)q � rd∗ exp
(−C (1)M /c

(5)
)
, viz. the third assertion

in (3.1).
The last assertion follows via the implicit function theorem. ��
The most important part of the above result is that the determinant of ∇ y

is bounded away from 0. Hence, the function f �→ ϕ(F), which blows up for
det F ↘ 0, is evaluated only in a compact subset of GL+(d) ⊂ R

d×d such that ∂Fφ

and ∂2ϕ exist. Again following [24, Cor. 3.3]we obtain theGateaux differentiability
of M and as well as a useful �-semiconvexity result.

Proposition 3.2 (Gateaux derivative and�-semiconvexity). Assume that M satis-
fies (2.30a) and (2.30d). Then, at each point y ∈ Yid with M(y) <∞ the Gateaux
derivative of M in all directions h ∈ Y0 := {

v ∈ W 2,p(Ω; R
d) ; v|ΓD

}
exists

and has the form

DM(y)[h] =
∫
Ω

(
DH (∇2y)

...∇2h + ∂Fϕ(∇ y): ∇h
)
dx (3.2)
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Moreover, for each CM > 0 there exists �(CM ) > 0 such that for all y(1), y(2) ∈
Yid with M(y( j)) � CM and ‖∇ y(1) − ∇ y(2)‖L∞(Ω;Rd ) � 1/CM we have
�(CM )−convexity

M(y(2)) � M(y(1))+ DM(y(1))[y(2)−y(1)]
−�(CM )‖∇ y(2)−∇ y(1)‖2L2(Ω;Rd )

. (3.3)

Proof. We decomposeM = H+Φel, see (2.18b). The differentiability of the con-
vex functional y �→ H(y) on W 2,p(Ω; R

d) is standard and follows from (2.30d).
For treatingΦel we use the embedding W 2,p(Ω) ⊂ C1,λ(Ω) and exploit the result
det∇ y(x) � 1/CHK from Theorem 3.1. For all h ∈ W 2,p

ΓD
(Ω; R

d)we find a t∗ > 0
such that det

(∇(y+th)(x)
)
> 1/(2CHK) for all t ∈ [−t∗, t∗] and all x ∈ Ω .

Hence,

DΦel(y)[h] = lim
t→0

1

t

(
Φel(y+th)

−Φel(y)
) = lim

t→0

∫
Ω

1

t

(
ϕ(∇ y+t∇h)− ϕ(∇ y)

)
dx,

and the limit passage is trivial as the convergence in the integrand is uniform.
To derive (3.3) we observe that the convexity of H implies

H(y(2)) � H(y(1))+
∫
Ω

DH (∇2y(1))
...
(∇2y(2) − ∇2y(1)

)
dx .

To treat the functional Φel we apply Theorem 3.1 to y(1) and y(2), which implies
the pointwise bounds

|∇ y( j)(x)| � CHK and det∇ y( j)(x) � 1/CHK.

Clearly there is a δ > 0 such that

∀ F1, F2 ∈ R
d×d ∀ s ∈ [0, 1]:

|F1|, |F2| � CHK, |F2−F1| � δ
det F1, det F2 � 1/CHK

}
�⇒ det

(
(1−s)F1 + s F2

)
� 1/(2CHK).

Wedenote by−�∗ theminimumof the smallest eigenvalueof thematrices ∂2F Fϕ(F)
where F ∈ R

d×d runs through the compact set given by |F | � CHK and det F �
1/(2CHK). Hence, assuming ‖∇ y(2)−∇ y(2)‖L∞ � δ we find

Φel(y
(2))−Φel(y

(1))− DΦel(y
(1))[y(2)−y(1)]

=
∫
Ω

(
ϕ(∇ y(2))− ϕ(∇ y(1))− ∂Fϕ(∇ y(1)) : (∇ y(2)−∇ y(1))

)
dx

=
∫
Ω

1

2

∫ 1

s=0
∂2F Fϕ

(
(1−s)∇ y(1)+s∇ y(2)

)[∇ y(2)−∇ y(1),∇ y(2)−∇ y(1)
]
ds dx

� −�∗
2

∫
Ω

|∇ y(2)−∇ y(1)|2 dx .

This establishes the result with �(CM ) := max{CHK, 1/δ,�∗/2}. ��
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3.2. A Generalized Korn’s Inequality

The following result will be crucial to show that the nonlinear viscosity de-
pending on F = ∇ y really controls the H1-norm of the rate

.
y. It relies on Neff’s

generalization [39] of the Korn inequality, in the essential improvement obtained
by Pompe [41].

Theorem 3.3 (Generalized Korn’s inequality). For a fixed λ ∈ ]0, 1[ and positive
constants K > 1 define the set

FK := {
F ∈ Cλ(Ω; R

d×d) ; ‖F‖Cλ � K , min
x∈Ω det F(x) � 1/K

}
.

Then, for all K > 1 there exists a constant cK > 0 such that for all F ∈ FK we
have

∀ v ∈ H1(Ω; R
d) with v|ΓD = 0:

∫
Ω

∣∣F�∇v+(∇v)�F
∣∣2 dx � cK ‖v‖2H1 .

(3.4)

Proof. In [41, Thm.2.3] it is shown that (3.4) holds for each fixed F ∈ FK with
cK possibly dependent on F . Let us denote by c(F) > 0 the best possible constants
for the given F . By a perturbation argument it is easy to see that the mapping
F �→ c(F) is continuous with respect to the L∞ norm in C0(Ω; R

d×d). Since FK

is a compact subset of C0(Ω; R
d×d) the infimum of c on FK is attained at some

F∗ ∈ FK by Weierstraß’ extremum principle. Because of c(F) � c(F∗) > 0, we
conclude that (3.4) holds with cK = c(F∗). ��

We emphasize that estimate (3.4) is not valid if F is not continuous, see [41,
Thm.4.2]. This shows that the W 2,p-regularity of y is crucial to control the rate
of the strain ∇ .y, which is necessary to handle the thermomechanical coupling.
The following corollary combines Theorems 3.1 and 3.3, by using the compact
embedding W 2,p(Ω; R

d) ⊂ C1,λ(Ω; R
d).

Corollary 3.4 (Uniform generalized Korn’s inequality on sublevels). Given any
CM > 0 there exists a cK > 0 such that for all y ∈ Yid with M(y) � CM we have

∀ v ∈ H1(Ω; R
d) with v|ΓD = 0:∫

Ω

∣∣(∇ y)�∇v+(∇v)�∇ y
∣∣2 dx � cK ‖v‖2H1 . (3.5)

3.3. Chain Rules for Energy Functionals

Abstract chain rules for energy functionals J : X → R∞ := R∪{∞} on a Ba-
nach space concern the question underwhat conditions for an absolutely continuous
curve z: [0, T ] → X the composition t �→ J (z(t)) is absolutely continuous and
satisfies d

dt J (z(t)) = 〈Ξ(t), .z(t)〉 for Ξ ∈ ∂J (z(t)), where ∂ denotes a suitable
subdifferential. In particular, this implies

J (z(t1)) = J (z(t0))+
∫ t1

t0
〈Ξ(t), .z(t)〉 dt for 0 � t0 < t1 � T .
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The case that X is a Hilbert space and J is convex and lower semicontinuous
goes back to [13, Lem.3.3], see also [5, Lemma 4.4].

Proposition 3.5 (Chain rule for convex functionals in a Hilbert space). Let X be a
Hilbert space and J : X → R∞ := R∪{∞} a lower semicontinuous and convex
functional. If the functions z: [0, T ] → X and Ξ : [0, T ] → X∗ satisfy

z ∈ H1([0, T ]; X), Ξ ∈ L2([0, T ]; X∗), and

Ξ(t) ∈ ∂J (z(t)) almost everywhere in [0, T ],
where ∂J denotes the convex subdifferential, then

t �→ J (z(t)) lies in W 1,1(0, T ) and
d

dt
J (z(t)) = 〈Ξ(t), .z(t)〉 almost everywhere in [0, T ].

A first generalization to Banach spaces X with separable dual X∗ is given
in [53, Prop.XI.4.11]. We provide a slight generalization of the results in [37,
Sec. 2.2] that work for arbitrary reflexive Banach spaces and include also certain
nonconvex functionals. The functional J is called locally semiconvex, if for all z
with J (z) <∞ there exist �(z) � 0 and a ball Br (z) = { ẑ ∈ X ; ‖̂z−z‖X � r }
with r = r̂(z) such that the restriction J |Br (z) is �-semiconvex, viz.

∀z0, z1∈ Br (z) ∀s ∈[0, 1]:J ((1−s)z0+sz1)

� (1−s)J (z0)+ sJ (z1)+�(z) s−s2

2
‖z1−z0‖2X .

By ∂J we denote the Fréchet subdifferential which is defined by

∂J (z)={
Ξ ∈ X∗ ; J (̂z)�J (z)+〈Ξ, ẑ−z〉−2�(z)‖̂z−z‖2X for ẑ ∈ B̂r(z)(z)

}
.

The next results follows by a simple adaptation of the proof of [37, Prop. 2.4].

Proposition 3.6 (Chain rule for locally semiconvex functionals). Consider a sep-
arable reflexive Banach space, q ∈ ]1,∞[ with q ′ = q/(q−1), and J : X → R∞
a lower semicontinuous and locally semiconvex functional. If the functions z ∈
W 1,q([0, T ]; X) and Ξ ∈ Lq ′

([0, T ]; X∗) satisfy

sup
{J (z(t)) ; t ∈ [0, T ] } <∞ and

Ξ(t) ∈ ∂J (z(t)) almost everywhere in [0, T ],
then

t �→ J (z(t)) lies in W 1,1(0, T ) and
d

dt
J (z(t)) = 〈Ξ(t), .z(t)〉

almost everywhere in [0, T ].
Proof. The result follows by the fact that the image of z lies in domJ = { z ∈
X ; J (z) < ∞} and is compact in X . Hence there is one �∗ < ∞ and one
r∗ > 0 that provides �∗ semiconvexity on Br∗(z(t)) for all t ∈ [0, T ]. Thus, the
results in the proof of [37, Prop. 2.4] can be applied when choosing ωR (̂z, z) =
�∗‖̂z−z‖X there and using the fact that all needed arguments are local and rely
only on information ofJ in a neighborhood of the image of the curve t �→ z(t). ��
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4. Time Discretization of a Regularized Problem

Before we construct solutions by a suitable time-discretization, we introduce
regularizations in two points. Firstly, we add a linear viscous damping which allows
us to obtain simple a priori bounds for the strain rate ∇ .y, because in the first steps
of the construction we are not yet in a position to exploit the generalized Korn
inequality of Theorem 3.3. Secondly, we modify the heat production induced by
the viscous damping, which in the physically correct form leads to an L1-source
term, that cannot be handled in the first steps of the construction below.

Hence, introducing the regularization parameter ε > 0 we consider the coupled
system

div
(
σvi(∇ y,∇ .y, θ)+ ε∇ .y + σel(∇ y, θ)− div hel(∇2y)

) + g = 0, (4.1a)
.
w − div(K(∇ y, θ)∇θ) = ξ regε (∇ y,∇ .y, θ)+ ∂Fφ(∇ y, θ):∇ .y, (4.1b)

w = w(∇ y, θ), (4.1c)

with ξ regε (F,
.
F, θ) := ξ(F,

.
F, θ)

1+ε ξ(F, .F, θ)
,

where w is from (2.16) and K from (2.24). This system is defined on Q and is
complemented with regularized boundary and initial conditions

(
σvi(∇ y,∇ .y, θ)+ε∇ .y+σel(∇ y, θ)

)�n − divS
(
hel(∇2y)�n) = f on ΣN, (4.2a)

y = identity on ΣD, hel(∇2y): (�n⊗�n) = 0 on Σ, (4.2b)

K(∇ y, θ)∇θ · �n + κθ = κθ�,ε with θ�,ε := θ�

1+εθ� on Σ, (4.2c)

y(0, ·) = y0 and θ(0, ·) = θ0,ε := θ0

1+εθ0 on Ω . (4.2d)

This system is solved by a time discretization. For this, we consider a constant
time step τ > 0 such that T/τ is an integer, leading to an equidistant partition
of the considered time interval [0, T ]. (However, varying time-steps can be easily
implemented because we will always consider only first-order time differences and
one-step formulas.)

For the time discretization of the regularized system (4.1)–(4.2) we use the
difference notation

δτ f k = 1

τ

(
f k − f k−1)

anddefine a staggered scheme,wherefirst yk−1
ετ is updated to yk

ετ while keeping θ
k−1
ετ

fixed, and then θ is updated implicitly by updating wk−1
ετ to wk

ετ = w(∇ yk
ετ , θ

k
ετ ).

More precisely, in the domain Ω we ask for

− div

(
σvi

(
∇ yk−1
ετ , δτ∇ yk

ετ , θ
k−1
ετ

)
+ εδτ∇ yk
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+ σel(∇ yk
ετ , θ

k−1
ετ )− div hel(∇2yk

ετ )

)
= gk
τ := 1

τ

∫ kτ

(k−1)τ
g(t) dt, (4.3a)

δτw
k
ετ − div(K(∇ yk−1

ετ , θ
k−1
ετ )∇θk

ετ ) = ξ regε (∇ yk−1
ετ ,∇δτ yk

ετ , θ
k−1
ετ )

+ ∂Fφ(∇ yk
ετ , θ

k
ετ ):δτ∇ yk

ετ , (4.3b)

with wk
ετ = w(∇ yk

ετ , θ
k
ετ ), (4.3c)

together with the discrete variant of the boundary conditions (4.2) in the form
(
σvi

(
∇ yk−1
ετ , δτ∇ yk

ετ , θ
k−1
ετ

)
+ εδτ∇ yk

ετ + σel(∇ yk
ετ , θ

k−1
ετ )

)
�n

− divS
(
hel(∇2yk

ετ )�n
) = f k

τ := 1

τ

∫ kτ

(k−1)τ
f (t) dt on ΓN,

(4.4a)

yk
ετ = identity on ΓD, hel(∇2yk

ετ ) : (�n⊗�n) = 0 on Γ,
(4.4b)

K(∇ yk−1
ετ , θ

k−1
ετ )∇θk

ετ · �n + κθk
ετ = κθk

�,ε,τ := κ
τ

∫ kτ

(k−1)τ
θ�,ε(t) dt on Γ.

(4.4c)

The main advantage is that the boundary-value problem (4.3a), (4.4a), and (4.4b)
for yk

ετ is the Euler–Lagrange equation of a functional, so that solutions can be
obtained by solving the global minimization problem

yk
ετ ∈ Arg Min

{ 1

τ
R(yk−1

ετ , y−yk−1
ετ , θ

k−1
ετ )+

ε

2τ
‖∇ y−∇ yk−1

ετ ‖2L2(Ω;Rd )

+ Ψ (y, θk−1
ετ )− 〈�kτ , y〉

∣∣∣ y ∈ Yid

}
, (4.5)

whereR is from (2.18e) andwhere 〈�kτ , y〉 = ∫
Ω

gk
τ ·y dx+∫

ΓN
f k
τ ·y dS. Clearly, the

Euler–Lagrange equation may have more solutions, however for deriving suitable
a priori bounds, we will exploit the minimizing properties.

Similarly, the boundary value problem (4.3b) and (4.4c) for θk
ετ , where yk−1

ετ

and yk
ετ are given, has a variational structure. For this, we define the functions

φC(F, θ) := ∫ θ
0 φ(F, θ̂ ) dθ̂ and W (F, θ) = 2φC(F, θ) − θφ(F, θ) to obtain the

relation

∂θW (F, θ) = w(F, θ) = φ(F, θ)− θ∂θφ(F, θ) and
∂θ∂FφC(F, θ) = ∂Fφ(F, θ). (4.6)

With ∂2θθW (F, θ) = ∂θw(F, θ) = −θ∂2θθφ(F, θ) � ε̂ we see that W (F, ·) is
uniformly convex by assumption (2.30c). Thus, we obtain solutions θk

ετ of (4.3b)
and (4.4c) via the minimization problem

θk
ετ ∈ Arg Min

{ ∫
Ω

(1
τ

(
W (∇ yk

ετ , θ)− wk−1
ετ θ

) + 1

2
∇θ ·K(∇ yk−1

ετ , θ
k−1
ετ )∇θ

)
dx

+
∫
Ω

(
−ξ regε (∇ yk−1

ετ , δτ yk
ε , θ

k−1
ετ )θ − ∂FφC(∇ yk

ετ , θ): δτ∇ yk
ετ

)
dx
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+
∫
Γ

κ

2

(
θ−θk

�,ε,τ

)2 dS
∣∣∣ θ ∈ H1(Ω), θ � 0

}
. (4.7)

We emphasize that this staggered scheme is constructed in a very specific way
by taking θ = θk−1

ετ from the previous time step in the mechanics problem for
yk
ετ , see (4.5). For the construction of θ = θk

ετ from the heat equation we have
to use sometimes the explicit (backward) approximations θk−1

ετ and sometimes the
implicit (forward) approximation θk

ετ . Clearly, the former is simpler and it is used
in the heat conduction tensor K(∇ yk−1

ετ , θ
k−1
ετ ) and in the heat production ξ regε . It

is tempting to use the explicit choice θk−1
ετ also in the thermo-mechanical coupling

term ∂Fφ(∇ yk
ετ , θ):∇δτ yk

ε [= the last term in (4.3b)] as it would simplify the energy
balance, see Remark 6.1. However, as this term does not have a sign, we would not
be able to guarantee positivity of θk

ετ . Thus we are forced to use the more involved
implicit term θ �→ ∂FφC(∇ yk

ε , θ):∇δτ yk
ε in (4.7) instead of the simpler, linear

choice θ �→ θ∂Fφ(∇ yk
ετ , θ

k−1
ετ ):∇δτ yk

ε . This choice may introduce nonconvexity,
so that θk

ετ may not be unique.
The next result states that we can obtain solutions (yk

ετ , θ
k
ετ ) of (4.3)–(4.4) by

solving the minimization problems (4.5) and (4.7), alternatingly. For notational
simplicity we have written the minimization problem (4.7) for θ with the constraint
θ � 0, however, for establishing the Euler–Lagrange (4.3b) and (4.4c) we need to
show that non-negativity of θ comes even without imposing the constraint. This
will be achieved by minimization over θ ∈ H1(Ω) after extending all functionals
suitably for θ < 0.

Proposition 4.1 (Time-discretized solutions via minimization). Let the assump-
tions in (2.30) be satisfied. For N ∈ N set τ = T/N and (y0ετ , θ

0
ετ ) = (y0, θ0,ε)

as in (4.2d) and w0
ετ = w(∇ y0, θ0,ε). Then, for k = 1, . . . , N we can iteratively

find (yk
ετ , θ

k
ετ ) ∈ Yid × H1+(Ω) by solving first the incremental global minimization

problem (4.5) and then (4.7). The global minimizers satisfy the time-discretized
problem (4.3)–(4.4) in the weak sense and θk

ετ � 0 almost everywhere on Ω .

Proof. Mechanical step: We first show that the minimization problem in (4.5)
has a solution for any θk−1

ετ ∈ H1(Ω) with θk−1
ετ � 0. We cannot rely on that φ is

bounded from below, cf. Example 2.4, but we can formally add an x-dependent con-
stant −φ(Fk−1, θk−1) to the integrand in (4.5). By (2.30c), φ(F, θk−1

ετ ) −
φ(Fk−1

ετ , θ
k−1
ετ ) � −K k−1

ετ |F |s/2+1 where the constant K k−1
ετ depends on

‖Fk−1
ετ ‖L∞(Ω;Rd×d ) and on K from (2.30c). Since s > 2 is assumed, this possi-

ble decay is however dominated by the s-growth of ϕ, cf. (2.30a).
Thus, such formally modified functional in the minimization problem (4.5) is

coercive on Yid ⊂ W 2,p(Ω; R
d). By lower semicontinuity in W 2,p(Ω; R

d) we
obtain the desired minimizer yk

ετ ∈ Yid with M(yk
ετ ) < ∞. Hence, Theorem 3.1

shows that the minimizer satisfies det∇ y(x) � δ > 0. As in Proposition 3.2 we
conclude that yk

ετ satisfies the Euler–Lagrange equation∫
Ω

(
∂ .

F
ζ(∇ yk−1

ετ ,∇δτ yk
ε , θ

k−1
ετ ): ∇z + ε∇δτ yk

ε : ∇z + ∂Fψ(∇ yk
ε , θ

k−1
ετ ): ∇z

)
dx

+ DH(yk
ε )[z] − 〈�kτ , z〉 for all z ∈ Y0,
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but this gives exactly (4.3a), (4.4a), and (4.4b).
Energy step: We now assume that θk−1

ετ ∈ H1(Ω) and yk−1
ετ , y

k
ετ ∈ Yid are

given with θk−1
ετ � 0 and M(yk−1

ετ ),M(yk
ετ ) < ∞. With this, we show that a

variant of the minimization problem (4.7) has a minimizer θk
ετ . For this, we extend

the function φ, which satisfies φ(F, 0) = 0 by assumption (2.15), continuously by
φ(F, θ) = 0 whenever θ < 0. As the functionsw, φC, and W are defined through
φ, they all extend continuously differentiable for θ < 0 to the constant value 0.
Thus, the integrands in (4.7) are defined for all θ ∈ R and we can minimize over
θ ∈ H1(Ω), that is without the constraint θ � 0.

Clearly, the extended functional is weakly lower semicontinuous on H1(Ω)

because ofK � 0. To show coercivity of the functional, we use thatM(yk−1
ετ ) <∞

implies∇ yk−1
ετ ∈ L∞ and det∇ yk−1

ετ (x) � δ > 0.Hence,K given in (2.24) satisfies
∇θ ·K(∇ yk−1

ετ , θ
k−1
ετ )∇θ � α∗|∇θ |2 for some α∗ > 0. Together with the boundary

integral, where κ > 0 due to (2.30g), we have two terms that generate a lower
bound c0‖θ‖2H1(Ω)

− C .

For the remaining term we observe that W (F, θ) � 0 by construction, while
1
τ
wk−1
ετ and ξ regε are given functions in L2(Ω). Finally, for the last bulk term involv-

ing ∂FφC we use (2.30b) giving |∂Fφ(F, θ)| � K (1+ |F |s/2) and hence, because
of ∇ yk

ετ ∈ L∞(Ω; R
d×d), we have

∣∣∂FφC(∇ yk
ετ , θ)

∣∣ =
∣∣∣
∫ θ
0
∂Fφ(∇ yk

ετ , θ̂ ) dθ̂
∣∣∣ � C∗|θ |.

Together with δτ∇ yk
ε ∈ L2(Ω; R

d×d)we can show that all remaining terms can be
estimated from below by −C‖θ‖L2(Ω).

In summary, we conclude that the extended functional in (4.7) is weakly lower
semicontinuous and coercive. Hence, a global minimizer θ∗ exists and moreover
these minimizers solve the associated Euler–Lagrange equation as ∂θW (F, θ) =
w(F, θ) and ∂θφC(F, θ) = φ(F, θ) depend continuously on θ .

To show that all global minimizers are non-negative we test the Euler–Lagrange
equation by the negative part θ−∗ := min{θ∗, 0} of θ∗, which is still an H1 function:

0 =
∫
Ω

(1
τ
w(∇ yk

ετ , θ∗)θ−∗ − 1

τ
wk−1
ετ θ

−∗ + ∇θ∗·K(∇ yk−1
ετ , θ

k−1
ετ )∇θ−∗

)
dx

+
∫
Ω

(
−ξ regε (∇ yk−1

ετ , δτ yk
ε , θ

k−1
ετ )θ

−∗ − θ−∗ ∂Fφ(∇ yk
ετ , θ∗): δτ∇ yk

ετ

)
dx

+
∫
Γ

(
κθ∗θ−∗ − θk

�,ε,τ θ
−∗
)
dS

�
∫
Ω

(
0 + p2 + α∗|∇θ−∗ |2 + p4 + 0

)
dx +

∫
Γ

(
κ(θ−∗ )2 + p7

)
dS

� c0‖θ−∗ ‖2H1(Ω)
.

In the first estimate we have used that wk−1
ετ = w(∇ yk−1

ετ , θ
k−1
ετ ) � ε̂θk−1

ετ � 0,
ξ
reg
ε � 0, and θk

�,ε,τ � 0 which gives the non-negativity of p2, p4, and p7, while
the first and fifth term vanish identically since for θ∗ > 0 we have θ−∗ = 0 while
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for θ∗ < 0 we havew(F, θ∗) = 0 and ∂Fφ(F, θ∗) = 0 (here we crucially use the
implicit structure). Thus, we conclude that θ−∗ = 0, which is equivalent to θ∗ � 0.

Thus, choosing θk
ετ = θ∗ for any globalminimizer of the extended functionalwe

see that it is also a global minimizer of (4.7) and that the Euler–Lagrange equations
hold. ��

Considering discrete approximations
(
yk
ετ

)
k=0,...,T/τ , we introduce a notation

for the piecewise-constant and the piecewise affine interpolants, defined respec-
tively by

yετ (t) = yk
ετ , y

ετ
(t) = yk−1

ετ , and

yετ (t) = t − (k−1)τ

τ
yk
ετ + kτ − t

τ
yk−1
ετ

⎫⎬
⎭ for (k−1)τ < t < kτ,

y
ετ
(kτ) = yετ (kτ) = yετ (kτ) = yk

ετ for k = 0, 1, . . . , T/τ. (4.8)

The notations θετ , θετ , and θετ or wετ have analogous meanings. However, with
gτ (t) we refer to the locally averaged loadings gτ (t) = gk

τ for t ∈ ]kτ−τ, kτ ] (cf.
(4.3a)), and similarly for f τ , �τ and θ�,ε,τ .

The next result provides the basic energy estimates where we will crucially use
the carefully chosen semi-implicit scheme defined through the staggeredminimiza-
tion problems (4.5) and (4.7). Here also we will essentially rely on the regularizing
viscous term ε�

.
y, as the bounds provided by R cannot be used because of the

missing a priori bound for yk
ετ in W 2,p(Ω; R

d). Moreover, we will exploit the fact
that we have global minimizers in (4.5) rather than arbitrary solutions of the Euler–
Lagrange equations (4.3a). This latter argument works because we have neglected
inertial terms in the momentum balance (2.27a) and hence in (4.3a). We refer to
[26] for cases where inertial effects are treated, but in the isothermal case.

Recalling the notation I = [0, T ], we formulate our first result.

Proposition 4.2 (First a-priori estimates). Let (2.30) be satisfied, then for all ε > 0
there exists Kε > 0 such that the following holds. For τ < 1/Kε the interpolants
constructed from the discrete solutions (yk

ετ , θ
k
ετ ) ∈ W 2,p(Ω; R

d)× H1(Ω), k =
1, . . . , T/τ , obtained in Proposition 4.1 satisfy the following estimates:

∥∥yετ
∥∥

L∞(I ;W 2,p(Ω;Rd ))∩ H1(I ;H1(Ω;Rd ))
� Kε, (4.9a)

det
(∇ yετ (t, x)

)
� 1/Kε almost everywhere on Q, (4.9b)∥∥θετ∥∥L2(I ;H1(Ω))∩ L∞(I ;L2(Ω))

� Kε, (4.9c)∥∥wετ∥∥L2(I ;H1(Ω))∩ L∞(I ;L2(Ω))
� Kε, (4.9d)∥∥wετ∥∥C(I ;L2(Ω))∩ L2([τ,T ],H1(Ω))∩ H1(I ;H1(Ω)∗) � Kε, (4.9e)∥∥θετ∥∥C(I ;L2(Ω))∩ L2([τ,T ],H1(Ω)
� Kε. (4.9f)

We emphasize that we did not make any smoothness assumptions for θ0, hence
the regularized initial values θ0ετ := θ0,ε and w0

ετ := w(∇ y0, θ0,ε) are not smooth.
This explains, why we have to use the left-continuous interpolants in (4.9c) and
(4.9d) and why L2([τ, T ]; H1(Ω)) used in (4.9e,f) avoids the interval [0, τ ] on
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which the approximate solution may fall out of H1(Ω) due to the initial condition
θ0,ε ∈ L∞(Ω), cf. (2.30i) and (4.2d).

Proof. As yk
ετ is a global minimizer, we can insert y = yk−1

ετ as testfunction in
(4.5) to obtain the estimate (recall δτ yk

ε = 1
τ
(yk
ετ−yk−1

ετ ))

Ψ (yk
ετ , θ

k−1
ετ )− Ψ (yk−1

ετ , θ
k−1
ετ )+ τR(yk−1

ετ , δτ yk
ε , θ

k−1
ετ )

+ ετ
2

‖∇δτ yk
ε ‖2L2 � τ 〈�kτ , δτ yk

ε 〉. (4.10)

The proof will be divided into three steps.

Step 1: Uniform energy bound. Using the decomposition Ψ (y, θ) = M(y) +
Φcpl(y, θ), see (2.18b), we can write (4.10) equivalently as

M(yk
ετ )− M(yk−1

ετ )+ τR(yk−1
ετ , δτ yk

ε , θ
k−1
ετ )+

ετ

2
‖∇δτ yk

ε ‖2L2

� τ 〈�kτ , δτ yk
ε 〉 +

∫
Ω

(
φ(∇ yk−1

ετ , θ
k−1
ετ )− φ(∇ yk

ετ , θ
k−1
ετ )

)
dx . (4.11)

To estimate the last term use the assumption (2.30b) on |∂Fφ(F, θ)| as follows
φ(F1, θ)− φ(F2, θ) � K (1+|F1| + |F2|)s/2 |F1−F2|

� K 2

2ρ
(1+|F1| + |F2|)s + ρ

2
|F1−F2|2, (4.12)

where ρ > 0 is arbitrary. Choosing ρ = ε/(4τ) and Fj = ∇ yk+ j−2
ετ we can

insert this into the estimate (4.11). Moreover we can use R � 0 and 〈�kτ , δτ yk
ε 〉 �

‖�kτ‖H−1‖δτ yk
ε ‖H1 � cP‖�kτ‖H−1‖∇δτ yk

ε ‖L2 as δτ yk
ε ∈ Y0. This leads to

M(yk
ετ )− M(yk−1

ετ )+
ετ

2
‖∇δτ yk

ε ‖2L2

�
2τc2P
ε

‖�kτ‖2H−1 + ετ
8

‖∇δτ yk
ε ‖2L2 + 2τK 2

ε

∫
Ω

(
1+|∇ yk

ετ |+|∇ yk−1
ετ |)s dx

+ ετ
8

‖∇δτ yk
ε ‖2L2 .

Using the coercivity assumption (2.30b) forφ, the second-last term can be estimated
by M again and setting mk := M(yk

ετ ) we obtain the recursive estimate

mk − mk−1 + ετ
4

‖∇δτ yk
ε ‖2L2 � τcε‖�kτ‖2H−1 + τ c̃ε(|Ω|+mk+mk−1)

(4.13)

with c̃ε = 2·3s K 2/ε and cε = 2c2P/ε. In a first step we neglect the last term on the
left-hand side and obtain

(
1−τ c̃ε

)
mk �

(
1+τ c̃ε

)
mk−1 + cετ‖�kτ‖2H−1 + τ c̃ε|Ω|.
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We now restrict τ > 0 via τ < 1/(2̃cε) by choosing Kε � 2̃cε, so we can iterate the
above estimate.With (2.30h)wehavem0 := Ψ (y0, θ0) <∞ and a simple induction
yields the discrete Gronwall-type estimate (with Qε = (1+τ c̃ε)/(1−τ c̃ε))

mk � Qk
εm0 + τ

1−τ c̃ε
k∑

j=1

Qk− j (cε‖� j
τ‖2H−1+c̃ε|Ω|)

� Qk
(

m0 + 2cε
( k∑

j=1

τ‖� j
τ‖2H−1

)
+ kτ 2̃cε|Ω|

)

� 4e2̃cεT
(
Ψ (y0, θ0)+ 2cε

∫ T

0
‖�(s)‖2H−1 ds + 2T c̃ε|Ω|

)
:= K̃ε. (4.14)

Using Theorem 3.1 we obtain the desired uniform upper bound in (4.9a) for the
interpolant yετ : I = [0, T ] → Yid in L∞(

I ; W 2,p(Ω; R
d)

)
, as well as the lower

bound (4.9b) for the determinant.

Step 2: Dissipation bound. We return to (4.13) and add all estimates from k = 1 to
Nτ := T/τ ∈ N to obtain

ε

4

∫
Q

|∇ .yετ |2 dx dt = ετ
4

Nτ∑
k=1

‖∇δτ yk
ε ‖2L2

� m0 − m Nτ + τ
Nτ∑

k=1

(
cε‖�kτ‖2H−1 + c̃ε(|Ω|+mk−1+mk)

)

� Ψ (y0, θ0)+ cε‖�‖2L2(I ;H−1)
+ c̃εT (|Ω|+2K̃ε) =: K̂ε.

This provides the uniform bound for yετ in H1(I ; H1(Ω; R
d)), and (4.9a) is es-

tablished.

Step 3: Temperature bounds. Testing the Euler–Lagrange equations (4.3b) and
(4.4c) by wk

ετ yields the identity

∫
Ω

(wk
ετ−wk−1

ετ

τ
wk
ετ + ∇wk

ετ ·K(∇ yk−1
ετ , θ

k−1
ετ )∇θk

ετ

)
dx +

∫
Γ

κθk
ετw

k
ετ dS

=
∫
Ω

hk
ετw

k
ετ dx +

∫
Γ

κθk
�,ε,τw

k
ετ dS

with hk
ετ := ξ regε (∇ yk−1

ετ ,∇δτ yk
ε , θ

k−1
ετ )+ ∂Fφ(∇ yk

ετ , θ
k
ετ ): ∇δτ yk

ε .

(4.15)

Recalling cv(F, θ) = ∂θw(F, θ) we obtain the chain rule

∇wk
ετ = ∇w(∇ yk

ετ , θ
k
ετ ) = ∂Fw(∇ yk

ετ , θ
k
ετ ): ∇2yk

ετ + cv(∇ yk
ετ , θ

k
ετ )∇θk

ετ .

(4.16)
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Moreover, we have the elementary estimate 1
τ
(wk
ετ−wk−1

ετ )w
k
ετ � 1

2τ

(
(wk
ετ )

2 −
(wk−1
ετ )

2
)
, and θw = θw(F, θ) � 0 by the definition of w. Using additionally

cv(F, θ) = −θ∂2θθφ(F, θ) � ε̂, see (2.30c), the above identity (4.15) leads to∫
Ω

( 1

2τ
(wk
ετ )

2 − 1

2τ
(wk−1
ετ )

2 + ε̂∇θk
ετ · Kk

ετ∇θk
ετ

)
dx

�
∫
Ω

hk
ετw

k
ετ − ∇θk

ετ · Kk
ετb

k
ετ dx +

∫
Γ

κθk
�,ε,τw

k
ετ dS.

where Kk
ετ = K(∇ yk−1

ετ , θ
k−1
ετ ) and bk

ετ := ∂Fw(∇ yk
ετ , θ

k
ετ ):∇2yk

ετ . (4.17)

Using the uniform bounds for ∇ yετ and det∇ yετ from Step 1, the assumptions on
K in (2.30f), as well as formula (2.24) we find a κε such that

|Kk
ετ | � κε and a · Kk

ετa � 1

κε

|a|2 for all a ∈ R
d . (4.18)

Moreover, using ∂Fw = ∂Fφ − θ∂2Fθφ, the assumptions (2.30b) and (2.30c) to-
gether with the uniform L∞ bound for ∇ yετ we find ‖∂Fw(∇ yk

ετ , θ
k
ετ )‖L∞ � c̃ε.

Realizing also thatwe have∇2yk
ετ already estimated in L p(Ω; R

d×d×d)with p � 2
we obtain ‖bk

ετ‖L2 � Cε. For the right-hand side hk
ετ of (4.15) we have

‖hk
ετ‖L2 � ‖ξ regε ‖L2 + ‖∂Fφ(∇ yk

ετ , θ
k
ετ )‖L∞‖∇δτ yk

ε ‖L2 � Cε
(
1 + ‖δτ yk

ε ‖H1
)
,

where we again used the L∞ bounds for ∇ yk
ετ . Finally, by definition we have

θ�,ε ∈ [0, 1/ε], and (2.31) allows us to estimate w by θ , which yields the boundary
estimate∣∣∣
∫
Γ

θk
�,ε,τw

k
ετ dS

∣∣∣ � 1

ε

∫
Γ

K |θk
ετ | dS � c̃ε‖θk

ετ‖H1 � Cε
(‖wk

ετ‖L2 + ‖∇θk
ετ‖L2

)
.

Based on the above estimates and introducing the abbreviations

γk := ‖wk
ετ‖L2 , �k := ‖∇θk

ετ‖L2 , and νk := ‖δτ yk
ε ‖H1 ,

we can estimate the right-hand side in (4.17) via

RHS � Cε(1+νk)γk + c̃ε�k + Cε(γk+�k) � cε
( 1

α
+ ν2k + γ 2k + α�2

k

)
,

where α > 0 is arbitrary. Estimating the last term on the left-hand side in (4.17)
from below by ε̂ �2

k/κε we may choose α = ε̂/(2κεcε). After multiplying (4.17)
by 2τ we obtain

γ 2k − γ 2k−1 + ε̂

2κε

�2
k � τ ĉε

(
1 + ν2k + γ 2k

)
. (4.19)

Arguing as inSteps 1 and2 for (4.13) andusingγ 20 = ∫
Ω
w0
ετ dx � K 2

∫
Ω
θ20,εdx �

K 2|Ω|/ε2 < ∞ [cf. (4.2d)] the left-continuous interpolants θετ and wετ satisfy
the a priori estimates (recalling ε̂ θ � w(F, θ) from (2.31))

ε̂‖θετ‖L∞(I ;L2(Ω)) � ‖wετ‖L∞(I ;L2(Ω))
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= sup
k=0,...,Nτ

γk � Kε and ‖∇θετ‖2L2(Q) = τ
Nτ∑

k=1

�2
k � Kε.

Thus, we find (4.9c) for θετ , and estimate (4.9d) follows by using (4.16) once again.
The uniform estimate for the piecewise affine interpolant wετ in the spaces

C(I ; L2(Ω)) ∩ L2([τ, T ]; H1(Ω)) follows from the previous estimates for wετ .
Finally, we note that the time derivative of the interpolant wετ is equal to δτw

k
ε on

the intervals ](k−1)τ, kτ [. We now use the Euler–Lagrange equations (4.3b) and
(4.4c), which provides for δτw

k
ε = 1

τ
(wk
ε−wk−1

ε ) the estimate

‖δτwk
ε‖(H1)∗ � CK

ε ‖∇θk
ετ‖L2 + Cξε + C∂Fφ

ε ‖δτ yk
ε ‖H1 + Cκε

(‖θk
ετ‖H1 + |Γ |/ε).

Squaring and summation over k = 1, . . . , Nτ gives the remaining uniform bound
in (4.9e) for

.
wετ in L2

(
I ; H1(Ω)∗

)
. ��

Remark 4.3 (Full space-time discretization). To be useful for an implementable
algorithm, our time discretization should be combined with a spatial discretization.
A suitable space discretization itself (leading to the Faedo–Galerkin method) was
introduced in [26, Sect. 9.3] even without requiring the ε-regularization (4.1). This
suggests that the space-time discretization might work with ε = 0 under a suitable
stability criterion that the time step is sufficiently small with respect to the mesh
size used for the space discretization. Or, vice versa, our analysis suggests that the
ε-regularization makes the stability criterion obsolete, assuming that both time step
and mesh size are sufficiently small with respect to ε. However, our focus does not
lie in such numerical aspects, and we leave these questions for further research.

5. The Limit τ → 0τ → 0τ → 0 in the Regularized Problem

Using the above a priori estimates for the interpolants we will be able to extract
convergent subsequences. First we will observe that the three different types of
interpolants have to converge to the same limit. Next we want to pass to the limit
in the discretized weak forms of the momentum balance and the heat equation.
While most terms can be handled by compactness arguments or weak-convergence
methods, there is one term that needs special attention, namely the heat-source
term ξ regε that is quadratic in ∇ .yε. Thus, it will be a crucial step to show strong
convergence of

.
yετ in L2(I ; H1(Ω)), which can be done by passing to the limit

in a suitable discretized version of the mechanical energy balance (2.20). In this
argument we will use the �-convexity derived in Proposition 3.2 to relate the
mechanical energies M(yk−1

ετ ) and M(yk
ετ ).

With the definition (4.8) for the three types of interpolants, we see that the
following discretized version (5.1) of the momentum balance and heat equations
(4.1) and (4.2) holds for the discrete solutions constructed in Proposition 4.1:

− div
(
σvi(∇ y

ετ
,∇ .yετ , θετ )+ ε∇ .yετ + σel(∇ yετ , θετ )− div hel(∇2yετ )

) = gτ ,

(5.1a)
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.
wετ− div

(K(∇ y
ετ
, θετ )∇θετ

) = ξ regε (∇ y
ετ
,∇ .yετ , θετ )+∂Fφ(∇ yετ , θετ ):∇ .yετ ,

(5.1b)

wετ = w(∇ yετ , θετ ), (5.1c)

to hold on Q = [0, T ] ×Ω , while the regularized boundary conditions (4.4) read

(
σvi

(∇ y
ετ
,∇ .yετ , θετ

) + ε∇ .yετ+ σel(∇ yετ , θετ )
)�n

− divS
(
hel(∇2yετ )�n

) = f τ on ΣN, (5.2a)

yετ = identity on ΣD, hel(∇2yετ ):(�n ⊗ �n) = 0 on Σ, (5.2b)

K(∇ y
ετ
, θετ )∇θετ · �n + κθετ = κθ�,ε,τ on Σ. (5.2c)

Here it is essential that we have to use all three types of interpolants, for ex-
ample yετ , y

ετ
, and yετ . In particular, we emphasize that t �→ wετ (t) is the

piecewise affine interpolant of {wk
ετ }k=0,...,Nτ , which does not coincide with t �→

w(∇ yετ (t), θετ (t)) except at the nodal points t = kτ .

Proposition 5.1 (Convergence for τ → 0). Let (2.30) hold, and let ε > 0 be fixed.
Then, considering a sequence of time steps τ → 0, there are limit functions yε and
θε and a subsequence (not relabeled) such that

yετ → yε weakly* in L∞(I ; W 2,p(Ω; R
d)) ∩ H1(I ; H1(Ω; R

d)), (5.3a)

θετ → θε weakly in L2(I ; H1(Ω)). (5.3b)

Moreover, any couple (yε, θε) obtained by this way is a weak solution to the reg-
ularized initial-boundary-value problem (4.1)–(4.2) in the sense of Definition 2.1
written for (yε, θε) with ε∇θε: ∇z added in the first integral in (2.27a). Moreover, it
satisfies the corresponding mechanical energy-dissipation balance, see (5.9) below.

Proof. The proof consists of five steps.

Step 1: Extraction of convergent subsequences. As ε > 0 is still fixed, we can
exploit the a priori estimates obtained in Proposition 4.2, namely (4.9a) and (6.2c).
By Banach’s selection principle, we choose a subsequence and some (yε, θε) such
that (5.3) holds. By the Aubin–Lions theorem combined with an interpolation, as
p > d, we also have

∇ yετ → ∇ yε uniformly in L∞(Q; R
d×d), (5.4a)

wετ → wε strongly in Ls(Q) for all s ∈ [1,min{4, 2+4/d}[. (5.4b)

Indeed, for the first result we use the continuous embedding W 1,p(Ω) ⊂ Cα(Ω)
with α = 1 − d/p ∈ ]0, 1[ and thus ‖∇ yετ‖Cα � K0. Moreover, (4.9a) yields the
Hölder estimate

∥∥∇ yετ (t1)− ∇ yετ (t2)
∥∥

L2(Ω;Rd )
� K1|t1 − t2|1/2 for all t1, t2 ∈ I. (5.5)
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While the first part of (4.9a) yields just ‖∇ yετ (t1)− ∇ yετ (t2)‖W 1,p(Ω;Rd×d ) � K0.
By interpolation, we find β ∈ ]0, α[ and λ ∈ ]0, 1[ such that we have ‖ · ‖Cβ �
C‖ · ‖1−λCα ‖ · ‖λ

L2 and conclude

∥∥∇ yετ (t1)− ∇ yετ (t2)
∥∥

Cβ (Ω̄;Rd )
� C K 1−λ

0 K λ1 |t1 − t2|λ/2. (5.6)

Thus, the sequence {∇ yετ } is uniformly bounded in Cγ (Q) for γ = min{β, λ/2},
and uniform convergence follows by the Arzelà–Ascoli theorem.

The convergence (5.4b) follows from (5.3b) by the Aubin–Lions theoremwhen
interpolated with the estimate in L∞(I ; L2(Ω))which is contained in the estimate
(4.9e).

Moreover, both convergences in (5.4) hold also for the piecewise constant in-
terpolants because of the estimates ‖∇ yετ −∇ y

ετ
‖L∞(I ;L2(Ω;Rd×d )) � K τ 1/2 (and

the same also for ∇ yετ ).
Moreover, from ‖wετ‖H1(I ;H1(Ω)∗) � Kε, cf. (4.9e), one can also read the

estimate ‖wετ‖BV(I ;H1(Ω)∗) �
√

T Kε so that wετ converges (as a selected subse-
quence) strongly in Ls(Q) with s from (5.4b) by a generalization of the Aubin–
Lions theorem for time-derivatives asmeasures, cf. [44,Cor. 7.9]. The limitmust co-
incidewithwε because ‖wετ−wετ‖L2(I ;H1(Ω)∗) = 3−1/2τ‖ .wετ‖L2(I ;H1(Ω)∗) � 0.

By (2.31), w(F, ·) has an inversion which is Lipschitz continuous. Thus, by
(4.3c) θετ = [w(∇ y

ετ
, ·)]−1(wετ ), and we have, beside (5.3b), also

θετ = [w(∇ y
ετ
, ·)]−1(wετ )→ [w(∇ y

ε
, ·)]−1(wε) = θε strongly in Ls(Q)

(5.7)

for all s ∈ [1,min{4, 2 + 4/d}[.
Step 2: Convergence in the mechanical equation. Now the convergence in the
discretized momentum balance (5.1a) can be done by the above weak convergences

(5.3) because σvi is linear in terms of
.
F and by Minty’s trick for the monotone

operator induced by hel = H ′. For a reflexive Banach space X and a hemi-
continuous, monotone operator H : X → X∗ Minty’s trick means the implication

H(uτ ) = bτ , uτ ⇀ u in X,

bτ ⇀ b in X∗, 〈bτ , uτ 〉 → 〈b, u〉

}
�⇒ H(u) = b. (5.8)

We apply this for H defined by 〈H(y), z〉 = ∫
Q hel(∇2y(t, x))

... ∇2z(t, x) dx dt ,

where X = W 2,p(Q). Clearly, H is hemi-continuous and monotone. Choosing
uτ = yετ the weak equations (5.1a) and (5.2) are interpreted as H(yετ ) = bτ with
bτ defined via

〈bτ , z〉 = −
∫
Ω

(
σvi(∇ y

ετ
,∇ .yετ , θετ )+ε∇ .yετ

+ σel(∇ yετ , θετ )
): ∇z dx dt +

∫ T

0
〈�τ , z〉 dt.
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We obtain bτ ⇀ b with b defined by

〈b, z〉 = −
∫
Ω

(
σvi(∇ yε,∇ .yε, θε)+ε∇ .yε+σel(∇ yε, θε)

): ∇z dx dt +
∫ T

0
〈�, z〉 dt,

because we can pass to the limit τ in all four terms separately. For the first term
we apply the lower semicontinuity result [21, Thm.7.5] twice, namely for the
integrands f±(x, (F, θ),G) = ±σvi(F,G, θ):∇z(x) which both are convex in G.
The limit passage in the second term is simple weak convergence, and the fourth
term converges because of �τ → � in L2

(
I ; H1

D(Ω)
∗). In the third term we exploit

∇ yετ ∈ F(Kε) :=
{

F ∈ R
d×d ; |F | � Kε, det F � 1/Kε

}

(see (4.9a) and (4.9b) from Proposition 4.2), such that using (2.30a) and (2.30b) the
map (F, θ) �→ σel(F, θ) = ∂Fϕ(F) + ∂Fφ(F, θ) is continuous and bounded on
F(Kε) × R

+. Hence, with (5.4) and Lebesgue’s dominated convergence theorem
we obtain the desired convergence.

To use Minty’s trick (5.8) we still need to check 〈bτ , yετ 〉 → 〈b, yε〉. However,
we have shown above that bτ is bounded (and hence weakly converging to b) in
L2

(
I ; H1

D(Ω)
∗) and yετ → yε in L2

(
I ; H1

D(Ω)
)
strongly by (5.4a), thus the result

follows immediately. Hence, we conclude H(yε) = b, which is nothing else but
the regularized momentum balance (4.1a), (4.2a), and (4.2b).

Step 3: Balance of mechanical energy. For the limit passage in the heat equation we

need strong L2-convergence of ∇ .yετ due to the viscous dissipation ξ regε (F,
.
F, θ)

that is nonlinear in
.
F . The strategy is to use the balance of mechanical energy by

rewriting the regularized momentum balance (4.1a), (4.2a), and (4.2b) in the form

D.yR(yε,
.
yε, θε)+ ε∇ .yε + DM(yε)+ DyΦcpl(yε, θε) = �(t)

withM and Φcpl defined in (2.18). We can now test with
.
yε ∈ L2(I ; H1

D(Ω)) and
use (after decomposing M = H + Φel, see (2.18)) the chain rule in Proposition
3.6 to obtain the balance of mechanical energy in the form

M(yε(T ))+
∫ T

0

(
2R(yε, .yε, θε)+ε‖∇ .yε‖2L2

)
dt

= M(y0)+
∫ T

0
〈�, .yε〉 dt −

∫
Q
∂Fφ(∇ yε, θε):∇ .yε dx dt. (5.9)

Indeed, by Proposition 3.2we know thatM satisfies the assumptions of Proposition
3.6 with space X = H1

ΓD
(Ω; R

d). Clearly, yε ∈ H1(I ; X) and M(yε(t)) � K̃ε,
see (4.14). Moreover, for

Ξε = �(t)− D.yR(yε,
.
yε, θε)− ε∇ .yε − DyΦcpl(yε, θε)

wehaveΞε(t) = DM(yε(t)) almost everywhere in [0, T ] and our a priori estimates
provide Ξε ∈ L2([0, T ]; H1

ΓD
(Ω)∗). Thus, (5.9) follows from Proposition 3.6.
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Step 4: Strong convergence of strain rates. The next step is now to derive a similar
mechanical energy balance for the time-discretized solutions, which is better than
the previously used estimate (4.11). Passing to the limit τ → 0 from the latter
estimate we would arrive at an estimate like (5.9), but with 2R and ε replaced by
R and ε/2, respectively.

To improve the discrete estimate (4.11) used in Proposition 4.2 we can ex-
ploit the a priori estimates M(yk

ετ ) � Kε, which allow us to use the geodesic
�-convexity result in Proposition 3.2. Instead of using the minimization property
of yk
ετ in (4.5) we test the Euler–Lagrange equation (4.3a) with boundary conditions

(4.4a) and (4.4b) by yk
ετ−yk−1

ετ to obtain

τ2R(yk−1
ετ , δτ yk

ε , θ
k−1
ετ )+ τε‖∇δτ yk

ε ‖2L2 + DyM(yk
ετ )[yk

ετ−yk−1
ετ ]

= 〈�kτ , yk
ετ−yk−1

ετ 〉 − DyΦcpl(y
k
ετ , θ

k−1
ετ )[yk

ετ−yk−1
ετ ],

where we have the correct factors 2R and ε. To recover the energy valuesM(y j
ετ )

we now eliminate the term involving DM using the �-convexity estimate (3.3)
with y(1) = yk

ετ and y(2) = yk−1
ετ , which yields

M(yk
ετ )+ τ2R(yk−1

ετ , δτ yk
ε , θ

k−1
ετ )+

(
τε − τ 2�(Kε)

)‖∇δτ yk
ε ‖2L2

� M(yk−1
ετ )+ τ 〈�kτ , δτ yk

ε 〉 − DyΦcpl(y
k
ετ , θ

k−1
ετ )[δτ yk

ε ].
We now sum this inequality over k = 1, , . . . , Nτ and using the interpolants we
obtain the integral estimate

M(yετ (T ))+
∫ T

0
2R(y

ετ
,
.
yετ , θετ ) dt + (ε−τ�(Kε))

∫
Q

|∇ .yετ |2 dx dt

� M(y0)+
∫ T

0

(
〈�τ , .yετ 〉 −

∫
Ω

∂Fφ(∇ yετ , θετ ) dx

)
dt. (5.10)

Using the convergences in (5.3) and (5.4), it is immediate to see that all the terms
on the right-hand side converge to the corresponding terms on the right-hand side
in (5.9). Now denote the three terms on the left-hand side by I ( j)ετ and set I ( j)ε =
lim infτ→0+ I ( j)ετ . Using lower semicontinuity arguments (use [21, Thm.7.5] once
again for I (2)ετ ) we find

yετ (T ) ⇀ yε(T ) in W 2,p(Ω; R
d) �⇒ I (1)ε � M(yε(T )),

∇ .yετ ⇀ ∇ .yε in L2(Q; R
d×d) �⇒ I (2)ε �

∫ T

0
2R(yε, .yε, θ) dt,

∇ .yετ ⇀ ∇ .yε in L2(Q; R
d×d) �⇒ I (3)ε � ε‖∇ .yε‖2L2(Q). (5.11)

Thus, passing to the liminf on the left-hand side and to the limit on the right-hand
side in (5.10) and comparing with (5.9) we obtain

I (1)ε +I (2)ε +I (3)ε � RHS = M(yε(T ))

+
∫ T

0

(
2R(yε, .yε, θε)+ε‖∇ .yε‖2L2

)
dt.
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Together with (5.11) we conclude that we must have equality in all three cases after
“�⇒”. However, ∇ .yετ ⇀ ∇ .yε in L2(Q; R

d×d) and

I (3)ε = lim inf
τ→0

(ε−τ�(Kε))‖∇ .yετ‖2L2(Q)

= ε‖∇ .yε‖2L2(Q)

imply the desired strong convergence ∇ .yετ → ∇ .yε in L2(Q; R
d×d).

Step 5: Limit in the heat equation.Wefirst pass to the limit τ → 0 in the constitutive
relation (5.1b), namely wετ = w(∇ yετ , θετ ). The left-hand side converges to wε
by (5.7), while the right-hand side converges tow(∇ yε, θε) by the continuity ofw,
the bound (2.31) and the convergences (5.4). Thus,wε = w(∇ yε, θε) is established,
that is (4.1c) holds.

We write the heat equation (5.1b) with boundary conditions (5.2c) in the weak
form∫

Q

( .
wετ z + ∇θετ · K(∇ y

ετ
, θετ )∇z

)
dx dt +

∫
Σ

κ
(
θετ−θ�,ε,τ

)
z dS dt

=
∫

Q

(
ξ
reg
ε (∇ y

ετ
,∇ .yετ , θετ )+∂Fφ(∇ yετ , θετ ):∇ .yετ

)
z dx dt (5.12)

for all z ∈ L∞(I ; H1(Ω)). While we only have the weak convergences
.
wετ ⇀

.
wε

in L2
(
I ; H1(Ω)∗

)
[see (5.7)] and ∇θετ ⇀ ∇θε in L2(Q) (see (5.3b)), all other

functions in (5.12) converge strongly. In particular, using the strong convergences
∇ .yετ → ∇ .yε in L2(Q; R

d×d) and 0 � ξ regε (∇ y
ετ
,∇ .yετ , θετ ) � Kε we obtain

ξ
reg
ε (∇ y

ετ
,∇ .yετ , θετ )→ ξ regε (∇ yε,∇ .yε, θε)

strongly in L p(Q) for all p ∈ ]1,∞[. (5.13)

Thus, passing to the limit τ → 0 in (5.12) leads exactly to the weak form to the
regularized heat equation (4.1b) with boundary condition (4.2c).

This concludes the proof of Proposition 5.1. ��

6. Limit Passage ε→ 0ε→ 0ε→ 0

In this final part of the proof of Theorem 2.2 we have to pass to the limit with
the regularization parameter ε → 0. As we are already in the time-continuous
setting we are now able to make the formally derived total energy balance (2.21)
for E rigorous for all ε > 0. From this we will be able to derive a priori bounds for
(yε, θε) that are independent of ε.

Remark 6.1 (Missing discrete estimate for the total energy). The derivation of the
total energy balance is achieved by testing the momentum balance by

.
y and the heat

equation by the constant function 1. The corresponding step on the time-discrete
level would be the test (4.3a) by δτ yk and (4.3b) by 1. We would be able to use
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the desirable cancellation of the dissipation, namely ξ regε − ξ � 0; however for the
coupling terms

∂Fφ(∇ yk
ετ , θ

k−1
ετ ) : δτ∇ yk

ε and ∂Fφ(∇ yk
ετ , θ

k
ετ ) : δτ∇ yk

ε ,

which arise from (4.3a) and (4.3b) respectively, we do not have any way to estimate
the first against the second. Recall that we were forced to use the explicit/forward
value θk

ετ to maintain positivity of the temperature.

To exploit the balance of the total energy we have to strengthen the assumption
on the loading �(t), that is the functions g, and f , in (2.30g), namely

g ∈ W 1,1(I ; L2(Ω; R
d)), f ∈ W 1,1(I ; L2(ΓN; R

d)). (6.1)

This implies that t �→ �(t) lies in W 1,1
(
I ; H1

ΓD
(Ω; R

d)∗
)
, which is what we will

only need.
The new ε-independent estimates on∇ .yε in L2(Q)will be obtained by exploit-

ing Pompe’s generalization of Korn’s inequality (cf. [41]) as prepared in Theorem
3.3 above.

Lemma 6.2 (A-priori estimates for yε). Let the assumptions in (2.30) and (6.1)
hold. Then there exists a constant K such that for all ε ∈ ]0, 1[ and all weak
solutions (yε, θε) of the regularized problem (4.1)–(4.2) obtained in Proposition 5.1
we have

det(∇ yε) > 0 on Q and the following estimates hold with K independent of
ε > 0:

∥∥yε
∥∥

L∞(I ;W 2,p(Ω;Rd ))
� K , (6.2a)

det
(∇ yε(t, x)

)
� 1/K for all (t, x) ∈ Q, (6.2b)∥∥θε∥∥L∞(I ;L1(Ω))
� K , (6.2c)∥∥∇ .

yε
∥∥

L2(Q;Rd×d )
� K , (6.2d)∫

Q
ξ(∇ yε,∇ .

yε, θε) dx dt � K . (6.2e)

Proof. We proceed in two steps that are close to estimates we have done in the
time-discrete setting.

Step 1: Estimate for E(yε, θε) Using the derived regularity for the solution (yε, θε)
we see that a suitable variant of the total energy balance (2.21) holds. To be specific,
we start from (5.9), which is also valid for arbitrary t ∈ ]0, T ] in place of T , and
add the time-integrated version of (4.1b) tested with the constant function z ≡ 1.
Using E = M + W withW(yε, θε) =

∫
Ω
wε dx we find

E(yε(t), θε(t))+
∫ t

0

∫
Ω

(
ξ(∇ yε,∇ .yε, θε)+ ε|∇ .yε|2 − ξ regε (∇ yε,∇ .yε, θε)

)
dx ds

= E(yε(0), θε(0))+
∫ t

0
〈�(s), .yε(s)〉 ds +

∫ t

0

∫
Γ

κ(θε�−θε) dS ds.
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The important point here is the cancellation of the term ∂Fφ: ∇ .yε and that the
difference of the dissipation integrals has a sign.

Defining the auxiliary variable Eε(t) := E(yε(t), θε(t)) − 〈�(t), yε(t)〉 and
using 0 � θε� � θ� and θε � 0 gives

Eε(t) � Eε(0)+
∫ t

0

( ∫
Γ

κθ� dS − 〈�̇(s), yε(s)〉
)
ds,

where we have integrated by parts the power of the external loadings, which was
possible by the strengthened assumption (6.1).

With E � M � H and the coercivity of H we have ‖y‖H1 � c1 + c2E(y, θ)
and obtain

Eε(t) � Eε(0)+
∫ t

0

(
a(s)+ b(s)Eε(s)

)
ds with a, b � 0

and a, b ∈ L1(0, T ), which follows from (6.1) for � and (2.30i) for θ�. With
B(t) = ∫ t

0 b(s) ds and A(t) = ∫ t
0 a(s) ds the Gronwall estimate yields the a priori

estimate

Eε(t) � eB(t)(Eε(0)+ A(t)
)

� eB(T )(E0 + A(T )
) := M1,

where we used Eε(0) = E(yε(0), θε(0)) � E(y0, θ0)− 〈�(0), y0〉 =: E0 <∞ by
(2.30h), (2.30i), and (2.31). This immediately implies

M(yε(t))+ ε̂‖θε(t)‖L1(Ω) � Eε(yε(t), θε(t)) � M2.

Hence, (6.2c) is established, whereas (6.2a) and (6.2b) follow by applying Theorem
3.1.

Step 2: Estimate for the strain rate ∇ .yεWe return to the mechanical energy balance

(5.9) on the interval I = [0, T ]. We recall that the dissipation function ξ(F,
.
F, θ)

is assumed to control the symmetric part of F� .F only, namely

ξ(F, Ḟ, θ) = 2̂ζ (F�F, FT
.
F+ .F�F, θ) � α|FT

.
F+ .F�F |2.

Using our a priori bounds on M(yε(t)), we can apply the generalized Korn in-
equality prepared in Corollary 3.4 with y = yε(t, ·) and v = .

yε(t) ∈ H1
ΓD
(Ω; R

d)

to obtain

αcK

∫ T

0
‖.yε(t)‖2H1 dt �

∫
Q
α
∣∣∇ y�

ε ∇ .yε+∇ .y�
ε ∇ yε

∣∣2 dx dt

�
∫

Q
ξ(∇ yε,∇ .yε, θε) dx dt

� M(y0)− M(yε(T ))+
∫ T

0

(‖�(t)‖(H1)∗

+ ‖∂Fφ(∇ yε, θε)‖L∞(Q)
)‖.yε(t)‖H1 dt,

where we used |∂Fφ(F, θ)| � |C(1+|F |)s and |∇ yε(t, x)| � K , which follows
from (6.2a). Using this, (6.2d) and (6.2e) follow immediately. ��
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For the deformation yε we have all the estimateswe need for passing to the limit,
but we still need good a priori estimates for the temperature. Here the problem arises
that the heating generated by through the viscous dissipation ξ(∇ yε,∇ .yε, θε) is
only bounded in L1(Q). Thus, for obtaining improved estimates, we have to invoke
special test functions developed by Boccardo and Gallouët [11] for parabolic
equations with measure-valued right-hand sides.

Proposition 6.3 (A priori estimates for θε and wε). Under the conditions of
Lemma 6.2, also the following estimates hold:

∀ p ∈ [
1, d+2

d

[ ∃ C p > 0 ∀ ε ∈ ]0, 1] : ‖θε‖L p(Q) + ‖wε‖L p(Q) � C p, (6.3a)

∀ r ∈ [
1, d+2

d+1

[ ∃ Kr > 0 ∀ ε ∈ ]0, 1] : ‖∇θε‖Lr (Q) + ‖∇wε‖Lr (Q) � Kr ,

(6.3b)

∃ K > 0 ∀ ε ∈ ]0, 1[ : ∥∥ .
wε

∥∥
L1(I ;H (d+3)/2(Ω)∗) � K . (6.3c)

Proof. We follow the recipe in [11] in the simplified variant of [22], see also [33].
For η ∈ ]0, 1[ we define the function χη: R+ → R

+ via

χη(0) = 0 and χ ′
η(w) := 1 − 1

(1+w)η ∈ [0, 1].

Clearly, χη satisfies min{0, w2 −Cη} � χη(w) � w and χ ′′
η (w)=

η

(1+w)1+η > 0.

Now testing (4.1b) with the test function z = χ ′
η ◦wε amounts to applying the

chain rule in Proposition 3.5 to the convex functional J (w) = ∫
Ω
χη(w(x)) dx

on the space X = H1(Ω)∗. Indeed, from (5.3) and wε = w(∇ yε, θε) we have
wε ∈ L2(I ; H1(Ω))∩ H1(I ; H1(Ω)∗)), and the chain rule gives the first identity
in the following calculation:

d

dt

∫
Ω

χη(wε) dx =
∫
Ω

χ ′
η(wε)

.
wε dx

= −
∫
Ω

χ ′′
η (wε)∇wε · K(∇ yε, θε)∇θε dx +

∫
Γ

κ(θε�−θε) dS

+
∫
Ω

χ ′
η(wε)

(
ξ
reg
ε (∇ yε,∇ .yε, θε)+ ∂Fφ(∇ yε, θε):∇ .yε

)
dx .

Integration over t ∈ I = [0, T ] and using χ ′
η(w) ∈ [0, 1] and ‖∇ yε‖L∞(Q) � K∞

yield
∫

Q
χ ′′
η (wε)∇wε · K(∇ yε, θε)∇θε dx dt

�
∫
Ω

χη(w0) dx +
∫
Σ

κθ� dS dt +
∫

Q

(
ξ(· · · )

+ C(1+K∞)s |∇ .yε|
)
dx dt � C, (6.4)

where we used (2.30h), (2.30i), (6.2d), and (6.2e).



Thermoviscoelasticity in Kelvin–Voigt Rheology at Large Strains 37

From this, we derive an a priori bound on ∇wε by setting K̃ε = K(∇ yε, θε)
and estimate it as in (4.18) (see Step 3 of the proof of Proposition 4.2) by

|K̃ε(t, x)| � κ and a · K̃ε(t, x)a � 1

κ
|a|2,

where κ is now independent of ε because of the ε-independent bound in (6.2a) and
(6.2b). Moreover, ∇wε and ∇θε are related by

∇wε = ∂θw(∇ yε, θε)∇θε + ∂Fw(∇ yε, θε): ∇2yε. (6.5)

With ∂θw(F, θ) = −θ∂2θθφ(F, θ) ∈ [̂ε, K ] and wε = w(∇ yε, θε) we obtain

1

Kκ
|∇wε|2 � 1

∂θw(F, θ)κ
|∇wε|2 � 1

∂θw(F, θ)
∇wε · K̃ε∇wε

= ∇wε · K̃ε∇θε + 1

∂θw(∇ yε, θε)
∇wε · K̃ε∂Fw(∇ yε, θε) : ∇2yε

� ∇wε · K̃ε∇θε + κ

ε̂
|∇wε| C(1+K∞)s |∇2yε|

� ∇wε · K̃ε∇θε + 1

2Kκ
|∇wε|2 + C∗|∇2yε|2.

Subtracting 1
2Kκ

|∇wε|2, multiplying by χ ′′(wε) ∈ [0, 1], and integrating over Q
we can employ (6.4) and arrive at

1

2Kκ

∫
Q
χ ′′
η (wε)|∇wε|2 dx dt

�
∫

Q
χ ′′(wε)

(
∇wε · K̃ε∇θε + C∗|∇2yε|2

)
dx dt � C3,

where the last integrand is bounded by (6.2a) using p � 2.
For r ∈ [1, 2[ we set p = 2/(2−r), p′ = 2/r , and q = (1+η)r/2 and employ

Hölder’s estimate to obtain

‖∇wε‖r
Lr (Q) =

∫
Q
(1+wε)q |∇wε|r

(1+wε)q dx dt

� ‖(1+wε)q‖L p(Q)

∥∥∥∥ |∇wε|r
(1+wε)q

∥∥∥∥
L p′
(Q)

= ‖1+wε‖q
Lqp(Q)

(∫
Q

|∇wε|2
(1+wε)1+η dx dt

)1/p′

� ‖1+wε‖q
Lqp(Q)

(
κK C3/η

)1/p′
, (6.6)

where crucially relied on p′ = 2/r , χ ′′(w) = η/(1+w)1+η, and the previous
estimate. Using the a priori estimate ‖1+wε‖L∞(I ;L1(Ω)) � T |Ω| + K =: K1
from (6.2c) we can now use the anisotropic Gagliardo–Nirenberg interpolation
(see for example [33, Lem.4.2]) giving
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‖1+wε‖Lr/λ(Q) � C‖1+wε‖1−λL∞(I ;L1(Ω))

(‖1+wε‖L∞(I ;L1(Ω))

+ ‖∇wε‖Lr (Q)
)λ with λ = d

d+1
.

For inserting this into (6.6) we need qp � r/λ which gives the restriction r �
2 − (1+η)λ.

Thus, for all r ∈ [1, (d+2)/(d+1)[ we find an η = ηr ∈ ]0, 1[ such that the
above estimates give

‖∇wε‖r
Lr (Q) � Cr

(
1 + ‖∇wε‖qλ

Lr (Q)

)
,

and qrλ < qr = (1+ηr )r/2 < r provide ‖∇wε‖Lr (Q) � Kr . Using (6.5) and
∂θw � ε̂ > 0 we easily find ‖∇θε‖Lr (Q) � Kr and (6.3b) is established.

Applying Gagliardo–Nirenberg interpolation once again gives assertion (6.3a).
Eventually, the a priori estimate (6.3c) is obtained estimating all other terms in

(4.1b), when realizing that always H (d+3)/2(Ω) ⊂ W 1,∞(Ω). ��
We are now in the position to pass to the limit ε→ 0 in the regularized system

(4.1)–(4.2), and thus conclude the proof of our main existence result presented in
Theorem 2.2. The approach is close to the convergence result presented in Propo-
sition 5.1: first we extract converging subsequences and then pass to the limit in
the mechanical momentum balance. This also provides the necessary strong con-
vergence of the strain rates that is needed to eventually pass to the limit in the heat
equation.

Proposition 6.4 (Convergence for ε→ 0). Let again (2.30) and (6.1) hold. Then,
considering the limit ε→ 0, there are functions y and θ and a subsequence (yε, θε)
(not relabeled) of weak solutions to the regularized system (4.1)–(4.2) obtained in
Proposition 5.1 such that it holds that

yε → y weakly* in L∞(I ; W 2,p(Ω; R
d)) ∩ H1(I ; L2(Ω; R

d)) and
(6.7a)

θε → θ weakly in Lr (I ; W 1,r (Ω)) for all 1 � r < (d+2)/(d+1).
(6.7b)

Moreover, every couple (y, θ) obtained in such a way is a weak solution, according
Definition 2.1, of the boundary-value problem (2.13)–(2.14) satisfying the initial
conditions (2.26).

Proof. The proof follows the lines of the proof of Proposition 5.1, so we do not
repeat all details of the arguments.

Step 1: Extraction of converging subsequences. Using the a priori estimates (6.2)
and (6.3), Banach’s selection principle allows us to choose a subsequence and
some (y, θ) such that (6.7) holds. By the Aubin–Lions’ theorem interpolated with
the estimates in (4.9a) and (4.9c), we also have
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∇ yε → ∇ y strongly in L∞(Q; R
d×d) and (6.8a)

wε → w strongly in L p(Q) with any 1 � p < 1 + 2/d, (6.8b)

θε → θ strongly in L p(Q) with any 1 � p < 1 + 2/d. (6.8c)

The proof of (6.8a) is similar to (5.4a). For (6.8b) we proceed as for (5.4b) by using
the estimates on wε given in (6.3). Using the relation wε = w(∇ yε, θε) we also
obtain the strong convergence (6.8c).

Step 2: Convergence in the mechanical equation. The limit passage in the momen-
tum balance (4.1a)–(4.2) works as before, again using the Minty trick (5.8). Of
course, the additional regularizing viscosity term ε∇ .yε vanishes because of our a
priori bound (6.2d):

∣∣∣∣
∫

Q
ε∇ .yε:∇z dx dt

∣∣∣∣ � ε
∥∥∇ .yε

∥∥
L2(Q;Rd×d )

∥∥∇z
∥∥

L2(Q;Rd×d )
= Cε→ 0.

Step 3: Balance of mechanical energy. As in the proof of Proposition 5.1 we derive
from the property that the limit couple (y, θ) solves the mechanical equation that
the following mechanical energy relation holds (again exploiting the chain rule in
Proposition 3.6):

M(y(T ))+
∫ T

0
2R(y, .y, θ) dt = M(y0)+

∫ T

0
〈�, .y〉 dt

−
∫

Q
∂Fφ(∇ y, θ):∇ .y dx dt. (6.9)

Step 4: Strong convergence of the symmetric strain rates. We can pass to the limit
ε→ 0 in the mechanical energy relation (5.9). Comparing the result with (6.9) we
obtain

lim
ε→0

∫
Q
ξ(∇ yε,∇ .yε, θε) dx dt =

∫
Q
ξ(∇ y,∇ .y, θ) dx dt. (6.10)

Toconclude strong convergenceweuse the special form (2.10), namely ξ(F,
.
F , θ) =

2̂ζ (F�F, F� .F+ .
F�F, θ). From the pointwise convergence θε → θ , the uniform

convergence Fε := ∇ yε → F = ∇ y, and the weak convergence
.
Fε := ∇ .yε ⇀

.
F

in L2(Q; R
d×d) we obtain

Vε := F�
ε

.
Fε+

.
F�
ε Fε ⇀ F� .F+ .F�F =: V in L2(Q; R

d×d
sym ).

With the coercive and quadratic structure of ζ̂ assumed in (2.30e) we proceed as
follows:
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2α‖Vε−V ‖2L2(Q;Rd×d )
�

∫
Q
2̂ζ (Cε, Vε−V, θε) dx dt

=
∫

Q

(
2̂ζ (Cε, Vε, θε)− 2Vε: D(Cε, θε)V

+ 2̂ζ (Cε, V, θε)
)
dx dt

=
∫

Q

(
ξ(Fε,

.
Fε, θε)− 2Vε : D(Cε, θε)V

+ ξ(F, .F, θ)
)
dx dt + δ(ε),

with δ(ε) =
∫
Ω

2V :(D(Cε, θε)− D(C, θ)
)
V dx dt,

where Cε = F�
ε Fε. We see that the first term converges by (6.10), while the second

term converges by the weak convergence Vε ⇀ V and the strong convergence
D(Cε, θε)V → D(C, θ)V (asD is bounded and the arguments converge pointwise).
Similarly, δ(ε)→ 0 by Lebesgue’s dominated convergence theorem, and thus we
conclude the strong convergence ‖Vε−V ‖L2(Q;Rd×d ) → 0.
Step 5: Limit passage in the heat equation. Testing the regularized heat equation
(4.1b) with boundary conditions (4.2c) by a smooth function v with v(T, ·) ≡ 0
we find

∫
Q

(
∇θε · K(∇ yε, θε)∇v − (

ξ
reg
ε (∇ yε,∇ .yε, θε)

+∂Fφ(∇ yε, θε): ∇ .yε)v − wε .v
)
dx dt

+
∫
Σ

κθεv dS dt =
∫
Σ

κθ�,εv dS dt +
∫
Ω

w(∇ y0, θ0,ε)v(0) dx . (6.11)

Here the first term passes to the limit by ∇θε ⇀ ∇θ and K(∇ yε, θε)∇v →
K(∇ y, θ). In the second term we use

ξ
reg
ε (∇ yε,∇ .yε, θε) = ξ(∇ yε,∇ .yε, θε)

1+εξ(∇ yε,∇ .yε, θε)
= 2̂ζ (Cε, Vε, θε)

1 + 2εζ̂ (Cε, Vε, θε)
� 2K |Vε|2 =: gε.

Because of Step 4, we know Vε → V strongly in L2(Q; R
d×d
sym ). Hence, we have

gε → g := K |V |2 in L1(Q) and may assume, after extracting another subse-
quence, Vε(t, x) → V (t, x) almost everywhere in Q. By the uniform/pointwise
convergence of Cε and θε for any v ∈ C0(Q) we obtain

gε‖v‖L∞(Q) � ξ regε (∇ yε,∇ .yε, θε)v→ ξ(∇ y,∇ .y, θ)v almost everywhere in Q.
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As the majorants gε‖v‖L∞(Q) converge to g‖v‖L∞(Q) in L1(Q) the generalized
dominated convergence theorem implies convergence of the second term in (6.11).

In the third term we have weak convergence of ∇ .yε and strong convergence
of v∂Fφ(∇ yε, θε). Similarly, the remaining four terms converge to the desired
limits. Thus, we have shown that (y, θ) satisfy (2.27b), which finishes the proof of
Proposition 6.4. ��

Remark 6.5 (Strong convergence of yετ and yε). Strengthening the monotonicity
of hel(·), implied by the convexity assumed in (2.30d), to the strict monotonicity

∀ G1,G2 ∈ R
d×d×d : (hel(G1)−hel(G2))

... (G1−G2) � c0|G1−G2|p,

we can use the argumentation after (5.11) to show yετ (t) → yε(t) strongly in
W 2,p(Ω; R

d) for all t ∈ [0, T ]. Similarly, in Proposition 6.4 one can show yε(t)→
y(t) strongly in W 2,p(Ω; R

d). Together with the L∞-estimate (4.9a), we can also
strengthen the weak* convergence (5.3a) in L∞(I ; W 2,p(Ω; R

d)) to a strong con-
vergence in Lq(I ; W 2,p(Ω; R

d)) for all q ∈ [1,∞[. The same applies to (6.7a).

Remark 6.6 (Dynamical problems). Introducing the kinetic energy 1
2#|

.
y|2 with a

mass density # = #(x) > 0 leads to an inertial force #
..
y in the momentum equa-

tion (2.13a), which would make the nonlinear problem hyperbolic. It is generally
recognized as analytically very troublesome. Here, it would work for isothermal
situations like in Corollary 2.3 if we were able to work with weak convergence,
that isH needs to be quadratic (p = 2). Staying withH depending on the second
gradient∇2y wewould be forced to give up the determinant constraint det∇ y > 0,
which is indeed possible if heat conduction is not considered. Alternatively, one
may takeH quadratic but coercive on the Hilbert space Hs(Ω) with s > 1+ d/2,
such that Hs(Ω) still embeds into C1,α for some α > 0, cf. also [26, Sect. 9.3].
In the non-isothermal situation, it seems difficult to ensure that the acceleration..
y ∈ L2(I ; H1+κ(Ω; R

d×d) stays in duality with the velocity
.
y. Obtaining enough

regularity is difficult and the higher-order viscosity is inevitably very nonlinear to
comply with frame-indifference, while the corresponding generalization of Korn’s
inequality does not seem to be available.

Remark 6.7 (Other transport processes: flow in porous media). Beside heat trans-
port, one can also consider other transport processes in a similar way. The transport
coefficients can be pulled back as in (2.24). For example, considering mass trans-
port for a concentration c one has tomake the free energyψ also c-dependent and to
augment it by a capillarity-like gradient term 1

2κ|∇c|2. The dissipation potentialR
will then be augmented by the nonlocal term 1

2‖M(∇ y, c)1/2∇�−1
M(∇ y,c)

.
c‖2

L2(Ω)

with �−1
M : f �→ μ denoting the linear operator H1(Ω)∗ → H1(Ω) defined

by the weak solution μ to the equation div(M∇μ) = f . Considering the mo-
bility tensor M = M(x, c), we can define the pulled-back tensor M(x, F, c) :=
(Cof F�)M(x, c)Cof F/ det F and augment the system with a diffusion equation
of Cahn–Hilliard type:
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div
(
σvi(∇ y,∇ .y, θ)+ ∂Fψ(F, c, θ)− div hel(∇2y)

) + g = 0, (6.12a)
.
c − div

(M(∇ y, c)∇μ) = 0 with μ = ∂cψ(∇ y, c, θ)− κ�c, (6.12b)

cv(∇ y, c, θ)
.
θ − div

(K(∇ y, θ)∇θ) = ξ(∇ y,∇ .y, θ)
+ θ∂2Fθψ(∇ y, c, θ):∇ .y + ∇μ · M(x,∇ y, c)∇μ (6.12c)

withσvi as in (2.13a), cv(F, c, θ) = −θ∂2θθψ(F, c, θ), and ξ from (2.10). In (6.12b),
the variable μ is called the chemical potential that is thermodynamically conjugate
to c. One can also augment the model by some inelastic (plastic or creep-type)
strain like in [45], where also the inertial forces are included, whereas viscosity is
ignored and the restriction to small elastic strains is imposed.
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43. Roubíček, T.: Thermo-visco-elasticity at small strains with L1-data. Q. Appl. Math. 67,
47–71, 2009
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