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Abstract

We look for ground states and bound states E : R
3 → R

3 to the curl–curl
problem

∇ × (∇ × E) = f (x, E) in R3,

which originates from nonlinear Maxwell equations. The energy functional associ-
ated with this problem is strongly indefinite due to the infinite dimensional kernel
of ∇ × (∇ × ·). The growth of the nonlinearity f is controlled by an N -function
� : R → [0,∞) such that lim

s→0
�(s)/s6 = lim

s→+∞ �(s)/s6 = 0. We prove the

existence of a ground state, that is, a least energy nontrivial solution, and the exis-
tence of infinitely many geometrically distinct bound states. We improve previous
results concerning ground states of curl–curl problems. Multiplicity results for our
problem have not been studied so far in R

3 and in order to do this we construct a
suitable critical point theory; it is applicable to a wide class of strongly indefinite
problems, including this one and Schrödinger equations.

Introduction

We look for weak solutions to the semilinear curl–curl problem

∇ × (∇ × E) = f (x, E), x ∈ R
3, (1.1)

originating from the Maxwell equations where E(x) cos(ωt) is a time-harmonic
electric field in a nonlinear medium and f (x, E) models a nonlinear polarization
in the medium, see [26,31,32] and the references therein. Another motivation has
been provided byBenci and Fortunato [8], who introduced amodel for a unified
field theory for classical electrodynamics based on a semilinear perturbation of the
Maxwell equations in the spirit of the Born–Infeld theory [12]. In the magnetostatic
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case in which the electric field vanishes and the magnetic field is independent of
time, this leads to an equation of the form (1.1) with E replaced by A, the gauge
potential related to the magnetic field.

The semilinear curl–curl problem in R
3 was solved for the first time in [1] in

the cylindrically symmetric setting. If f (x, E) depends only on |E |, then one can
restrict the considerations to the fields of the form

E(x) = α(r, x3)

⎛
⎝

−x2
x1
0

⎞
⎠ , r =

√
x21 + x22 , (1.2)

which are divergence-free, so ∇ × (∇ × E) = −�E and one can study (1.1) by
means of standard variational methods (however, there may still exist solutions
which are not of this form). Other results in the cylindrically symmetric setting
have been obtained in [3,17,19,24,39]. We would also like to mention that trav-
elling waves of a similar form for a system of nonlinear Maxwell equations have
been studied by Stuart and Zhou in [31–34] for asymptotically linear f and by
McLeod et al. [25] for a cubic nonlinearity. This approach requires again cylin-
drically symmetric media and involves ODE methods which are not applicable if
f in (1.1) lacks this symmetry.

In the media which are not cylindrically symmetric, the problem is much more
challenging, since the curl–curl operator ∇ × (∇ × ·) has an infinite-dimensional
kernel consisting of all gradient vector fields. Hence the energy functional associ-
ated with (1.1)

E(E) = 1

2

∫
R3

|∇ × E |2 dx −
∫
R3

F(x, E) dx, (1.3)

where f = ∂E F, is unbounded from above and from below and its critical points
may have infinite Morse index. For instance, this is the case in a model example

f (x, E) = �(x)min{|E |p−2, |E |q−2}E with 2 < p < 6 < q, (1.4)

where � ∈ L∞(R3) is Z
3-periodic, positive and bounded away from 0. Let

D(curl,�) be the space of functions E such that∇×E is square integrable and E is
in the Orlicz space L�(R3,R3) for an appropriate growth function �; see the next
section for a more accurate definition. Then E ∈ C1(D(curl,�),R) and critical
points of E are weak solutions to (1.1). In addition to these problems related to the
strongly indefinite geometry of E , we also have to deal with issues related to the
lack of compactness. Namely, the functional E ′ is not (sequentially) weak-to-weak∗
continuous, that is, weak convergence En ⇀ E in D(curl,�) does not imply that
E ′(En) ⇀ E ′(E) in D(curl,�)∗, hence we do not know whether the weak limit of
a bounded Palais–Smale sequence is a critical point.

Similar difficulties have already appeared in curl–curl problems on bounded
domains in Bartsch and Mederski [4], where a generalized Nehari manifold
approach inspired by Szulkin and Weth [36] has been developed to overcome
strong indefiniteness.Other approaches have been developed in subsequentwork [5,
27]; see also the survey [6]. Note that on a bounded domain there is no problemwith
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lack ofweak-to-weak∗ continuity ofE ′ since a variant of the Palais–Smale condition
is satisfied under some constraints. In R

3 however, one has to make a careful
concentration-compactness analysis on a suitable generalized Nehari manifoldNE ;
this has been demonstrated in [26]which seems to be the onlywork on ground states
of (1.1) in the nonsymmetric setting.

In the present work we consider a larger class of nonlinearities which have
supercritical growth at 0 and subcritical growth at infinity; this is in the spirit of
the zero mass case of Berestycki and Lions [11] (see condition (N2) below).
However, as shown by the examples below, we admit nonlinearities which are
more general than in (1.4), and this requires a new functional setting for (1.1) as
well as a new critical point theory. The reason for this is that the methods based on
the constraintNE (see (1.7) for the definition) cannot be applied straightforwardly
here since NE may not be homeomorphic to the unit sphere in the subspace of
divergence-free vector fields as in [4,26]. Our critical point theory for strongly
indefinite functionals in Section 3 also solves the problem of multiplicity of bound
states. This has not been considered so far, not even for (1.4). Note that although E
has the classical linking geometry, the well-known linking results, for example of
Benci and Rabinowitz [10], are not applicable due to the lack of weak-to-weak∗
continuity of E ′.

In order to state our main result we assume that the growth of f is controlled
by a strictly convex N -function � : R → [0,∞) of class C1 such that
(N1) � satisfies the �2- and the ∇2-condition globally;

(N2) lim
s→0

�(s)

s6
= lim

s→∞
�(s)

s6
= 0;

(N3) lim
s→∞

�(s)

s2
= ∞.

N -functions and condition (N1) will be introduced in the next section and are
standard in the theory of Orlicz spaces [29]. (N2) is inspired by [11] and (N2), (N3)
describe supercritical behaviour at 0 and superquadratic but subcritical at infinity.
We collect our assumptions on the nonlinearity F(x, u):

(F1) F : R3×R
3 → R is differentiable with respect to the second variable u ∈ R

3

for almost every x ∈ R
3, and f = ∂u F : R3 × R

3 → R
3 is a Carathéodory

function (that is,measurable in x ∈ R
3, continuous in u ∈ R

3 for almost every
x ∈ R

3). Moreover, f is Z3-periodic in x , that is, f (x, u) = f (x + y, u) for
all u ∈ R

3, and almost all x ∈ R
3 and y ∈ Z

3;
(F2) F is uniformly strictly convex with respect to u ∈ R

3, that is, for any compact
A ⊂ (R3 × R

3) \ {(u, u) : u ∈ R
3}

inf
x∈R3

(u1,u2)∈A

(
1

2

(
F(x, u1) + F(x, u2)

) − F

(
x,

u1 + u2

2

))
> 0;

(F3) There are c1, c2 > 0 such that

| f (x, u)| ≤ c1�
′(|u|) and F(x, u) ≥ c2�(|u|)

for every u ∈ R
3 and almost every x ∈ R

3;
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(F4) For every u ∈ R
3 and almost every x ∈ R

3

〈 f (x, u), u〉 � 2F(x, u);
(F5) If 〈 f (x, u), v〉 = 〈 f (x, v), u〉 > 0, then F(x, u) − F(x, v) ≤

〈 f (x, u), u〉2 − 〈 f (x, u), v〉2
2〈 f (x, u), u〉 .

We provide some examples. First we note that if G = G(x, t) : R3 × R → R is
differentiable with respect to t , g := ∂t G is a Carathéodory function, G(x, 0) = 0,
M ∈ GL(3) is an invertible 3 × 3 matrix and

F(x, u) = G(x, |Mu|) and t → g(x, t)/t is non-decreasing for t > 0,

(1.5)

then F satisfies (F4) (cf. [36]) and it is easy to see that (F5) holds. Note that (1.5)
implies that g(x, 0) = 0, so f is continuous also at u = 0.

Suppose � ∈ L∞(R3) isZ3-periodic, positive and bounded away from 0. Take

F(x, u) := �(x)W (|Mu|2),
where W is a function of class C1, W (0) = W ′(0) = 0 and t → W ′(t) is non-
decreasing on (0,+∞). Then we check that (F1), (F2), (F4) and (F5) are satisfied

(here G(x, t) = �(x)W (t2), so (1.5) holds). If W (t2) = 1
p

(
(1 + |t |q)

p
q − 1

)
or

W (t2) = min
{ 1

p |t |p + 1
q − 1

p , 1
q |t |q} with 2 < p < 6 < q, then we can take

�(t) = W (t2) and we see that (F3) holds as well. Note that if W ′(t) is constant on
some interval [a, b] ⊂ (0,+∞), then

0 < F(x, u) − F(x, v) = 〈 f (x, u), u〉2 − 〈 f (x, u), v〉2
2〈 f (x, u), u〉 (1.6)

for a < |v| < |u| < b and a stronger variant of (F5), that is, [26, (F5)], is no longer
satisfied. Thus we cannot apply variational techniques relying on minimization
on the Nehari–Pankov manifold NE (defined in (1.7)) as in [26,36]. Moreover,
our problem requires a new functional setting. Indeed, if we consider W (t2) =
1
2 (|t |2 − 1) ln(1 + |t |) − 1

4 |t |2 + 1
2 |t | for |t | � 1, W (t2) = ln 2

q (|t |q − 1) + 1
4 for

|t | < 1, then

f (x, u) =
{

�(x)u ln(1 + |u|) if |u| � 1,

�(x) ln(2)u|u|q−2 if |u| < 1,

and (F1)–(F5) are satisfied; however, f cannot be controlled by any N -function
associated with L p(R3,R3) + Lq(R3,R3) for 2 < p < 6 < q as in [26] or in
other zero mass case problems [9,15]. As our final example we take F(x, u) =
�(x)�(|u|) where �(0) = 0,

�′(t) =

⎧⎪⎨
⎪⎩

tr−1 if t ≤ 1,

t if 1 ≤ t ≤ 2,

at5/ ln t if t ≥ 2,
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r > 6 and a = 2−4 ln 2. Obviously, F satisfies (1.5) and hence (F4), (F5), and
(1.6) holds for 1 < |u| < 2. It is easy to see that (F1)–(F3) and (N1)–(N3) hold (to
check (N1) it is convenient to use Lemma 2.2). Note that here �(t)/t6 → 0 but
�(t)/t p → ∞ as t → ∞ for any p < 6. Note also that in the last two examples
we can replace |u| by |Mu|.

Our principal aim is to prove the following result:

Theorem 1.1. Assume that (F1)–(F5) hold. Then we have

(a) Equation (1.1) has a ground state solution, that is, there is a critical point
E ∈ NE of E such that

E(E) = inf
NE

E > 0

where

NE := {E ∈ D(curl,�) : E �= 0, E ′(E)[E] = 0,

and E ′(E)[∇ϕ] = 0 for any ϕ ∈ C∞
0 (R3)}; (1.7)

(b) If in addition F is even in u, there is an infinite sequence (En) ⊂ NE of
geometrically distinct solutions of (1.1), that is, solutions such that (Z3 ∗ En)∩
(Z3 ∗ Em) = ∅ for n �= m, where

Z
3 ∗ En := {En(· + y) : y ∈ Z

3}.

In our approach we establish a critical point theory on the topological manifold

ME := {E ∈ D(curl,�) : E ′(E)[∇ϕ] = 0 for any ϕ ∈ C∞
0 (R3)},

which containsNE as a subset, and we show that E has the mountain pass geometry
inME and admits a Cerami sequence at the ground state level infNE E > 0; see the
abstract setting and the critical point theory in Section 3. In order to find a nontrivial
critical point being a ground state one needs to analyze Cerami sequences in the
spirit of Lions [22]. However, this is not straightforward because the kernel of
the curl–curl operator is not locally compactly embedded into any L p or Orlicz
space and E ′ lacks weak-to-weak∗ continuity. Therefore it is difficult to treat this
problemby a concentration-compactness argument directly in the spaceD(curl,�).
Based on a crucial convergence result obtained in Proposition 5.2, we prove that
E ′ is weak-to-weak∗ continuous inME , see Corollary 5.3. This allows us to find a
nontrivial weak limit of the Cerami sequence which is a ground state solution as in
Theorem 3.5(a). Moreover, a result on the discreteness of Cerami sequences allows
us to find infinitely many geometrically distinct solutions.

We would also like to mention that our methods allow to consider Schrödinger
equations in the zero mass case as in [9,15] and we are able to obtain new results
with improved growth conditions; see Section 7.
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2. Preliminaries and variational setting

Here and in the sequel | · |q denotes the Lq -norm.
Now, following [29], we recall some basic definitions and results about N -

functions and Orlicz spaces. A function� : R → [0,+∞) is called an N -function,
or a nice Young function if it is convex, even and satisfies

�(t) = 0 ⇔ t = 0, lim
t→0

�(t)

t
= 0, and lim

t→+∞
�(t)

t
= +∞.

Given an N -function �, we can associate with it another function 
 : R →
[0,+∞) defined by


(t) := sup{s|t | − �(s) : s ≥ 0},
which is an N -function as well. 
 is called the complementary function to � while
(�,
) is called a complementary pair of N -functions.

We recall from [29, Section I.3] that�′ and
 ′ exist almost everywhere,
 ′(t) =
inf{s ≥ 0 : �′(s) > t} for t ≥ 0, 
 ′(t) = −
 ′(−t) for t < 0 and 
 can be
expressed as


(t) =
∫ |t |

0

 ′(s) ds.

We also recall from [29, Section II.3] that � satisfies the �2-condition globally
(denoted � ∈ �2) if there exists K > 1 such that, for every t ∈ R,

�(2t) ≤ K�(t)

(here 2 can be replaced by any constant a > 1), while � satisfies the ∇2-condition
globally (denoted � ∈ ∇2) if there exists K ′ > 1 such that, for every t ∈ R,

�(K ′t) ≥ 2K ′�(t).

The set

L� := L�(R3,R3) :=
{

E : R3 → R
3 measurable and

∫
R3

�(|E |) < ∞
}

is a vector space if � ∈ �2 globally; in this case it is called an Orlicz space.
Moreover, the space L� (whenever it is actually a vector space) becomes a Banach
space (cf. [29, Theorem III.2.3, Theorem III.3.10]) if endowed with the norm

|E |� := inf

{
k > 0 :

∫
R3

�

( |E |
k

)
≤ 1

}
.

We can define an equivalent norm on L� by letting

|E |�,1 := sup

{∫
R3

|E | |E ′| dx :
∫
R3


(|E ′|) dx � 1, E ′ ∈ L


}
,
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see [29, Proposition III.3.4] (note that in [29] these results are formulated for the
space L�; however, no distinction needs to be made between L� and L�, see the
comment following [29, Corollary III.3.12]). Finally, if both � and 
 satisfy the
�2-condition globally, then L� is reflexive and L
 is its dual [29, Corollary IV.2.9
and Theorem IV.2.10]. Similarly, for any measurable � ⊂ R

3, one can define

L�(�) :=
{
ξ : � → R measurable and

∫
�

�(|ξ |) < ∞
}

and endow it with the norm | · |� defined as above.
In the lemma belowwe show that L� and L�(R3)3 can be identified. The result

should be known but we could not find any explicit reference.

Lemma 2.1. The norms of L� = L�(R3,R3) and L�(R3)3 are equivalent.

Proof. In L� and L�(R3) we use the norm | · |� defined above and for E =
(E1, E2, E3) ∈ L�(R3)3 we set |E |�,3 := maxi=1,2,3 |Ei |�. Since� is increasing
on positive numbers, we have

∫
R3

�

( |Ei |
k

)
dx ≤

∫
R3

�

( |E |
k

)
dx, k > 0,

hence if the second integral is ≤ 1, so is the first one. Taking the infimum over
k > 0 we obtain |Ei |� ≤ |E |� and |E |�,3 ≤ |E |�. On the other hand, since � is
convex,

∫
R3

�

( |E |
3k

)
dx ≤ 1

3

3∑
i=1

∫
R3

�

( |Ei |
k

)
dx,

so 1
3 |E |� ≤ maxi=1,2,3 |Ei |� = |E |�,3. ��

Before going on, for the reader’s convenience we recall some important facts.

Lemma 2.2. (i) The following are equivalent:
– � ∈ �2 globally;
– there exists K > 1 such that t�′(t) ≤ K�(t) for every t ∈ R;
– there exists K ′ > 1 such that t
 ′(t) ≥ K ′
(t) for every t ∈ R;
– 
 ∈ ∇2.

(ii) For every E ∈ L�, E ′ ∈ L
 it holds that
∫
R3

|E | |E ′| dx ≤ min{|E |�,1|E ′|
, |E |�|E ′|
,1}.

(iii) Let En, E ∈ L�. Then |En − E |� → 0 implies that
∫
R3 �(|En − E |) dx → 0.

If � ∈ �2 globally, then
∫
R3 �(|En − E |) dx → 0 implies |En − E |� → 0.

(iv) Let X ⊂ L� and suppose � ∈ �2 globally. Then X is bounded if and only if
{∫

R3 �(|E |) dx : E ∈ X} is bounded.
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Proof. (i) follows from [29, Theorem II.3.3]; (ii) follows from [29, Proposition
III.3.1 and Formula (III.3.17)]; (iii) follows from [29, Theorem III.4.12]; (iv) fol-
lows from [29, Corollary III.4.15]. ��

From now on we assume (F1)–(F5), (N1)–(N3),�will denote a strictly convex
N -function as in (F3) and 
 will denote its complementary function. Moreover,
we will denote by | · |� any of the two (equivalent) norms defined above, unless
differently required.

Let D(curl,�) be the completion of C∞
0 (R3,R3) with respect to the norm

‖E‖curl,� := (|∇ × E |22 + |E |2�
)1/2

.

The subspace of divergence-free vector fields is defined by

V :=
{
v ∈ D(curl,�) :

∫
R3

〈v,∇ϕ〉 dx = 0 for any ϕ ∈ C∞
0 (R3)

}
,

= {v ∈ D(curl,�) : div v = 0}
where div v is to be understood in the distributional sense. Let D := D1,2(R3,R3)

be the completion of C∞
0 (R3,R3) with respect to the norm

‖u‖D := |∇u|2,
and letW be the closure of

{∇ϕ : ϕ ∈ C∞
0 (R3)

}
in L�.

Lemma 2.3. L6(R3,R3) is continuously embedded in L�.

Proof. In view of (N2) it is clear that �(t) � C |t |6 for any t ∈ R and some C > 0.
So we can conclude by Lemma 2.2 (iii). ��

The following Helmholtz decomposition holds:

Lemma 2.4. V and W are closed subspaces of D(curl,�) and

D(curl,�) = V ⊕ W. (2.1)

Moreover, V ⊂ D and the norms ‖ · ‖D and ‖ · ‖curl,� are equivalent in V .

Proof. Take anyw ∈ W and a sequence ϕn ∈ C∞
0 (R3) such that |w−∇ϕn|� → 0.

Then for any ψ ∈ C∞
0 (R3,R3),

∫
R3

〈w,∇ × ψ〉 dx = lim
n→∞

∫
R3

〈∇ϕn,∇ × ψ〉 dx

= lim
n→∞

∫
R3

〈∇ × (∇ϕn), ψ〉 dx = 0,

wherewe have used Lemma 2.2 (ii) and the fact that∇×ψ ∈ L
 . Hence∇×w = 0
in the sense of distributions and ‖w‖curl,� = |w|�. Therefore W is closed in
D(curl,�); moreover, we easily see that also V is closed in D(curl,�).
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Now, take any E ∈ D(curl,�) and ϕn ∈ C∞
0 (R3,R3) such that ϕn → E in

D(curl,�). Let ϕ2
n ∈ C∞(R3) be the Newtonian potential of div(ϕn), that is, ϕ2

n
solves �ϕ2

n = div(ϕn). Note that the derivative ∂iϕ
2
n is the Newtonian potential of

div(∂iϕn). Since ϕn ∈ C∞
0 (R3), then by [20, Proposition 1], ∇ϕ2

n and ∇(∂iϕ
2
n) ∈

Lr (R3,R3) for every r ∈ (1,∞). Hence, by Lemma 2.3,

∇ϕ2
n ∈ L6(R3,R3) ⊂ L�,

and ϕ1
n := ϕn − ∇ϕ2

n ∈ L�. Moreover, ϕ1
n and ∂iϕ

1
n ∈ Lr (R3,R3). We also have

∇ × ϕ1
n = ∇ × ϕn and div(ϕ1

n) = 0 pointwise. Using these two equalities and
integrating by parts gives |∇ϕ1

n |2 = |∇ × ϕ1
n |2 = |∇ × ϕn|2. It follows that for

m, n ≥ 1,

|∇(ϕ1
n − ϕ1

m)|2 = |∇ × (ϕ1
n − ϕ1

m)|2 = |∇ × (ϕn − ϕm)|2 � ‖ϕn − ϕm‖curl,�.

Thus (ϕ1
n) is a Cauchy sequence in D. Let v := limn→∞ ϕ1

n in D. Then
∫
R3

〈v,∇ϕ〉 dx = lim
n→∞

∫
R3

〈ϕ1
n ,∇ϕ〉 dx = 0

for any ϕ ∈ C∞
0 (R3), hence div v = 0 and v ∈ V . Moreover,

|∇ × (ϕ1
n − v)|2 = |∇(ϕ1

n − v)|2 → 0,

so ϕ1
n → v in D(curl,�) and ∇ϕ2

n = ϕn − ϕ1
n → E − v in D(curl,�). Since W

is closed in D(curl,�), then E − v ∈ W and we get the decomposition

E = v + (E − v) ∈ V + W.

Now take v ∈ V ∩ W . Then ∇ × v = 0, so by [21, Lemma 1.1(i)], v = ∇ξ for
some ξ ∈ W 1,6

loc (R3). Since div v = 0, ξ is harmonic and therefore so is v. Hence

0 = −
∫
R3

〈v,�v〉 dx =
∫
R3

|∇v|2 dx

(integration by parts is allowed because v ∈ D1,2(R3,R3)), so v = 0; therefore
V ∩ W = {0}, and we obtain (2.1).

The equivalence of norms follows from Lemma 2.3. ��
Observe that in viewofLemma2.4 andLemma2.3,V is continuously embedded

in L�.
We introduce a norm in V × W by the formula

‖(v,w)‖ := (‖v‖2D + |w|2�
) 1
2 ,

and consider the energy functional defined by (1.3) on D(curl,�), and

J (v,w) := 1

2

∫
R3

|∇v|2 dx −
∫
R3

F(x, v + w) dx . (2.2)

defined on V ×W . We have that J ′ is well defined and J is of class C1 due to the
following lemma.
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Lemma 2.5. If u ∈ L�, then

∫
R3



(
�′(|u|)) dx ≤ C

∫
R3

�(|u|) dx < ∞

for some constant C > 0.

Proof. Since� ∈ �2, it follows using Lemma 2.2(i) and recalling
 ′(t) = inf{s ≥
0 : �′(s) > t}, that

∫
R3



(
�′(|u|)) dx ≤ 1

K ′

∫
R3

�′(|u|)
 ′(�′(|u|)) dx = 1

K ′

∫
R3

�′(|u|)|u| dx

≤ K

K ′

∫
R3

�(|u|) dx .

��
Proposition 2.6. J ′ is well defined and J is of class C1.

Proof. First we see that for every v, v′ ∈ V and w, w′ ∈ W , it holds that

∣∣∣∣
∫
R3

〈 f (x, v + w), v′ + w′〉 dx

∣∣∣∣ ≤
∫
R3

| f (x, v + w)||v′ + w′| dx ≤

≤ c1

∫
R3

�′(|v + w|)|v′ + w′| dx

≤ C |�′(|v + w|)|
 |v′ + w′|�
for some C > 0 by Lemma 2.2 (ii) and because |�′(|v + w|)|
 < +∞ according
to Lemma 2.5. Now we can use the argument of [16, Lemma 2.1] to show that
I ∈ C1(L�,R) where I (v + w) := ∫

R3 F(x, v + w) dx . Employing Lemma 2.3,
it follows that J ∈ C1(V × W,R). ��
Proposition 2.7. Let E = v + w ∈ V ⊕ W . Then (v,w) is a critical point of J if
and only if E is a critical point of E if and only if E is a weak solution to (1.1), that
is

∫
R3

〈E,∇ × ∇ × ϕ〉 dx =
∫
R3

〈 f (x, E), ϕ〉 dx for any ϕ ∈ C∞
0 (R3,R3).

Proof. For the first equivalence, let E ′ = v′ + w′ ∈ V ⊕ W . Then we have

∫
R3

〈 f (x, v + w), v′ + w′〉 dx =
∫
R3

〈 f (x, E), E ′〉 dx,

and, since ∇ × w = ∇ × w′ = 0,
∫
R3

〈∇ × v,∇ × v′〉 dx =
∫
R3

〈∇ × E,∇ × E ′〉 dx,
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so that
∫
R3

〈∇ × v,∇ × v′〉 dx =
∫
R3

〈 f (x, v + w), v′ + w′〉 dx ⇔
∫
R3

〈∇ × E, ∇ × E ′〉 dx

=
∫
R3

〈 f (x, E), E ′〉 dx,

and the conclusion follows from Lemma 2.4. For the second equivalence we just
need to observe that for every ϕ ∈ C∞

0 (R3,R3)

∫
R3

〈∇ × E,∇ × ϕ〉 dx =
∫
R3

〈E,∇ × ∇ × ϕ〉 dx .

��

3. Critical point theory

We recall the abstract setting from [4,5]. Let X be a reflexive Banach space
with the norm ‖ · ‖ and a topological direct sum decomposition X = X+ ⊕ X̃ ,
where X+ is a Hilbert space with a scalar product 〈. , .〉. For u ∈ X we denote by
u+ ∈ X+ and ũ ∈ X̃ the corresponding summands so that u = u+ + ũ. We may
assume 〈u, u〉 = ‖u‖2 for any u ∈ X+ and ‖u‖2 = ‖u+‖2+‖ũ‖2. The topology T
on X is defined as the product of the norm topology in X+ and the weak topology

in X̃ . Thus un
T−→ u is equivalent to u+

n → u+ and ũn ⇀ ũ.
Let J be a functional on X of the form

J (u) = 1

2
‖u+‖2 − I(u) for u = u+ + ũ ∈ X+ ⊕ X̃ . (3.1)

The set

M := {u ∈ X : J ′(u)|X̃ = 0} = {u ∈ X : I ′(u)|X̃ = 0} (3.2)

obviously contains all critical points ofJ . Suppose the following assumptions hold:

(I1) I ∈ C1(X,R) and I(u) ≥ I(0) = 0 for any u ∈ X ;

(I2) I isT -sequentially lower semicontinuous:un
T−→ u �⇒ lim inf I(un) ≥

I(u);

(I3) If un
T−→ u and I(un) → I(u) then un → u;

(I4) ‖u+‖ + I(u) → ∞ as ‖u‖ → ∞;
(I5) If u ∈ M then I(u) < I(u + v) for every v ∈ X̃ \ {0}.
Clearly, if a strictly convex functional I satisfies (I4), then (I2) and (I5) hold. Ob-
serve that for any u ∈ X+ we findm(u) ∈ Mwhich is the unique global maximizer
of J |u+X̃ . Note that m needs not be C1, andM needs not be a differentiable man-
ifold because I ′ is only required to be continuous. Recall from [5] that (un) is
called a (P S)c-sequence for J if J ′(un) → 0 and J (un) → c, and J satisfies the
(P S)Tc -condition onM if each (P S)c-sequence (un) ⊂ M has a subsequence con-
verging in the T -topology. In order to apply classical critical point theory like the
mountain pass theorem toJ ◦m : X+ → Rwe need some additional assumptions.
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(I6) There exists r > 0 such that a := inf
u∈X+,‖u‖=r

J (u) > 0.

(I7) I(tnun)/t2n → ∞ if tn → ∞ and u+
n → u+ �= 0 as n → ∞.

According to [5, Theorem 4.4], if (I1)–(I7) hold and

cM := inf
γ∈�

sup
t∈[0,1]

J (γ (t)),

where

� := {γ ∈ C([0, 1],M) : γ (0) = 0, ‖γ (1)+‖ > r and J (γ (1)) < 0},
then cM ≥ a > 0 and J has a (P S)cM -sequence (un) in M. If, in addition, J
satisfies the (P S)TcM -condition inM, then cM is achieved by a critical point of J .
Since we look for solutions to (1.1) in R

3 and not in a bounded domain as in [5],
the (P S)TcM -condition is no longer satisfied. We consider the set

N := {u ∈ X \ X̃ : J ′(u)|
Ru⊕X̃ = 0} = {u ∈ M \ X̃ : J ′(u)[u] = 0} ⊂ M

(3.3)

and we require the following condition on I:
(I8) t2−1

2 I ′(u)[u]+I(u)−I(tu+v) = t2−1
2 I ′(u)[u]+tI ′(u)[v]+I(u)−I(tu+

v) � 0 for every u ∈ N , t ≥ 0, v ∈ X̃ .

In [4,5] it was additionally assumed that strict inequality holds provided u �= tu+v.
This stronger variant of (I8) implies that for any u+ ∈ X+ \ {0} the functional J
has a unique critical point n(u+) on the half-space R+u+ + X̃ . Moreover, n(u+)

is the global maximizer of J on this half-space, the map

n : SX+ = {u+ ∈ X+ : ‖u+‖ = 1} → N

is a homeomorphism, the setN is a topological manifold, and it is enough to look
for critical points of J ◦ n. N is called the Nehari-Pankov manifold. This is the
approach of [37]. However, if theweaker condition (I8) holds, this procedure cannot
be repeated. In particular, N need not be a manifold. Yet the following holds:

Lemma 3.1. If u ∈ N , then u is a (not necessarily unique) maximizer of J on
R

+u + X̃ .

Proof. Let u ∈ N . In view of (I8) we get, by explicit computation,

J (tu + v) = J (tu + v) − J ′(u)

[
t2 − 1

2
u + tv

]
� J (u)

for any t � 0 and v ∈ X̃ . Hence the conclusion. ��
Let

J̃ := J ◦ m : X+ → R.

Before proving the main results of this section we recall the following properties
(i)–(iv) taken from [5, Proof of Theorem 4.4] (note that (I8) has not been used
there):
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(i) For each u+ ∈ X+ there exists a unique ũ ∈ X̃ such that m(u+) := u+ + ũ ∈
M. This m(u+) is the minimizer of I on u+ + X̃ ;

(ii) m : X+ → M is a homeomorphism with the inverseM � u → u+ ∈ X+;
(iii) J̃ = J ◦ m ∈ C1(X+,R);
(iv) J̃ ′(u+) = J ′(m(u+))|X+ : X+ → R for every u+ ∈ X+.
Property (i) has in fact already been discussed above. We shall also need the fol-
lowing fact:

Lemma 3.2. Let Xk be a k-dimensional subspace of X+. Then J̃ (u) → −∞
whenever ‖u‖ → ∞ and u ∈ Xk.

Proof. It suffices to show that each sequence (u+
n ) ⊂ Xk such that ‖u+

n ‖ → ∞
contains a subsequence along which J̃ → −∞. Let u+

n = tnvn , ‖vn‖ = 1 and
m(u+

n ) = u+
n + ũn ∈ M. Then, passing to a subsequence and using (I7), we obtain

J̃ (tnvn)

t2n
= 1

2
− I(tn(vn + 1

tn
ũn))

t2n
→ −∞,

as claimed. ��
As usual, (un) ⊂ X+ will be called a Cerami sequence for J̃ at the level c if

(1 + ‖un‖)J̃ ′(un) → 0 and J̃ (un) → c. In view of (I4), it is clear that if (un)

is a bounded Cerami sequence for J̃ , then (m(un)) ⊂ M is a bounded Cerami
sequence for J .

Theorem 3.3. Suppose that J ∈ C1(X,R) satisfies (I1)–(I8). Then

(a) cM ≥ a > 0 and J̃ has a Cerami sequence (un) at the level cM;
(b) cM = cN := infN J .

The set N0 := {u ∈ X+ \ {0} : J̃ ′(u)[u] = 0} is called the Nehari manifold
for J̃ . Denote cN0 := infN0 J .

Proof of Theorem 3.3. Set

�̃ := {σ ∈ C([0, 1], X+) : σ(0) = 0, ‖σ(1)‖ > r and J̃ (σ (1)) < 0}. (3.4)

Observe that J̃ has the mountain pass geometry and �, �̃ are related as follows: if
γ ∈ �, then γ + ∈ �̃ and J (γ (t)) = J̃ (γ +(t)), and if σ ∈ �̃, then m ◦ σ ∈ � and
J̃ (σ (t)) = J (m ◦ σ(t)). Hence the mountain pass value for J̃ is given by

cM = inf
σ∈�̃

sup
t∈[0,1]

J ◦ m(σ (t)) ≡ J̃ (σ (t)) ≥ a > 0. (3.5)

By the mountain pass theorem there exists a Cerami sequence (un) for J̃ at the
level cM (see [2,14]) which proves (a).

The map u → m(u) is a homeomorphism between N0 and N , and since
J̃ (u) = J (m(u)), cN0 = cN . For u ∈ X+ \ {0}, consider J̃ (tu), t > 0. By
Lemma 3.2, J̃ (tu) → −∞ as t → ∞. Hence maxt>0 J̃ (tu) � a exists. If
t1u, t2u ∈ N0, then m(t1u), m(t2u) ∈ N , so by Lemma 3.1, J̃ (t1u) = J̃ (t2u).
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Consequently, there exist 0 < tmin ≤ tmax such that J̃ (tu) ∈ N0 if and only if
t ∈ [tmin, tmax ] and J̃ (tu) has the same value for those t . Hence J̃ ′(tu)[u] > 0
for 0 < t < tmin and J̃ ′(tu)[u] < 0 for t > tmax . It follows that X+ \ N0
consists of two connected components and therefore each path in �̃ must intersect
N0. Therefore cM ≥ cN0 . Since cN0 = infu∈X+\{0} maxt>0 J̃ (tu), (3.5) implies
cM = cN0 = cN . Note, in particular, that J̃ ≥ 0 on B(0, r), where r is given
in (I6), so the condition ‖σ(1)‖ > r in the definition of �̃ is redundant because it
must necessarily hold if J (σ (1)) < 0. ��

Since cN0 = cN = cM > 0, N0 is bounded away from 0 and hence closed in
X+ while N is bounded away from X̃ and hence closed in X .

For a topological group acting on X , denote the orbit of u ∈ X by G ∗ u, that
is,

G ∗ u := {gu : g ∈ G}.
A set A ⊂ X is called G-invariant if g A ⊂ A for all g ∈ G. J : X → R

is called G-invariant and T : X → X∗ G-equivariant if J (gu) = J (u) and
T (gu) = gT (u) for all g ∈ G, u ∈ X .

In order to dealwithmultiplicity of critical points, assume thatG is a topological
group such that

(G) G acts on X by isometries and discretely in the sense that for each u �= 0,
(G ∗ u) \ {u} is bounded away from u. Moreover, J is G-invariant and X+, X̃
are G-invariant.

Observe that M is G-invariant and m : X+ → M is G-equivariant. In our appli-
cation to (1.1) we have G = Z

3 acting by translations; see Theorem 1.1.

Lemma 3.4. For all u, v ∈ X there exists ε = εu,v > 0 such that ‖gu − hv‖ > ε

unless gu = hv (g, h ∈ G).

Proof. Suppose G ∗u �= G ∗v (the other case is obvious). We may assume without
loss of generality that u �= 0 and v minimizes the distance from u to G ∗ v. Now it
suffices to take ε := 1

2‖u − v‖. ��
We shall use the notation

J̃ β := {u ∈ X+ : J̃ (u) ≤ β}, J̃α := {u ∈ X+ : J̃ (u) ≥ α},
J̃ β

α := J̃α ∩ J̃ β, K := {
u ∈ X+ : J̃ ′(u) = 0

}
.

Since all nontrivial critical points of J are inN , it follows from Theorem 3.3 that
J̃ (u) ≥ a for all u ∈ K \ {0}.

We introduce the following variant of the Cerami condition between the levels
α, β ∈ R:

(M)
β
α (a) Let α ≤ β. There exists Mβ

α such that lim supn→∞ ‖un‖ ≤ Mβ
α for every

(un) ⊂ X+ satisfying α ≤ lim infn→∞ J̃ (un) ≤ lim supn→∞ J̃ (un)

� β and (1 + ‖un‖)J̃ ′(un) → 0.
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(b) Suppose in addition that the number of critical orbits in J̃ β
α is finite. Then

there exists mβ
α > 0 such that if (un), (vn) are two sequences as above

and ‖un − vn‖ < mβ
α for all n large, then lim infn→∞ ‖un − vn‖ = 0.

Note that if J is even, then m is odd (hence J̃ is even) and M is symmetric, that
is, M = −M. Note also that (M)

β
α is a condition on J̃ and not on J . Our main

multiplicity result reads as follows:

Theorem 3.5. Suppose J ∈ C1(X,R) satisfies (I1)–(I8) and dim (X+) = ∞.

(a) If (M)
cM+ε
0 holds for some ε > 0, then either cM is attained by a critical

point or there exists a sequence of critical values cn such that cn > cM and
cn → cM as n → ∞;

(b) If (M)
β
0 holds for every β > 0 andJ is even, thenJ has infinitely many distinct

critical orbits.

By a standard argument we can find a locally Lipschitz continuous pseudo-
gradient vector field v : X+ \ K → X+ associated with J̃ , that is

‖v(u)‖ < 1, (3.6)

J̃ ′(u)[v(u)] >
1

2
‖J̃ ′(u)‖ (3.7)

for any u ∈ X+ \ K. Moreover, if J is even, then v is odd. Let η : G → X+ \ K
be the flow defined by

{
∂tη(t, u) = −v(η(t, u))

η(0, u) = u,

where G := {(t, u) ∈ [0,∞) × (X+ \ K) : t < T (u)} and T (u) is the maximal
time of existence of η(·, u). We prove Theorem 3.5 by contradiction. From now on
we assume the following:

There is a finite number of distinct orbits {G ∗ u : u ∈ K}.
Lemma 3.6. Suppose that (M)

β
0 holds for some β > 0 and let u ∈ J̃ β

0 \K. Then ei-
ther limt→T (u) η(t, u) exists and is a critical point of J̃ or limt→T (u) J̃ (η(t, u)) =
−∞. In the latter case, T (u) = ∞.

Proof. Suppose T (u) < ∞ and let 0 ≤ s < t < T (u). Then

‖η(t, u) − η(s, u)‖ ≤
∫ t

s
‖v(η(τ, u))‖ dτ ≤ t − s.

Hence the limit exists and if it is not a critical point, then η(·, u) can be continued
for t > T (u).

Suppose now T (u) = ∞ and J̃ (η(t, u)) is bounded frombelow.We distinguish
three cases:

(i) t → η(t, u) is bounded,
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(ii) t → η(t, u) is unbounded but ‖η(t, u)‖ �→ ∞,
(iii) ‖η(t, u)‖ → ∞.

(i) We follow an argument in [36]. We shall show that for each ε > 0 there exists
tε > 0 such that ‖η(tε, u)−η(t, u)‖ < ε for all t ≥ tε (this implies limt→∞ η(t, u)

exists, and then it is obviously a critical point). Arguing by contradiction, we can
find ε ∈ (0, mβ

0 /2), R > 0 and tn → ∞ such that η(tn, u) ∈ B(0, R) and
‖η(tn, u) − η(tn+1, u)‖ = ε for all n. Let t1n be the smallest t ∈ (tn, tn+1) such that
‖η(tn, u)−η(t1n , u)‖ = ε/3 and t2n the largest t ∈ (t1n , tn+1) such that ‖η(tn+1, u)−
η(t2n , u)‖ = ε/3. Put κn := min{‖J̃ ′(η(t, u))‖ : t ∈ [tn, t1n ]}. Then

ε

3
= ‖η(t1n , u) − η(tn, u)‖ ≤

∫ t1n

tn
‖v(η(t, u))‖ dt ≤ t1n − tn

≤ 2

κn

∫ t1n

tn
J̃ ′(η(t, u))[v(η(t, u))] dt = 2

κn

(
J̃ (η(tn, u)) − J̃ (η(t1n , u))

)
.

Since J̃ (η(tn, u)) − J̃ (η(t1n , u)) → 0, also κn → 0. Hence we can choose s1n ∈
[tn, t1n ] such that if ũn := η(s1n , u), then J̃ ′(̃un) → 0. As ‖η(s1n , u)‖ is bounded,
(̃un) is a Cerami sequence. A similar argument shows the existence of ṽn :=
η(s2n , u) (s2n ∈ [t2n , tn+1]) such that J̃ ′(̃vn) → 0. Hence

ε

3
≤ lim inf

n→∞ ‖ũn − ṽn‖ ≤ lim sup
n→∞

‖ũn − ṽn‖ ≤ ε + 2

3
ε < mβ

0 ,

which is a contradiction to (M)
β
0 (b).

(ii) Observe that there are no Cerami sequences in X+ \ B(0, Mβ
0 ) at any level

α ∈ [0, β] according to (M)
β
0 (a). Since η(t, u) is unbounded but ‖η(t, u)‖ �→ ∞,

we can find R > Mβ
0 such that there exist arbitrarily large t for which η(t, u) ∈

B(0, R). We can find tn, t1n so that tn → ∞, ‖η(tn, u)‖ = R + 1 and t1n is the
smallest t > tn with ‖η(t1n , u)‖ = R. We may also assume that ‖η(s, u)‖ � R + 1
for s ∈ [tn, t1n ]. Let κn be as above. Then

1 ≤ ‖η(t1n , u) − η(tn, u)‖ ≤ 2

κn

(
J̃ (η(tn, u)) − J̃ (η(t1n , u))

)
,

and hence κn → 0. So we see that there exist ũn := η(s1n , u), s1n ∈ [tn, t1n ], such
that R ≤ ‖ũn‖ ≤ R + 1 and J̃ ′(̃un) → 0. Thus we have found a Cerami sequence
in X+ \ B(0, Mβ

0 ) which is impossible. This shows that case (ii) can never occur.
(iii) There exist R0 > 0 and δ > 0 such that ‖J̃ ′(v)‖ ≥ δ/‖v‖ whenever

‖v‖ ≥ R0 and v ∈ J̃ β
0 (for otherwise there exists an unbounded Cerami sequence).

Choose t0 > 0 so that ‖η(t, u)‖ ≥ R0 and J̃ (η(t0, u)) − J̃ (η(t, u)) ≤ δ/8
for t ≥ t0. For large n let tn be the smallest t such that ‖η(t, u)‖ = n, and let
κn := min{‖J̃ ′(η(t, u))‖ : t ∈ [t0, tn]}. By the choice of tn ,

κn ≥ min
t∈[t0,tn ]

δ

‖η(t, u)‖ = δ

‖η(tn, u)‖ .
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It follows by the same argument as above that for n large enough,

1

2
‖η(tn, u)‖ ≤ ‖η(tn, u) − η(t0, u)‖ ≤ 2

κn

(
J̃ (η(t0, u)) − J̃ (η(tn, u))

)

≤ 2

δ
‖η(tn, u)‖ (J̃ (η(t0, u)) − J̃ (η(tn, u))

)
.

This is a contradiction, and hence case (iii) can also be ruled out. ��
Let � := {A ⊂ X+ : A = −A and A is compact},

H := {h : X+ → X+ is a homeomorphism, h(−u)

= −h(u) and J̃ (h(u)) ≤ J̃ (u) for all u},
and for A ∈ �, put

i∗(A) := min
h∈H

γ (h(A) ∩ S(0, r)),

where r is as in (I6), S(0, r) := {u ∈ X+ : ‖u‖ = r} and γ is Krasnoselskii’s genus
[35]. This is a variant of Benci’s pseudoindex [2,7] and the following properties
are adapted from [30, Lemma 2.16].

Lemma 3.7. Let A, B ∈ �.

(i) If A ⊂ B, then i∗(A) ≤ i∗(B);
(ii) i∗(A ∪ B) ≤ i∗(A) + γ (B);

(iii) If g ∈ H, then i∗(A) ≤ i∗(g(A));
(iv) Let Xk be a k-dimensional subspace of X+. Then i∗(Xk ∩ B(0, R)) ≥ k

whenever R is large enough and B(0, R) := {u ∈ X+ : ‖u‖ � R}.
Proof. (i) follows immediately from the properties of genus.
(ii) For each h ∈ H,

i∗(A ∪ B) ≤ γ (h(A ∪ B) ∩ S(0, r)) = γ ((h(A) ∪ h(B)) ∩ S(0, r))

≤ γ (h(A) ∩ S(0, r)) + γ (B).

Taking the minimum over all h ∈ H on the right-hand side we obtain the
conclusion.

(iii) Since J̃ (g(u)) ≤ J̃ (u) for all u ∈ X+, h ◦ g ∈ H if h ∈ H. Hence {h ◦ g :
h ∈ H} ⊂ H, and therefore

min
h∈H

γ (h(A) ∩ S(0, r)) ≤ min
h∈H

γ ((h ◦ g)(A) ∩ S(0, r)).

(iv) ByLemma 3.2, J̃ (u) < 0 on Xk \B(0, R) if R is large enough. Let D := Xk ∩
B(0, R). Suppose i∗(D) < k, choose h ∈ H such that γ (h(D)∩ S(0, r)) < k
and an odd mapping

f : h(D) ∩ S(0, r) → R
k−1 \ {0}.

Let U := h−1(B(0, r)) ∩ Xk . Since J̃ (h(u)) ≤ J̃ (u) < 0 for u ∈ Xk \
B(0, R) and J̃ (u) ≥ 0 for u ∈ B(0, r), it follows that U ⊂ D \ ∂ D and
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hence U is an open and bounded neighbourhood of 0 in Xk . If u ∈ ∂U ,
then h(u) ∈ S(0, r) and therefore f ◦ h : ∂U → R

k−1 \ {0}, contradicting
the Borsuk–Ulam theorem [35, Proposition II.5.2], [38, Theorem D.17]. So
i∗(D) ≥ k. ��

Proof of Theorem 3.5. (a) Suppose that J̃ has no critical values in [cM, cM +ε0]
for some ε0 ∈ (0, ε]. Thus J̃ has only the trivial critical point 0 in J̃ cM+ε0 .
Take u ∈ J̃ cM+ε0 and observe that byLemma 3.6, either limt→T (u) η(t, u) = 0
or limt→T (u) J̃ (η(t, u)) = −∞. Hence we may define the entrance time map
e : J̃ cM+ε0 → [0,∞) by the formula

e(u) := inf{t ∈ [0, T (u)) : J̃ (η(t, u)) � cM/2}.
Take any γ ∈ �̃ such that

J̃ (γ (t)) = J (m(γ (t))) < cM + ε0 for all t ∈ [0, 1],
where �̃ is given by (3.4). Since e is continuous, γ̃ (t) := η

(
e(γ (t)), γ (t)

)
is a

continuous path in X+ such that J̃ (γ̃ (1)) � J̃ (γ (1)) < 0. Hence γ̃ ∈ �̃ and

cM = inf
σ∈�̃

sup
t∈[0,1]

J̃ (σ (t)) � sup
t∈[0,1]

J̃ (γ̃ (t)) � cM/2.

The obtained contradiction proves that either cM is a critical value or for any
ε0 ∈ (0, ε) we find a critical value in (cM, cM + ε0].

(b) Take β � a and let

Kβ := {u ∈ K : J̃ (u) = β}.
Since there are finitely many critical orbits, there exists ε0 > 0 for which

K ∩ J̃ β+ε0
β−ε0

= Kβ. (3.8)

Choose δ ∈ (0, mβ+ε0
0 ) such that B(u, δ) ∩ B(v, δ) = ∅ for all u, v ∈ Kβ ,

u �= v (this is possible due to Lemma 3.4). We show that there is ε ∈ (0, ε0)
such that

lim
t→T (u)

J̃ (η(t, u)) < β − ε for u ∈ J̃ β+ε
β−ε \ B(Kβ, δ). (3.9)

We assume Kβ �= ∅, the other case being simpler. If u ∈ J̃ β+ε0
β−ε0

\ B(Kβ, δ)

and limt→T (u) J̃ (η(t, u)) < β − ε0, then (3.9) trivially holds. Otherwise

u ∈ A0 := {
u ∈ J̃ β+ε0

β−ε0
\ B(Kβ, δ) : lim

t→T (u)
η(t, u) ∈ Kβ

}
.

Let u ∈ A0 and define

t0(u) := inf
{
t ∈ [0, T (u)) : η(s, u) ∈ B(Kβ, δ) for all s > t

}
,

t (u) := inf
{
t ∈ [t0(u), T (u)) : η(t, u) ∈ B(Kβ, δ/2)

}
,
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and note that 0 � t0(u) < t (u) < T (u). By (3.6), we have

δ

2
� ‖η(t0(u), u) − η(t (u), u)‖ �

∫ t (u)

t0(u)

‖v(η(s, u))‖ ds � t (u) − t0(u).

(3.10)

Let

ρ := inf{‖J̃ ′(η(t, u))‖ : u ∈ A0, t ∈ [t0(u), t (u)]}.
If ρ = 0, then we find un ∈ A0 and tn ∈ (t0(un), t (un)) such that

J̃ ′(η(tn, un)) → 0 as n → ∞.

Since tn > t0(un), we have η(tn, un) ∈ B(Kβ, δ) and passing to a subsequence
we can find u0 ∈ Kβ and gn ∈ G such that

gnη(tn, un) ∈ B(u0, δ).

Since tn < t (un), we see that

gnη(tn, un) /∈ B(Kβ, δ/2).

Let ũn := u0, ṽn := gnη(tn, un). Then ũn and ṽn are twoCerami (in fact Palais–
Smale) sequences such that δ/2 ≤ ‖̃vn − ũn‖ ≤ δ < mβ+ε0

0 , a contradiction.
Therefore ρ > 0, and we take

ε < min
{
ε0,

δρ

8

}
, u ∈ J̃ β+ε

β−ε \ B(Kβ, δ).

Since

J̃ (η(t (u), u)) − J̃ (η(t0(u), u)) = −
∫ t (u)

t0(u)

J̃ ′(η(s, u))[v(η(s, u))] ds

� −1

2

∫ t (u)

t0(u)

‖J̃ ′(η(s, u)‖ ds,

we obtain, using (3.10), that

lim
t→T (u)

J̃ (η(t, u)) � J̃ (η(t (u), u)) � β + ε − 1

2

∫ t (u)

t0(u)

‖J̃ ′(η(s, u)‖ ds

� β + ε − δρ

4
< β − ε.

Hence A0 = ∅ which proves (3.9). Note that this argument also shows η(t, u)

will not enter the set B(Kβ, δ/2) if u ∈ J̃ β+ε
β−ε \ B(Kβ, δ).

Define

βk := inf
i∗(A)≥k

sup
u∈A

J̃ (u), k = 1, 2, . . . ,
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and note that by Lemma 3.7 all βk are well defined, finite and a ≤ β1 ≤
β2 ≤ . . .. Let β = βk for some k � 1. If the set Kβ is nonempty, it is (at
most) countable, so we can order its elements in pairs ±u j and let the map
f : Kβ → R \ {0} be given by f (±u j ) = ±1. This shows that, by the choice
of δ,

γ (B(Kβ, δ)) = γ (Kβ) = 1.

Choose ε > 0 such that (3.9) holds. Take Lipschitz continuous cutoff functions
χ, ξ such that χ = 0 in B(Kβ, δ/4), χ = 1 in X+ \ B(Kβ, δ/2) and ξ = 1 in
J̃ β+ε

β−ε , ξ = 0 in X+ \ U , where U is an open neighbourhood of J̃ β+ε
β−ε with

K ∩ U = Kβ . Let η̃ : R × X+ → X+ be the flow given by

{
∂t η̃(t, u) = −χ(̃η(t, u))ξ(̃η(t, u))v(̃η(t, u))

η̃(0, u) = u.

Then η̃(t, u) = η(t, u) as long as t ≥ 0 and η̃(t, u) ∈ J̃ β+ε
β−ε \B(Kβ, δ/2). Using

(3.9), we can define the entrance time map e : J̃ β+ε \ B(Kβ, δ) → [0,∞) as
follows:

e(u) := inf{t ∈ [0,∞) : J̃ (̃η(s, u)) � β − ε}.

Since η(s, u) /∈ B(Kβ, δ/2) as we have observed, e is finite. It is standard to
show that e is continuous and even. Take any A ∈ � such that i∗(A) � k and
J̃ (u) � β + ε for u ∈ A. Let T := supu∈A e(u); then T < ∞ since A is
compact. Set h := η̃(T, ·) and note that h ∈ H and

h(A \ B(Kβ, δ)) ⊂ J̃ β−ε.

Therefore

i∗(A \ B(Kβ, δ)) � i∗(h(A \ B(Kβ, δ))) � k − 1

and

k � i∗(A) � γ (B(Kβ, δ) ∩ A) + i∗(A \ B(Kβ, δ)) � γ (Kβ) + k − 1.

(3.11)

Thus Kβ �= ∅, so as we have shown above, γ (Kβ) = 1. If βk = βk+1 for
some k � 1, then (3.11) implies γ (Kβk ) � 2, a contradiction. Hence we get
an infinite sequence β1 < β2 < . . . of critical values which contradicts our
assumption thatK consists of a finite number of distinct orbits. This completes
the proof. ��
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4. Properties of the functional J for curl–curl

Recall our earlier assumption that (N1)–(N3) and (F1)–(F5) hold.Wewill check
that assumptions (I1)–(I8) are satisfied and we want to apply Theorems 3.3 and 3.5.

Define the manifold

M := {(v,w) ∈ V × W : J ′(v,w)[(0, ψ)] = 0 for any ψ ∈ W} (4.1)

and the Nehari-Pankov set for J :

N := {(v,w) ∈ V × W : u �= 0, J ′(v,w)[(v,w)] = 0

and J ′(v,w)[(0, ψ)] = 0 for any ψ ∈ W} ⊂ M. (4.2)

Observe that E = v + w ∈ NE if and only if (v,w) ∈ N (NE is defined in (1.7)).
Moreover,N contains all nontrivial critical points of J . In general,NE ,N andM
are not C1-manifolds.

Proposition 4.1. If (v,w) ∈ V × W , then

J (tv, tw + ψ) − J ′(v,w)

[( t2 − 1

2
v,

t2 − 1

2
w + tψ

)]
� J (v,w)

for any ψ ∈ W and t � 0.

Proof. Let (v,w) ∈ V × W , ψ ∈ W , t � 0. We define

D(t, ψ) := J (tv, tw + ψ) − J (v,w) − J ′(v,w)

[( t2 − 1

2
v,

t2 − 1

2
w + tψ

)]
,

and observe that

D(t, ψ) =
∫
R3

〈 f (x, v + w),
t2 − 1

2
(v + w) + tψ〉 dx

+
∫
R3

F(x, v + w) − F(x, t (v + w) + ψ) dx .

For fixed v,w ∈ R
3, define a map ϕ : [0,+∞) × R

3 → R as follows:

ϕ(t, ψ) := 〈 f (x, v + w),
t2 − 1

2
(v + w) + tψ〉

+F(x, v + w) − F(x, t (v + w) + ψ).

We shall show that ϕ(t, ψ) � 0 for all t � 0, ψ ∈ R
3. This is clear if v + w = 0.

So let v +w �= 0 and ζ := t (v +w)+ψ . By (F3), (F4), we have ϕ(0, ψ) � 0 and

ϕ(t, ψ) ≤ 〈 f (x, v + w),
t2 − 1

2
(v + w) + t (ζ − t (v + w))〉

+1

2
〈 f (x, v + w), v + w〉 − F(x, ζ )

= −1

2
t2〈 f (x, v + w), v + w〉

+t〈 f (x, v + w), ζ 〉 − A|ζ |2 + (A|ζ |2 − F(x, ζ )).
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If A is large enough, then the quadratic form (in t and ζ ) above is negative definite.
Moreover, A|ζ |2 − F(x, ζ ) is bounded above by superquadraticity of F implied by
(F3) and (N3). Hence ϕ(t, ψ) → −∞ as t +|ψ | → ∞ and ϕ attains a maximum at
some (t, ψ) with t � 0. If t = 0, then ϕ(t, ψ) � 0 as we have already mentioned.
If t > 0, then

∂tϕ(t, ψ) = 〈 f (x, v + w), t (v + w) + ψ〉 − 〈 f (x, t (v + w) + ψ), v + w〉 = 0,

(4.3)

∂ψϕ(t, ψ) = t f (x, v + w) − f (x, t (v + w) + ψ) = 0. (4.4)

Using (4.4) in (4.3) we see that both terms in (4.3) are positive (because 〈 f (x, v +
w), v + w〉 > 0) and 〈 f (x, v + w),ψ〉 = 0. This and (F5) imply that

ϕ(t, ψ) = t2 − 1

2
〈 f (x, v + w), v + w〉 + F(x, v + w) − F(x, t (v + w) + ψ) ≤ 0.

��
Consider I : L� → R and I : L� × W → R given by

I(v,w) := I (v + w) :=
∫
R3

F(x, v + w) dx for (v,w) ∈ L� × W. (4.5)

By Proposition 2.6, I and I are of class C1. In view of (F2), I and I are strictly
convex. Moreover, the following property holds:

Lemma 4.2. If En ⇀ E in L� and I (En) → I (E) then En → E in L�.

Before proving the above lemma we need a variant of the Brezis–Lieb result
[13] for sequences in L�.

Lemma 4.3. Let (En) be a bounded sequence in L� such that En → E almost
everywhere on R

3. Then

lim
n→+∞

∫
R3

F(x, En) − F(x, En − E) dx =
∫
R3

F(x, E) dx .

Proof. Note that

∫
R3

F(x, En) − F(x, En − E) dx =
∫
R3

∫ 1

0

d

dt
F(x, En − E + t E) dt dx

=
∫ 1

0

∫
R3

〈 f (x, En − E + t E), E〉 dx dt,

and f (x, En − E + t E) is bounded in L
 according to (F3) and Lemmas 2.2
(iv), 2.5. Thus, for any � ⊂ R

3,
∫

�

|〈 f (x, En − E + t E), E〉| dx � | f (x, En − E + t E)|
 |Eχ�|�. (4.6)
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By [29, Definition III.4.2, Corollary III.4.5 and Theorem III.4.14] the space L�

has an absolutely continuous norm, so by (4.6), for any ε > 0 there is δ > 0 such
that if |�| < δ (|�| denotes the measure of �), then

∫
�

|〈 f (x, En − E + t E), E〉| dx < ε,

independently of n. Thus (〈 f (x, En − E + t E), E〉) is uniformly integrable. Using
(4.6) once more we see that for any ε > 0 there is � ⊂ R

3 with |�| < +∞ such
that

∫
�c

〈 f (x, En − E + t E), E〉 dx < ε.

Indeed, ifχn is the characteristic functionof the set |x | ≥ n, then
∫
R3 �(|Eχn|) dx →

0 and therefore |Eχn|� → 0 by Lemma 2.2(iii). Hence � exists as claimed and
(〈 f (x, En − E + t E), E〉) is tight. Since En(x) − E(x) → 0 almost everywhere
on R

3, it follows from the Vitali convergence theorem that

∫
R3

F(x, En) − F(x, En − E) dx →
∫ 1

0

∫
R3

〈 f (x, t E), E〉 dx dt

=
∫
R3

F(x, E) dx .

��
Proof of Lemma 4.2. We show that (up to a subsequence) En(x) → E(x) almost
everywhere on R3. Since I (En) → I (E), we have

lim
n→∞

∫
R3

F(x, En) dx =
∫
R3

F(x, E) dx . (4.7)

Then from (F2), we infer that, for any 0 < r � R,

mr,R := inf
x,u1,u2∈R3

r�|u1−u2|,
|u1|,|u2|�R

1

2
(F(x, u1) + F(x, u2)) − F

(
x,

u1 + u2

2

)
> 0. (4.8)

Observe that by (4.7) and the convexity of F ,

0 � lim sup
n→∞

∫
R3

1

2
(F(x, En) + F(x, E)) − F

(
x,

En + E

2

)
dx � 0.

Therefore, setting

�n := {x ∈ R
3 : |En − E | � r, |En| � R, |E | � R},

it holds that

|�n|mr,R �
∫
R3

1

2
(F(x, En) + F(x, E)) − F

(
x,

En + E

2

)
dx,
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and thus |�n| → 0 as n → ∞. Since 0 < r � R are arbitrarily chosen, we deduce

En → E almost everywhere on R
3.

In view of Lemma 4.3, we obtain
∫
R3

F(x, En) dx −
∫
R3

F(x, En − E) dx →
∫
R3

F(x, E) dx,

and hence
∫
R3

F(x, En − E) dx → 0.

By (F3) and Lemma 2.2 (iii), we get |En − E |� → 0. ��
Proposition 4.4. Conditions (I1)–(I8) are satisfied and there is a Cerami sequence
(vn, wn) ⊂ Mat the level cN , that is,J (vn, wn) → cN and (1+‖(vn, wn)‖)J ′(vn,

wn) → 0 as n → ∞, where

cN := inf
(v,w)∈N

J (v,w) > 0.

Proof. Setting X := V × W , X+ := V × {0} and X̃ := {0} × V we check
assumptions (I1)–(I8) for the functional J : X → R given by

J (v,w) = 1

2
‖v‖2D − I(v,w)

(cf. (2.2) and (4.5)). Recall

‖(v,w)‖ := (‖v‖2D + |w|2�
) 1
2 , where ‖v‖D = |∇v|2.

The convexity and differentiability of I, (F3) and Lemma 4.2 yield

(I1) I|V×W ∈ C1(V×W,R) and I(v,w) � I(0, 0) = 0 for any (v,w) ∈ V×W;
(I2) If vn → v in V , wn ⇀ w inW , then lim inf

n→∞ I(vn, wn) � I(v,w);

(I3) If vn → v in V , wn ⇀ w in W and I(vn, wn) → I(v,w), then (vn, wn) →
(u, w).

Moreover,

(I6) There exists r > 0 such that inf‖v‖D=r J (v, 0) > 0.

Indeed, by (F3) and (N2) there exist C , C ′ > 0 (cf. proof of Lemma 2.3) such that,
for any v ∈ V ,

J (v, 0) = ‖v‖2D −
∫
R3

F(x, v) dx � ‖v‖2D − C
∫
R3

|v|6 dx � ‖v‖2D − C ′‖v‖6D,

and thus (I6) is satisfied. It is easy to verify using (F3) and (iv) of Lemma 2.2 that

(I4) ‖v‖D + I(v,w) → ∞ as ‖(v,w)‖ → ∞.

Hence, we also have that
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(I5) If (v,w) ∈ M, then I(v,w) < I(v,w + ψ) for any ψ ∈ W \ {0}
holds by the strict convexity of F . Next, we prove

(I7) I(tn(vn, wn))/t2n → ∞ if tn → ∞ and vn → v for some v �= 0 as n → ∞.

Observe that, by (F3),

I(tn(vn, wn))/t2n =
∫
R3

F(x, tn(vn + wn))/t2n dx

� c2

∫
R3

�(tn|vn + wn|)/t2n dx

= c2

∫
R3

�(tn|vn + wn|)
t2n |vn + wn|2 |vn + wn|2 dx . (4.9)

Take R0 > 0 such that v �= 0 in L2(B(0, R0)). In view of (N3), we find C > 0
such that

C�(t) � t2 for t � 1.

Then ∫
B(0,R)

|vn + wn|2 dx � C
∫
R3

�(tn|vn + wn|)/t2n dx

+
∫

B(0,R)∩{|vn+wn |�1}
|vn + wn|2 dx, (4.10)

and I(tn(vn, wn))/t2n → ∞ provided vn + wn is unbounded in L2(B(0, R),R3)

for some R � R0. Now, suppose that vn + wn is bounded in L2(B(0, R),R3)

for any R � R0. We may assume passing to a subsequence that vn → v almost
everywhere and wn ⇀ w in L2

loc(R
3,R3) for some w. Given ε > 0, let

�n := {x ∈ R
3 : |vn(x) + wn(x)| ≥ ε}. (4.11)

We claim that there exists ε > 0 such that limn→∞ |�n| > 0, possibly after
passing to a subsequence. Arguing indirectly, suppose this limit is 0 for each ε.
Then vn + wn → 0 in measure, so up to a subsequence vn + wn → 0 almost
everywhere, hence wn → −v almost everywhere and wn ⇀ −v in L2

loc(R
3,R3).

Since ∇ × wn = 0 in the distributional sense, the same is true of v. Thus there is
ξ ∈ H1

loc(R
3) such that v = ∇ξ , see [21, Lemma 1.1(i)]. As div(∇ξ) = div v = 0,

it follows that ξ , and therefore v, is harmonic. Recalling that v ∈ D, we obtain
v = 0 as in the proof of Lemma 2.4. This is a contradiction. Taking ε in (4.11) such
that limn→∞ |�n| > 0, we obtain
∫
R3

�(tn|vn + wn|)
t2n |vn + wn|2 |vn + wn|2 dx ≥

∫
�n

�(tn|vn + wn|)
t2n |vn + wn|2 |vn + wn|2 dx → ∞.

Finally, Proposition 4.1 shows that

(I8) t2−1
2 I ′(v,w)[(v,w)] + tI ′(v,w)[(0, ψ)] + I(v,w) − I(tv, tw + ψ) � 0

for any t � 0, v ∈ V and w,ψ ∈ W .
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Applying Theorem 3.3, we obtain the last conclusion. ��
Since there is no compact embedding of V into L� we cannot expect that the
Palais–Smale or Cerami condition is satisfied. We need the following variant of
Lions’ lemma:

Lemma 4.5. Suppose that (vn) ⊂ D is bounded and that for some r >
√
3,

sup
y∈Z3

∫
B(y,r)

|vn|2 dx → 0 as n → ∞. (4.12)

Then
∫
R3

�(|vn|) dx → 0 as n → ∞.

Proof. This follows from [28, Lemma 1.5], since � satisfies (N2). ��
We collect further properties of I.

Lemma 4.6. (a) For any v ∈ L� there is a unique w(v) ∈ W such that

I(v,w(v)) = inf
w∈W

I(v,w). (4.13)

Moreover, w : L� → W is continuous.
(b) w maps bounded sets into bounded sets and w(0) = 0.

Proof. (a) Let v ∈ L�. Since W � w → I(v,w) ∈ R is continuous, strictly
convex and coercive, there exists a unique w(v) ∈ W such that (4.13) holds. We
show that the map w : L� → W is continuous. Let vn → v in L�. Since

0 � I(vn, w(vn)) � I(vn, 0), (4.14)

w(vn) is bounded and we may assume w(vn) ⇀ w0 for some w0 ∈ W . Observe
that by the (sequential) lower semi-continuity of I we get

I(v,w(v)) � I(v,w0) � lim inf
n→∞ I(vn, w(vn))

� lim inf
n→∞ I(vn, w(v)) = I(v,w(v)).

Hence w(v) = w0 and by Lemma 4.2 we have vn + w(vn) → v + w(v) in L�.
Thus w(vn) → w(v) inW .

(b) This follows from inequality (4.14), (F3) and Lemma 2.2 (iv). ��
Let m(v) := (v,w(v)) ∈ M for v ∈ V . Then in view of Lemma 4.6 (a),

m : V → M is continuous. The following lemma implies that anyCerami sequence
of J inM and any Cerami sequence of J ◦ m are bounded.

Lemma 4.7. If (vn) ⊂ V is such that (J ◦ m)(vn) � β and (1 + ‖vn‖)(J ◦
m)′(vn) → 0 as n → ∞, then (vn) is bounded.
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Proof. Suppose that m(vn) = (vn, wn) ∈ M, ‖(vn, wn)‖ → ∞ as n → ∞ and
J (vn, wn) ≤ β. Since wn = w(vn), ‖(vn, wn)‖ → ∞ if and only if ‖vn‖D → ∞.
Let v̄n := vn/‖vn‖D and w̄n := wn/‖vn‖D. Assume

lim
n→∞ sup

y∈Z3

∫
B(y,r)

|v̄n|2 dx = 0

for some fixed r >
√
3. By Lemma 4.5, limn→∞

∫
R3 �(|v̄n|) dx = 0, and ar-

guing similarly as Liu [23], we obtain a contradiction. More precisely, recalling
J ′(vn, wn)[wn] = 0, Proposition 4.1 with tn = s/‖vn‖D andψn = −tnwn implies
that, for every s > 0,

β ≥ lim sup
n→∞

J (vn, wn)

≥ lim sup
n→∞

J (sv̄n, 0)

− lim
n→∞J ′(vn, wn)

[( t2n − 1

2
vn,− t2n + 1

2
wn

)]
= lim sup

n→∞
J (sv̄n, 0)

(F3)≥ s2

2
− lim

n→∞ c1

∫
R3

�(s|v̄n|) dx = s2

2
,

which is impossible. Hence lim infn→∞
∫

B(yn ,r)
|v̄n|2 dx > 0 for some sequence

(yn) ⊂ Z
3. Since M and J are invariant with respect to Z

3-translations, we may
assume that ∫

B(0,r)

|v̄n|2 dx � c > 0

for all n sufficiently large and some constant c. This implies that, up to a subse-
quence, v̄n ⇀ v̄ �= 0 inD, v̄n → v̄ in L2

loc(R
3,R3) and v̄n → v̄ almost everywhere

in R3 for some v̄ ∈ D. By (F4),

2J (vn, wn) − J ′(vn, wn)[(vn, wn)] =
∫
R3

(〈 f (x, vn + wn), vn + wn〉
−2F(x, vn + wn)) dx ≥ 0,

so J (vn, wn) is bounded below and

α ≤ J (vn, wn)

‖vn‖2D
≤ 1

2
‖v̄n‖2D − c2

∫
R3

�(vn + wn)

|vn + wn|2 |v̄n + w̄n|2 dx

for some constant α (cf. (4.9) for the second inequality). Hence it suffices to show
that the integral on the right-hand side above goes to +∞. We can argue as in the
proof of (I7) in Proposition 4.4. In particular, (4.10) holds with vn + wn replaced
by v̄n + w̄n and tn replaced by ‖vn‖D, and if�n is as in (4.11) (again, with vn +wn

replaced by v̄n + w̄n), then limn→∞ |�n| > 0 for a subsequence. ��
Corollary 4.8. Let β > 0. There exists Mβ > 0 such that for every (vn) ⊂
V satisfying 0 ≤ lim infn→∞ J

(
m(vn)

) ≤ lim supn→∞ J
(
m(vn)

) ≤ β and
limn→∞(1 + ‖vn‖)J ′(m(vn)

) = 0 there holds lim supn→∞ ‖vn‖ ≤ Mβ .
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Proof. If no finite bound Mβ exists, for each k there is a sequence (vk
n) satisfying

the assumptions above and such that lim supn→∞ ‖vk
n‖ ≥ k. Now it is easy to find

n(k) in such a way that (vk
n(k)) is an unbounded sequence satisfying the hypotheses

of Lemma 4.7, which is a contradiction. ��

5. Weak-to-weak∗ convergence in M

Lemma 5.1. Suppose that � is a bounded Lipschitz domain. Then H1(�) is com-
pactly embedded in L�(�).

Proof. Suppose un ⇀ 0 in H1(�). Then un ⇀ 0 in L6(�), un → 0 in L2(�) and
un → 0 almost everywhere in � after passing to a subsequence. By (N2), for each
ε > 0 there exists Cε such that �(t) ≤ εt6 for t > Cε. Hence
∫

�

�(|un|) dx =
∫

�∩{|un |≤Cε}
�(|un|) dx

+
∫

�∩{|un |>Cε}
�(|un|) dx ≤

∫
�∩{|un |≤Cε}

�(|un|) dx + Cε,

where the constant C depends only on the L6- bound on (un). By the dominated
convergence theorem and since ε is arbitrary,

∫
�

�(|un|) dx → 0 and |un|� → 0
according to Lemma 2.2(iii). ��
Proposition 5.2. If vn ⇀ v in D, then w(vn) ⇀ w(v) in W and, after passing to
a subsequence, w(vn) → w(v) almost everywhere in R

3.

Proof. It follows from the definition (4.13) of w(v) that
∫
R3

〈 f
(
x, vn + w(vn)

)
, z〉 dx = 0 =

∫
R3

〈 f
(
x, v + w(v)

)
, z〉 dx for all z ∈ W.

(5.1)

Since the sequence (vn) is bounded, so is
(
w(vn)

)
by Lemma 4.6(b). Hence we

may assumew(vn) ⇀ w0 for somew0. In addition, since vn → v in L2
loc(R

3,R3),
then vn → v almost everywhere after passing to a subsequence.

Let � ⊂ R
3 be bounded and let ζ ∈ C∞

0 (R3, [0, 1]) be such that ζ = 1 in �.
By (F3) and Lemmas 2.2(ii), 2.5, 5.1, for some constant C > 0, we have

0 ≤
∫
R3

| f
(
x, vn + w(vn)

)| |vn − v| ζ dx

≤ C |�′(|vn + w(vn)|)|
 |(vn − v)ζ |� → 0. (5.2)

Choose R so that suppζ ⊂ B(0, R). By (N3),
(
w(vn)

)
is bounded in L2(B(0, R),R3).

Indeed,

C1 ≥
∫

B(0,R)∩{|w(vn)|≥1}
�(|w(vn)|) dx ≥ C2

∫
B(0,R)∩{|w(vn)|≥1}

|w(vn)|2 dx
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for suitable C1, C2 > 0. By [21, Lemma 1.1(i)], for every n there exists ξn ∈
H1(B(0, R)) such that w(vn) = ∇ξn . We may assume

∫
B(0,R)

ξn dx = 0. Then by
the Poincaré inequality,

‖ξn‖H1(B(0,R)) ≤ C ′|∇ξn|L2(B(0,R)) ≤ C ′′

for some C ′, C ′′ > 0. Hence in view of Lemma 5.1, up to a subsequence, ξn → ξ

in L�
(
B(0, R)

)
for some ξ ∈ H1(B(0, R)). Similarly as in (5.2), we have

lim
n→∞

∫
R3

| f
(
x, vn + w(vn)

)| |∇ζ | |ξn − ξ | dx = 0. (5.3)

The limits in (5.2) and (5.3) are 0 also if f (x, vn + w(vn)) is replaced by f (x, v +
∇ξ). Combining (5.1)–(5.3) we obtain

lim
n→∞

∫
R3

〈 f
(
x, vn + w(vn)

) − f
(
x, v + ∇ξ

)
, ζ

(
vn − v + w(vn) − ∇ξ

)〉 dx,

(5.4)

where we have taken z = ∇(
ζ(ξn − ξ)

)
in (5.1). We shall show that vn +w(vn) →

v + ∇ξ almost everywhere in �. The convexity of F in u implies that

F
(

x,
u1 + u2

2

)
� F(x, u1) +

〈
f (x, u1),

u2 − u1

2

〉

and

F
(

x,
u1 + u2

2

)
� F(x, u2) +

〈
f (x, u2),

u1 − u2

2

〉
.

Adding these inequalities and using (F2), we obtain for any 0 < r � R and
|u1 − u2| ≥ r , |u1|, |u2| ≤ R that

mr,R ≤ 1

2
(F(x, u1) + F(x, u2)) − F

(
x,

u1 + u2

2

)

≤ 1

4
〈 f (x, u1) − f (x, u2), u1 − u2〉,

where mr,R has been defined in (4.8). Since ζ = 1 in �, it is now easy to see
from (5.4) that vn + w(vn) → v + ∇ξ almost everywhere in � as claimed. Since
w(vn) ⇀ w0, w0 = ∇ξ and by the usual diagonal procedure we obtain almost
everywhere convergence to v + w0 in R

3. Take any w ∈ W and observe that, by
the Vitali convergence theorem,

0 =
∫
R3

〈 f (x, vn + w(vn)), w〉 dx →
∫
R3

〈 f (x, v + w0), w〉 dx .

The uniqueness of a minimizer (see Lemma 4.6) implies that w0 = w(v).
So far we have shown that if vn ⇀ v in D, then a subsequence of (w(vn))

converges almost everywhere in R3, and therefore weakly inW , to w(v), but since
each subsequence of (w(vn)) has a subsequence converging weakly to w(v), we
can conclude that w(vn) ⇀ w(v) for the full sequence. ��
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In generalJ ′ is not (sequentially)weak-to-weak∗ continuous, howeverwe show
the weak-to-weak∗ continuity of J ′ for sequences on the topological manifoldM.
Obviously, the same regularity holds for E ′ and ME .

Corollary 5.3. If (vn, wn) ∈ M and (vn, wn) ⇀ (v0, w0) in V × W then J ′(vn,

wn) ⇀ J ′(v0, w0), that is

J ′(vn, wn)[(φ,ψ)] → J ′(v0, w0)[(φ,ψ)]
for any (φ,ψ) ∈ V × W .

Proof. By Lemma 4.6(a) we get wn = w(vn). In view of Proposition 5.2, we may
assume vn + wn → v0 + w0 almost everywhere in R

3 (where w0 = w(v0)). For
(φ,ψ) ∈ V × W we have

J ′(vn, wn)[(φ,ψ)] − J ′(v0, w0)[(φ,ψ)] =
∫
R3

〈∇vn − ∇v0,∇φ〉 dx

−
∫
R3

〈 f (x, vn + wn) − f (x, u0 + w0), φ + ψ〉 dx .

We may assume φ,ψ are compactly supported. Let � be a bounded set containing
the support of φ + ψ . Then

∫
�

|〈 f (x, vn + wn) − f (x, u0 + w0), φ + ψ〉| dx

≤ | f (x, vn + wn) − f (x, u0 + w0)|Lψ(�)|φ + ψ |L�(�)

(cf. (4.6)). In view of the Vitali convergence theorem and uniform integrability of
the norm [29, Theorem III.4.14], we obtain

J ′(vn, wn)[(φ,ψ)] − J ′(v0, w0)[(φ,ψ)] → 0.

��

6. Proof of Theorem 1.1

Recall that the group G := Z
3 acts isometrically by translations on X = V×W

and J is Z3-invariant. Let

K := {
v ∈ V : (J ◦ m)′(u) = 0

}
,

and suppose that K consists of a finite number of distinct orbits. It is clear that Z3

acts discretely and hence satisfies the condition (G) in Section 3. Then, in view of
Lemma 3.4,

κ := inf
{‖v − v′‖D : J ′(m(v)

) = J ′(m(v′)
) = 0, v �= v′} > 0.
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Lemma 6.1. Let β ≥ cN and suppose that K has a finite number of distinct
orbits. If (un), (vn) ⊂ V are two Cerami sequences for J ◦ m such that 0 ≤
lim infn→∞ J

(
m(un)

) ≤ lim supn→∞ J
(
m(un)

) ≤ β,0 ≤ lim infn→∞ J
(
m(vn)

)
≤ lim supn→∞ J

(
m(vn)

) ≤ β and lim infn→∞ ‖un−vn‖D < κ , then limn→∞ ‖un

− vn‖D = 0.

Proof. Let m(un) = (un, w1
n), m(vn) = (vn, w2

n). By Corollary 4.8, m(un), m(vn)

are bounded. We first consider the case

lim
n→∞ |un − vn|� = 0, (6.1)

and prove that

lim
n→∞ ‖un − vn‖D = 0. (6.2)

By (F3) and Lemmas 2.2(ii), 2.5, 4.7, we have

‖un − vn‖2D =J ′(m(un))[(un − vn, 0)] − J ′(m(vn))[(un − vn, 0)]
+

∫
R

〈 f (x, m(un)) − f (x, m(vn)), un − vn〉 dx ≤

≤ o(1) +
∫
R

(| f (x, m(un))| + | f (x, m(vn))|)|un − vn| dx

≤ o(1) + c1

∫
R

(
�′(|m(un)|) + �′(|m(vn)|)

)|un − vn| dx

≤ o(1) + c1
(|�′(|m(un)|)|
 + |�′(|m(vn)|)|


) |un − vn|� → 0,

which gives (6.2).
Suppose now (6.1) does not hold. By Lemma 2.2 (iii) and Lemma 4.5, for a

fixed R >
√
3 there exist ε > 0 and a sequence (yn) ⊂ Z

3 such that, passing to a
subsequence,

∫
B(yn ,R)

|un − vn|2 dx ≥ ε. (6.3)

Since J is Z3-invariant, we may assume yn = 0. As m(un), m(vn) are bounded,
up to a subsequence,

(un, w1
n) ⇀ (u, w1) and (vn, w2

n) ⇀ (v,w2) in V × W (6.4)

for some (u, w1), (v,w2) ∈ V × W . As un → u and vn → v in L2
loc(R

3,R3),
u �= v according to (6.3). From Corollary 5.3 and (6.4) we infer that

J ′(u, w1) = J ′(v,w2) = 0.

Thus

lim inf
n→∞ ‖un − vn‖D ≥ ‖u − v‖D ≥ κ,

which is a contradiction. ��
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Proof of Theorem 1.1. (a) The existence of a Cerami sequence ((vn, wn)) ⊂ M
at the level cN follows from Proposition 4.4, and this sequence is bounded by
Corollary 4.8. Similarly as in the proof of Lemma 6.1, we find v ∈ V \ {0} such
that (vn, wn) ⇀ (v,w) and (vn, wn) → (v,w) almost everywhere inR3 along
a subsequence andJ ′(v,w) = 0 (withw = w(v)). More precisely, if |vn|� →
0, then (6.2) with un = 0 holds by the same argument. This is impossible
because J (m(vn)) → cN > 0. Hence (6.3) with un = 0 is satisfied and we
may assume making translations by yn if necessary that

∫
B(0,R)

|vn|2 dx ≥ ε.
Thus v �= 0. By Fatou’s lemma and (F4),

cN = lim
n→∞J (vn, wn) = lim

n→∞
(
J (vn, wn) − 1

2
J ′(vn, wn)[(vn, wn)]

)

� J (v,w) − 1

2
J ′(v,w)[(v,w)] = J (v,w).

Since (v,w) ∈ N , J (v,w) = cN and E = v + w solves (1.1). Note that here
we have not assumed K has finitely many distinct orbits.

(b) In order to complete the proof we use directly Theorem 3.5(b). That (I1)–
(I8) are satisfied and (M)

β
0 holds for all β > 0 follow from Proposition 4.4,

Corollary 4.8 and Lemma 6.1. ��

7. A remark on the Schrödinger equation

Theorem 3.5 can also be used to deal with the Schrödinger equation or a system
of equations. In particular, one can use it to obtain alternative proofs of the results
in [18,36]. Contrary to [18], we do not need to use nonsmooth critical point theory.

Below we briefly discuss a very simple application of Theorem 3.5, yet our
result extends and complements known ones. We leave the details to the reader. We
look for solutions to the equation

− �u = f (x, u), x ∈ R
N , N ≥ 3. (7.1)

The functional

J (u) := 1

2

∫
RN

|∇u|2 dx −
∫
RN

F(x, u) dx

corresponding to (7.1) is of class C1 on D1,2(RN ) if f satisfies the following
assumptions:

(AF1) F : R
N × R → R is differentiable with respect to the second variable

u ∈ R and f := ∂u F : RN × R → R is a Carathéodory function (that is,
measurable in x ∈ R

N , continuous in u ∈ R for almost every x ∈ R
N ).

Moreover, f is ZN -periodic in x , that is, f (x, u) = f (x + y, u) for x ∈
R

N , u ∈ R and y ∈ Z
N ;

(AF2) lim
u→0

f (x, u)/|u|2∗−1 = lim|u|→∞ f (x, u)/|u|2∗−1 = 0 uniformly in x where

2∗ := 2N/(N − 2);
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(AF3) F(x, u)/u2 → ∞ uniformly in x as |u| → ∞;
(AF4) f (x, u)/|u| is non-decreasing on (−∞, 0) and on (0,∞).

Note that there is no convexity-type assumption similar to (F2). However, (AF4)
implies (not necessarily uniform) convexity of F aswell as (F4). Since the quadratic
part of J is positive definite, we have X+ = M = D1,2(RN ) and X̃ = {0}, so
m(u) = u here and we easily check (I1)–(I8) from Section 3. In fact (I2)–(I4)
are trivially satisfied, (I5) is an empty condition and (I8) becomes much simpler
because v is necessarily 0. Using Theorems 3.3 and 3.5 we obtain the following
result:

Theorem 7.1. Assume that (AF1)–(AF4) hold. Then

(a) Equation (7.1) has a ground state solution, that is, there is a critical point
u ∈ N of J such that

J (u) = inf
N

J > 0

where

N := {
u ∈ D1,2(RN ) : u �= 0, J ′(u)(u) = 0

};
(b) If in addition F is even in u, then there is an infinite sequence (un) ⊂ N of

geometrically distinct solutions of (1.1), that is, solutions such that (ZN ∗un)∩
(ZN ∗ um) = ∅ for n �= m where

Z
N ∗ un := {un(· + y) : y ∈ Z

N }.
Problem (7.1) with growth of the form (AF2) is the so called zero mass case

introduced in [11] for the autonomous nonlinearity f (x, u) = f (u). In the nonau-
tonomous case it has been studied for example in [9,15], see also the references
therein. In [9,15] more restrictive growth conditions have been imposed. In par-
ticular, F is of order |u|q for small |u| > 0 and of order |u|p for |u| large
where 2 < p < 2∗ < q. This makes it necessary to work in the Orlicz space
L p(RN ) + Lq(RN ). In Theorem 7.1 we are able to deal with a class of nonlineari-
ties with less restrictive growth conditions (AF2) and we no longer need to use any
Orlicz setting.
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Poland.

and

Andrzej Szulkin
Department of Mathematics,

Stockholm University,
106 91 Stockholm

Sweden.
e-mail: andrzejs@math.su.se

(Received January 17, 2019 / Accepted October 29, 2019)
Published online November 21, 2019

© The Author(s) (2019)


	Multiple Solutions to a Nonlinear Curl–Curl Problem in mathbbR3
	Abstract
	2 Preliminaries and variational setting
	3 Critical point theory
	4 Properties of the functional J for curl–curl
	5 Weak-to-weak* convergence in mathcalM
	6 Proof of Theorem 1.1
	7 A remark on the Schrödinger equation
	Acknowledgements.
	References




