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Abstract

We address the question of the convergence of evolving interacting particle
systems as the number of particles tends to infinity. We consider two types of
particles, called positive and negative. Same-sign particles repel each other, and
opposite-sign particles attract each other. The interaction potential is the same for
all particles, up to the sign, and has a logarithmic singularity at zero. The central
example of such systems is that of dislocations in crystals. Because of the singularity
in the interaction potential, the discrete evolution leads to blow-up in finite time.
We remedy this situation by regularising the interaction potential at a length-scale
δn > 0, which converges to zero as the number of particles n tends to infinity.
We establish two main results. The first one is an evolutionary convergence result
showing that the empirical measures of the positive and of the negative particles
converge to a solution of a set of coupled PDEs which describe the evolution of
their continuum densities. In the setting of dislocations these PDEs are known
as the Groma–Balogh equations. In the proof we rely on both the theory of λ-
convex gradient flows, to establish a quantitative bound on the distance between
the empiricalmeasures and the continuum solution to a δn-regularised version of the
Groma–Balogh equations, and a priori estimates for the Groma–Balogh equations
to pass to the small-regularisation limit in a functional setting based on Orlicz
spaces. In order for the quantitative bound not to degenerate too fast in the limit
n→∞ we require δn to converge to zero sufficiently slowly. The second result is
a counterexample, demonstrating that if δn converges to zero sufficiently fast, then
the limits of the empirical measures of the positive and the negative dislocations
do not satisfy the Groma–Balogh equations. These results show how the validity
of the Groma–Balogh equations as the limit of many-particle systems depends in
a subtle way on the scale at which the singularity of the potential is regularised.
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1. Introduction

1.1. Multi-sign Particle Systems and Dislocations

There is a vast literature on the properties of interacting particle systems, both
deterministic and stochastic, as well as on their limits as the number of particles
tends to infinity. Themost common situation in the rigorousmathematical literature
is that of indistinguishable particles. For many systems of this type, especially with
bounded interactions, the many-particle limit has been characterised in various
ways; see e.g. [12,43,56,63,64] for reviews. For unbounded interaction forces the
situation is more delicate, and rigorous proofs of convergence are more recent
[2,16,17,33,40,50,54,58,60,68,69].

In this paper we study a type of particle system that is less intensively studied: a
system with two species, called positive and negative particles [8,19,21,29,30,65].
In our setting,we also consider singular interactions. Such systems arise naturally as
models of the evolution of dislocations in crystals. Since this example is important
for our work, we now explain it in some detail.

Dislocations are defects in an atomic lattice, and they are central to the theory
of plastic deformation. A dislocation can be viewed as a quantum of plastic slip:
the smallest amount of plastic deformation that the lattice admits. Macroscopic,
continuum-scale plastic deformation is the collective result of the motion of a large
number of dislocations.

Models of plastic deformation vary depending on the scale at which they
describe the system. At scales of millimeters or larger, plastic deformation is
well described by continuum-level theories (see e.g. [14, Ch.6]). However, these
continuum-level theories often break down at scales of 1–100 μmwhere the length
scales of the specimen size and the dislocation distribution become comparable.
At such smaller scales, a richer set of unknowns is used, the densities of disloca-
tions, and equations are formulated for the evolution of these densities. At even
smaller scales, the postulate of a ‘smooth density’ fails, and a description becomes
necessary in terms of the individual dislocations and their motion: such systems
are called discrete dislocation systems. This paper is concerned with the transition
between the latter two types of models: from discrete dislocations to dislocation
densities, as the number of dislocations becomes large.

A popular evolution model for dislocation densities was derived by Groma and
Balogh in [34,35] and later refined in [36,37]. It describes the evolution of the
density of ‘positive’ and ‘negative’ straight and parallel edge dislocations, which
are represented by ‘positive’ and ‘negative’ points in two dimensions. This model,
and elaborations of it [38,39], have been used in the engineering community to
predict dislocation density profiles with surprising accuracy [24,32,72,73]. The
original system of equations from [35] is central to this paper; we will refer to it as
the Groma–Balogh equations, and it appears in generalized form as equations (1.4)
below.

The derivations in [34–37] are based on an upscaling argument starting from
a system of discrete dislocations. None of these results are rigorous, however,
since they build on uncontrolled approximations such as exchanging averaging
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with nonlinearity [35] or postulating a closure relation in the BBGKY hierarchy
[34,39].

This brings us to the central question of this paper: can the Groma–Balogh
equations be rigorously derived from an underlying discrete-dislocation system?
We will see that the answer is subtle, and depends on how one decides to deal with
the singularity of the interaction potential.

1.2. Formal Setup

The mathematical results of this paper are formulated for two different settings:
a d-dimensional toruswith isotropic evolution (where d = 1, 2 are the ones inspired
by screw dislocations), and a two-dimensional torus with slip-plane confinement
modelling edge dislocations. We describe these two situations and their physical
interpretation in Section 2. At this stage, however, we illustrate the results just for
the two-dimensional case with isotropic evolution. We work in a two-dimensional
square torus T

2, or equivalently a square in R
2 with periodic boundary conditions.

Wemodel dislocations as points inT
2; they represent defects in a linearly elastic

continuum medium. Systems of dislocations have an associated energy, which is
the elastic energy of the stress and strain fields in the elastic medium, generated by
the defects and by external loads. Formally, the quadratic nature of the continuum
elastic energy leads to an expression of the form [18,50]

Ẽn(x; b) := 1

2n2

n∑

i=1

n∑

j=1
j �=i

bi b j V (xi − x j )+ 1

n

n∑

i=1
biU (xi ). (1.1)

Here x = (x1, . . . , xn) ∈ (T2)n and b = (b1, . . . , bn) ∈ {−1,+1}n denote the
position and the sign of each dislocation, U is a smooth external potential, and
V (x − y) is a pairwise interaction potential which characterises the dependence of
the elastic energy on the distance x − y between two dislocations. The potential
V , which will be defined in Section 2, is related to the Green’s function of the
elasticity operator. Consequently, it has a logarithmic singularity at the origin with
V (0) = +∞. The logarithmic singularity is central to this paper, and we will deal
with it in detail in Section 1.3 below.

We now describe the main question of the paper. Assuming that the velocities
of the dislocations satisfy an isotropic linear drag law (Orowan’s relation), their
evolution in (T2)n is of gradient-flow type, driven by the energy (1.1), namely

dx

dt
(t) = −n∇ Ẽn(x(t); b). (1.2)

By translating equation (1.2) into the language of measures, we find that the empir-
ical measures of the positive and the negative dislocations,

μ+n :=
1

n

n∑

i=1
bi=+1

δxi , μ−n :=
1

n

n∑

i=1
bi=−1

δxi , (1.3)
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formally satisfy the aforementioned Groma–Balogh equations1

∂tρ
+ = div

(
ρ+(∇V ∗ (ρ+ − ρ−)+ ∇U )

)
, (1.4a)

∂tρ
− = − div

(
ρ−(∇V ∗ (ρ+ − ρ−)+ ∇U )

)
. (1.4b)

This would suggest that as n→∞, if μ±n converge to limits ρ±, then these limits
should also be solutions of the same set of equations (1.4). The main aim of this
paper is to investigate this convergence.

However, the formal arguments above cannot be made rigorous, because the
singularity in V results in existence of solutions to (1.2) only up to the first time
two particles of opposite sign collide. To resolve this blow-up, we replace (1.2) by
a regularised version, which we introduce next.

1.3. Managing the Singularity

The singularity of V has its physical origin in the simplification of replacing the
crystallographic lattice by a continuum linearly elastic medium and modelling the
dislocations as point defects. These point defects generate stress and strain fields
with infinite elastic energy in any neighbourhood of the defect. The energy of a
single dislocation or of a finite set of dislocations—which in a genuine discrete
model should be finite—is therefore infinite.2

This infinite energy makes many energy-based methods unsuitable, and sev-
eral approaches and alternative models have been developed to circumvent this
difficulty:

1. the phase-field model developed by Peierls and Nabarro [31,44,49,51,53],
2. the removal of small balls around the dislocations from the elastic medium

[18,30,50],
3. the smearing out of the dislocation core by a convolution kernel [4,13,20,30],
4. a cut-off radius within which dislocations do not interact [42].

1 This well-known argument runs as follows: for a test function ϕ, we have

d

dt

∫

T2
ϕ(x)μ+n (dx) = d

dt

1

n

n∑

i=1
bi=+1

ϕ(xi )

= − 1

n

n∑

i=1
bi=+1

∇ϕ(xi )

[
1

n

n∑

j=1
bi b j∇V (xi − x j )+ bi∇U (xi )

]

= −
∫

T2
μ+n (dx)∇ϕ(x)

[∫

T2
∇V (x − y)(μ+n − μ−n )(dy)+ ∇U (x)

]
,

which is a weak formulation of equation (1.4a).
2 This is analogous to the fact that the fundamental solution G of the Laplacian in two

dimensions has a singularity at zero and has infiniteDirichlet integral
∫

O |∇G|2 in any neigh-
bourhood O of zero, while by contrast the fundamental solution of the discrete Laplacian
on a lattice is bounded.
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The choice of the regularisation depends on factors such as: accuracy, computational
convenience, the possibility to describe dynamics, well-posedness or the possibility
to prove discrete-to-continuum convergence.

In this paper we consider a broad class of regularisations that includes case (3)
above:we replace the potentialV by a smoothed, globallyW 2,∞ potentialVδ , where
δ > 0 is a parameter with the interpretation of the length scale of the regularisation
(see assumptions (V1)–(V4) in Section 2.2). In view of (1.4), we are interested in
the limit δ→ 0.

The regularised energy (denoted by En without the tilde) is defined as (1.1),
with V replaced by Vδ and with the diagonal kept in the sum:

En(x; b) := 1

2n2

n∑

i=1

n∑

j=1
bi b j Vδ(xi − x j )+ 1

n

n∑

i=1
biU (xi ). (1.5)

Similarly to (1.2), the dynamics are now given by

dx

dt
(t) = −n∇En(x(t); b). (1.6)

Note that since∇Vδ is globally Lipschitz continuous, this evolution is well-defined.
By translating (1.6) into measures, we now find rigorously that the empirical

measures μ±n in (1.3), associated with a solution x of (1.6), satisfy the regularised
Groma–Balogh equations

∂tρ
+ = div

(
ρ+(∇Vδ ∗ (ρ+ − ρ−)+∇U )

)
, (1.7a)

∂tρ
− = − div

(
ρ−(∇Vδ ∗ (ρ+ − ρ−)+∇U )

)
, (1.7b)

in the weak sense. These equations are well-defined in the sense of distributions on
(0, T )×T

2 whenever ρ± are finite-mass measures (such asμ±n ). Indeed, since∇Vδ

is uniformly continuous onT
2, so is the convolution∇Vδ∗(ρ+−ρ−), and therefore

ρ±∇Vδ ∗ (ρ+ − ρ−) is a finite-mass vector-valued measure on T
2 for each t . This

argument cannot be applied to the unregularised Groma–Balogh equations (1.4).
There are, however, several ways to define a solution concept to these equations.
We continue this discussion in §1.5.

1.4. Results of this Paper: Convergence and Non-convergence

We first describe our convergence result. When the regularisation δ is fixed, i.e.,
when we are dealing with a fixed, regular interaction kernel, the convergence of the
discrete evolution equation (1.6) to the Groma–Balogh equations (1.7) as n →∞
is standard; the technique goes back at least to Dobrushin [23]. Here, however, we
will consider the joint limit n → ∞, δn → 0, to which the standard theory does
not apply.

Our main convergence result states that when δn → 0 sufficiently slowly, con-
vergence to the unregularised Groma–Balogh equations (1.4) holds. Theorem 3.3
specifies this result for the d-dimensional torus, and Theorem 3.9 specifies it for
the two-dimensional torus with slip-plane confinement.
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The meaning of ‘how slowly’ δn needs to converge to zero for the result to hold
depends both on the chosen time horizon T > 0, and on the sequence of discrete
initial data for (1.6) approximating the initial datum of (1.4). Conversely, we also
specify a lower bound on δn such that our convergence result holds for a certain
class of approximating initial data. In particular, if δn � 1/

√
log n, we recover the

Groma–Balogh equations in the limit, under the assumption that ‖D2Vδn‖L∞(Td ) ∼
δ−2n , which is natural in the case of a logarithmic singularity for the potential at
zero. Note that in this regime the short-range interactions are governed by themodel
of the dislocation core, whose size is described by δn ; the limiting Groma–Balogh
equations, however, are independent of the description of the core.

Our second main result is a counterexample, showing non-convergence of the
discrete evolutions to (1.4) when δn → 0 fast enough, for a suitable choice of
initial conditions. The key idea is to choose as discrete initial data a configuration
of short dipoles whose mutual distance is infinitesimal as n → ∞, but much
larger than the inter-dipole distance. In this case the discrete evolutions converge to
limit measures ρ± that are constant in space and time. This construction provides
a counterexample to the discrete-to-continuum convergence whenever U is non-
constant, since in that case, on the torus, spatially-constant measures cannot be
stationary solutions of the Groma–Balogh equations (1.4).

1.5. Comments and Perspectives

We comment on a number of aspects of this work and on some natural questions
triggered by our results.

Conditions on the potential. The conditions (V1)-(V4) that we impose below
on the interaction potential V cover many examples in materials science, such
as vortices, Coulomb gases and dislocations. They are a mixture of fundamental
conditions and conditions that we believe are mostly technical. The fundamental
assumptions are the positivity of the Fourier transform, the singularity of V being
at most logarithmic, and the convergence of the approximations. The logarithmic
singularity of V is the strongest singularity under which the proof of the well-
posedness of (1.4) in [15] (that we rely on in our proof) holds, andwe are unaware of
results that candealwith a singularity stronger than the logarithmic one. Positivity of
the Fourier transform of the regularisation Vδ of the potential V is needed in Lemma
2.5, where we establish a bound for the convolution with Vδ that is crucial in the
proof of the evolutionary convergence. Moreover, for regularised potentials Vδ that
do not have positive Fourier transform, the numerical simulations in van Meurs’
thesis [67, Ch. 9] show that (1.6) can have a fundamentally different behaviour. Note
that positivity of theFourier transformalso guarantees convexity of κ �→ ∫

V ∗κ dκ ,
which for κ = ρ+ − ρ− is the interaction energy associated to (1.4).

Regularisation and a-priori estimates. There is a useful rule of thumb for the
analysis of the properties of nonlinear PDEs, going back to the work of Jacques-
Louis Lions and the French School of nonlinear PDE: ‘if the right a-priori estimates
can be established, then one can regularise any way one wants—without changing
the results’. In other words, the equation determines the solutions, through the a-
priori estimates, and regularisations can only approximate such solutions. Even in
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cases where uniqueness is not obvious, such as the incompressible Navier-Stokes
equations, this rule of thumb applies.

This rule-of-thumb requires, however, that the approximations do not violate
the a-priori estimates. It is exactly this requirement that is not satisfied in this
paper, and this is easy to recognize. The existence theorems, for slow δn → 0
(Theorems 3.3 and 3.9) build upon the a-priori estimates first identified in [15].
These estimates are meaningful for solutions with bounded entropy, i.e., solutions
ρ± for which

∫
ρ+ log ρ+ and

∫
ρ− log ρ− are bounded. Empirical measures do

not satisfy this condition, and therefore a ‘regularisation’ based on point measures,
while physically meaningful, lies outside of this functional setting.

We nonetheless make use of the entropy-based estimates by using the fact that
the regularised evolution has a bounded expansion rate in the Wasserstein metric,
with a bound that deteriorates as δn → 0. By constructing an intermediate object
(i.e., the unique solution of the δn-regularisedGroma–Balogh equations (1.7) with a
continuum initial datum, which is both entropically bounded andWasserstein-close
to the empirical measures), we can extend the entropic framework a little outside
the finite-entropy realm. The price to pay is that the Wasserstein bound need not
deteriorate too fast, and this translates into the slowness criterion of δn → 0.

Beyond regularising the dislocation core. As an alternative to regularising the
singular potential V , one can consider annihilation of dislocations, where dislo-
cations of opposite signs are taken out of the system when they collide or are
sufficiently close. This evolution is studied in [61,62] for finite n, in [6,9,41] on the
continuum level, and in [66] a discrete-to-continuum convergence result is estab-
lished. Themain difference between themodels listed above and theGroma–Balogh
equations (1.4) is in the reversibility/irreversibility of the annihilation. In (1.4), if
a positive and a negative dislocation meet, they form a short dipole, but if a suffi-
ciently large force is applied to the system, they can break apart. In other words,
annihilation is ‘reversible’. In the other models, instead, annihilation is irreversible:
once a short dipole forms, the two dislocations in it become permanently ‘invisible’
in the evolution.

Mixed-approach proof of convergence. Our proof of convergence is made in
two steps, each requiring a different strategy. To estimate the distance between
the empirical measures and the continuum solution of the δn-regularised Groma–
Balogh equations, we exploit the gradient-flow structure of the regularised equa-
tions of which they are both solutions (although with different initial data), and
prove a Gronwall-type estimate in terms of Wasserstein distances. To estimate the
distance between the intermediate measure and a solution of the unregularised
Groma–Balogh equations we instead follow the approach in [15], based on entropy
estimates.

Well-posedness for the Groma–Balogh equations (1.4). Various existence
results for the Groma–Balogh equations have already been proved [15,26,27,46,
48,70,71], and other related multiple-sign systems have been studied in [6,7,28]. A
by-product of the convergence theorems in this paper provides additional existence
results, which go beyond those cited above in allowing for more general interaction
potentials.
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The questions of uniqueness and stability appear to depend strongly on the
regularity of the initial data. Mainini [48] proves uniqueness for a similar system
in two dimensions with different boundary conditions, under the assumption that
the solutions are in L∞, by using the log-Lipschitz continuity of ∇V ∗ (ρ+ − ρ−).
Li, Miao, and Xue [46] prove local-in-time uniqueness in Hm ∩ L p, m > 2 and
p ∈ (1, 2), and show that a finite existence time in these spaces implies blow-up in
L∞.

Non-convergence. Our results fit into the setting of evolutionary convergence
of multiple species interacting via singular potentials, e.g., [19], [67, Ch. 9], [65].
On the other hand, our counterexample shows that the discrete system does not
always converge to the expected limiting equation, or worse, may not converge
at all. In this paper we provide only a single counterexample, to prove the non-
convergence theorem, but the method of proof is very general: it relies on the fact
that for fast δn → 0 a short dipole is so strongly bound that it will not separate. The
proof therefore can be adapted to prove a wide range of non-convergence results.
Even more importantly, this strong binding will occur even if the initial data is not
presented in already-bound form, since dislocations of opposite sign will quickly
pair up into such short dipoles (see the simulations in [67, Ch. 9] for examples).
Therefore we expect the non-convergence for fast δn → 0 to hold for generic initial
data.

This sparks questions for future research, such as:

– is there an alternative notion of evolutionary convergence (e.g., statistical
mechanics, convergence in probability on random initial data, addition of noise),
weaker than the one in Theorem 3.3, for which convergence can be proven?

– are there microscopic details invisible on the macroscale (such as the density
of dipoles) which can affect the macroscopic behaviour, rendering the question
of the discrete-to-continuum convergence much more subtle?

The organisation of the paper is as follows: in Section 2 we give a precise
description of (1.6), (1.7) and (1.4) for both the isotropic and slip-plane confined
evolutions, a detailed description of the assumptions and related properties of the
interaction potential V and its regularisation Vδ , and further preliminaries. In Sec-
tion 3 we state and prove our main convergence results (Theorems 3.3 and 3.9). Our
second main result, the class of counterexamples for convergence to the Groma–
Balogh equations, is detailed in Section 4. Appendix A recalls the definitions and
elementary properties of several Orlicz spaces.
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2. Detailed Formulation of the Problems and Preliminary Results

Before describing the isotropic and anisotropic cases in detail, we first introduce
the general setup in dimension d � 1, and prove some preliminary results that
apply to both cases.

2.1. Notation

M(Ω),M+(Ω) signed and non-negative finite Borel
measures on a generic set Ω;

mP(Ω), m > 0 non-negative Borel measures of mass m on a generic set Ω
(see also p. 8 for the notation P(Td × {±1}));

T
d , d ∈ N d-dimensional open flat torus, T

d = R
d/Z

d ;
f̂k , k ∈ Z

d Fourier coefficients of f ∈ L2(Td ) ( f̂ = ( f̂k)k ∈ 	2(Zd )),
f̂k :=

∫
Td e−2π ik·x f (x) dx ;

F−1(g) inverse Fourier transform of g = (gk)k ∈ 	2(Zd ),
F−1(g)(x) :=∑

k∈Zd gke2π ik·x ;
‖g‖H	(Td ), 	 ∈ R norm of g ∈ H	(Td ),

‖g‖2
H	(Td )

:=∑
k∈Zd (1+ |k|2)	∣∣̂gk

∣∣2;
W (μ, ν) 2-Wasserstein distance between μ, ν ∈M+(Ω)

(set = +∞ if the measures have different masses);
‖ f ‖BL norm on bounded Lipschitz functions f : Ω → R,

‖ f ‖BL = ‖ f ‖∞ + | f |Lip, and | f |Lip
the Lipschitz constant of f ;

‖μ‖∗BL dual bounded Lipschitz norm of μ ∈M(Ω),
‖μ‖∗BL = sup

{| ∫Ω f dμ| : ‖ f ‖BL � 1
}
;

Ent(μ) entropy of μ ∈M+(Ω), Ent(μ) := ∫
Ω μ logμ;

Expα(Td ), L logβ L(Td ) Orlicz spaces on the flat torus (see Appendix A).

2.2. General Setup

We consider points xi ∈ T
d with fixed signs bi ∈ {−1,+1} for i = 1, . . . , n

that evolve according to (1.6). We assume the following conditions on the related
potentials V , Vδ , and U :

(V1) V̂k � 0, [V̂δ]k � 0 ∀ k ∈ Z
d\{0};

(V2) supk∈Zd\{0}(1+ |k|2)
d
2
(
V̂k ∨ [V̂δ]k

)
<∞ uniformly in δ;

(V3) Vδ → V in D′(Td) and Vδ ∗ φ → V ∗ φ strongly in Exp(Td) for every
φ ∈ C1(Td), as δ→ 0;

(V4) Vδ ∈ W 2,∞(Td) with Vδ(x) = Vδ(−x);

(U) U ∈ C∞b (Td).

We refer to Appendix A for the definition of the Orlicz space Exp(Td).

Remark 2.1. In the two-dimensional case, a possible choice for V is the Green’s
function on the flat torus T

2. Its Fourier coefficients are given by
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V̂k =
{

α
|k|2 k ∈ Z

2\{0}
0 k = 0

for α > 0.

A possible choice for its regularisation Vδ is

[V̂δ]k =
{

α
|k|2 e−δ|k| k ∈ Z

2\{0}
0 k = 0.

Given a point x = (x1, . . . , xn) ∈ (Td)n and the associated sign b = (b1, . . . , bn) ∈
{±1}n , the discrete, regularised energy of the system is

En(x; b) := 1

2n2

n∑

i=1

n∑

j=1
bi b j Vδ(xi − x j )+ 1

n

n∑

i=1
biU (xi ), (2.1)

where δ > 0 (see also (1.5)). For what follows it is convenient to express the particle
energy (2.1) in terms of the empirical measures associated to x and b.

We recall the definition of empirical measures (see (1.3))

μ+n :=
1

n

n∑

i=1
bi=+1

δxi ∈M+(Td), μ−n :=
1

n

n∑

i=1
bi=−1

δxi ∈M+(Td),

μn := (μ+n , μ−n ) ∈ (M+(Td))2, κn := 1

n

n∑

i=1
biδxi = μ+n − μ−n ∈M(Td).

(2.2)

Note that there is an obvious isomorphism between (x, b) and μn , modulo rela-
belling the particles. Throughout the paper we will consider the pairs of measures
μ = (μ+, μ−) ∈ (M+(Td))2 such that μ+ + μ− ∈ P(Td). With a slight abuse
of notation we will denote this class with P(Td ×{±1}) (implicitly identifying the
measure μ with a measure μ++μ− ∈ P(Td ×{±1}), with suppμ+ ⊆ T

d ×{+1}
and suppμ− ⊆ T

d × {−1}).
We define a continuum, δ-regularised energy Eδ , that extends (2.1) to the whole

space of probability measures P(Td × {±1}), as

Eδ(μ) := 1

2

∫

Td
(Vδ ∗ κ)(x)dκ(x)+

∫

Td
U (x)dκ(x),

where, in analogy with (2.2), κ := μ+−μ−. Since the energy En is invariant under
relabelling the particles, we have Eδ(μn) = En(x; b), where μn is the empirical
measures associated to x and b.

We also recall the definition of entropy: for any ρ = (ρ+, ρ−) ∈ P(Td×{±1})
with ρ± � dx ,

Ent(ρ) := Ent(ρ+)+ Ent(ρ−) :=
∫

Td
ρ+(x) log ρ+(x)dx +

∫

Td
ρ−(x) log ρ−(x)dx .

(2.3)

With a little abuse of notation, here, and inwhat follows,we denote byρ+ (resp.ρ−)
a positive measure and its density with respect to the Lebesgue measure.
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Finally we introduce the Wasserstein distance between measures in P(Td ×
{±1}). Let μ, ν ∈ P(Td × {±1}). We define the (square of the) 2-Wasserstein
distance between μ and ν as

W2(μ, ν
) := inf

γ∈Γ (μ,ν)

∫

(Td×{±1})2
d2(x ′, y′)dγ (x ′, y′), (2.4)

where, for x ′, y′ ∈ T
d × R, with x ′ = (x, a) and y′ = (y, b),

d2(x ′, y′) := ‖x − y‖2
T

d + |a − b|2. (2.5)

Here ‖ · ‖Td (denoted with | · |T in the case d = 1) is the induced metric on the
manifold T

d ,

‖x − y‖Td = min
k∈Zd
{‖x − y + k‖} , (2.6)

and Γ (μ, ν) is the set of couplings of μ and ν, namely

Γ (μ, ν) :=
{
γ ∈ P(

(Td × {±1})2) : γ (A × (Td × {±1})) = μ(A),

γ ((Td × {±1})× A) = ν(A) for all Borel sets A ⊂ T
d × {±1}

}
.

As usual, we denote with Γ◦(μ, ν) ⊆ Γ (μ, ν) the set of optimal transport plans γ

for (2.4). Note that Γ◦(μ, ν) �= ∅ (see, e.g., [59, Theorem 1.4]).
In the special case of μ±(Td) = ν±(Td),W enjoys some additional properties

summarised in the next proposition.

Proposition 2.2. (Properties of W) Let μ = (μ+, μ−), ν = (ν+, ν−) ∈ P(Td ×
{±1}) be such that μ±(Td) = ν±(Td). Then,

(i) W2
(
μ, ν

) = W 2
(
μ+, ν+

) + W 2
(
μ−, ν−

)
, where W is the standard 2-

Wasserstein distance on M+(Td) with cost ‖ · ‖2
T

d ;

(ii) There exist γ ∈ Γ◦(μ, ν) and γ± ∈ Γ◦(μ±, ν±) such that γ = (γ+, γ−),
where Γ◦(μ±, ν±) denotes the set of optimal transport plans for W .

Proof. To prove (i), just note that the inequality W2
(
μ, ν

)
� W 2

(
μ+, ν+

) +
W 2

(
μ−, ν−

)
is trivial, since the infimum in the definition of W is computed on a

larger set. The opposite inequality follows by observing that it is more convenient to
redistribute mass within T

d ×{1} and T
d ×{−1} rather than moving mass between

the two, since diam(Td) < 2. Property (ii) follows immediately from (i). ��
Next we extend [5, Theorem 8.4.7] to Wasserstein spaces on the torus.

Lemma 2.3. (Derivative of W along curves in mP(Td)) Let m > 0 and let v ∈
C([0, T ]×T

d;Rd) be a vector field such that x �→ v(t, x) is Lipschitz continuous
in T

d uniformly in t . Let μ : (0, T )→ mP(Td) be any curve satisfying

∂tμ+ div(μv) = 0 in D′((0, T )× T
d). (2.7)
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Then, for every σ ∈ mP(Td), it holds that

d

dt
W 2(μ(t), σ ) = 2

∫

Td×Td

(
x − y + k(x, y)

) · v(t, x)dγ (x, y)

for every 0 < t < T , where k(x, y) ∈ Z
d is such that ‖x−y‖Td = ‖x−y+k(x, y)‖,

and γ ∈ Γ◦(μ(t), σ ).

Proof. Let 0 < t < T be fixed, let μ be a given solution of (2.7), and let h ∈ R be
such that 0 < t + h < T . We prove that

W 2(μ(t + h), σ )−W 2(μ(t), σ )

� 2h
∫

Td×Td

(
x − y + k(x, y)

) · v(t, x)dγ (x, y)+ o(|h|) (2.8)

as h → 0, where k(x, y) ∈ Z
d is as in (2.6) with respect to x and y. The claim then

follows by dividing (2.8) by h and letting h → 0, for both h > 0 and h < 0.
For 0 < s < T − t , let Ts be the map which to any x ∈ T

d associates
Ts x = y(t + s), where y is the solution of

{
y′(s) = v(s, y(s)) 0 < s < T − t,

y(t) = x .

We note that μ(t + h) = (Th)#(μ(t)), and since v is continuous in both variables,

Th x = x + hv(t, x)+ o(|h|). (2.9)

We now prove (2.8). Let γ ∈ Γ◦(μ(t), σ ) and set γh := (Th × id)#γ ∈
Γ (μ(t + h), σ ). Then

W 2(μ(t + h), σ )−W 2(μ(t), σ )

�
∫

Td×Td
‖x − y‖2

Tdd(γh − γ )(x, y)

=
∫

Td×Td

(‖Th x − y‖2
Td − ‖x − y‖2

Td

)
dγ (x, y)

�
∫

Td×Td

(‖Th x − y + k(x, y)‖2 − ‖x − y + k(x, y)‖2)dγ (x, y).

By expanding the squares of the Euclidean distances and substituting (2.9) in the
estimate above, we get the claim (2.8). ��

We now state an approximation result that will be used in the construction of
approximate initial data for the evolution. For the definition of the Orlicz space
L log L(Td) we refer to Appendix A.
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Lemma 2.4. (Approximation inW) Let ρ = (ρ+, ρ−) ∈ (
L log L(Td)

)2∩P(Td×
{±1}). There exists a sequences ρn = (ρ+n , ρ−n ) ∈ (

L log L(Td)
)2∩P(Td×{±1})

with nρ±n (Td) ∈ N and Ent(ρn) � c, uniformly in n, such that

W2(ρ, ρn) � C

n
.

Moreover, there exist (xn, bn) in T
d × {±1} such that the corresponding empirical

measures μn = (μ+n , μ−n ) ∈ P(Td × {±1}), defined as in (2.2), satisfy

W 2(ρ±n , μ±n ) � C

n1/d
.

Proof. We only give a sketch. We construct ρn from ρ by moving mass of at most
1/n from T

d × {+1} to T
d × {−1}. By (2.5), the cost of this transport is at most

((diamT
d/2)2 + 2)/n, i.e.,

W2(ρ, ρn) � C

n
.

To construct μn , we choose μ±n (Td) = ρ±n (Td), so that, by Proposition 2.2,
it is enough to estimate W 2(μ±n , ρ±n ). The idea is to split T

d into a d-cubic grid
with cells of size of order n−1/d . Then, sequentially for each cell, we move at
most 1/n mass to the next neighbouring cell such that each cell has mass with a
value in 1

n N. For the so-constructed ρ̃±n , we construct μ±n by placing in each of
the cells nρ̃±n (cell) particles (the precise location does not matter). An elementary
computation yields that

W (ρ±n , μ±n ) � W (ρ±n , ρ̃±n )+W (ρ̃±n , μ±n ) � C

n1/d
.

��
Finally, in the next result we prove a bound for the convolution with ∇Vδ that

will be crucial in establishing a priori bounds for solutions of the evolutionary
problems.

Lemma 2.5. Let δ > 0, and let Vδ : Td → R be a regularised potential satisfying
conditions (V1) and (V2). Then there exists a constant c > 0, independent of δ,
such that for all f ∈ L2(Td) we have

−
∫

Td
(ΔVδ ∗ f ) f dx � c ‖∇Vδ ∗ f ‖2Hd/2(Td )

. (2.10)

Proof. Let f ∈ L2(Td). Since ΔVδ ∗ f ∈ L2(Td), by the Parseval’s Theorem and
the Convolution Theorem we have

−
∫

Td
(ΔVδ ∗ f ) f dx = −

∑

k∈Zd

[
Δ̂Vδ ∗ f

]
k f̂k =

∑

k∈Zd

4π2|k|2[V̂δ]k
∣∣ f̂k

∣∣2

� c
(

sup
k∈Zd\{0}

(1+ |k|2) d
2 [V̂δ]k

) ∑

k∈Zd

4π2|k|2[V̂δ]k
∣∣ f̂k

∣∣2
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� c
∑

k∈Zd

(1+ |k|2) d
2
(
2π |k|[V̂δ]k

)2∣∣ f̂k
∣∣2

� c‖∇Vδ ∗ f ‖2Hd/2(Td )
,

where we have also used (V1) and (V2). ��
Remark 2.6. For slip-confined evolutions we will use the following anisotropic
variant of (2.10), namely

−
∫

Td
(∂21 Vδ ∗ f ) f dx � c ‖∂1Vδ ∗ f ‖2Hd/2(Td )

,

where ∂1 is shorthand for ∂x1 , which can be proved in the same way as (2.10).

2.3. Detailed Formulation of the Two Problems

In this section we describe the isotropic and anisotropic evolutionary problems
separately.

2.3.1. Case 1: Isotropic Evolution in Dimension d � 1 This is the case that we
discussed in the introduction for d = 2.

The difference between the isotropic case considered in this section and the
anisotropic case of Section 2.3.2 is in the evolution. In the isotropic case the evo-
lution equation is

dx

dt
(t) = −n∇En(x(t); b) on (0, T ], (2.11)

as introduced in (1.6), which in components and by (2.1) reads as

dxi

dt
(t) = −1

n

n∑

j=1
bi b j∇Vδ(xi (t)− x j (t))− bi∇U (xi (t)), (2.12)

on (0, T ], i = 1, . . . , n. In the two-dimensional case d = 2, this model is inspired
by the study of the motion of straight and parallel dislocations, which can be rep-
resented by points in the plane. In particular, the evolution (2.11) (or (2.12)) is best
compared to the evolution of screw dislocations, which are free to move in multiple
directions. The isotropy assumption means that dislocations are allowed to move
in every direction (see e.g. [3,10,11] for a more faithful treatment of preferred slip
directions). When considered in the full space R

2, screw dislocations generate an
interaction potential V that is explicit: V (x) = − log |x | (up to material constants,
which we disregard in this paper).

As the first step in establishing evolutionary convergence, we rewrite the evo-
lutions of the particles in (2.11) in terms of the empirical measures μ±n , defined as
in (2.2), associated to their positions. This is convenient since the Groma–Balogh
equations (1.4) that we want to obtain in the many-particle limit n→∞ of (2.11)
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are given in terms of measures too. In fact, for any fixed δ > 0, the empirical
measures μ±n are solutions of the regularised Groma–Balogh equations

∂tρ
+ = div

(
ρ+(∇Vδ ∗ (ρ+ − ρ−)+ ∇U )

)
,

∂tρ
− = − div

(
ρ−(∇Vδ ∗ (ρ+ − ρ−)+ ∇U )

)
.

(2.13)

The convergence result, Theorem 3.3, states that, for δ = δn → 0 as n → ∞
sufficiently slowly, μ±n converge to solutions of the unregularised version

∂tρ
+ = div

(
ρ+(∇V ∗ (ρ+ − ρ−)+ ∇U )

)
,

∂tρ
− = − div

(
ρ−(∇V ∗ (ρ+ − ρ−)+ ∇U )

)
.

(2.14)

Definition 3.2 below specifies the solution concept for equations (2.14).

Remark 2.7. (Applications of d = 1) At least two model situations motivate the
case d = 1, namely (a) dislocations in two dimensions that are confined to a
single slip plane, and (b) periodic walls of edge dislocations [60]. In both cases the
potential scales as − log |x | for small |x |. The positivity of the Fourier transform
of the potential (b) follows by specialising the discussion on Vwall below to the
one-dimensional case.

2.3.2. Case 2: Two-Dimensional Domain, Slip-Plane-Confined Motion The
case of edgedislocations naturally leads us to consider the case of a two-dimensional
domain where the dislocations are confined to fixed slip directions, which we take
to be horizontal (i.e., parallel to the first coordinate axis in T

2). Edge dislocations
generate a different interaction potential than screw dislocations. In the case of
horizontal slip, the interaction potential in R

2 is

Vedge(x) = − log |x | + (x · e1)2
|x |2 ,

see, e.g., (5–16) in [42]. We construct the potential V on T
2 by carefully sum-

ming over Z
2 shifted copies of Vedge first in the vertical and then in the horizontal

direction.3 In [67, App. A] it is shown that the pointwise limit

Vwall(x) := lim
M→∞ VM (x) := lim

M→∞

(
CM +

M∑

m=−M

Vedge(x + me2)
)
, (2.15)

where

CM := 2
M∑

m=1
logm,

is well-defined for all x ∈ R
2, except at the singular points (0, k), k ∈ Z, of any

shiftedVedge, and thatVwall is vertically 1-periodicwith exponentially decaying tails

3 While [15, Lem. 2.1] only defines the second derivative ∂11V , our setting requires the
potential V itself.
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in the horizontal direction. A straightforward computation shows that (VM )M∈N
converges uniformly inR

2 away from the singularities; since the singular behaviour
at each singularity is given by a translated copy of Vedge ∈ L1

loc(R
2), we find that

the convergence in (2.15) takes place in L1
loc(R

2).
Together with the exponential tails, we then find that the following limit is

well-defined in L1
loc(R

2):

V (x) := lim
N→∞

N∑

n=−N

Vwall(x + ne1).

It is clear that V is Z
2-periodic. Moreover, since Vedge satisfies

−
∫

R2
Δ2Vedgeϕ = 4π∂22ϕ(0) ∀ϕ ∈ D(R2) (2.16)

in particular, all finite sums satisfy (2.16) for ϕ ∈ D((−1, 1)2), and then

−
∫

R2
Δ2V ϕ = 4π∂22ϕ(0) ∀ϕ ∈ D((−1, 1)2) . (2.17)

Therefore, using the periodicity of V , it is easy to see that

−
∫

T2
Δ2V ϕ = 4π∂22ϕ(0) ∀ϕ ∈ C∞(R2) with ϕ Z

2-periodic. (2.18)

In Fourier space, equation (2.18) becomes

−(4π2|k|2)2V̂k = 4π(−4π2)k22,

and hence, for every k �= 0,

V̂k = 1

π

k22
|k|4 � 0.

The anisotropic and regularised evolution satisfied by the dislocation positions
is

dx

dt
(t) = −n∇1En(x(t); b), (2.19)

where the energy En is as in (2.1), and the confined gradient of a function f : Ω ⊂
R
2n → R is defined in components, for i = 1, . . . , 2n, as

(∇1 f )i :=
⎧
⎨

⎩

∂ f

∂xi
if i = 2k − 1, k = 1, . . . , n,

0 if i = 2k, k = 1, . . . , n.

Hence in (2.19) it is only the horizontal component of the positions that varies in
time, namely x2(t) = x2(0) for every t , where x2 = (x21 , . . . , x2n ), and x2i = xi ·e2,
for every xi ∈ T

2.
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The empirical measures μ±n defined in (2.2) and associated to the solution of
(2.19) satisfy the regularised and constrained Groma–Balogh equations

∂tρ
+ = ∂1

(
ρ+(∂1Vδ ∗ (ρ+ − ρ−)+ ∂1U )

)
,

∂tρ
− = −∂1

(
ρ−(∂1Vδ ∗ (ρ+ − ρ−)+ ∂1U )

)
.

(2.20)

The convergence result, Theorem 3.9, states that, if δ = δn tends to zero as n→∞
sufficiently slowly, μ±n converge to solutions of the corresponding unregularised
version, namely

∂tρ
+ = ∂1

(
ρ+(∂1V ∗ (ρ+ − ρ−)+ ∂1U )

)
,

∂tρ
− = −∂1

(
ρ−(∂1V ∗ (ρ+ − ρ−)+ ∂1U )

)
.

(2.21)

3. Convergence Results

In this section we prove that the solutions of the discrete gradient-flow equa-
tions (2.11) (or (2.19)) associated to the regularised energy (1.5) converge to limit
measures that solve equations (2.14) (or (2.21)) provided that δn → 0 sufficiently
slowly.

We consider the two cases outlined in Section 2.3: isotropic in dimension d � 1
and slip-confined in two dimensions. In both cases our approach builds on the
existence proof given by Cannone, El Hajj, Monneau, and Ribaud in [15], where
they introduce a functional framework inwhich theGroma–Balogh equations (2.21)
for the slip-plane-confined case with U = 0 have a meaningful weak solution. The
challenge they face is to give the nonlinear terms ρ±∂1V ∗ (ρ+ − ρ−) a meaning
in the sense of distributions on (0, T ) × T

2, for some T > 0: since ρ+ and ρ−
are a priori only measures, and ∂1V is singular, this product need not have any
meaning unless we make stronger assumptions on ρ±. This is done by means of
the following lemma, which has been proved in [15, Propositions 1.3] in the case
d = 2, and is a key result in their analysis.

Lemma 3.1. Let d � 1, T > 0, f ∈ L1(0, T ; H
d
2 (Td)) and g ∈ L∞(0, T ;

L log L(Td)). Then

f g ∈ L1((0, T )× T
d).

For the proof of this lemma for general d � 1 we use part (iv) of Lemma

A.1 and integrate in time. Then we conclude by the embedding of H
d
2 (Td) into

Exp(Td) in Lemma A.1 (vii).
In the next sections we describe and extend the functional framework of [15]

for each of the two cases we consider, supplement it with new, quantitative discrete-
to-continuum estimates, and formulate and prove our convergence results.
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3.1. Case 1: Isotropic Drag Law in Dimension d � 1.

Here we consider the isotropic case introduced in Sections 1 and 2.3.1.
We first discuss the different concepts of solutions that we use. For a regularised
potential Vδ the function∇Vδ ∗(ρ+−ρ−) is smooth; therefore the equations (2.13)
are a pair of convection-diffusion equationswith smoothvelocityfields. In particular
the equations preserve the regularity of the initial data, and on finite time intervals
no derivatives blow up. Therefore the concept of a solution poses no problems, and
one can consider both smooth andmeasure-valued solutions of these equations. The
empirical measures μ±n constructed above from the discrete solutions of (2.11) are
examples of such measure-valued solutions.

For the case of a singular potential V , we need to be more careful. We use
Lemma 3.1 above to guarantee that the integrals involving ρ±∇V ∗ (ρ+ − ρ−) are
meaningful, and we define the concept of a solution as follows:

Definition 3.2. Let d � 1, let ρ◦ = (ρ+◦ , ρ−◦ ) ∈ (
L log L(Td)

)2 ∩ P(Td × {±1}),
let T > 0, and let ρ = (ρ+, ρ−) : [0, T ] → P(Td × {±1}). We say that ρ is a
solution of (2.14) in [0, T ], with initial datum ρ◦, if

(1) ρ+, ρ− ∈ L∞(0, T ; L log L(Td)) and ∇V ∗ κ ∈ L1(0, T ; H
d
2 (Td;Rd)),

where κ = ρ+ − ρ−;
(2) For every ϕ,ψ ∈ C∞c ([0, T )× T

d)

∫ T

0

∫

Td
ρ+(t, x)

(
∂tϕ(t, x)− ∇ϕ(t, x) · ∇(V ∗ κ +U )(t, x)

)
dxdt+

+
∫

Td
ρ+◦ (x)ϕ(0, x)dx = 0,

∫ T

0

∫

Td
ρ−(t, x)

(
∂tψ(t, x)+∇ψ(t, x) · ∇(V ∗ κ +U )(t, x)

)
dxdt+

+
∫

Td
ρ−◦ (x)ψ(0, x)dx = 0.

The existence of a solution in the sense of Definition 3.2 will follow from
our convergence Theorem 3.3 below. Uniqueness of solutions for such weak solu-
tions is currently open; for stronger solution concepts, under assumptions of higher
regularity, various uniqueness proofs have been constructed for related systems
[27,46,48].
The main theorem of this section follows. We set λδ := ‖D2Vδ‖L∞(Td ) and note
that λδ →∞ as δ→ 0, then we can state

Theorem 3.3. (Evolutionary convergence) Let d � 1, let ρ◦ ∈
(
L log L(Td)

)2 ∩
P(Td×{±1}), and let (ρ◦,n), (μ◦,n) ⊂ P(Td×{±1}) be approximating sequences
for ρ◦ as in Lemma 2.4. Let T > 0 be fixed, and let δn > 0 be such that

exp(3λδn T )W(μ◦,n, ρ◦,n)→ 0, as n→∞. (3.1)

Let t �→ μn(t) be the empirical measure of the solution t �→ xn(t) of (2.11) on
[0, T ], with δ = δn and initial datum μ◦,n.
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Then the limit ρ(t) := limn→∞ μn(t) exists (up to a t-independent subse-
quence) with respect to W, uniformly in t ∈ [0, T ], where ρ is a solution of the
unregularised Groma–Balogh equations (2.14) in the sense of Definition 3.2 with
initial datum ρ◦.

Remark 3.4. While (3.1) suggests that the choice of δn depends on the initial data
(μ◦,n), we can also reverse the dependence. Indeed, requiring instead that

exp(3λδn T ) n−1/d → 0 as n→∞,

the proof of Lemma 2.4 provides for every ρ◦ ∈
(
L log L(Td)

)2 ∩ P(Td × {±1})
a class of approximating sequences (μ◦,n)n such that (3.1) holds for each such
sequence.

Structure of the proof. We prove Theorem 3.3 by constructing an ‘intermediate’
trajectory ρδn

: ρδn
is obtained by solving the regularised equations (2.13) with the

modified initial datum ρ◦,n . We then show that W(ρδn
,μn) vanishes as n tends to

∞ (as a consequence of Lemma 3.5) and that (ρδn
) converges to a solution of (2.14)

(Theorem 3.6).

Lemma 3.5. (Existence, uniqueness and Gronwall estimate for (2.13)) Let d � 1,
and let δ, T > 0 be fixed. Then for every μ◦ ∈ P(Td × {±1}) there exists a
solution μδ ∈ C([0, T ];P(Td × {±1})) of the regularised equations (2.13) with
initial datum μ◦ (where continuity is intended with respect to W). Moreover, if
μ◦, ν◦ ∈ P(Td × {±1}) satisfy μ±◦ (Td) = ν±◦ (Td), then any solutions μδ, νδ ∈
C([0, T ];P(Td ×{±1})) to (2.13) with initial data μ◦ and ν◦ respectively, satisfy

W(μδ(t), νδ(t)) � c e3λδ tW(μ◦, ν◦) for all t ∈ [0, T ], (3.2)

where c is a constant independent of δ and t. In particular, if μ0 = ν0, then
μδ(t) = νδ(t) for every t ∈ [0, T ].
Proof. We split the proof into two steps.

Step 1: Existence. Let μ◦ ∈ P(Td × {±1}). The existence of a solution for
the regularised equations (2.13) with initial datum μ◦ ∈ P(Td × {±1}) follows
by discrete (in space) approximation. More precisely, from Lemma 2.4 we get
(xn◦ , bn) ∈ (Td)n × {±1}n such that the corresponding empirical measures μ◦,n
converge to μ◦ in W as n → ∞. Let xn(t), for t ∈ [0, T ], denote the solution
of (2.12) with initial datum x(0) = xn◦ , and let μn(t) denote the corresponding
empiricalmeasure.Note that the sequenceμn : [0, T ] → P(Td×{±1}) satisfies all
the assumptions of the refined version of theAscoli-Arzelà Theorem [5, Proposition
3.3.1]. Indeed the metric space (P(Td×{±1}),W) is complete, andP(Td×{±1})
is sequentially compact with respect toW (note that the domain T

d is bounded, so
the convergence inmeasure and inW are equivalent).Moreover, themap t �→ μn(t)
is Lipschitz continuous with respect toW, with Lipschitz constant independent of
n (but depending on δ). To see this first note that, from the equations (2.13) satisfied
byμ±n we have thatμ±n (s)(Td) = μ±n (t)(Td) for every s � t , hence, by Proposition
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2.2, it is sufficient to show that t �→ μ±n (t) are Lipschitz continuous with respect
to W . The latter follows, since, for every s � t , we have that

W 2(μ±n (s), μ±n (t)) = 1

n
inf

σ∈Sn

n∑

i=1
bi=±1

‖xi (s)− xσ(i)(t)‖2Td

� 1

n

n∑

i=1
bi=±1

‖xi (s)− xi (t)‖2Td

�
((‖∇Vδ‖L∞(Td) + ‖∇U‖L∞(Td)

)|t − s|)2 ,

where we used (V4), and Sn denotes the set of permutations of {1, . . . , n}.
By the refined version of the Ascoli-Arzelà Theorem we conclude that there

exists a time-independent subsequence of (μn) (not relabelled) and a limit curve
μδ = (μ+δ , μ−δ ) : [0, T ] → P(Td × {±1}) such that

W(μn(t),μδ(t))→ 0 for every t ∈ [0, T ], (3.3)

and μδ isW-continuous in [0, T ].
We show that μδ is a solution of (2.13) with initial datum μ◦. First of all, μn is

a solution (in the sense of distributions) of (2.13) with initial datum μ◦,n , namely

∫ T

0

∫

Td

(
∂tϕ(t, x)∓∇ϕ(t, x) · ∇(Vδ ∗ κn +U )(t, x)

)
dμ±n (t, x)dt

+
∫

Td
ϕ(0, x)dμ±◦,n(x) = 0 (3.4)

for every ϕ ∈ C∞c ([0, T ) × T
d), where κn = μ+n − μ−n . Since, by construction

W(μ◦,n,μ◦) → 0, and since W(μn(t),μδ(t)) → 0 for every t ∈ [0, T ] by
(3.3), we can immediately pass to the limit in the first and last term of (3.4) (note
that convergence in W implies weak∗-convergence of the positive and negative
components). For the nonlinear term, we pass to the limit pointwise in t ∈ (0, T ),
and conclude afterwards by applying the Dominated Convergence Theorem over
the time integral. The spatial integral reads as

∫∫

(Td )2
∇ϕ(x) · ∇Vδ(x − y) d(μ+n ⊗ μ±n )(y, x)

−
∫∫

(Td )2
∇ϕ(x) · ∇Vδ(x − y) d(μ−n ⊗ μ±n )(y, x).

Since (x, y) �→ ∇ϕ(x) · ∇Vδ(x − y) is continuous on (Td)2, we can directly pass
to the limit n→∞.

Step 2: Gronwall inequality. Let now μδ, νδ ∈ C([0, T ];P(Td × {±1})) be
solutions of (2.13) with initial data μ◦, ν◦ ∈ P(Td × {±1}) satisfying μ±◦ (Td) =
ν±◦ (Td). From the equations (2.13) we see that μ±δ (t)(Td) = μ±◦ (Td) and
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ν±δ (t)(Td) = ν±◦ (Td) for every t ∈ [0, T ], so in particularμ±δ (t)(Td) = ν±δ (t)(Td)

for every t . By Proposition 2.2 we have that

W2(μ◦, ν◦
) = W 2(μ+◦ , ν+◦

)+W 2(μ−◦ , ν−◦
)

W2(μδ(t), νδ(t)) = W 2(μ+δ (t), ν+δ (t)
)+W 2(μ−δ (t), ν−δ (t)

)
.

Since the curvesμ±δ , ν±δ are continuous in time, we have by (V 4) that the fluxes
v±[μδ] and v±[νδ] from the continuity equations (2.13), defined by

v−[μ] := ∇Vδ ∗ (μ+ − μ−)+ ∇U, v+[μ] = −v−[μ],
μ = (μ+, μ−) ∈ P(Td × {±1}),

are continuous in time. They are moreover Lipschitz continuous in space, since
(omitting t)

|v±[μδ](x)− v±[μδ](y)| � (λδ + ‖D2U‖L∞(Td )) ‖x − y‖Td . (3.5)

Hence, Lemma 2.3 applies. This yields that for every σ ∈ P(Td × {±1}) with
σ±(Td) = μ±◦ (Td),

d

dt
W 2(μ±δ (t), σ±) = 2

∫

Td×Td

(
x − y + k(x, y)

) · v±[μδ](x, t)dγ±1 (x, y),

(3.6)

d

dt
W 2(ν±δ (t), σ±) = 2

∫

Td×Td

(
x − y + k(x, y)

) · v±[νδ](x, t)dγ±2 (x, y),

(3.7)

where γ±1 ∈ Γ◦(μ±δ , σ±) and γ±2 ∈ Γ◦(ν±δ , σ±). Combining (3.6) and (3.7) we
deduce that

d

dt
W 2(μ±δ (t), ν±δ (t))

� 2
∫

Td×Td

(
x − y + k(x, y)

) · (v±[μδ](x, t)− v±[νδ](y, t)
)
dγ±(x, y),

(3.8)

where γ± ∈ Γ◦(μ±δ (t), ν±δ (t)) and k(x, y) = −k(y, x) is used. We now observe
that (omitting t)

|v±[μδ](x)−v±[νδ](y)| � |v±[μδ](x)− v±[μδ](y)|+|v±[μδ](y)− v±[νδ](y)|
� (λδ + ‖D2U‖L∞(Td )) ‖x − y‖Td + λδ(W (μ+δ (t), ν+δ (t))

+W (μ−δ (t), ν−δ (t))),
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where we have used the estimate

|v±[μδ](y)− v±[νδ](y)| =
∣∣∣∣
∫

Td
∇Vδ(x − y)d

(
(μ+δ − μ−δ )− (ν+δ − ν−δ )

)
(y)

∣∣∣∣

=
∣∣∣∣
∫

Td
∇Vδ(x − y)d

(
(μ+δ − ν+δ )− (μ−δ − ν−δ )

)
(y)

∣∣∣∣

� λδ

(
W1(μ

+
δ , ν+δ )+W1(μ

−
δ , ν−δ )

)

� λδ

(
W (μ+δ , ν+δ )+W (μ−δ , ν−δ )

)
,

and W1 denotes the 1-Wasserstein distance.4 Hence, from (3.8) we obtain the bound

d

dt
W 2(μ±δ (t), ν±δ (t))

� 2(λδ + ‖D2U‖L∞(Td ))

∫

Td×Td
‖x − y‖2

Tddγ
±(x, y)

+ 2λδ

(
W (μ+δ , ν+δ )+W (μ−δ , ν−δ )

) ∫

Td×Td
‖x − y‖Tddγ±(x, y)

� 2(λδ + ‖D2U‖L∞(Td ))W 2(μ±δ (t), ν±δ (t))

+ 2λδ

(
W (μ+δ , ν+δ )+W (μ−δ , ν−δ )

)
W (μ±δ (t), ν±δ (t)).

Adding up the estimates for the positive and the negative parts of the measures we
conclude that

d

dt
W2(μδ(t), νδ(t)) � 2(λδ + ‖D2U‖L∞(Td ))W

2(μδ(t), νδ(t))

+ 2λδ

(
W (μ+δ , ν+δ )+W (μ−δ , ν−δ )

)2

� 2(3λδ + ‖D2U‖L∞(Td ))W
2(μδ(t), νδ(t)).

By using the Gronwall inequality, we obtain the final estimate

W(μδ(t), νδ(t)) � exp
(
3λδ + ‖D2U‖L∞(Td )

)
W(μ◦, ν◦),

which gives (3.2). ��
We now state the convergence of the regularised solution ρδ , whose existence

and uniqueness are established in Lemma 3.5, to a solution ρ of (2.14).

Theorem 3.6. Let δ, T > 0 be fixed. Let ρ◦, ρ◦,δ ∈
(
L log L(Td)

)2∩P(Td×{±1})
be such that ρ◦,δ

∗
⇀ ρ◦ in measure as δ→ 0, and Ent(ρ◦,δ) � c uniformly in δ. Let

ρδ ∈ C([0, T ];P(Td × {±1})) be the solution of the regularised equation (2.13)
with initial datum ρ◦,δ .

4 Recall the characterisation of the 1-Wasserstein distance as

W1(μ, ν) = sup

{∫

Td
f dμ−

∫

Td
f dν : f 1-Lipschitz

}
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Then the limit ρ := limδ→0 ρδ exists (up to a subsequence) with respect to
the weak∗ convergence in L∞(0, T ; (L log L(Td))2), and ρ is a solution of the
Groma–Balogh equations (2.14) in the sense of Definition 3.2 with initial datum
ρ◦.

In what follows we use the shorthand L∞(L log L) for the space L∞(0, T ;
L log L(Td)), and adopt this convention for any function space on (0, T )× T

d .
The next lemma provides an a priori estimate for (ρδ) (uniformly in δ), in terms

of the entropy defined in (2.3).

Lemma 3.7. (A priori estimate for (ρδ)) Let d � 1, and let δ, T > 0 be fixed. Let

ρ◦,δ ∈
(
L log L(Td)

)2∩P(Td×{±1}), and letρδ = (ρ+δ , ρ−δ ) ∈ C([0, T ];P(Td×
{±1})) be the solution of (2.13) given by Lemma 3.5 with initial datum ρ◦,δ . Then
ρδ ∈ L∞(0, T ; (L log L(Td))2), and for all t ∈ [0, T ] we have

Ent(ρδ(t))+ c
∫ t

0
‖∇Vδ ∗ (ρ+δ − ρ−δ )(τ )‖2Hd/2(Td )

dτ � C + Ent(ρ◦,δ), (3.9)

where c > 0 and C � 0 are constants independent of δ.

Proof. (Lemma 3.7) We split the proof into two steps. In the first step we prove the
claim for a further regularisation of ρδ , obtained by means of a viscous approxi-
mation; we then deduce the claim for ρδ in the limit for the viscous approximation
parameter going to zero.

Step 1: Viscous approximation. Let ε > 0; we regularise the system (2.13) by
adding the terms εΔρ±, namely we consider

∂tρ
+ = div

(
ρ+(∇Vδ ∗ (ρ+ − ρ−)+∇U )

)+ εΔρ+,

∂tρ
− = − div

(
ρ−(∇Vδ ∗ (ρ+ − ρ−)+∇U )

)+ εΔρ−,
(3.10)

with a smoothed initial condition given by ρε◦,δ := ε + (1 − ε)ηε ∗ ρ◦,δ , where
ηε is a mollifier defined as ηε := ε−dη( ·

ε
), and η ∈ C∞(Td) is nonnegative and

with
∫
Td η = 1. Note that the components of the regularised initial datum ρε◦,δ

are strictly positive. Since ρ �→ ∇Vδ ∗ (ρ+ − ρ−) is Lipschitz continuous (as
shown in (3.5)), and U ∈ C∞b (Td) by assumption (U), it follows from standard
parabolic theory and a bootstrap argument that (3.10) has a unique classical solution
ρε

δ = (ρ
ε,+
δ , ρ

ε,−
δ ) ∈ (C∞([0, T ) × T

d))2. Moreover, the components ρ
ε,±
δ are

strictly positive. This can be seen by applying the comparison principle (e.g., [47,
Cor. 2.5]) to the (uncoupled) linear parabolic equations

∂tρ
± ∓ div

(
ρ±(∇Vδ ∗ (ρ

ε,+
δ − ρ

ε,−
δ )+ ∇U )

)− εΔρ± = 0. (3.11)

Indeed, ρε,±
δ is clearly a solution to (3.11), with initial datum ρ

±,ε
◦,δ ; moreover, the

comparison function

t �→
(
inf
Td

ρ
ε,±
◦,δ

)
exp

(− ‖ΔVδ ∗ (ρ
ε,+
δ − ρ

ε,−
δ )+ΔU‖L∞(Td )t

)
(3.12)



26 A. Garroni et al.

is strictly positive, and is a sub-solution of (3.11) with initial datum below ρ
±,ε
◦,δ .

Therefore ρ
ε,±
δ is above the comparison function (3.12) in [0, T )× T

d , and hence
is strictly positive.

By differentiating in time the entropy ofρε,+
δ , and by using the (ε, δ)-regularised

equations (3.10), we have, by (2.3),

d

dt
Ent(ρε,+

δ ) = d

dt

∫

Td
ρ

ε,+
δ log ρ

ε,+
δ dx =

∫

Td
(1+ log ρ

ε,+
δ )∂tρ

ε,+
δ dx

=
∫

Td
(1+ log ρ

ε,+
δ )

(
div

(
ρ

ε,+
δ (∇Vδ ∗ (ρ

ε,+
δ − ρ

ε,−
δ )+∇U )

)+ εΔρ
ε,+
δ

)
dx

= −
∫

Td
∇ρ

ε,+
δ · ∇(Vδ ∗ κε

δ +U )dx − ε

∫

Td

∣∣∇ρ
ε,+
δ

∣∣2

ρ
ε,+
δ

dx

�
∫

Td
ρ

ε,+
δ Δ(Vδ ∗ κε

δ +U )dx,

where κε
δ = ρ

ε,+
δ − ρ

ε,−
δ . Proceeding in the same way for the entropy of ρ

ε,−
δ , and

adding up the resulting expressions, we have

d

dt
Ent(ρε

δ) �
∫

Td
κε
δ Δ

(
Vδ ∗ κε

δ +U
)
dx

� −c‖∇Vδ ∗ κε
δ ‖2Hd/2(Td )

+
∫

Td
ΔUκε

δ dx,

where in the last step we have used Lemma 2.5, which provides a constant c > 0
independent of δ and ε. By integrating the previous inequality over [0, t], for 0 �
t � T , we finally conclude that

Ent(ρε
δ(t))− Ent(ρε◦,δ) � −c

∫ t

0
‖∇Vδ ∗ κε

δ (τ )‖2Hd/2(Td )
dτ

+
∫ t

0

∫

Td
ΔUκε

δ (τ )dxdτ. (3.13)

Since ‖κε
δ ‖L1(Td ) � 1 and U ∈ C2

b (Td), from (3.13) we deduce that

Ent(ρε
δ(t))+ c

∫ t

0
‖∇Vδ ∗ κε

δ (τ )‖2Hd/2(Td )
dτ � C + Ent(ρε◦,δ), (3.14)

namely ρε
δ satisfies the claim (3.9).

Step 2: Claim for ρδ . From (3.14) and part (i) of Lemma A.1 we conclude that

sup
t∈[0,T ]

‖ρε,±
δ (t)‖L log L(Td ) � c,

with a constant independent of δ and ε. Hence there exists some ρ̃±δ ∈ L∞(L log L)

such that, up to a subsequence (not relabelled)

ρ
ε,±
δ

∗
⇀ ρ̃±δ in L∞(L log L) (3.15)
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as ε→ 0, i.e., in duality with L1(EXP) (see Lemma A.1, part (iii)).
Next we pass to the limit ε→ 0 in (3.14). The convergence (3.15) and the con-

vexity of Ent allow us to pass to the limit in the first term by lower semicontinuity.
Similarly, the strong convergence of ρε◦,δ to ρ◦,δ in L log L(Td) gives the conver-
gence of Ent(ρε◦,δ) to Ent(ρ◦,δ) as ε→ 0 (see, e.g., [15, Lemma 5.3]. Finally, the

convolution term ∇Vδ ∗ κε
δ is bounded and hence weakly convergent in L2(Hd/2).

By (3.15), its limit is ∇Vδ ∗ (ρ̃+δ − ρ̃−δ ). Collecting these convergence results, we
obtain from (3.14), for every t ∈ [0, T ], the estimate

Ent(ρ̃δ(t))+ c
∫ t

0
‖∇Vδ ∗ (ρ̃+δ − ρ̃−δ )(τ )‖2Hd/2(Td )

dτ � C + Ent(ρ◦,δ). (3.16)

Finally, we prove that ρ̃±δ is a solution of (2.13) with initial datum ρ◦,δ . This
follows by letting ε→ 0 in the weak form of the (ε, δ)-regularised equations (3.10)
satisfied by ρε

δ , proceeding similarly as in Step 1 of the proof of Lemma 3.5. By
the uniqueness result in Lemma 3.5 we conclude that ρ̃±δ = ρ±δ , and hence (3.16)
gives the claim and concludes the proof. ��

We are now ready to prove Theorem 3.6, namely to connect the regularised
solutions (ρδ) of (2.13), with initial approximate datum ρ◦,δ , with a solution of the
unregularised Groma–Balogh equations with initial datum ρ◦.

Proof. (Theorem 3.6) Note that the existence of ρ◦,δ ∈
(
L log L(Td)

)2 ∩P(Td ×
{±1}) such that ρ◦,δ

∗
⇀ ρ◦ as δ → 0 in measure, and Ent(ρ◦,δ) � c uniformly in

δ, follows from Lemma 2.4. We split the proof into three steps.
Step 1: Compactness of ρδ . Since Ent(ρ◦,δ) � c uniformly in δ, from

Lemma 3.7 and part (i) of Lemma A.1, we have that ρδ = (ρ+δ , ρ−δ ) and
κδ = ρ+δ − ρ−δ satisfy the following a priori estimates:

sup
t∈[0,T ]

‖ρ±δ (t)‖L log L(Td ) � c and
∫ T

0
‖∇Vδ ∗ κδ(t)‖2Hd/2(Td )

dt � c. (3.17)

By the first bound in (3.17) we can extract a subsequence (not relabelled) such that

ρ±δ
∗
⇀ ρ± in L∞(L log L), (3.18)

as δ→ 0, i.e., in duality with L1(EXP), for some ρ± ∈ L∞(L log L).
Next we show that ρ(t) ∈ P(Td × {±1}) for almost all t . Let ϕ ∈ C([0, T ])

be a test function (note that ϕ ∈ L1(EXP), since EXP(Td) contains the constants).
We compute

∫ T

0
ϕ(t)dt =

∫ T

0

∫

Td

(
ϕ(t)ρ+δ (t, x)+ ϕ(t)ρ−δ (t, x)

)
dxdt

δ→0−→
∫ T

0

∫

Td

(
ϕ(t)ρ+(t, x)+ ϕ(t)ρ−(t, x)

)
dxdt,

and thus
∫
Td (ρ

+(t, x)+ ρ−(t, x))dx = 1 for almost all t .
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Step 2: Compactness of ∇Vδ ∗ κδ in L2(EXP). From the second estimate in
(3.17) we deduce that ∇Vδ ∗ κδ is bounded in L2(Hd/2), and hence, up to a subse-
quence, weakly convergent to a limit f ∈ L2(Hd/2). We now show that the conver-
gence is actually strong in L2(EXP), and that f = ∇V ∗ κ , where κ = ρ+ − ρ−.

We first note that ρ±δ ∇Vδ ∗κδ is bounded in L2(L log1/2 L). Indeed, by Lemma
A.1 (v) and (vi) (integrated in time), and by (3.17),

(∫ T

0
‖ρ±δ (t)∇Vδ ∗ κδ(t)‖2L log1/2 L(Td )

dt

)1/2

� C‖ρ±δ ‖L∞(L log L)‖∇Vδ ∗ κδ‖L2(Hd/2) � C. (3.19)

Using (3.19) and (3.17), we show that ∂tρ
±
δ is bounded in L2(H−(d+1)). Indeed,

by LemmaA.1 (vi), and by using (2.13), we have that for any ϕ ∈ C∞c ((0, T )×T
d)

∣∣∣∣
∫ T

0

∫

Td
ρ±δ (t, x)∂tϕ(t, x)dxdt

∣∣∣∣

�
∫ T

0

∫

Td

∣∣∣ρ±δ (t, x)∇ϕ(t, x) · ∇(Vδ ∗ κδ +U )(t, x)

∣∣∣dxdt

� c
(‖∇ϕ‖L2(Exp2)

‖ρ±δ ∇Vδ ∗ κδ‖L2(L log1/2 L) + ‖∇ϕ‖L2(Exp)‖ρ±δ ‖L∞(L log L)

)

� c‖ϕ‖L2(Hd/2+1) � c‖ϕ‖L2(Hd+1). (3.20)

Using ∂tκδ ∈ L2(H−(d+1)) we show next that ∂t (∇Vδ ∗ κδ) is bounded in
L2(H−(d+1)). First, we note that by taking the difference of the equations (2.13)
we have that ∂i Vδ ∗ κδ satisfies, for i = 1, . . . , d,

∂t (∂i Vδ ∗ κδ) = div
(
∂i Vδ ∗ (ρ+δ + ρ−δ )(∇Vδ ∗ κδ + ∇U )

)

in the sense of distributions, namely for any ϕ ∈ C∞c ((0, T )× T
d)

∫ T

0

∫

Td
(∂i Vδ ∗ κδ)∂tϕ dxdt

= −
∫ T

0

∫

Td
(ρ+δ + ρ−δ )(∇Vδ ∗ κδ + ∇U ) · (∂i Vδ ∗ ∇ϕ)dxdt. (3.21)

Using (3.19), we can then estimate the right-hand side of (3.21) in absolute value
by

c‖(ρ+δ + ρ−δ )
(∇Vδ ∗ κδ + ∇U

)‖2
L2(L log1/2 L)

‖∂i Vδ ∗ ∇ϕ‖L2(Exp2)

� c‖∂i Vδ ∗ ∇ϕ‖L2(Hd/2) � c‖∂i Vδ ∗ ϕ‖L2(Hd+1),

which is uniformly bounded in δ by (V 2), since

‖∇Vδ ∗ ϕ‖2L2(Hd+1) =
∫ T

0

∑

k∈Zd

(1+ |k|2)d+1∣∣[∇̂Vδ

]
k

∣∣2|ϕ̂k |2dt � c‖ϕ‖2L2(Hd+1).
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By applying Lemma A.2 with p = q = 2 to the triple Hd/2(Td) ⊂⊂
EXP(Td) ⊂ H−(d+1)(Td) (see LemmaA.1 (vii)), we find that∇Vδ ∗κδ is compact
in L2(EXP), namely it converges strongly to f .
Finally, we show that f = ∇V ∗ κ . To see this, we compute the distributional limit
of the sequence ∇Vδ ∗ κδ . Let ψ ∈ C∞c ((0, T )× T

d ;Rd) be a test function; then
we have ∫ T

0

∫

Td
(∇Vδ ∗ κδ)(t, x) · ψ(t, x)dxdt

= −
∫ T

0

∫

Td
(Vδ ∗ κδ)(t, x) divψ(t, x)dxdt

= −
∫ T

0

∫

Td
(Vδ ∗ divψ)(t, x)κδ(t, x)dxdt.

By using (3.18) and assumption (V 3), we have for the last term that

lim
δ→0

∫ T

0

∫

Td
(Vδ ∗ divψ)(t, x)κδ(t, x)dxdt

=
∫ T

0

∫

Td
(V ∗ divψ)(t, x)κ(t, x)dxdt,

and by the uniqueness of the limit of ∇Vδ ∗ κδ we deduce that f = ∇V ∗ κ .
Step 3: The limit ρ± is a solution of the unregularised Groma–Balogh equations.

The solution ρδ ∈ (L∞(L log L))2 of the regularised equation (2.13) with initial
datum ρ◦,δ satisfies the weak equations
∫ T

0

∫

Td
ρ±δ (t, x)

(
∂tϕ(t, x)∓ ∇ϕ(t, x) · ∇(Vδ ∗ κδ)(t, x)∓ ∇ϕ(t, x) · ∇U (x)

)
dxdt

+
∫

Td
ρ±◦,δ(x)ϕ(0, x)dx = 0 (3.22)

for every ϕ ∈ C∞c ([0, T ) × T
d). We now show that, thanks to the compactness

results in Steps 1 and 2, we can pass to the limit in (3.22) as δ→ 0, hence showing
that ρ is a solution of the unregularised Groma–Balogh equations, in the sense of
Definition 3.2, with initial datum ρ◦.

By (3.18), we can pass to the limit in the first and in the third terms of the first
integral in equations (3.22). For the last term, the convergence is immediate, since

ρ◦,δ
∗
⇀ ρ◦ as δ→ 0. To pass to the limit in the nonlocal terms of equations (3.22),

note that, by (3.18) and by Step 2,
∫ T

0

∫

Td

(
ρ±δ ∇Vδ ∗ κδ − ρ±∇V ∗ κ

) · ∇ϕ dxdt

=
∫ T

0

∫

Td
ρ±δ

(∇Vδ ∗ κδ −∇V ∗ κ
) · ∇ϕ dxdt

+
∫ T

0

∫

Td
(ρ±δ − ρ±)(∇V ∗ κ) · ∇ϕ dxdt

δ→0−→ 0.
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This concludes the proof of the theorem. ��
Finally, we prove our main result, Theorem 3.3, by combining Lemma 3.5 and

Theorem 3.6.

Proof. (Theorem 3.3) Let (δn) be an infinitesimal sequence satisfying assump-
tion (3.1). Let t �→ μn(t) be the empirical measure of the solution t �→ xn(t)
of (2.11) with initial datum μ◦,n , and let ρδn

∈ C([0, T ];P(Td × {±1})) ∩
L∞(0, T ; (L log L(Td))2) be the solution of the regularised equation (2.13) with
initial datum ρ◦,n , whose existence and uniqueness are established in Lemma 3.5,
and whose bounds are proved in Lemma 3.7.

First, by Lemma 3.5 and assumption (3.1), we can extract a subsequence of δn

(not relabelled) along which we have

sup
t∈[0,T ]

W(μn(t), ρδn
(t))

n→∞−−−→ 0. (3.23)

Moreover, we claim that

(ρδn
) is bounded in L∞(0, T ; (L log L(Td))2), and (3.24a)

(∂tρδn
) is bounded in L2(0, T ; (W−1,1(Td))2). (3.24b)

Property (3.24a) is given directly by (3.17); (3.24b) follows from (3.19) since, for
any ϕ ∈ C∞c ((0, T )× T

d), proceeding similarly as to (3.20),

∣∣∣∣
∫ T

0

∫

Td
ρ±δn

(t, x)∂tϕ(t, x)dxdt

∣∣∣∣ � c ‖∇ϕ‖L2(Exp2)
� c ‖ϕ‖L2(W 1,∞),

where we have used the continuous embedding L∞(Td) ↪→ Exp2(T
d) (see, e.g.,

[45, Lemma 1]).
Thanks to (3.24a) and (3.24b), we apply Lemma A.2 to X0 = (L log L(Td))2

and X = X1 = (W−1,1(Td))2 to deduce compactness of (ρδn
) in C0([0, T ];

(W−1,1(Td))2). In particular, up to a subsequence,

sup
t∈[0,T ]

‖ρδn
(t)− ρ(t)‖∗BL→ 0, (3.25)

where, by Theorem 3.6, ρ is a solution of the unregularised Groma–Balogh equa-
tions with initial datum ρ◦, in the sense of Definition 3.2. Since the dual bounded
Lipschitz norm, when restricted to P(Td × {±1}), is equivalent to W (by Kan-
torovich duality), we deduce from (3.25) that

sup
t∈[0,T ]

W(ρδn
(t), ρ(t))

n→∞−−−→ 0. (3.26)

In conclusion, (3.23) and (3.26) imply that W(μn(t), ρ(t)) → 0 along a subse-
quence as n →∞, uniformly in t ∈ [0, T ]. This concludes the proof of Theorem
3.3. ��
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3.2. Case 2: Two-Dimensional Domain, Slip Plane-Confined Evolution.

Here we consider the anisotropic case in two dimensions, as in Section 2.3.2.
The main result of this section is Theorem 3.9, which is the analogue of Theorem
3.3 in this framework.

In analogy with Definition 3.2, we define the concept of solution for the unreg-
ularised and anisotropic evolution (2.21) as follows.

Definition 3.8. Let ρ◦ = (ρ+◦ , ρ−◦ ) ∈ (
L log L(T2)

)2 ∩P(T2 × {±1}), let T > 0,
and let ρ = (ρ+, ρ−) : [0, T ] → P(T2 × {±1}). We say that ρ is a solution
of (2.21) in [0, T ], with initial datum ρ◦, if

(1) ρ+, ρ− ∈ L∞(0, T ; L log L(T2)) and ∂1V ∗ κ ∈ L1(0, T ; H1(T2)), where
κ = ρ+ − ρ−;

(2) For every ϕ,ψ ∈ C∞c ([0, T )× T
2)

∫ T

0

∫

T2
ρ+(t, x)

(
∂tϕ(t, x)− ∂1ϕ(t, x) ∂1(V ∗ κ +U )(t, x)

)
dxdt

+
∫

T2
ρ+◦ (x)ϕ(0, x)dx = 0,

∫ T

0

∫

T2
ρ−(t, x)

(
∂tψ(t, x)+ ∂1ψ(t, x) ∂1(V ∗ κ +U )(t, x)

)
dxdt

+
∫

T2
ρ−◦ (x)ψ(0, x)dx = 0.

We set, as in the previous section, λδ := ‖D2Vδ‖L∞(T2). The main theorem of this
section is the following:

Theorem 3.9. (Evolutionary convergence) Let ρ◦ ∈
(
L log L(T2)

)2 ∩ P(T2 ×
{±1}), and let (ρ◦,n), (μ◦,n) ⊂ P(T2 × {±1}) be approximating sequences for ρ◦
as in Lemma 2.4. Let T > 0 be fixed, and let δn > 0 be such that

exp(3λδn T )W(μ◦,n, ρ◦,n)→ 0, as n→∞. (3.27)

Let t �→ μn(t) be the empirical measure of the solution t �→ xn(t) of (2.19) on
[0, T ], with δ = δn and initial datum μ◦,n.

Then the limit ρ(t) := limn→∞ μn(t) exists (up to a t-independent subse-
quence) with respect to W, uniformly in t ∈ [0, T ], where ρ is a solution of the
unregularised Groma–Balogh equations (2.21) in the sense of Definition 3.8 with
initial datum ρ◦.

Structure of the proof of Theorem 3.9. Again, we prove this theorem by constructing
an intermediate solution ρδn

of the regularised equations (2.20) with the modified
initial condition ρ◦,n with nρ±◦,n(T2) ∈ N, and show that ρδn

is close to μn with
respect toW, uniformly in time, and converges to a solution ρ of (2.21).



32 A. Garroni et al.

Proof. We split the proof into three steps.
Step 1: Existence, uniqueness and Gronwall estimate for (2.20) for fixed δ. The
proof of the existence of a solution for (2.20) follows by discretisation via empirical
measures, exactly as in Step 1 of the proof of Lemma 3.5. Similarly, the derivation
of the Gronwall estimate can be done as in Step 2 of the proof of Lemma 3.5.
Step 2: Convergence of ρδ to a solution ρ of (2.21). We split this step into two
sub-steps: The derivation of a-priori bounds for ρδ , in the spirit of Lemma 3.7, and
the limit process as δ→ 0.

Step 2.1: Bounds for ρδ for fixed δ. Let ε > 0 and let ρε
δ = (ρ

ε,+
δ , ρ

ε,−
δ ) ∈

C∞([0, T )×T
2) be the solution of the regularisation of the system (2.20) obtained

by adding the term εΔρ± to both equations as for (3.10), and by regularising the
initial datum ρ◦,δ . Following the proof of Lemma 3.7 and using Remark 2.6, it is
easy to show, for every t ∈ [0, T ], and with

Ent(ρε
δ(t))+

∫ t

0
‖∂1Vδ ∗ κε

δ (τ )‖2H1(T2)
dτ � c + Ent(ρε◦,δ), (3.28)

that the limit of ρε
δ as ε → 0 is the solution ρδ of (2.13) with initial datum ρ◦,δ ,

and that ρδ satisfies

Ent(ρδ(t))+
∫ t

0
‖∂1Vδ ∗ κδ(τ )‖2H1(T2)

dτ � c + Ent(ρ◦,δ)

by letting ε→ 0 in (3.28).
Step 2.2: Convergence of ρδ to a solution of (2.21). Here we can follow exactly
the proof of Theorem 3.6 to deduce convergence of ρδ to a solution ρ of (2.21),
with respect to the weak∗ convergence in L∞(0, T ; (L log L(T2))2).
Step 3: Conclusion. Let (δn) be an infinitesimal sequence satisfying assumption
(3.27). Let t �→ μn(t) be the empirical measure of the solution t �→ xn(t)
of (2.19) with initial datum μ◦,n , and let ρδn

∈ C([0, T ];P(T2 × {±1})) ∩
(L∞(0, T ; (L log L(T2))2) be the solution of the regularised equation (2.13) with
initial datum ρ◦,n , whose existence and uniqueness are established in Step 1 of the
proof, and whose bounds are proved in Step 2.

Then, proceeding as in the proof of Theorem 3.3, we can extract a time-
independent subsequence of n (not relabelled) alongwhichwe have simultaneously

W(μn(t), ρδn
(t))

n→∞−−−→ 0, and W(ρδn
(t), ρ(t))

n→∞−−−→ 0,

uniformly in time, where ρ is a solution of the unregularised Groma–Balogh equa-
tions (2.21), in the sense of Definition 3.8, with initial datum ρ◦. ��

4. Non-convergence: A Uniform Distribution of Short Dipoles

In this section we construct counterexamples to the discrete-to-continuum con-
vergence of gradient flows for the isotropic and the slip-confined cases of Sec-
tion 2. More precisely, for the isotropic case in dimension d = 1, 2 and for the
slip-confined case in dimension d = 2, we construct a family of initial data for
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≥ c√
n ∼ δn

zn◦,i

dn◦,i

xn,−
◦,i

xn,+
◦,i

Fig. 1. A configuration of n = 12 edge dislocations arranged in n
2 = 6 dipoles. The dipole

(xn,+
◦,i , xn,−

◦,i ), with the positive dislocation at xn,+
◦,i and the negative dislocation at xn,−

◦,i , is
highlighted, as well as its mid-point zn◦,i and the dipole half-width vector dn◦,i (see (4.1) for
the precise definition)

the particle systems (1.6) such that the resulting discrete solutions do converge to
a continuum limit, but this limit does not solve the corresponding Groma–Balogh
equations (1.4). In Section 4.1 we explain the idea behind this construction, and
heuristically describe how this choice leads to non-convergence. In Section 4.2
we state and prove the non-convergence result for the isotropic one-dimensional
(Theorem 4.1) and two-dimensional cases (Theorem 4.4). Section 4.3 deals with
the anisotropic case of edge dislocations.

4.1. Choice of the Initial Conditions (xn◦ , bn◦).

The strategy of the counterexamples is as follows. We assume that the regu-
larisation parameter δn converges to zero sufficiently quickly, and we construct a
sequence of initial data for which the resulting solutions of (1.6) are constant in
time, at least approximately. The continuum limit of these solutions is then constant
in time, and therefore is not a solution of the Groma–Balogh equations (1.4), unless
∇U ≡ 0.

In Figure 1 we sketch our initial condition (xn◦ , bn◦) in the case of edge dislo-
cations in a two-dimensional domain. We choose to position n

2 dipoles of width of
order δn at a distance of order at least 1√

n
from one another, under the assumption

that δn � 1
n (the precise assumption on the relation between δn and n will be

specified in each section).
The idea behind our choice for the initial condition is the following. Since V

blows up logarithmically at 0,−Vδn has a deep well around 0 of width proportional
to δn . We call a pair of a positive and a negative dislocation at (xn,+

◦,i , xn,−
◦,i ) a short

dipole if it ‘fits’ in this well (namely, if its width is smaller than the width of the
well). By the logarithmic nature of the singularity of Vδn , the walls of this well are
1
δn

steep, so that it takes a large force to break this dipole apart.
On the other hand, the dipole-dipole interaction is weak: indeed the force field

generated by a dipole at zn
◦,i is small at any y ∈ T

2 with |y − zn
◦,i | > c√

n
, since the
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interaction forces ∇Vδn (xn,+
◦,i − y) and−∇Vδn (xn,−

◦,i − y) generated by the positive
and the negative dislocations in the dipole cancel out up to an error of order δn .
Similarly, also the net effect of the force −∇U generated by the external potential
U on the dipole is of order δn .

Hence, the evolution of the short dipoles governed by (1.6) is slow in time, and
each dipole does not break apart. By choosing the initial positions carefully, and
by making appropriate assumptions on the rate δn → 0, we can then prove that
the solution xn(t) of (1.6) is approximately stationary, namely xn(t) ≈ xn◦ for all
t ∈ [0, T ], up to an error term that is infinitesimal as n→∞.

Now, let ρ◦ = (ρ+◦ , ρ−◦ ) ∈ P(T2 × {±1}) be such that ρ+◦ = ρ−◦ ∈ L∞(T2).
The assumption that ρ+◦ = ρ−◦ is essential since it allows us to approximate ρ◦
with short dipoles (xn◦ , bn◦) as in Figure 1, with c = 1/‖ρ+◦ ‖∞. Then, the fact that
the discrete solutions xn(t) of (1.6) with initial data (xn◦ , bn◦) are approximately
constant implies that μn(t) ⇀ ρ◦ as n→∞ for all t ∈ [0, T ], where μn(t) is the
empirical measure associated to (xn(t), bn◦). However, if we assume that ∇U �≡ 0
on supp ρ◦, then the limit stationary solutionρ◦ is not a solution to the limit equation
(1.4).

In the remainder of this section we make the arguments above rigorous in the
isotropic case in dimension one and two (Section 4.2), and in the two-dimensional
slip-confined case (Section 4.3).

4.2. The Isotropic Case: d = 1 and d = 2.

Let Td be the d-dimensional flat torus, and let ‖ · ‖Td denote the distance on T
d

defined in (2.6). Let δn > 0 for every n ∈ N. We assume that V, Vδn , U : Td → R

satisfy the following assumptions, in analogy with the ones listed in Section 2 (here
the subscript I stands for ‘isotropic’):

(V 1)I
∥∥‖s‖2

T
d D2V (s)

∥∥
L∞(Td )

<∞, and V (x) = V (−x);

(V 2)I Vδn ∈ C2(Td), and Vδn (x) = Vδn (−x);

(V 3)I

⎧
⎪⎪⎨

⎪⎪⎩

(d = 1) ∃ c, γ > 0 such that V ′δn
(2γ δn) � −c/δn for n large;

(d=2) there exist C, c>0 , and a closed and simple C1 -curve Γn=∂ Bn,

Bn ⊂ B(0, Cδn) , such that maxΓn

(∇Vδn · νn
)

� −c/δn for n large,
where νn is the outward pointing normal to Γn;

(V 4)I δn‖∇Vδn‖L∞(Td ) is bounded in n;

(V 5)I ∀ c > 0 ∃ C > 0 such that sup
{
‖D2Vδn (s)‖ : ‖s‖Td > c

n1/d

}
� Cn

2
d for n

large;
(U )I U ∈ C2(Td).

The assumptions above are quite natural and are satisfied by the one-
dimensional model potential Vδn (s) = − 1

2 log(s
2+δ2n). Assumption (V 5)I mimics

the bound (V 1)I on V , and forces the regularisation of the singularity to be localised
in an interval around 0 with length asymptotically smaller than 1

n1/d (which is the
typical dipole-dipole distance in dimension d). Assumption (V 4)I provides an a
priori bound on the force generated by a dislocation; this assumption can be easily
relaxed by asking δ	

n‖∇Vδn‖∞ to be bounded for some 	 ∈ N. Assumption (V 3)I
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identifies a force barrier of slope 1
δn

on the boundary of a region of diameter δn ,
which needs to be overcome for a dipole to break apart. In dimension one the
region of diameter δn is an interval; in the two-dimensional case, this barrier lives
on the boundary of a region Bn contained in the ball B(0, Cδn) ⊂ T

2, namely on
a closed curve which encloses 0. Possible choices for Γn are spheres of the form
{s ∈ T

2 : ‖s‖T2 = γ δn} or level sets of Vδn such as {s ∈ T
2 : Vδn (s) = −γ log δn}.

The precise choice of Γn depends on the type of regularisation and on the symme-
tries of V .

4.2.1. The One-Dimensional Case This is the case we describe in detail. The
two-dimensional casewill be briefly illustrated in Section 4.2.2, just by highlighting
in what it differs from the one-dimensional setup treated here.

We consider a special arrangement of dislocations of alternated sign (−+−+
. . . ) into short dipoles. This corresponds to the choice of n even and bi = (−1)i in
the energy (1.5). It is convenient to re-label the positions of positive and negative
dislocations as

x+ = (x+1 , . . . , x+n
2
) ∈ T

n
2 and x− = (x−1 , . . . , x−n

2
) ∈ T

n
2 .

We now define a new set of variables (z, d) ∈ T
n , for k = 1, . . . , n

2 , as follows:

{
zk = 1

2 (x+k + x−k )

dk = 1
2 (x+k − x−k )

⇐⇒
{

x+k = zk + dk

x−k = zk − dk
. (4.1)

The variable zk represents the position of the mid-point of the k-th dipole, while
dk is the half-width of the k-th dipole. We consider the case of n/2 short dipoles,
where the width of the dipole is much smaller than the dipole-dipole distance. This
can be formally expressed by the condition maxk |dk | � mini �= j |zi − z j |T.

In terms of the variables (z, d) the energy (1.5) reads as

En(z, d) = 1

2n2

n/2∑

k,	=1

∑

p,q=±1
pqVδn (zk − z	 + pdk − qd	)

− 1

n

n/2∑

k=1

∑

p=±1
pU (zk + pdk),

and the gradient-flow equation (1.6) reads as

d

dt

[
z
d

]
= −n

2

[
∂z En(z, d)

∂d En(z, d)

]
. (4.2)
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Relying on the evenness of Vδn , we rewrite the right-hand side of (4.2) as

∂zi En(z, d) = 1

n2

n/2∑

	=1

∑

p,q=±1
pqV ′δn

(zi − z	 + pdi − qd	)

− 1

n

∑

p=±1
pU ′(zi + pdi ), (4.3)

∂di En(z, d) = 1

n2

n/2∑

	=1

∑

p,q=±1
qV ′δn

(zi − z	 + pdi − qd	)

− 1

n

∑

p=±1
U ′(zi + pdi ). (4.4)

Hence, the discrete evolution of the short dipoles is described by the system

d

dt
zi = − 1

2n

n/2∑

	=1

∑

p,q=±1
pqV ′δn

(zi − z	 + pdi − qd	)

+ 1

2

∑

p=±1
pU ′(zi + pdi ), (4.5)

d

dt
di = − 1

2n

n/2∑

	=1

∑

p,q=±1
qV ′δn

(zi − z	 + pdi − qd	)

+ 1

2

∑

p=±1
U ′(zi + pdi ), (4.6)

for i = 1, . . . , n/2.
We now introduce a subset of T

n where we study the evolution; we will refer
to it as the slow manifold. For any constant M > 0, we define the set Ω(M) ⊂ T

n

as

Ω(M) :=
{
(z, d) ∈ T

n : min
i �= j
|zi − z j |T � M

n
, max

i
|di | � γ δn

}
, (4.7)

where γ > 0 is defined in (V 2)1.

Theorem 4.1. Let (δn)n∈N ⊂ (0,∞) be a sequence such that n3δn → 0 as n→∞.
Let U, V and Vδn satisfy conditions (V 1)I–(V 5)I and (U )I. Let A, T > 0 be
given constants. Then, for every initial condition (zn◦, dn◦ ) ∈ Ω(2A), the solution
(zn(t), dn(t)) of (4.5)–(4.6) satisfies (zn(t), dn(t)) ∈ Ω(A) for every t ∈ [0, T ]
and for large enough n. Moreover, the empirical measures μ±n (t) and μ±◦,n asso-
ciated to xn,±(t) and to xn,±◦ , respectively, where xn,±(t) and xn,±◦ are related
to (zn(t), dn(t)) and (zn◦, dn◦ ) via (4.1), satisfy μ±n (t) − μ±◦,n ⇀ 0 narrowly as
n→∞, uniformly in t ∈ [0, T ].

From here on, to ease the notation, we will drop the explicit dependence on n
when it is clear from the context.
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Proof. The main idea of the proof is that the evolution of z is slow on the manifold,
namely the forces n

2 ∂z En(z, d) acting on z are uniformly small. The forces on d
may instead be large, but point in the ‘right direction’, i.e., there is a large basin of
attraction to some d̃(t) which is close to 0.

The above argument will be made precise by means of three main steps. To this
end, we define, for M > 0,

Ω2(M) :=
{
(z, d) ∈ T

n : min
i �= j
|zi − z j |T � M

n
, max

i
|di | � 2γ δn

}
⊃ Ω(M).

In all our estimates the symbols C, c denote positive constants which only depend
on U , V , A and the n-independent constants appearing in (V 2)I–(V 5)I.
Step 1: Behaviour of the gradient-flow equations (4.5)–(4.6) in Ω2(A). In this
step we prove that the right-hand side of (4.5) satisfies the bound

∃C > 0 : sup
(z,d)∈Ω2(A)

‖ n
2 ∂z En(z, d)‖∞ � Cn2δn, for all n large enough; (4.8)

additionally, we rewrite the evolution of di on Ω2(A) in a more convenient form.
To prove (4.8), we note that by the symmetry of Vδn the term 	 = i in the first

sum in the right-hand side of (4.5) is zero; for 	 �= i , we estimate the summand by
using the Mean Value Theorem on the sum over q:

∣∣∣∣
∑

p=±1
p
∑

q=±1
qV ′δn

(zi − z	 + pdi − qd	)

∣∣∣∣ =
∣∣∣∣
∑

p=±1
2pd	V ′′δn

(αi	)

∣∣∣∣

� 4‖d‖∞|V ′′δn
(αi	)|, (4.9)

where |αi	 − (zi − z	)|T � 2‖d‖∞ � Cδn . Hence, mini �=	 |αi	|T � M
2n for all n

large enough. By the assumption (V 5)I we then conclude from (4.9) that
∣∣∣∣

∑

p,q=±1
pqV ′δn

(zi − z	 + pdi − qd	)

∣∣∣∣ � Cn2δn .

For the forcing term (the second sum in the right-hand side of (4.5)), by (U ) we
estimate

|U ′(zi + di )−U ′(zi − di )| � 2‖d‖∞‖U ′′‖L∞(T) � Cδn .

This completes the proof of (4.8).
Now we rewrite the evolution of the dipole width di , under the assumption that

(z, d) ∈ Ω2(A) during the evolution.We claim that, in (4.6), the termcorresponding
to 	 = i is the dominant term. By isolating this term, we rewrite the evolution of
di as

d

dt
di = 1

n
V ′δn

(2di )+ 1

2n

n/2∑

	=1
	 �=i

∑

p,q=±1
q(−V ′δn

(zi − z	 + pdi − qd	))

+ 1

2

∑

p=±1
U ′(zi + pdi ), (4.10)
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and the computations leading to the estimate (4.8) show that |Fi
n(z, d)| � C for all

i and for large enough n, where

Fi
n(z, d) := 1

2n

n/2∑

	=1
	 �=i

∑

p,q=±1
q(−V ′δn

(zi − z	 + pdi − qd	))

+1

2

∑

p=±1
U ′(zi + pdi ).

Step2:The evolution (4.5) and (4.6) remains in themanifoldΩ(A).Weclaim that
the solution (z(t), d(t)) of (4.5) and (4.6) with initial condition (z◦, d◦) ∈ Ω(2A)

satisfies (z(t), d(t)) ∈ Ω(A) for every t ∈ [0, T ], for large enough n.We first prove
with a priori bounds that (z(t), d(t)) ∈ Ω2(A) for every t ∈ [0, δ3n]. Then, we use
Step 1 to improve these bounds and show that (z(t), d(t)) ∈ Ω(2A − 2Cn3δ4n) ⊂
Ω(A). In the final part we iterate this procedure in time to obtain the desired result
on [0, T ].
Step 2.1: The evolution with initial data in Ω(B), B > A, stays in Ω2(A) for small
time. We claim that the solution (z̃(t), d̃(t)) of (4.5) and (4.6) with initial condition
(z̃◦, d̃◦) ∈ Ω(B), with B > A, satisfies (z̃(t), d̃(t)) ∈ Ω2(A) for all t ∈ [0, δ3n],
and for large enough n. By applying the bound (V 4)I for every term in the sum in
the right-hand side of (4.3) and (4.4), we obtain the a priori estimate

‖n∇En‖∞ � C/δn for all n large enough.

Hence, the right-hand side of the gradient-flow evolutions (4.5) and (4.6) is bounded
uniformly by C/δn . Thus, for t ∈ [0, δ3n] we have that, since (z̃◦, d̃◦) ∈ Ω(B),

‖d̃(t)‖∞ � ‖d̃◦‖∞ + Ct/δn � 2γ δn for all n large enough.

A similar estimate for z̃(t) allows us to deduce that

min
i �= j
|z̃i (t)− z̃ j (t)|T � min

i �= j
|z̃◦,i − z̃◦, j |T − 2

C

δn
t � B − 2Cnδ2n

n
.

Hence, for n large enough, (z̃(t), d̃(t)) ∈ Ω2(A) for every t ∈ [0, δ3n].
Step 2.2: Improved estimates for (z̃(t), d̃(t)) for t ∈ [0, δ3n]. Since (z̃(t), d̃(t)) ∈
Ω2(A) for every t ∈ [0, δ3n], we obtain from (4.8) the improved estimate

‖z̃(t)− z̃◦‖∞ � Cn2δnt � Cn2δ4n, (4.11)

which leads to

min
i �= j
|z̃i (t)− z̃ j (t)|T � B − 2Cn3δ4n

n
for all t ∈ [0, δ3n] and all n large enough.

(4.12)

Moreover, we claim that

‖d̃(t)‖∞ � γ δn for all t ∈ [0, δ3n] and all n large enough. (4.13)
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Indeed, ‖d̃◦‖∞ � γ δn , and by (4.10) we have

d

dt
d̃i = 1

n
V ′δn

(2d̃i )+ Fi
n(z̃, d̃),

where, by Step 2.1, |Fi
n(z̃(t), d̃(t))| � C for all t ∈ [0, δ3n]. We conclude by

contradiction; suppose ‖d̃(t)‖∞ > γδn . Then, since d̃ ∈ C([0, δ3n];Tn/2), there
exist i ∈ {1, . . . , n

2 } and t ∈ [0, δ3n] such that d̃i (t) = pγ δn and p d
dt d̃i (t) � 0 for

some p ∈ {−1,+1}. However, by (4.10) and (V 3)I,

p
d

dt
d̃i (t) = p

n
V ′δn

(2pγ δn)+ pFi
n(z̃(t), d̃(t)) � − c

nδn
+ C,

which is negative for all n large enough. We conclude that (4.13) holds.
In conclusion, for every t ∈ [0, δ3n]we have that (z̃(t), d̃(t)) ∈ Ω(B−2Cn3δ4n).

Step 2.3: Iteration. We iterate Step 2.2 in the time intervals [	δ3n, (	 + 1)δ3n] for
	 = 1, . . . ,

⌊
T/δ3n

⌋
to construct the solution (z(t), d(t)) with initial condition

(z◦, d◦) ∈ Ω(2A). The corresponding values for B are

B = 2(A − C(	+ 1)n3δ4n) for all t ∈ (	δ3n, (	+ 1)δ3n].
Since 	 � T/δ3n , we obtain B � 2(A − CT n3δn) > A for all n large enough.
Hence, it follows from (4.11), (4.12) and (4.13) that

‖z(t)− z◦‖∞ � Cn2δn and (z(t), d(t)) ∈ Ω(A) (4.14)

for all t ∈ [0, T ] and all n large enough.
Step 3: μ±n (t)− μ±◦,n ⇀ 0 as n →∞, uniformly in [0, T ]. Let ϕ ∈ C(T) be an
arbitrary test function, and let ω : [0,∞)→ [0,∞) be its modulus of continuity.
Using (4.1), we estimate

∣∣∣∣
∫

T

ϕdμ+n (t)−
∫

T

ϕdμ+◦,n
∣∣∣∣ � 1

n

n/2∑

i=1

∣∣ϕ
(
zi (t)+ di (t)

)− ϕ(z◦,i + d◦,i )
∣∣

� ω
(‖z(t)− z◦‖∞ + ‖d(t)‖∞ + ‖d◦‖∞

)
.

From (4.14) we conclude that the right-hand side tends to 0 as n →∞ pointwise
for all t ∈ [0, T ]. Similarly we obtain the convergence of μ−n (t) − μ−◦,n ⇀ 0 as
n→∞, uniformly in [0, T ]. ��
Corollary 4.2. Let δn, U, V , Vδn and T > 0 be as in Theorem 4.1. Let ρ◦ ∈
P(T) ∩ L∞(T), and let A◦ be the set of approximating sequences defined as

A◦ :=
{
(xn◦ , bn◦)n∈N :(xn◦ , bn◦) ∈ T

n × {±1}n for every n ∈ N, ∃ A > 0 such that

(zn◦, dn◦ ) ∈ Ω(2A) for large n, and μ±◦,n ⇀ ρ◦ as n→∞}
,

where (zn◦, dn◦ ) and μ±◦,n are defined in terms of (xn◦ , bn◦) via (4.1) and (2.2), respec-
tively. Then A◦ �= ∅. Now assume that U ′ �≡ 0 on supp ρ◦. Let (xn◦ , bn◦) ∈ A◦,
and denote with μ±n (t) the empirical measures associated to the solution xn(t) of
(1.6)with initial datum (xn◦ , bn◦). Then, the weak limit of μ±n (t), namely the measure
ρ = (ρ+, ρ−) such that μ±n (t) ⇀ ρ±(t) as n → ∞ for a.e. t ∈ (0, T ), is not a
solution of (2.14) with initial datum ρ◦ = (ρ◦, ρ◦) in (0, T ).
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Proof. It is easy to see that ρ◦ = (ρ◦, ρ◦) is not a stationary solution to (2.14). Thus
it suffices to show that μ±n (t)− μ±◦,n ⇀ 0 as n→∞. This property is guaranteed
by Theorem 4.1.

It remains to show thatA◦ �= ∅. We set xn,+
◦,1 := 0, and we choose the positions

of the other particles iteratively, so that

∫ xn,+
◦,i+1

xn,+
◦,i

ρ+◦ (x) dx = 2

n
for all i = 1, . . . ,

n

2
− 1.

Then, we set xn,−◦ := xn,+◦ . By construction,μ±◦,n ⇀ ρ±◦ as n→∞, and zn◦ = xn,+◦
anddn◦ = 0. Sinceρ◦ ∈ L∞(T),weobtain thatmini |zn

◦,i+1−zn
◦,i |T � (n‖ρ◦‖∞)−1.

Using that zn◦ is ordered, we conclude that (zn◦, dn◦ ) ∈ Ω(1/‖ρ◦‖∞). ��

Remark 4.3. (Sharper estimates under higher regularity of V ) A careful inspection
of the proof of Theorem 4.1 shows that the result holds true under the weaker
assumption n3/2δn → 0, provided (V 2)I and (V 5)I are replaced by the stronger
conditions

(V 2′)I Vδn ∈ C3(T) is even;
(V 5′)I ∀ c > 0 ∃C > 0 ∀ |s|T > c/n : |V (3)

δn
(s)| � C/s3.

Note that (V 5′)I is satisfied by our model example of V , so it reasonable to assume
that it is satisfied by the regularised potential Vδn as well.

In (4.9) we can interpret the sum over p and q as a four-point approximation
scheme of the third derivative V (3)

δn
(zi − z	), and since |zi − z	|T � c| i−	

n |, by
(V 5′)I the bound in (4.9) results in

∣∣∣∣
∑

p,q=±1
pqV ′δn

(zi − z	 + pdi − qd	)

∣∣∣∣ � C‖d‖2∞ max
|s|T�c

∣∣ i−	
n

∣∣
∣∣V (3)

δn
(s)

∣∣

� C
n3δ2n

|i − 	|3 . (4.15)

By using (4.15) for each term 	 �= i in the first sum in (4.5), we get the improved
estimate

sup
(z,d)∈Ω2(A)

‖ n
2 ∂z En(z, d)‖∞ � Cn2δ2n (4.16)

instead of (4.8). Proceeding as in the proof of Theorem 4.1 and by using the
improved estimate (4.16), we obtain

‖z̃(t)− z̃◦‖∞ � Cn2δ2n and (z(t), d(t)) ∈ Ω(A)

for all t ∈ [0, T ] and all n large enough, instead of (4.14), provided n3/2δn → 0.
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4.2.2. The Two-Dimensional Case In this short section we only stress the dif-
ferences with the one-dimensional case considered above.

First of all, we introduce the subset of (Tn)2 where we study the evolution,
namely the slow manifold. In analogy with (4.7), for any constant M > 0, we
define the set Ω(M) ⊂ (T2)n as

Ω(M) :=
{
(z, d) ∈ (T2)n : min

i �= j
‖zi − z j‖T2 � M√

n
, di ∈ Bn ∀ i

}
,

where Bn is the region whose boundary is the ‘trapping’ curve Γn in (V 3)I.
The following theorem is the counterpart of Theorem 4.1 and Corollary 4.2 for

d = 2:

Theorem 4.4. Let (δn)n∈N ⊂ (0,∞) be a sequence such that n2δn → 0 as n →∞.
Let U, V and Vδn satisfy conditions (V 1)I-(V 5)I and (U )I, and let T > 0 be fixed.
Let ρ◦ ∈ P(T2) ∩ L∞(T2), and let A◦ be the set of approximating sequences
defined as

A◦ :=
{
(xn◦ , bn◦)n∈N : (xn◦ , bn◦) ∈ (T2)n × {±1}n for every n ∈ N, ∃ A > 0

such that (zn◦, dn◦ ) ∈ Ω(2A) for large n, and μ±◦,n ⇀ρ◦ as n→∞}
,

where (zn◦, dn◦ ) and μ±◦,n are defined in terms of (xn◦ , bn◦) via (4.1) and (2.2), respec-
tively. Then A◦ �= ∅. Now assume that ∇U �≡ 0 on supp ρ◦. Let (xn◦ , bn◦) ∈ A◦,
and denote with μ±n (t) the empirical measures associated to the solution xn(t) of
(1.6)with initial datum (xn◦ , bn◦). Then, the weak limit of μ±n (t), namely the measure
ρ = (ρ+, ρ−) such that μ±n (t) ⇀ ρ±(t) as n → ∞ for a.e. t ∈ (0, T ), is not a
solution of (2.14) with initial datum ρ◦ = (ρ◦, ρ◦) in (0, T ).

Proof. The proof of Theorem 4.4 follows by a straightforward adaptation of the
proof of Theorem 4.1 to the two-dimensional setting.

Note that the estimate (4.8) holds true, in the two-dimensional setting, with the
bound Cnδn (instead of Cn2δn), and this leads to the weaker condition n2δn → 0
for δn . ��
Remark 4.5. (Sharper estimates under higher regularity) The extension discussed
in Remark 4.3 has a two-dimensional equivalent. The bound on D3Vδn provides
again an additional factor of δn in the right-hand side of (4.8). To use the condition
mini �= j ‖zi−z j‖T2 � c/

√
n, let us fix the index i , and relabel z	 such that ‖zi−z	‖T2

is increasing in 	 for 	 �= i . Since the balls B(z	, c/(2
√

n)) are disjoint, for all
R � c/(2

√
n) the ball B(zi , R) contains at most "Cn R2# points z	. In other

words, there are at most "Cn R2# points z	 such that ‖zi − z	‖T2 � R. Hence,
‖zi − z	‖T2 � c′′

√
	/n for some c′′ > 0. We use this estimate to replace (4.15) by

∣∣∣∣
∑

p,q=±1
pqV ′δn

(zi − z	 + pdi − qd	)

∣∣∣∣ � Cδ2n

(n

	

) 3
2
.

Then, (4.8) becomes

sup
(z,d)∈Ω2(A)

‖ n
2 ∂z En(z, d)‖∞ � Cδn( 1n +

√
n δn),

which leads to the weaker condition on δn given by n5/4δn → 0.
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4.3. The Two-Dimensional Case, Slip-Place-Confined Motion

This setting is the one inspired by the case of edge dislocations, whose inter-
action potential in R

2 is Vedge(x) = − log |x | + (e1 · x/|x |)2 (see, e.g., (5-16) in
[42]) as discussed in Section 2.3.2. It is also the case corresponding exactly to the
Groma–Balogh evolution equations.

Given some δn > 0, we define the slow manifold as

Ω(M) :=
{
(z, d) ∈ (T2)n : min

i �= j
‖zi − z j‖T2 � M√

n
,

max
i
|di | < δn and min

i
|di · e2| > 0

}
.

The next theorem is the counterpart of Theorem 4.1 and Corollary 4.2 for a
slip-confined evolution in dimension d = 2. Note that, unlike in Section 4.2, we
do not consider a regularised potential Vδn , but we deal directly with V .

Theorem 4.6. Let (δn)n∈N ⊂ (0,∞) be a sequence such that n2δn → 0 as n →∞.
Let U satisfy (U )I, let V be as in Case 2, and let T > 0 be fixed. Let ρ◦ ∈
P(T2) ∩ L∞(T2), and let A◦ be the set of approximating sequences defined as

A◦ :=
{
(xn◦ , bn◦)n∈N : (xn◦ , bn◦) ∈ (T2)n × {±1}n for every n ∈ N, ∃ A > 0

such that (zn◦, dn◦ ) ∈ Ω(2A) for large n, and μ±◦,n ⇀ ρ◦ as n→∞}
,

where (zn◦, dn◦ ) and μ±◦,n are defined in terms of (xn◦ , bn◦) via (4.1) and (2.2), respec-
tively. Then A◦ �= ∅. Now assume that ∂1U �≡ 0 on supp ρ◦. Let (xn◦ , bn◦) ∈ A◦,
and denote with μ±n (t) the empirical measures associated to the solution xn(t) of
the unregularised evolution (2.19), with initial datum (xn◦ , bn◦). Then, the weak limit
of μ±n (t), namely the measure ρ = (ρ+, ρ−) such that μ±n (t) ⇀ ρ±(t) as n→∞
for a.e. t ∈ (0, T ), is not a solution of (2.21) with initial datum ρ◦ = (ρ◦, ρ◦) in
(0, T ).

Proof. We start by establishing some properties of V that will enable us to proceed
similarly as in the proof of Theorem 4.1.

Note that V ‘almost’ satisfies assumptions (V 1)I–(V 5)I. Indeed it does satisfy
(V 1)I and (V 5)I; moreover, V ∈ C2(T2\{0}) and is even, which gives almost
(V 2)I. Instead of (V 3)I, we prove a sufficient upper bound on ∂1V around 0. With
this aim, we observe from (2.16) and (2.17) that W := V − Vedge is biharmonic on
(−1, 1)2, and thus smooth on the closed square Q1/2 := [−1/2, 1/2]2. Hence, for
all δ small enough,

∂1V (2δ, h) � − 6

25δ
+ ‖∂1W‖L∞(Q1/2) for all |h| � δ.

Finally, instead of (V 4)I, we have that sV (s) is bounded in T
2.

Given any (zn, dn) ∈ Ω(M), the singular potential V is never evaluated on
B(0, rn), where

rn := min
i
|di · e2| > 0.



Many-Particle Evolutions with Multiple Signs 43

Hence the extension of Theorem 4.1 follows similarly as in Section 4.2.2, with Vδn

replaced by V . In particular, we note that the equivalent of the a priori estimates in
Step 2.1 depends on rn . Hence, the time interval [0, δ3n]may need to be shrunkwhen
rn > 0 is small. Nevertheless, thanks to the rn-independently improved estimate in
Step 2.2, the proof is easily adjusted to smaller time intervals. ��
Remark 4.7. We note that with minor modifications to the proof it is possible to
remove in Theorem 4.6 the lower bound on |di · e2| in Ω(M) (i.e., to allow the two
dislocations in a dipole to reside on the same slip plane) at the cost of introducing
a regularisation Vδn similarly as in Section 4.2.2.
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A. Appendix: Orlicz Spaces and Embeddings

In this section we recall the definition and some properties of Orlicz spaces that
we have used throughout the paper. This functional framework was used by [15] to
prove existence results for the Groma–Balogh equations (2.21).

For brevity, we focus on real-valued Lebesgue-measurable functions on the flat
torus T

d , for any d � 1. First we introduce Young functions (see [55, Sec. 3.1]
or [15, Sec. 3.1]). A function φ : [0,+∞) → [0,+∞] is a Young function if φ

is continuous, convex, φ(0) = 0, and limt→∞ φ(t)/t = +∞. The Orlicz class
Kφ(Td) is the set of (equivalence classes of) measurable functions g : T

d → R

satisfying
∫
Td φ(|g(x)|)dx < ∞. The Orlicz space Lφ(Td) is the linear hull of

Kφ(Td) equipped with the Luxemburg norm

‖g‖Lφ(Td ) := inf

{
λ > 0 :

∫

Td
φ

( |g(x)|
λ

)
dx � 1

}
, (A.1)

and is a Banach space. In general, (Lφ(Td), ‖ · ‖Lφ(Td )) is neither separable nor

reflexive. However, the closure in Lφ(Td) of bounded functions, denoted with
Eφ(Td), is separable, and Eφ(Td) ⊆ Kφ(Td) ⊆ Lφ(Td).

For the choices

φα(t) := etα − 1 with α � 1, and φβ(t) := t (log(e + t))β with β � 0,

http://creativecommons.org/licenses/by/4.0/
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we denote

Expα(Td) := Lφα (Td), EXPα(Td) := Eφα (Td) and L logβ L(Td) := Lφβ (Td).

It is easy to see that these Orlicz spaces are ordered, i.e., Expα2
(Td) ⊆ Expα1

(Td)

for all 1 � α1 � α2, and L logβ2 L(Td) ⊆ L logβ1 L(Td) for all 0 � β1 � β2. For
convenience, we set

Exp(Td) := Exp1(T
d), L log L(Td) := L log1 L(Td), and EXP(Td) := EXP1(T

d).

Finally, we recall the definition of the fractional Sobolev space Hs(Rd). For s � 0,
we set

Hs(Rd) = {u ∈ L2(Rd) : [u]Hs (Rd ) <∞}, [u]Hs (Rd ) :=
∫

Rd
|ξ |2s |Fu(ξ)|2 dξ,

where F is the Fourier transform on R
d . We note that the Gagliardo (semi)norm

[·]Hs (Rd ) is related to the usual norm on Hs(Rd) given by ‖u‖2
Hs (Rd )

= ‖u‖2
L2(Rd )

+
[u]2

Hs (Rd )
. We will only be interested in the compact embedding of fractional

Sobolev spaces into Orlicz spaces. For a more complete treatment of fractional
Sobolev spaces we refer to [22].

Lemma A.1. (Properties ofExpα(Td) and L logβ L(Td)) Let d � 1. The following
properties are satisfied:

(i) for every C > 0, the sublevel set { f ∈ L1(Td) : Ent(| f |) � C} is bounded in
L log L(Td);

(ii)
(
L logβ L(Td)

)∗ = Exp1/β(Td) for all β > 0;

(iii)
(
EXPα(Td)

)∗ = L log1/α L(Td) for all α > 0;
(iv) there exists a constant C > 0 such that

‖ f g‖L1(Td ) � C‖ f ‖L log L(Td )‖g‖Exp(Td )

for all f ∈ L log L(Td) and all g ∈ Exp(Td);
(v) there exists a constant C > 0 such that

‖ f g‖L log1/2 L(Td ) � C‖ f ‖L log L(Td )‖g‖Exp2(Td )

for all f ∈ L log L(Td) and all g ∈ Exp2(T
d);

(vi) Hd/2(Td) ↪→ Exp2(T
d) ↪→ Expα(Td) ↪→ EXP(Td) ↪→ Exp(Td) for all

1 < α < 2.
(vii) Hd/2(Td) ⊂⊂ Expα(Td) for all 1 < α < 2;

Proof. Property (i) follows from (A.1) by elementary estimates.
Properties (ii) and (iii) are exactly [25, Prop. 2.6.1.2 (ii)-(iii)]. Property (v) is given
by [52, Thm. 2.3]. The continuous embeddings in (vi) are given by [1, Thm. 8.16].
Property (iv) follows from [1, Thm. 8.11], since φ1(t) := et − 1 and φ1(t) :=
t (log(e+t)) are complementary functions. To be precise, [1, Thm. 8.11] is valid for
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ψ1(t) := et− t−1 andψ1(t) := (t+1)(log(1+ t))− t , which are complementary
N - functions (unlike φ1 and φ1). In a bounded domain, however, since φ1, ψ1
and φ1, ψ1 have the same behaviour at infinity, the corresponding Orlicz spaces
coincide, and the corresponding norms are equivalent.
Finally we establish the compact embedding in (vii). First of all we recall that the
natural embedding

idTd : Hd/2(Rd)→ Expα(Td), u �→ u|Td

is compact for every 1 < α < 2 (this is true for every Ω ⊂ R
d bounded, see

e.g. [45]). We also recall that there exists an extension operator T : Hd/2(Td)→
Hd/2(Rd) with ‖T u‖Hd/2(Rd ) � Cd‖u‖Hd/2(Td ) for all u ∈ Hd/2(Td) (see, e.g.,
[57, Thm. 2.2]). Combining these two results we obtain the sought compact embed-
ding of Hd/2(Td) into Expα(Td), since we can write every u ∈ Hd/2(Td) as
u = idTd (T u). ��
Lemma A.2. (Aubin-Lions-Simon) Let 1 � p, q �∞ and X0, X, X1 be Banach
spaces such that X0 ⊂⊂ X ↪→ X1. Then

{
u ∈ L p(0, T ; X0) : ∂t u ∈

Lq(0, T ; X1)
}

is relatively compact in

{
L p(0, T ; X) p <∞,

C([0, T ]; X) p = ∞.
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