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Abstract

We prove the pathwise well-posedness of stochastic porous media and fast
diffusion equations driven by nonlinear, conservative noise. As a consequence, the
generation of a random dynamical system is obtained. This extends results of the
second author and Souganidis, who considered analogous spatially homogeneous
and first-order equations, and earlier works of Lions, Perthame, and Souganidis.

1. Introduction

In this paper, we consider stochastic porous media and fast diffusion equations with
nonlinear, conservative noise of the form

{
∂t u = �(|u|m−1u) + ∇ · (A(x, u) ◦ dzt ) on T

d × (0,∞),

u = u0 on T
d × {0}, (1.1)

for a diffusion exponent m ∈ (0,∞), nonnegative initial data u0 ∈ L2(Td), and an
n-dimensional, α-Hölder continuous, geometric rough path z, which in particular
applies to the case when z is an n-dimensional Brownian motion. The domain T

d

is the d-dimensional unit torus. The matrix-valued nonlinearity

A(x, ξ) = (
ai j (x, ξ)

) : Td × R → Md×n,

is assumed to be regular, with required regularity dictated by regularity of the rough
path z.

This type of stochastic porousmedia equation arises, for example, as an approx-
imative model for the fluctuating hydrodynamics of the zero range particle process
about its hydrodynamic limit, as a continuum limit ofmean field stochastic differen-
tial equations with common noise, with notable relation to the theory of mean field
games, as an approximation to the Dean-Kawasaki equation arising in fluctuating
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fluid dynamics, and as a model for thin films of Newtonian fluids with negligible
surface tension. More details on these applications are given in Section 1.1 below.

Themethods of this paper prove that equation (1.1) is pathwisewell-posed using
primarily analytic techniques and rough path analysis. It should be noted that even
in the case where z is given by a Brownianmotion and even in the probabilistic (that
is non-pathwise) sense, the well-posedness of (1.1) could not be shown thus far.
In addition, the results of this paper establish the existence of a random dynamical
system for (1.1), which is known to be a notoriously difficult problem for stochastic
partial differential equations with nonlinear noise and which is, in general, largely
open. These are the first results proving the existence of a random dynamical system
for a nonlinear SPDE with x-dependent, nonlinear noise. Even in the linear case
m = 1, and despite much effort [24,28,54], this could not be shown previously.

The nonlinearity of the stochastic term prevents the application of transforma-
tion methods that are often used for equations driven by affine-linear noise. Instead,
our method is based on passing to the equation’s kinetic formulation, introduced
by Chen and Perthame [12]. Motivated by the theory of stochastic viscosity so-
lutions for fully-nonlinear second-order stochastic partial differential equations of
Lions and Souganidis [44–48], and the work of Lions et al. [42,43] and the sec-
ond author and Souganidis [29–31] on stochastic scalar conservation laws, this
gives rise to the notion of a pathwise kinetic solution (cf. Definition 3.4 below).

The methods developed in [29] for scalar conservation laws with x-dependent
flux rely on weak convergence arguments and so-called generalized kinetic solu-
tions. These kinds of arguments do not apply to the parabolic-hyperbolic case (1.1),
since the class of pathwise entropy solutions to (1.1) is not closed under weak con-
vergence. For this reason, in [31] a strong convergence method, based on a uniform
BV -estimate and continuous dependence on the driving signal z with respect to
the uniform topology was introduced. These arguments are strictly restricted to
x-independent noise. Indeed, neither a uniform BV -estimate for solutions to (1.1)
seems to be available, nor, as the theory of rough paths tells us, should the continuity
of solutions with respect to z in uniform topology be expected.

As a consequence, new arguments have to be introduced in order to handle
(1.1). In this spirit, the proof of uniqueness of solutions to (1.1) heavily relies on
the observation of new cancellations and error estimates. The proof furthermore
uses sharp regularity estimates which, in the fast diffusion case m ∈ (0, 1), are new
even in the deterministic setting. As a first main result, in Section 4, we obtain the
uniqueness of pathwise kinetic solutions with nonnegative initial data.

Theorem 1.1. Let u1
0, u2

0 ∈ L2+(Td). Pathwise kinetic solutions u1 and u2 of (1.1)
with initial data u1

0 and u2
0 satisfy

∥∥∥u1 − u2
∥∥∥

L∞([0,∞);L1(Td ))
�
∥∥∥u1

0 − u2
0

∥∥∥
L1(Td )

.

In particular, pathwise kinetic solutions are unique.

As pointed out above, compactness arguments used in the spatially homoge-
neous setting are not available for (1.1). Instead, the proof of existence introduced
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in this work relies on new a priori estimates both in space and time. In Section 5,
we prove existence for general initial data.

Theorem 1.2. Let u0 ∈ L2(Td). There exists a pathwise kinetic solution u of (1.1)
with initial data u0. Furthermore, if u0 ∈ L2+(Td), then, for each T > 0,

u ∈ L∞([0, T ]; L2+(Td)).

It is well known (see for instance Lyons [49]) that solutions to stochastic dif-
ferential equations do not depend continuously on the driving noise. However, in
[50] Lyons observed that continuity of the solution map can be recovered by means
of a finer rough path topology. These ideas are recalled in Section B.

We prove an analogous result for pathwise kinetic solutions. Namely, as a
consequence of the analysis leading toTheorems1.1 and1.2,weprove that solutions
of (1.1) depend continuously on the driving noise. In the statement that follows,
the metric dα denotes the α-Hölder metric on the space of geometric rough paths
introduced in Section B. Since the solution map is a map between metric spaces,
continuity is phrased in terms of sequential continuity.

Theorem 1.3. Let u0 ∈ L2+(Td) and T > 0. Let {zn}∞n=1 and z be a sequence of
n-dimensional, α-Hölder continuous geometric rough paths on [0, T ] satisfying

lim
n→∞ dα(zn, z) = 0.

Let {un}∞n=1 and u denote the pathwise kinetic solutions to (1.1) on [0, T ] with
initial data u0 and driving signals {zn}∞n=1 and z respectively. Then,

lim
n→∞

∥∥un − u
∥∥

L∞([0,T ];L1(Td ))
= 0.

Furthermore, the existence of a randomdynamical system for (1.1) is immediate
from Theorems 1.1 and 1.2. A more complete discussion concerning random dy-
namical systems in general can be found in the work of Flandoli [24], the second
author [28], and Mohammed et al. [54]. In the context of this paper, the existence
of a random dynamical system amounts to proving an almost-sure inhomogeneous
semigroup property for the equation.

Precisely, suppose that t ∈ [0,∞) �→ zt = zt (ω) arises from the sample
paths of a stochastic process defined on a probability space ω ∈ (�,F ,P). Let
u(u0, s, t; z·(ω)) denote the solution of (1.1) at time t � s, beginning from time
s � 0 with noise z·(ω) and initial data u0. To prove the existence of a random
dynamical system, it is necessary to show that, for every u0 ∈ L2+(Td), for almost
every ω ∈ �,

u(u0, s, t; z·(ω)) = u(u0, 0, t − s; z·+s(ω)) for every 0 � s � t < ∞. (1.2)

The pathwise results of Theorems 1.1 and 1.2 immediately imply (1.2), since there
is precisely one zero set for all times. For simplicity, the statement is specialized to
the case of fractional Brownian motion.
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Theorem 1.4. Suppose that the noise t ∈ [0,∞) �→ zt (ω) arises from the sample
paths of a fractional Brownian motion with Hurst parameter H ∈ ( 14 , 1) defined
on a probability space ω ∈ (�,F ,P). Equation (1.1) interpreted in the sense of
Definition 3.4 defines a random dynamical system on L2+(Td).

We remark that the methods of this paper apply to general initial data in L2(Td)

provided the diffusion exponent satisfies m = 1 or m > 2.

Theorem 1.5. Suppose that m = 1 or m > 2. For every u0 ∈ L2(Td), there
exists a unique pathwise kinetic solution of (1.1) and the analogous conclusions of
Theorems 1.1, 1.2, 1.3, and 1.4 are satisfied.

Finally, themethods of this paper also apply to equations set on thewhole space,
provided the diffusion coefficient satisfies m = 1 or m � 3, and the details can be
found in the first version of this paper [21].

Theorem 1.6. Suppose that m = 1 or m � 3. For every u0 ∈ (
L1 ∩ L2

)
(Rd), there

exists a unique pathwise kinetic solution of (1.1) and the analogous conclusions of
Theorems 1.1, 1.2, 1.3, and 1.4 are satisfied.

Remark 1.7. The L2 integrability of the initial data is assumed for simplicity only.
At the cost of additional technicalities, the results of this paper can be extended to
nonnegative initial data in L1+(Td). This requires, in particular, a modification to
the definition of a pathwise kinetic solution, since the entropy and parabolic defect
measures will no longer be globally integrable (cf. Definition 3.4 below). The proof
of uniqueness and the stable estimates would also need to be localized in order to
account for the lack of integrability.

1.1. Applications

Equations of the form (1.1) arise in several applications. It was shown by Ferrari
et al. [22] that the hydrodynamic limit of a zero range particle process satisfies a
nonlinear diffusion equation of the type

∂t u = ��(u) in T
d × (0,∞), (1.3)

where� is themean local jump rate. For instance, in the porousmedia case�(ρ) =
ρ |ρ|m−1, this means that the process exhibits a high rate of diffusion in regions of
high concentration.

The fluctuating hydrodynamics of the zero range process about its hydrody-
namic limit were subsequently studied by Ferrari et al. [23], and were informally
shown by Dirr et al. [18] to satisfy a stochastic nonlinear diffusion equation of the
type

∂t u = ��(u) + ∇ ·
(√

�(u)N
)

in T
d × (0,∞), (1.4)

whereN is a space-time white noise. Equation (1.1) represents a regularization of
(1.4) for �(ρ) = ρ |ρ|m−1 given by a smoothing of the square root function and a
regularization of the noise in space.
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For a second example, consider an (L + 1)-dimensional system of mean field
stochastic differential equations, for i ∈ {0, . . . , L},

dXi
t = AL

⎛
⎝Xi

t ,
1

L

∑
j 	=i

δ
X j

t

⎞
⎠ ◦ dBt + �L

⎛
⎝ 1

L

∑
j 	=i

δ
X j

t

⎞
⎠ dW i

t for t ∈ (0,∞),

(1.5)
where L � 1 and {Bi

t }d
i=1 and {W i

t }n
i=1 are independent Brownian motions. The

first term is interpreted in the Stratonovich sense and the second term is interpreted
in the Itô sense. For each L � 1, the nonlinearities AL : Td × P(Td) → Md×n

and �L : P(Td) → R are assumed to be continuous with respect to the topology
of weak convergence on the space of probability measures.

It follows informally from the theory of mean field games, as introduced by
Lasry and Lions [38–40], that the conditional density m of the empirical law of
the solution Xt = (X0

t , . . . , X L
t )with respect to Bt , in themean field limit L → ∞,

evolves according to an equation of the form

∂t m = 1

2
�
(
σ 2(m)m

)
+ ∇ · (A(x, m)m ◦ dBt ) in T

d × (0,∞), (1.6)

provided the nonlocal nonlinearities {AL}{L�1} and {�L}{L�1} satisfy appropriate
assumptions which guarantee that, as L → ∞, they converge to local functions
A : Td × R → Mn×d and σ : R → R of the density.

A third application of equations of the type (1.1), for m = 1, is given as an
approximation to the Dean-Kawasaki model for the diffusion of particles subject
to thermal advection in a fluctuating fluid. In this model, proposed by Dean [16],
Kawasaki [33], andMarconi andTarazona [53], and recently studied byDonev
et al. [19], the density of the particles c evolves according to the stochastic equation

∂t c = σ�c + ∇ ·
(

cv + √
2σcN

)
in T

d × (0,∞), (1.7)

where σ > 0 is a diffusion coefficient, v is a smooth and divergence free velocity
field, and N is a space-time white noise. Equation (1.1), for m = 1, therefore
represents a regularized version of (1.7), which is obtained by smoothing the square
root function and considering noise that is regular in space and driven by a rough
path in time.

An additional application arises as a stochastic model for the evolution of a
thin film consisting of an incompressible Newtonian liquid on a flat d-dimensional
substrate proposed by Grün et al. [32]. Their model describes the evolution of the
thickness h of the substrate, which is the solution of the stochastic partial differential
equation

∂t h = ∇ ·
(

hn∇
(
1

3
�′(h) − γ�h

))
+ ∇ ·

(
h

3
2

3
N
)

in T
d × (0,∞), (1.8)

where � is the effective interface potential describing the interaction of the liquid
and the substrate, γ > 0 is the surface tension coefficient,N is a space-time white
noise, and n > 0 describes the mobility function depending on the flow condition at
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the liquid-solid interface. In [32], a no-slip boundary condition is assumed, which
corresponds to n = 3. Equation (1.1) can be viewed as a simplified model of
equation (1.8) in the case that the effective interface potential �(ξ) � |ξ |s for
small values ξ ∈ R and for some s � 1− n, and in the case that the surface tension
γ � 0 is negligible.

1.2. Relation to Previous Work and Methodology

Themethods of this paper build upon the theory of stochastic viscosity solutions for
fully-nonlinear second-order stochastic partial differential equations introduced by
[44–48], and the work [42,43] and [29–31] on scalar conservation laws driven by
multiple rough fluxes. As laid out above, the application of these ideas is, however,
complicated by the nonlinear structure of the noise.

Motivated by the methods of [29,31], we first pass to the kinetic formulation
of (1.1) introduced by Chen and Perthame [12] and Perthame [56]. The precise
details can be found in Section A. This yields an equation in (d + 1)-variables for
which the noise enters as a linear transport. The transport is well-defined for rough
driving signals, as shown in Lyons and Qian [51], when interpreting the underlying
system as a rough differential equation. The details are presented in Section 3,
where Definition 3.4 presents the notion of a pathwise kinetic solution.

The definition is formally obtained by flowing the corresponding kinetic solu-
tion along the system of rough characteristics, which are defined globally in time.
This is effectively achieved by considering a class of test functions which are trans-
ported by the corresponding system of inverse characteristics. In this regard, our
setting resembles more closely [42,43] and [29,31] and is simpler than the gen-
eral stochastic viscosity theory [44–48]. There, the noise is removed by flowing
test functions along a system of stochastic characteristics arising from a stochastic
Hamilton-Jacobi equation, which are defined only locally in time and are therefore
less easily inverted.

With regard to the stochastic term, in comparison to [42,43], the noise is multi-
dimensional, if n > 1, and spatially inhomogeneous—that is, x-dependent. There-
fore, the characteristic equations cannot be solved explicitly and it is therefore
necessary to use rough path estimates from Section B in order to understand the
cancellations. Furthermore, these cancellations depend crucially on the conser-
vative structure of the equation, which implies, in particular, that the stochastic
characteristics preserve the underlying Lebesgue measure.

The interaction between the x-dependent characteristics and nonlinear diffusion
term significantly complicates the proof of uniqueness. This is evidenced by our
need to use Proposition 4.7 to handle the case of small diffusion exponents, an
argument which has no analogue in the deterministic or stochastic settings. The
estimate of Proposition 4.7 is simply false, in general, for signed initial data and is,
in some sense, an optimal regularity statement encoded by a finite singular moment
of the solution’s parabolic defect measure (cf. Definition 3.4).

The proof of existence for second-order equations is also significantly more
involved than in the first-order case. This is due to the aforementioned fact that the
space of pathwise kinetic solutions is not closed with respect to weak convergence.
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We therefore prove the existence of solutions by proving the strong convergence
of the kinetic solutions corresponding to a sequence of regularized equations in
Section 5. In particular, we prove a stable estimate for the kinetic functions in the
fractional Sobolev space W s,1, for any s ∈ (0, 2

m+1 ∧ 1) (cf. Proposition 5.4). This
regularity is based upon Proposition 5.1 and Proposition 5.2, which prove that,
locally in time, pathwise kinetic solutions preserve the basic regularity of solutions
to the deterministic porous medium equation.

In combination, Theorems 1.1 and 1.2 prove the pathwise well-posedness of
equation (1.1) for every initial data u0 ∈ L2+(Td), and for every diffusion exponent
m ∈ (0,∞). We remark that these results also incorporate the notion of renormal-
ized solutions, as originally introduced by DiPerna and Lions [17] in the context of
the Boltzmann equation and subsequently used in the context of nonlinear parabolic
problems by Blanchard and Murat [9] and Blanchard and Redwane [10,11]. This
is due to the fact that we do not, in general, require the integrability of the signed
power of the initial data |u0|m−1 u0.

Finally, we remark that while probabilistic and pathwise techniques have not
been successful in treating (1.1), they have previously been used to prove the well-
posedness of stochastic porousmedium equations in the simpler cases of additive or
multiplicative noise. This includes, for instance, the work of Barbu, Bogachev, Da
Prato, and Röckner [2], Barbu, Da Prato, and Röckner [3–6], Barbu and Röckner
[7], Barbu, Röckner, and Russo [8], Da Prato and Röckner [14], Da Prato, Röckner,
Rozovskiı̆, andWang [15], the second author [27], Kim [34], Krylov and Rozovskiı̆
[35,36], Pardoux [55], Prévôt and Röckner [57], Ren, Röckner, and Wang [58],
Röckner and Wang [59], and Rozovskiı̆ [60].

1.3. Structure of the Paper

The paper is organized as follows: in Section 2, we present our assumptions. In
Section 3,we analyze the associated systemof stochastic characteristics and present
the definition of a pathwise kinetic solution. The proof of uniqueness appears in
Section 4 and the proof of existence appears in Section 5. The remainder of the paper
consists of an appendix. In SectionA,we prove the existence of kinetic solutions to a
regularization of equation (1.1). In SectionB,we present some stability results from
the theory of rough paths. Finally, in Section C, we prove some basic properties of
fractional Sobolev spaces and establish the regularity of pathwise kinetic solutions
on the level of their kinetic functions.

2. Preliminaries

2.1. Assumptions

The spatial dimension is one or greater:

d � 1. (2.1)
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The diffusion exponent is m ∈ (0,∞), and the signed power

u[m] := |u|m−1 u.

The noise is a geometric rough path: for n � 1 and a Hölder exponent α ∈ (0, 1),
for each T > 0,

zt =
(

z1t , . . . , zn
t

)
∈ C0,α

(
[0, T ]; G

⌊
1
α

⌋ (
R

n)) , (2.2)

where C0,α([0, T ]; G

⌊
1
α

⌋
(Rn)) is the space of n-dimensional, α-Hölder continuous

geometric rough paths on [0, T ]. See Section B for a brief introduction to and
references on rough path theory.

The coefficients have derivatives which are smooth and bounded: for γ > 1
α
,

for each i ∈ {1, . . . , d} and j ∈ {1, . . . , n},
∇x ai j (x, ξ) ∈ Cγ+2

(
T

d × R;Rd
)

and ∂ξ ai j (x, ξ) ∈ Cγ+2(Td × R). (2.3)

This regularity is necessary in order to obtain the rough path estimates of Proposi-
tion B.1. In particular, as the regularity of the noise decreases, more regularity is
required from the coefficients.

Finally, the nonlinearity A(x, ξ) satisfies

d∑
i=1

∂xi ai j (x, 0) = 0 for each x ∈ T
d and j ∈ {1, . . . , n}. (2.4)

This assumption guarantees that the underlying stochastic characteristics preserve
the sign of the velocity variable. Even in the case of smooth driving signals, this
condition is necessary to ensure that the evolution of (1.1) does not increase the
mass of the initial condition.

Finally, for every p ∈ [0,∞], the space L p
+(Td) denotes the the space of

nonnegative L p-functions on the torus. That is, L p
+(Td) is the closure of the space

of nonnegative, smooth functions on T
d with respect to the L p(Td)-norm.

3. Definition of Pathwise Kinetic Solutions

In order to understand equation (1.1), we will introduce a uniformly elliptic regu-
larization driven by smooth noise. The assumption (2.2) that z is a geometric rough
path ensures that there exists a sequence of smooth paths{

zε : [0,∞) → R
n}

ε∈(0,1) , (3.1)

such that, as ε → 0, for each T > 0, the paths zε converge to z with respect to the α-

Hölder norm on the space of geometric rough paths C0,α([0, T ]; G

⌊
1
α

⌋
(Rn)) in the

sense of (B.1). The precise meaning of this convergence is presented in Section B.
In what follows, for ε ∈ (0, 1), we will use żε to denote the time derivative of the
smooth path.
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It is furthermore necessary to introduce an η-perturbation by the Laplacian, for
η ∈ (0, 1), in order to remove the degeneracy of the porous medium operator. We
therefore consider the equation, for η ∈ (0, 1) and ε ∈ (0, 1),{

∂t u = �u[m] + η�u + ∇ · (A(x, u)żε
t

)
in T

d × (0,∞),

u = u0 on T
d × {0}. (3.2)

The following proposition establishes the well-posedness of (3.2) (the proof and
additional estimates can be found in Proposition A.1):

Proposition 3.1. For each η ∈ (0, 1), ε ∈ (0, 1), and u0 ∈ L2(Td), there exists a
classical solution of the equation{

∂t u = �u[m] + η�u + ∇ · (A(x, u)żε
t

)
in T

d × (0,∞),

u = u0 on T
d × {0}.

The kinetic formulation of (3.2), which is derived in more detail in Section A,
is obtained by introducing the kinetic function χ : R2 → {−1, 0, 1} defined by

χ(s, ξ) :=
⎧⎨
⎩
1 if 0 < ξ < s,
−1 if s < ξ < 0,
0 else.

(3.3)

We then define, for each η ∈ (0, 1) and ε ∈ (0, 1), for uη,ε the solution of (3.2),
the composition

χη,ε(x, ξ, t) := χ(uη,ε(x, t), ξ). (3.4)

After expanding the divergence appearing in (3.2) by defining the matrix-valued
function

b(x, ξ) = (bi j (x, ξ)) := ∂ξ A(x, ξ) ∈ Md×n, (3.5)

and the vector-valued

c(x, ξ) = (c j (x, ξ)) :=
(

d∑
i=1

∂xi ai j (x, ξ)

)
∈ R

n, (3.6)

we prove in Proposition A.2 that, for each η ∈ (0, 1) and ε ∈ (0, 1), the kinetic
function χη,ε is a distributional solution of the equation

∂tχ
η,ε = m |ξ |m−1 �xχ

η,ε + η�xχ
η,ε + b(x, ξ)żε

t · ∇xχ
η,ε − (

c(x, ξ) · żε
t

)
∂ξχ

η,ε

+ ∂ξ pη,ε(x, ξ, t) + ∂ξ qη,ε(x, ξ, t),
(3.7)

on T
d × R × (0,∞), with initial data χ(u0(x), ξ). Here, the measure pη,ε is the

entropy defect measure

pη,ε(x, ξ, t) := δ0
(
ξ − uη,ε(x, t)

)
η
∣∣∇uη,ε(x, t)

∣∣2 ,

and the measure qη,ε is the parabolic defect measure

qη,ε(x, ξ, t) := δ0
(
ξ − uη,ε(x, t)

) 4m

(m + 1)2

∣∣∣∣∇ (
uη,ε

)[m+1
2

]
(x, t)

∣∣∣∣
2

,

where δ0 denotes the one-dimensional Dirac mass centered at the origin. The sense
in which the kinetic function satisfies (3.7) is made precise by the following propo-
sition (the proof can be found in Proposition A.2):
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Proposition 3.2. For each η ∈ (0, 1), ε ∈ (0, 1), and u0 ∈ L2(Td), let uη,ε denote
the solution of (3.2) from Proposition 3.1. Then, the kinetic function χη,ε defined in
(3.4) is a distributional solution of (3.7) in the sense that, for every t1, t2 ∈ [0,∞),
for every ψ ∈ C∞

c (Td × R × [t1, t2])),∫
R

∫
Td

χη,ε(x, ξ, t)ψ(x, ξ, t) dx dξ

∣∣∣∣
t2

t=t1

=
∫ t2

t1

∫
R

∫
Td

χη,ε∂tψ dx dξ dt

+
∫ t2

t1

∫
R

∫
Td

(
m |ξ |m−1 + η

)
χη,ε�xψ dx dξ dt

−
∫ t2

t1

∫
R

∫
Td

χη,ε∇x · ((b(x, ξ)żε
t

)
ψ
) − χη,ε∂ξ

((
c(x, ξ) · żε

t

)
ψ
)
dx dξ dt

−
∫ t2

t1

∫
R

∫
Td

(
pη,ε + qη,ε

)
∂ξψ dx dξ dt. (3.8)

The purpose of this section is to understand the system of stochastic charac-
teristics associated to equation (3.8), where the goal is to remove the dependency
of equation on the derivative of the noise. To achieve this, test functions are trans-
ported by a system of inverse stochastic characteristics, where the transport of a
test function ρ0 ∈ C∞

c (Td × R) is the solution{
∂tρ

ε = ∇x · ((b(x, ξ)żε
t

)
ρε
) − ∂ξ

((
c(x, ξ) · żε

t

)
ρε
)

in T
d × R × (0,∞),

ρε = ρ0 on T
d × R × {0}.

(3.9)
Indeed, it is not immediately clear that (3.9) is a transport equation.However, thanks
to the equation’s conservative structure, and in particular using definitions (3.5) and
(3.6), it follows from a direct computation that

∇x · (b(x, ξ)żε
t

) − ∂ξ

(
c(x, ξ) · żε

t

) = 0. (3.10)

Therefore, equation (3.9) simplifies to yield the pure transport equation{
∂tρ

ε = b(x, ξ)żε
t · ∇xρ

ε − (
c(x, ξ) · żε

t

)
∂ξρ

ε in T
d × R × (0,∞),

ρε = ρ0 on T
d × R × {0}. (3.11)

We will now prove that ρε of (3.11) is represented by the initial data ρ0 transported
by a system of underlying inverse characteristics.

The forward characteristic (X x,ξ,ε
t0,t , �

x,ξ,ε
t0,t ) associated to (3.11) beginning at

t0 � 0 and (x, ξ) ∈ T
d × R is defined as the solution of the system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ẋ x,ξ,ε
t0,t = −b

(
X x,ξ,ε

t0,t , �
x,ξ,ε
t0,t

)
żε

t in (t0,∞),

�̇
x,ξ,ε
t0,t = c

(
X x,ξ,ε

t0,t , �
x,ξ,ε
t0,t

)
· żε

t in (t0,∞),(
X x,ξ,ε

t0,t0 , �
x,ξ,ε
t0,t0

)
= (x, ξ).

(3.12)

The corresponding backward characteristic is obtained by reversing the path z. For
each t0 � 0, define the reversed path

zε
t0,t := zε

t−t0 for each t ∈ [0, t0].
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The backward characteristic (Y x,ξ,ε
t0,t ,�

x,ξ,ε
t0,t ) beginning from (x, ξ) ∈ T

d × R

corresponding to the path reversed at time t0 � 0 is the solution of the system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẏ x,ξ,ε
t0,t = −b

(
Y x,ξ,ε

t0,t ,�
x,ξ,ε
t0,t

)
żε

t0,t in (0, t0),

�̇
x,ξ,ε
t0,t = c

(
Y x,ξ,ε

t0,t ,�
x,ξ,ε
t0,t

)
· żε

t0,t in (0, t0),(
Y x,ξ,ε

t0,0
,�

x,ξ,ε
t0,0

)
= (x, ξ).

(3.13)

The characteristics (3.12) and (3.13) are mutually inverse in the sense that, for each
(x, ξ) ∈ T

d × R, for each t0 � 0 and t � t0, and for each s0 � 0 and s ∈ [0, s0],
(

X
Y x,ξ,ε

t,t−t0
,�

x,ξ,ε
t,t−t0

,ε

t0,t , �
Y x,ξ,ε

t,t−t0
,�

x,ξ,ε
t,t−t0

,ε

t0,t

)
=
(

Y
X x,ξ,ε

s0−s,s ,�
x,ξ,ε
s0−s,s ,ε

s0,s ,�
X x,ξ,ε

s0−s,s ,�
x,ξ,ε
s0−s,s ,ε

s0,s

)

= (x, ξ). (3.14)

The solution of (3.11) is the transport of the initial data by the backward charac-
teristics (3.13). Precisely, for each ρ0 ∈ C∞

c (Td ×R), a direct computation proves
that the solution ρ of (3.11) admits the representation

ρε(x, ξ, t) = ρ0

(
Y x,ξ,ε

t,t ,�
x,ξ,ε
t,t

)
. (3.15)

For the arguments of this paper, it will be furthermore necessary to start the forward
and backward characteristics at arbitrary points t0 ∈ [0,∞). That is, for each
t0 ∈ [0,∞), consider the equation
{

∂tρ
ε
t0,t = (

b(x, ξ)żε
t

) · ∇xρ
ε
t0,t − (

c(x, ξ) · żε
t

)
∂ξρ

ε
t0,t in T

d × R × (t0,∞),

ρε
t0,t0 = ρ0 on T

d × R × {t0}.
(3.16)

The identical computations leading to (3.15) prove that, for each ρ0 ∈ C∞
c (Td ×R),

the solution of (3.16) is given by

ρε
t0,t (x, ξ, t) = ρ0

(
Y x,ξ,ε

t,t−t0 ,�
x,ξ,ε
t,t−t0

)
. (3.17)

Furthermore, as a consequence of (3.9) and (3.10), the characteristics preserve
the Lebesgue measure on T

d × R. That is, for every 0 � t0 < t1 and 0 < s1 < s0,
for every ψ ∈ L1(Td × R),

∫
R

∫
Td

ψ(x, ξ) dx dξ =
∫
R

∫
Td

ψ
(

X x,ξ,ε
t0,t1 , �

x,ξ,ε
t0,t1

)
dx dξ

=
∫
R

∫
Td

ψ
(
Y x,ξ,ε

s0,s1 ,�x,ξ,ε
s0,s1

)
dx dξ. (3.18)

This observation is implicit in the definition of a pathwise kinetic solution to (1.1),
and it is essential to the proof of uniqueness in the next section. It is also a con-
sequence of (2.4) that the characteristics preserve the sign of the velocity. That is,
for each (x, ξ) ∈ T

d × R, for each t0 � 0 and t � t0, and for each s0 � 0 and
s ∈ [0, s0],
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�
x,ξ,ε
t0,t = �x,ξ,ε

s0,s = 0 if and only if ξ = 0, and sgn(ξ)

= sgn
(
�

x,ξ,ε
t0,t

)
= sgn

(
�x,ξ,ε

s0,s

)
if ξ 	= 0. (3.19)

The next proposition, which is an immediate consequence of the smoothness
(2.3), Proposition 3.1, and equation (3.16), makes precise the notion of testing
equation (3.8) with functions transported along the inverse characteristics. The
transport is expressed by the representation (3.17). Finally, we remark that the
integration by parts formula is an immediate consequence of the distributional
equality

∇xχ
η,ε(x, ξ, t) = δ0(ξ − uη,ε(x, t))∇uη,ε,

which can be proven, for instance, by considering the composition of a convolution
of (3.3) with uη,ε, and then using the fact that uη,ε has a distributional derivative.

Proposition 3.3. Let η ∈ (0, 1), ε ∈ (0, 1), and u0 ∈ L2(Td). The kinetic function
χη,ε from Proposition 3.2 satisfies, for each t0, t1 ∈ [0,∞) and ρ0 ∈ C∞

c (Td ×R),
for the solution ρε

t0,·(·, ·) of (3.16),

∫
R

∫
Td

χη,ε(x, ξ, s)ρε
t0,s(x, ξ) dx dξ

∣∣∣∣
t1

s=t0

=
∫ t1

t0

∫
R

∫
Td

(
m |ξ |m−1 + η

)
χη,ε(x, ξ, s)�xρ

ε
t0,s(x, ξ) dx dξ ds

−
∫ t1

t0

∫
R

∫
Td

(
pη,ε(x, ξ, s) + qη,ε(x, ξ, s)

)
∂ξρ

ε
t0,s(x, ξ) dx dξ ds.

(3.20)

The essential observation in the passage to the singular limit ε → 0 is that
the system of characteristics (3.13) is well-posed for rough noise when interpreted
as a rough differential equation. In view of the representation (3.17), this implies
the well-posedness of the transport equation (3.11) for rough signals as well. The
details are presented in Section B.

For each (x, ξ) ∈ T
d × R and t0 � 0, let

(
X x,ξ

t0,t , �
x,ξ
t0,t

)
denote the solution of

the rough differential equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dX x,ξ
t0,t = −b

(
X x,ξ

t0,t , �
x,ξ
t0,t

)
◦ dzt in (t0,∞),

d�x,ξ
t0,t = c

(
X x,ξ

t0,t , �
x,ξ
t0,t

)
◦ dzt in (t0,∞),(

X x,ξ
t0,t0 , �

x,ξ
t0,t0

)
= (x, ξ).

(3.21)

Similarly, for each t0 � 0 and (x, ξ) ∈ T
d × R, for the reversed path

zt0,t := zt0−t for t ∈ [0, t0],
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let
(

Y x,ξ
t0,t ,�

x,ξ
t0,t

)
denote the solution of the inverse rough differential equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dY x,ξ
t0,t = −b

(
Y x,ξ

t0,t ,�
x,ξ
t0,t

)
◦ dzt0,t in (0, t0),

d�x,ξ
t0,t = c

(
Y x,ξ

t0,t ,�
x,ξ
t0,t

)
◦ dzt0,t in (0, t0),(

Y x,ξ
t0,0

,�
x,ξ
t0,0

)
= (x, ξ).

(3.22)

The systems (3.21) and (3.22) are inverse in the sense that, for every (x, ξ) ∈ T
d×R,

0 � t0 � t , and 0 � s � s0,(
X

Y x,ξ
t,t−t0

,�
x,ξ
t,t−t0

t0,t , �
Y x,ξ

t,t−t0
,�

x,ξ
t,t−t0

t0,t

)
= (x, ξ) and

(
Y

X x,ξ
s−s0,s ,�

x,ξ
s−s0,s

s0,s ,�
X x,ξ

s−s0,s ,�
x,ξ
s−s0,s

s0,s

)

= (x, ξ).

The conservative structure of the equation is preserved in the limit, since it is im-
mediate from (3.18) that the rough characteristics preserve the Lebesgue measure.
That is, for each 0 � t0 � t1 and for each 0 � s1 � s0, for every ψ ∈ L1(Td ×R),

∫
R

∫
Td

ψ(x, ξ) dx dξ =
∫
R

∫
Td

ψ
(

X x,ξ
t0,t1 , �

x,ξ
t0,t1

)
dx dξ

=
∫
R

∫
Td

ψ
(
Y x,ξ,ε

s0,s1 ,�x,ξ
s0,s1

)
dx dξ. (3.23)

It is also a consequence of (2.4) and (3.19) that the rough characteristics preserve
the sign of the velocity. That is, for each (x, ξ) ∈ T

d × R, 0 � t0 � t1, and
0 � s1 � s0,

�
x,ξ
t0,t1 = �x,ξ

s0,s1 = 0 if and only if ξ = 0, and sgn(ξ) = sgn
(
�

x,ξ
t0,t1

)

= sgn
(
�x,ξ

s0,s1

)
if ξ 	= 0. (3.24)

It follows from well-posedness of the characteristics systems (3.21) and (3.22)
that the rough transport equation, for each t0 � 0,
{

∂tρt0,t = (b(x, ξ) ◦ dzt ) · ∇xρt0,t − (c(x, ξ) ◦ dzt ) ∂ξρt0,t in T
d ×R×(t0,∞),

ρt0,t0 = ρ0 on T
d × R × {t0},

(3.25)
is well-posed for initial data ρ0 ∈ C∞

c (Td × R). Indeed, in analogy with (3.17),
the solution is represented by the transport of the initial data by the inverse char-
acteristics (3.22). That is, for each t0 � 0 and ρ0 ∈ C∞

c (Td × R), the solution of
(3.25) admits the representation

ρt0,t (x, ξ) = ρ0

(
Y x,ξ

t,t−t0 ,�
x,ξ
t,t−t0

)
. (3.26)

We are now prepared to present the definition of a pathwise kinetic solution.
Propositions 5.1 and 5.2 prove that, uniformly for the solutions {uη,ε}η,ε∈(0,1),∥∥uη,ε

∥∥
L∞([0,∞);L1(Td ))

� ‖u0‖L1(Td ) , (3.27)
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and, for each T > 0, for C = C(m, d, T ) > 0,

∥∥uη,ε
∥∥2

L∞([0,T ];L2(Td ))
+
∥∥∥∥∇ (

uη,ε
)[m+1

2

]∥∥∥∥
L2([0,T ];L2(Td ;Rd ))

+
∥∥∥η 1

2 ∇uη,ε
∥∥∥2

L2([0,T ];L2(Td ;Rd ))

� C
(
‖u0‖2L2(Td )

+ ‖u0‖2L1(Td )
+ ‖u0‖m+1

L1(Td )

)
.

(3.28)

It is not difficult to prove that, asη → 0, the entropydefectmeasures {pη,ε}η,ε∈(0,1)
converge weakly to zero, owing to the regularity implied by the parabolic defect
measures {qη,ε}η,ε∈(0,1). However, due to the weak lower semicontinuity of the
L2-norm, along a subsequence, the weak limit of the parabolic defect measures
{qη,ε}η,ε∈(0,1) may lose mass in the limit, since the gradients

{
∇ (

uη,ε
)[m+1

2

]}
η,ε∈(0,1)

,

will, in general, converge only weakly. The entropy defect measure appearing in
Definiton 3.4 is therefore necessary to account for this potential loss of mass.

Definition 3.4. For u0 ∈ L2(Td), a pathwise kinetic solution of (1.1) is a function
satisfying, for each T > 0,

u ∈ L∞([0, T ]; L2(Td)),

and the following two properties.
(i) For each T > 0,

u

[
m+1
2

]
∈ L2([0, T ]; H1(Td)).

In particular, for each T > 0, the parabolic defect measure

q(x, ξ, t) := 4m

(m + 1)2
δ0(ξ − u(x, t))

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

for (x, ξ, t)

∈ T
d × R × (0,∞),

is finite on T
d × R × (0, T ).

(ii) For the kinetic function

χ(x, ξ, t) := χ(u(x, t), ξ) for (x, ξ, t) ∈ T
d × R × [0,∞),

there exists a finite, nonnegative entropy defect measure p on T
d × R × (0,∞)

satisfying, for each T > 0,

∫ T

0

∫
R

∫
Td

p dx dξ dr < ∞,
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and a subset N ⊂ (0,∞) of Lebesgue measure zero such that, for every ρ0 ∈
C∞

c (Td × R), for ρs,·(·, ·) satisfying (3.25), for every s < t ∈ [0,∞)\N ,

∫
R

∫
Td

χ(x, ξ, r)ρs,r (x, ξ) dx dξ

∣∣∣∣
r=t

r=s
=
∫ t

s

∫
R

∫
Td

m |ξ |m−1 χ�ρs,r dx dξ dr

−
∫ t

s

∫
R

∫
Td

(p + q) ∂ξρs,r dx dξ dr,

(3.29)
where the initial condition is enforced in the sense that, when s = 0,∫

R

∫
Td

χ(x, ξ, 0)ρ0,0(x, ξ) dx dξ =
∫
R

∫
Td

χ(u0(x), ξ)ρ0(x, ξ) dx dξ.

Remark 3.5. Observe that (3.29) is equivalent to requiring that the kinetic function
χ satisfies, for each φ ∈ C∞

c ([0,∞)), t0 � 0, and ρ0 ∈ C∞
c (Td × R), for the

solution ρt0,·(·, ·) of (3.25),∫ ∞

t0

∫
R

∫
Td

χ(x, ξ, r)ρt0,r (x, ξ)φ′(r) = −
∫
R

∫
Td

χ(x, ξ, 0)ρt0,t0(x, ξ)φ(t0)

−
∫ ∞

t0

∫
R

∫
Td

m |ξ |m−1 χ(x, ξ, r)�xρt0,r (x, ξ)φ(r)

+
∫ ∞

t0

∫
R

∫
Td

(p(x, ξ, r) + q(x, ξ, r)) ∂ξρt0,r (x, ξ)φ(r). (3.30)

The proof is a consequence of the Lebesgue differentiation theorem applied in
time to a sequence of smooth approximations of the indicator functions of intervals
[t0, t1], for each t1 � t0.

We observe that the regularity of Definition 3.4 (i) implies that every pathwise
kinetic solutions satisfies the following integration by parts formula: for each ψ ∈
C∞

c (Td × R × [0,∞)), for each t � 0,

∫ t

0

∫
R

∫
Td

m + 1

2
|ξ |m−1

2 χ(x, ξ, r)∇ψ(x, ξ, r) dx dξ dr

= −
∫ t

0

∫
Td

∇u

[
m+1
2

]
ψ(x, u(x, r), r) dx dr. (3.31)

We emphasize that in anisotropic settings, see for instance [12, Definition 2.2], it
would be furthermore necessary to postulate either a chain rule or integration by
parts formula like (3.31) in the definition of a pathwise kinetic solution. The proof
of the (3.31) is consequence of the following lemma, which is motivated by [12,
Appendix A] and which relies upon the fact that the nonlinear diffusive term is
isotropic:

Lemma 3.6. Let z : Td → R be measurable and suppose that

z

[
m+1
2

]
∈ H1(Td).
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Then, for each ψ ∈ C∞
c (Td × R), for the kinetic function χ of z,

∫
R

∫
Td

m + 1

2
|ξ |m−1

2 χ(x, ξ)∇ψ(x, ξ) dx dξ = −
∫
Td

∇z

[
m+1
2

]
ψ(x, z(x)) dx .

Proof. Let ψ ∈ C∞
c (Td × R) be arbitrary. For a measurable function z on T

d

satisfying z

[
m+1
2

]
∈ H1(Td), we will write χ for the kinetic function of z and χ̃

for the kinetic function of the signed power z

[
m+1
2

]
. Define the signed power, for

ξ ∈ R,

β(ξ) := ξ

[
m+1
2

]
.

The monotonicity of β and the change of variables formula prove that

∫
R

∫
Td

m + 1

2
|ξ |m−1

2 χ(x, ξ)∇ψ(x, ξ) dx dξ

=
∫
R

∫
Td

χ(x, β−1(ξ))∇ψ(x, β−1(ξ)). (3.32)

It follows from the definitions of β and the kinetic functions χ and χ̃ that, for each
(x, ξ) ∈ T

d × R,

χ(x, β−1(ξ)) = χ̃ (x, ξ). (3.33)

Since z

[
m+1
2

]
∈ H1(Td), an approximation argument proves the distributional

equality

∇χ̃ (x, ξ) = δ0

(
ξ − z

[
m+1
2

])
∇z

[
m+1
2

]
. (3.34)

where δ0 is the one-dimensional Dirac mass at zero. Therefore, returning to (3.32),
it follows from (3.33), (3.34), and the definition of β that

∫
R

∫
Td

m + 1

2
|ξ |m−1

2 χ(x, ξ)∇ψ(x, ξ) dx dξ

=
∫
R

∫
Td

χ̃(x, ξ)∇ψ(x, β−1(ξ)) dx dξ

= −
∫
Td

∇z

[
m+1
2

]
ψ

(
x, β−1

(
z

[
m+1
2

]
(x)

))
dx

= −
∫
Td

∇z

[
m+1
2

]
ψ(x, z(x)) dx,

which completes the proof. ��
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4. Uniqueness

In this section, we prove that pathwise kinetic solutions are unique. In order to
motivate and give an overview of the proof, we begin by briefly sketching the
uniqueness argument for the deterministic porous medium equation

{
∂t u = �u[m] in T

d × (0,∞),

u = u0 on T
d × {0}. (4.1)

The corresponding kinetic formulation is
{

∂tχ = m |ξ |m−1 �xχ + ∂ξ (p + q) in T
d × R × (0,∞),

χ = χ(u0; ξ) on T
d × R × {0}, (4.2)

where p � 0 is the nonnegative entropy defect measure and the parabolic defect
measure q is defined by

q(x, ξ, t) := δ0(ξ − u(x, t))
4m

(m + 1)2

∣∣∣∣∇u

[
m+1
2

]
(x, t)

∣∣∣∣
2

.

In this setting, the following proof of uniqueness is due to [12]. Suppose that
u1 and u2 are two kinetic solutions of (4.1) in the sense that the associated kinetic
functions χ1 and χ2 solve (4.2). Properties of the kinetic function yield the identity

∫
Td

∣∣u1 − u2
∣∣ dx =

∫
R

∫
Td

∣∣χ1 − χ2
∣∣2 dx dξ =

∫
R

∫
Td

∣∣χ1
∣∣ + ∣∣χ2

∣∣ − 2χ1χ2 dx dξ

=
∫
R

∫
Td

χ1 sgn(ξ) + χ2 sgn(ξ) − 2χ1χ2 dx dξ. (4.3)

The distributional equalities, for i ∈ {1, 2},
∂ξχ

i (x, ξ, t) = δ0(ξ) − δ0(ξ − ui (x, t)) and ∇xχ
i (x, ξ, t)

= δ0(ξ − ui (x, t))∇ui (x, t),

yield, formally, after taking the derivative in time of (4.3), applying equation (4.2),
and integrating by parts in space,

∂t

∫
Td

∣∣∣u1 − u2
∣∣∣ = 16m

(m + 1)2

∫
R

∫
Td

δ0(ξ − u1(x, t))δ0(ξ − u2(x, t))

∇(u1)

[
m+1
2

]
· ∇(u2)

[
m+1
2

]

− 2
∫
R

∫
Td

δ0(ξ − u1(x, t))
(

p2(x, ξ, t) + q2(x, ξ, t)
)

− 2
∫
R

∫
Td

δ0(ξ − u2(x, t))
(

p1(x, ξ, t) + q1(x, ξ, t)
)

.

(4.4)
Applications of Hölder’s inequality and Young’s inequality, together with the def-
inition of the parabolic defect measure and the nonegativity of the entropy defect
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measure, prove that the righthand side of (4.4) is nonpositive. Integrating in time
then completes the proof of uniqueness.

The formal argument leading to (4.4) provides the outline for the proof of
Theorem 4.2 below. However, even to justify the formal computation, care must
be taken to avoid the product of δ-distributions. This is achieved by regularizing
the sgn and kinetic functions in the spatial and velocity variables. Additional error
terms arise due to the transport of test functions by the inverse characteristics, which
are handled using a time-splitting argument that relies crucially on the conservative
structure of the equation.

The proof of uniqueness is broken down into six steps. The first introduces the
regularization, the second handles the terms involving the sgn function, and the
third handles the mixed term. The fourth makes rigorous the cancellation coming
from the parabolic defect measures, the fifth analyzes the error terms, and the sixth
concludes the proof by passing to the limit first with respect to the regularization
and second the time-splitting.

Remark 4.1. In the proof of Theorem 4.2 and for the remainder of the paper,
after applying the integration by parts formula of Lemma 3.6, we will frequently
encounter derivatives of functions f (x, ξ, r) : Td ×R× [0,∞) → R evaluated at
ξ = u(x, r). In order to simplify the notation, we make the convention that

∇x f (x, u(x, r), r) := ∇x f (x, ξ, r)|ξ=u(x,r) ,

and analogous conventions for all possible derivatives. That is, in every case, the
notation indicates the derivative of f evaluated at (x, u(x, r), r) as opposed to the
derivative of the full composition.

Theorem 4.2. Let u1
0, u2

0 ∈ L2+(Td). Suppose that u1 and u2 are pathwise kinetic
solutions of (1.1) in the sense of Definition 3.4 with initial data u1

0 and u2
0. Then,∥∥∥u1 − u2

∥∥∥
L∞([0,∞);L1(Td ))

�
∥∥∥u1

0 − u2
0

∥∥∥
L1(Td )

.

Proof. The proof will proceed in six steps. The first introduces an approximation
scheme which is necessary in order to apply the equation.

Step 1: The approximation scheme. Let u1 and u2 be two pathwise kinetic
solutions corresponding to initial data u1

0, u2
0 ∈ L1(Td). We will write χ1 and χ2

for the corresponding kinetic functions, and p1, p2 and q1, q2 respectively for the
entropy and parabolic defect measures. In order to simplify the notation in what
follows, for each j ∈ {1, 2} and for each (x, ξ, t) ∈ T

d ×R×[0, T ], we will write
χ

j
r (x, ξ) := χ j (x, ξ, r), p j

r (x, ξ) := p j (x, ξ, r), and q j
r (x, ξ) = q j (x, ξ, r).

The argumentwill proceedvia a time-splitting argument that ismadepossible by
the conservative structure of the equation and, in particular, equation (3.18), which
asserts that characteristics preserve the Lebesgue measure. LetN 1 andN 2 denote
the zero sets corresponding to u1 and u2 respectively, and define N = N 1 ∪ N 2.
Let T ∈ ([0,∞)\N ) be arbitrary and fix a partition P ⊂ ([0, T ]\N ),

P := {0 = t0 < t1 < . . . < tN−1 < tN = T } .
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For each i ∈ {0, . . . , N − 1}, we will write
χ̃ti ,t (x, ξ) := χt

(
X x,ξ

ti ,t , �
x,ξ
ti ,t

)
for each (x, ξ, t) ∈ T

d × R × [ti ,∞),

where (X x,ξ
ti ,t , �

x,ξ
ti ,t ) denote the solution of the translated characteristic equation

beginning from ti � 0 and (x, ξ) ∈ T
d × R.

It is then immediate from (3.18) and properties of the kinetic function that

∫
R

∫
Td

∣∣∣χ1
r − χ2

r

∣∣∣2 dy dη

∣∣∣∣
T

r=0

=
N−1∑
i=0

∫
R

∫
Td

∣∣∣χ1
r − χ2

r

∣∣∣2 dy dη

∣∣∣∣
ti+1

r=ti

=
N−1∑
i=0

∫
R

∫
Td

(∣∣∣χ1
r

∣∣∣ + ∣∣∣χ2
r

∣∣∣ − 2χ1
r χ2

r

)
dy dη

∣∣∣∣∣
ti+1

r=ti

=
N−1∑
i=0

∫
R

∫
Td

(∣∣∣χ̃1
ti ,r

∣∣∣ +
∣∣∣χ̃2

ti ,r

∣∣∣ − 2χ̃1
ti ,r χ̃

2
ti ,r

)
dy dη

∣∣∣∣∣
ti+1

r=ti

=
N−1∑
i=0

lim
ε→0

∫
R

∫
Td

(
χ̃
1,ε
ti ,r ˜sgnε

ti ,r + χ̃
2,ε
ti ,r ˜sgnε

ti ,r − 2χ̃1,ε
ti ,r χ̃

2,ε
ti ,r

)
dy dη

∣∣∣∣∣
ti+1

r=ti

,

(4.5)
where, for each ε ∈ (0, 1), i ∈ {0, . . . , N }, and r ∈ {ti , ti+1}, for standard convo-
lution kernels ρd,ε of scale ε on T

d and ρ1,ε of scale ε on R,

χ̃
j,ε

ti ,r (y, η) :=
(
χ̃

j
ti ,r ∗ ρd,ερ1,ε

)
(y, η)

=
∫
R

∫
Td

χ
j

r

(
X x,ξ

ti ,r , �
x,ξ
ti ,r

)
ρd,ε(x − y)ρ1,ε(ξ − η) dx dξ,

and

˜sgnε
ti ,r (y, η) :=

(
˜sgnti ,r ∗ ρd,ερ1,ε

)
(y, η)

=
∫
R

∫
Td

sgn
(
�

x,ξ
ti ,r

)
ρd,ε(x − y)ρ1,ε(ξ − η) dx dξ.

In particular, in view of the inverse relationship (3.14) and the conservative
property of the characteristics (3.18), it follows that, for each j ∈ {1, 2},

χ̃
j,ε

ti ,r (y, η) =
∫
R

∫
Td

χ
j

r (x, ξ)ρd,ε
(

Y x,ξ
r,r−ti − y

)
ρ1,ε

(
�

x,ξ
r,r−ti − η

)
dx dξ, (4.6)

where, returning to (3.17), the function

ρε
ti ,r (x, y, ξ, η) := ρd,ε

(
Y x,ξ

r,r−ti − y
)

ρ1,ε
(
�

x,ξ
r,r−ti − η

)
for (x, y, ξ, η, r)

∈ T
2d × R

2 × [ti ,∞), (4.7)
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is the solution of (3.16) beginning from time ti � 0 with initial data ρd,ε(· −
y)ρ1,ε(· − η). Also, since (3.19) proved that the velocity characteristics preserve
the sign of ξ , the same computation proves that

˜sgnε
ti ,r (y, η) =

∫
R

∫
Td

sgn(ξ)ρε
ti ,r (x, y, ξ, η) dx dξ

=
∫
R

∫
Td

sgn(ξ)ρd,ε(x − y)ρ1,ε(ξ − η) dx dξ. (4.8)

Observe that, while it is immediate from (4.8) that the regularization of the sgn
function is constant in time, independent of y ∈ R

d , and independent of i ∈
{1, . . . , N − 1}, it will nevertheless be useful to consider the regularized and trans-
ported expression, since it will clarify an important cancellation property of the
equation in the arguments to follow.

Inwhat follows, let i ∈ {1, . . . , N−1} and ε ∈ (0, 1) be arbitrary. The following
steps will estimate the difference

∫
R

∫
Td

(
χ̃
1,ε
ti ,r ˜sgnε

ti ,r + χ̃
2,ε
ti ,r ˜sgnε

ti ,r − 2χ̃1,ε
ti ,r χ̃

2,ε
ti ,r

)
dy dη

∣∣∣∣
ti+1

r=ti

, (4.9)

by considering first the terms involving the sgn function, and second the mixed
term.

Step2:The sgn terms.Wewill first analyze the terms involving the sgn function
in (4.9). For the convolution kernel (4.7), we will write (x, ξ) ∈ T

d × R for the
integration variables defining χ̃

1,ε
ti ,r and we will write ρ

1,ε
ti ,r for the corresponding

convolution kernel. We will write (x ′, ξ ′) ∈ T
d × R for the integration variables

defining ˜sgnε
ti ,r and ρ

2,ε
ti ,r for the corresponding convolution kernel.

The equation and (4.8) imply that, with the notation from (4.6) and (4.7),

∫
R

∫
Td

χ̃
1,ε
ti ,r (y, η) ˜sgnε

ti ,r dy dη

∣∣∣∣
ti+1

r=ti

=
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1
r �xρ

1,ε
ti ,r dx dξ

)
˜sgnε

ti ,r dy dη dr

−
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
∂ξρ

1,ε
ti ,r dx dξ

)
˜sgnε

ti ,r dy dη dr.

(4.10)

The first and second terms of (4.10) will be handled separately. Observe that, from
(4.7), for each (x, y, ξ, η, r) ∈ R

2d+2 × [ti ,∞),

∇xρ
1,ε
ti ,r (x, y, ξ, η) = −∇yρ

1,ε
ti ,r (x, y, ξ, η)·∇x Y x,ξ

r,r−ti −∂ηρ
1,ε
ti ,r (x, y, ξ, η)∇x�

x,ξ
r,r−ti ,

(4.11)
and

∂ξρ
1,ε
ti ,r (x, y, ξ, η) = −∇yρ

1,ε
ti ,r (x, y, ξ, η)∂ξ Y x,ξ

r,r−ti − ∂ηρ
1,ε
ti ,r (x, y, ξ, η)∂ξ�

x,ξ
r,r−ti .

(4.12)
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For the first term of (4.10), it is then immediate from (4.11) that∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1
r �xρ

1,ε
ti ,r dx dξ

)
˜sgnε

ti ,r dy dη dr

=
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1∇x ·
(
ρ
1,ε
ti ,r ∇y ˜sgnε

ti ,r ∇x Y x,ξ
r,r−ti

)
dx dξ

)
dy dη dr

+
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1∇x ·
(
ρ
1,ε
ti ,r ∂η ˜sgnε

ti ,r ∇x�
x,ξ
r,r−ti

)
dx dξ

)
dy dη dr,

(4.13)
where this equality uses the fact that the regularization ˜sgnε

ti ,r is independent of
x ∈ T

d .
In the case of (4.13), it follows from the definition (4.8) and the computation

(4.11) that, after adding and subtracting the terms ∇x ′Y x ′,ξ ′
r,r−ti and ∇x ′�x ′,ξ ′

r,r−ti ,∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1
r �xρ

1,ε
ti ,r dx dξ

)
˜sgnε

ti ,r dy dη dr

= Err0,1i −
∫ ti+1

ti

∫
R3

∫
T3d

m |ξ |m−1 χ1
r ∇xρ

1,ε
ti ,r sgn(ξ

′)

∇x ′ρ2,ε
ti ,r dx dξ dx ′ dξ ′ dy dη dr,

(4.14)

for the error term

Err0,1i :=
∫ ti+1

ti

∫
R3

∫
T3d

m |ξ |m−1 χ1∇x

·
(
ρ
1,ε
ti ,r sgn(ξ

′)∇yρ
2,ε
ti ,r

(
∇x Y x,ξ

r,r−ti − ∇x ′Y x ′,ξ ′
r,r−ti

))

+
∫ ti+1

ti

∫
R3

∫
T3d

m |ξ |m−1 χ1∇x

·
(
ρ
1,ε
ti ,r sgn(ξ

′)∂ηρ
2,ε
ti ,r

(
∇x�

x,ξ
r,r−ti − ∇x ′�x ′,ξ ′

r,r−ti

))
,

(4.15)

and where the last term of (4.14) vanishes after integrating by parts in the x ′-
variable. That is,
∫ ti+1

ti

∫
R3

∫
T3d

m |ξ |m−1 χ1
r ∇xρ

1,ε
ti ,r sgn(ξ

′)∇x ′ρ2,ε
ti ,r dx dξ dx ′ dξ ′ dy dη dr = 0.

(4.16)
For the second term of (4.10), it follows from (4.12) that

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
∂ξρ

1,ε
ti ,r dx dξ

)
˜sgnε

ti ,r dy dη dr

=
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
ρ
1,ε
ti ,r∂ξ Y x,ξ

r,r−ti dx dξ

)
· ∇y ˜sgnε

ti ,r dy dη dr

+
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
ρ
1,ε
ti ,r∂ξ�

x,ξ
r,r−ti dx dξ

)
∂η ˜sgnε

ti ,r dy dη dr.

(4.17)
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In the case of (4.17), it follows from the representation (4.8) and the computation

(4.12) that, after adding and subtracting the derivatives ∂ξ ′Y x ′,ξ ′
r,r−ti and ∂ξ ′�x ′,ξ ′

r,r−ti ,

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
∂ξρ

1,ε
ti ,r dx dξ

)
˜sgnε

ti ,r dy dη dr

= Err1,1i −
∫ ti+1

ti

∫
R3

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,r sgn(ξ

′)∂ξ ′ρ2,ε
ti ,r dx dξ dx ′ dξ ′ dy dη dr,

(4.18)
for the error term

Err1,1i :=
∫ ti+1

ti

∫
R3

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,r sgn(ξ

′)∇yρ
2,ε
ti ,r ·

(
∂ξ Y x,ξ

r,r−ti − ∂ξ ′Y x ′,ξ ′
r,r−ti

)

+
∫ ti+1

ti

∫
R3

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,r sgn(ξ

′)∂ηρ
2,ε
ti ,r

(
∂ξ�

x,ξ
r,r−ti − ∂ξ ′�x ′,ξ ′

r,r−ti

)
.

(4.19)
Additionally, after integrating by parts in the ξ ′-variable and using the distributional
equality ∂ξ ′ sgn(ξ ′) = 2δ0(ξ ′), the second term of (4.18) becomes

−
∫ ti+1

ti

∫
R3

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,r sgn(ξ

′)∂ξ ′ρ2,ε
ti ,r dx dξ dx ′ dξ ′ dy dη dr

= 2
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, 0, η) dx dξ dx ′ dy dη dr.

(4.20)
Returning to (4.10), it follows from (4.13), (4.14), (4.16), (4.18) and (4.20) that

∫
R

∫
Td

χ̃
1,ε
ti ,r (y, η) ˜sgnε

ti ,r dy dη

∣∣∣∣
ti+1

r=ti

= Err0,1i − Err1,1i − 2
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)

ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, 0, η) dx dξ dx ′ dy dη dr.

(4.21)

Furthermore, the identical considerations with χ1 replaced by χ2 prove that, after
swapping the roles of (x, ξ) and (x ′, ξ ′),

∫
R

∫
Td

χ̃
2,ε
ti ,r (y, η) ˜sgnε

ti ,r dy dη

∣∣∣∣
ti+1

r=ti

= Err0,2i − Err1,2i − 2
∫ ti+1

ti

∫
R2

∫
T3d

(
p2r + q2

r

)

ρ
2,ε
ti ,rρ

1,ε
ti ,r (x, y, 0, η) dx ′ dξ ′ dx dy dη dr,

(4.22)

for error terms Err0,2i and Err1,2i defined in exact analogy with (4.15) and (4.19)
with χ1 replaced by χ2. This completes the initial analysis of the sgn terms.

Step 3: The mixed term. We will now analyze the mixed term appearing in
(4.9). For the convolution kernel (4.7), we will write (x, ξ) ∈ T

d × R for the
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integration variables defining χ̃
1,ε
ti ,r and we will write ρ

1,ε
ti ,r for the corresponding

convolution kernel. We will write (x ′, ξ ′) ∈ T
d × R for the integration variables

defining χ̃
2,ε
ti ,r and ρ

2,ε
ti ,r for the corresponding convolution kernel.

The equation implies that

∫
R

∫
Td

χ̃
1,ε
ti ,r χ̃

2,ε
ti ,r dy dη

∣∣∣∣
ti+1

r=ti

=
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1
r �xρ

1,ε
ti ,r dx dξ

)
χ̃
2,ε
ti ,r dy dη dr

−
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
∂ξρ

1,ε
ti ,r dx dξ

)
χ̃
2,ε
ti ,r dy dη dr

+
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m
∣∣ξ ′∣∣m−1

χ2
r �x ′ρ2,ε

ti ,r dx ′ dξ ′
)

χ̃
1,ε
ti ,r dy dη dr

−
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p2r + q2

r

)
∂ξ ′ρ2,ε

ti ,r dx ′ dξ ′
)

χ̃
1,ε
ti ,r dy dη dr.

(4.23)
We will begin by analyzing the first term of (4.23). It is an immediate consequence
of the computation (4.11) that

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1
r �xρ

1,ε
ti ,r dx dξ

)
χ̃
2,ε
ti ,r dy dη dr

=
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1
r ∇x ·

(
ρ
1,ε
ti ,r ∇y χ̃

2,ε
ti ,r ∇x Y x,ξ

r,r−ti

)
dx dξ

)
dy dη dr

+
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1
r ∇x ·

(
ρ
1,ε
ti ,r ∂ηχ̃

2,ε
ti ,r ∇x�

x,ξ
r,r−ti

)
dx dξ

)
dy dη dr.

These terms will be treated by adding and subtracting the gradients ∇x ′Y x ′,ξ ′
r,r−ti and

∇x ′�x ′,ξ ′
r,r−ti . Indeed, it follows from (4.11) that

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m |ξ |m−1 χ1
r �xρ

1,ε
ti ,r dx dξ

)
χ̃
2,ε
ti ,r dy dη dr

= Err2,1i −
∫ ti+1

ti

∫
R3

∫
T3d

m |ξ |m−1 χ1
r χ2

r ∇xρ
1,ε
ti ,r∇x ′ρ2,ε

ti ,r dx dξ dx ′ dξ ′ dy dη dr,

(4.24)
where

Err2,1i :=
∫ ti+1

ti

∫
R3

∫
T3d

m |ξ |m−1 χ1
r ∇x ·

(
ρ
1,ε
ti ,r χ

2
r ∇yρ

2,ε
ti ,r

(
∇x Y x,ξ

r,r−ti − ∇x ′Y x ′,ξ ′
r,r−ti

))

+
∫ ti+1

ti

∫
R3

∫
T3d

m |ξ |m−1 χ1
r ∇x ·

(
ρ
1,ε
ti ,r χ

2
r ∂ηρ

2,ε
ti ,r

(
∇x�

x,ξ
r,r−ti − ∇x ′�x ′,ξ ′

r,r−ti

))
.

(4.25)
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After defining Err2,2i analogously, by swapping the roles of χ1 and χ2, the third
term of (4.23) can be treated similarly. That is,

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

m
∣∣ξ ′∣∣m−1

χ2
r �xρ

2,ε
ti ,r dx ′ dξ ′

)
χ̃
1,ε
ti ,r dy dη dr

= Err2,2i −
∫ ti+1

ti

∫
R3

∫
T3d

m
∣∣ξ ′∣∣m−1

χ2
r χ1

r ∇x ′ρ2,ε
ti ,r∇xρ

1,ε
ti ,r dx ′ dξ ′ dx dξ dy dη dr.

(4.26)
We will now treat the second and fourth terms of (4.23). It follows from com-

putation (4.12) that

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
∂ξρ

1,ε
ti ,r dx dξ

)
χ̃
2,ε
ti ,r dy dη dr

=
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
ρ
1,ε
ti ,r∂ξ Y x,ξ

r,r−ti dx dξ

)
· ∇y χ̃

2,ε
ti ,r dy dη dr

+
∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
ρ
1,ε
ti ,r∂ξ�

x,ξ
r,r−ti dx dξ

)
∂ηχ̃

2,ε
ti ,r dy dη dr.

Proceeding as before, after adding and subtracting the gradients ∂ξ ′Y x ′,ξ ′
r,r−ti and

∂ξ ′�x ′,ξ ′
r,r−ti , it follows from (4.12) that

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
∂ξρ

1,ε
ti ,r dx dξ

)
χ̃
2,ε
ti ,r dy dη dr

= Err3,1i −
∫ ti+1

ti

∫
R3

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rχ

2∂ξ ′ρ2,ε
ti ,r dx dξ dx ′ dξ ′ dy dη dr,

(4.27)
where

Err3,1i :=
∫ ti+1

ti

∫
R3

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rχ

2
r ∇yρ

2,ε
ti ,r ·

(
∂ξ Y x,ξ

r,r−ti − ∂ξ ′Y x ′,ξ ′
r,r−ti

)

+
∫ ti+1

ti

∫
R3

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rχ

2
r ∂ηρ

2,ε
ti ,r

(
∂ξ�

x,ξ
r,r−ti − ∂ξ ′�x ′,ξ ′

r,r−ti

)
.

(4.28)
Then, define Err3,2i in analogy with (4.28) by swapping the roles of χ1 and χ2, to
obtain

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p2r + q2

r

)
∂ξ ′ρ2,ε

ti ,r dx ′ dξ ′
)

χ̃
1,ε
ti ,r dy dη dr

= Err3,2i −
∫ ti+1

ti

∫
R3

∫
T3d

(
p2r + q2

r

)
ρ
2,ε
ti ,rχ

1∂ξρ
1,ε
ti ,r dx ′ dξ ′ dx dξ dy dη dr.

(4.29)
For the second term of (4.27), the distributional equality

∂ξ ′χ2(x, ξ ′, r) = δ0(ξ
′) − δ0(u

2(x ′, r) − ξ ′) for (x ′, ξ ′, r) ∈ T
d × R × [0,∞),
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implies that

−
∫ ti+1

ti

∫
R3

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,r (x, y, ξ, η)χ2

∂ξ ′ρ2,ε
ti ,r (x ′, y, ξ ′, η) dx dξ dx ′ dξ ′ dy dη dr

=
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, 0, η) dx dξ dx ′ dy dη dr

−
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, u2(x ′, r), η) dx dξ dx ′ dy dη dr.

(4.30)
Hence, returning to (4.27), it follows from (4.30) that

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p1r + q1

r

)
∂ξρ

1,ε
ti ,r dx dξ

)
χ̃
2,ε
ti ,r dy dη dr

= Err3,1i +
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, 0, η) dx dξ dx ′ dy dη dr

−
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, u2(x ′, r), η) dx dξ dx ′ dy dη dr.

(4.31)
Similarly, by swapping the roles of χ1 and χ2,

∫ ti+1

ti

∫
R

∫
Td

(∫
R

∫
Td

(
p2r + q2

r

)
∂ξ ′ρ2,ε

ti ,r dx ′ dξ ′
)

χ̃
1,ε
ti ,r dy dη dr

= Err3,2i +
∫ ti+1

ti

∫
R2

∫
T3d

(
p2r + q2

r

)
ρ
2,ε
ti ,rρ

1,ε
ti ,r (x, y, 0, η) dx ′ dξ ′ dx dy dη dr

−
∫ ti+1

ti

∫
R2

∫
T3d

(
p2r + q2

r

)
ρ
2,ε
ti ,rρ

1,ε
ti ,r (x, y, u1(x, r), η) dx ′ dξ ′ dx dy dη dr.

(4.32)
Returning to (4.23), it follows from (4.24), (4.26), (4.31), and (4.32) that

∫
R

∫
Td

χ̃
1,ε
ti ,r χ̃

2,ε
ti ,r dy dη

∣∣∣∣
ti+1

r=ti

=
2∑

j=1

(
Err2, j

i − Err3, j
i

)

−
∫ ti+1

ti

∫
R3

∫
T3d

(
m |ξ |m−1 + m

∣∣ξ ′∣∣m−1
)

χ1
r χ2

r

∇xρ
1,ε
ti ,r∇x ′ρ2,ε

ti ,r dx dξ dx ′ dξ ′ dy dη dr

−
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, 0, η) dx dξ dx ′ dy dη dr

+
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, u2(x ′, r), η) dx dξ dx ′ dy dη dr
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−
∫ ti+1

ti

∫
R2

∫
T3d

(
p2r + q2

r

)
ρ
2,ε
ti ,rρ

1,ε
ti ,r (x, y, 0, η) dx ′ dξ ′ dx dy dη dr

+
∫ ti+1

ti

∫
R2

∫
T3d

(
p2r + q2

r

)
ρ
2,ε
ti ,rρ

1,ε
ti ,r (x, y, u1(x, r), η) dx ′ dξ ′ dx dy dη dr.

(4.33)

This completes the initial analysis of the mixed term.

Step 4: Cancellation from the parabolic defect measures. In view of (4.21),
(4.22), and (4.33), it is now possible to return to (4.9). Precisely, thanks to the
cancellation between the terms involving the parabolic and kinetic defect measures
evaluated at zero,

∫
R

∫
Td

(
χ̃
1,ε
ti ,r ˜sgnε

ti ,r + χ̃
2,ε
ti ,r ˜sgnε

ti ,r − 2χ̃1,ε
ti ,r χ̃

2,ε
ti ,r

)
dy dη

∣∣∣∣
ti+1

r=ti

=
2∑

j=1

(
Err0, j

i − Err1, j
i + Err2, j

i − Err3, j
i

)

+ 2
∫ ti+1

ti

∫
R3

∫
T3d

(
m |ξ |m−1 + m

∣∣ξ ′∣∣m−1
)

χ1
r χ2

r ∇xρ
1,ε
ti ,r

∇x ′ρ2,ε
ti ,r dx dξ dx ′ dξ ′ dy dη dr

− 2
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, u2(x ′, r), η) dx dξ dx ′ dy dη dr

− 2
∫ ti+1

ti

∫
R2

∫
T3d

(
p2r + q2

r

)
ρ
2,ε
ti ,rρ

1,ε
ti ,r (x, y, u1(x, r), η) dx ′ dξ ′ dx dy dη dr.

(4.34)
In order to see the additional cancellation coming from the parabolic defect mea-
sures, which will require an application of the integration by parts formula of
Lemma 3.6, we will use the equality

(
|ξ |m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

+ 2 |ξ |m−1
2

∣∣ξ ′∣∣m−1
2 = |ξ |m−1 + ∣∣ξ ′∣∣m−1 for ξ, ξ ′ ∈ R.

This implies that

2
∫ ti+1

ti

∫
R3

∫
T3d

(
m |ξ |m−1 + m

∣∣ξ ′∣∣m−1
)

χ1
r χ2

r ∇xρ
1,ε
ti ,r

∇x ′ρ2,ε
ti ,r dx dξ dx ′ dξ ′ dy dη dr

= 4m
∫ ti+1

ti

∫
R3

∫
T3d

|ξ |m−1
2

∣∣ξ ′∣∣m−1
2 χ1

r χ2
r ∇xρ

1,ε
ti ,r∇x ′ρ2,ε

ti ,r dx dξ dx ′ dξ ′ dy dη dr

+ 2m
∫ ti+1

ti

∫
R3

∫
T3d

(
|ξ |m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

χ1
r χ2

r

∇xρ
1,ε
ti ,r∇x ′ρ2,ε

ti ,r dx dξ dx ′ dξ ′ dy dη dr. (4.35)
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For the first term on the righthand side of (4.35), after applying the integration
by parts formula in the x-variable and x ′-variable,

4m
∫ ti+1

ti

∫
R3

∫
T3d

|ξ |m−1
2

∣∣ξ ′∣∣m−1
2 χ1

r χ2
r ∇xρ

1,ε
ti ,r∇x ′ρ2,ε

ti ,r

= 16m

(m + 1)2

∫ ti+1

ti

∫
R

∫
T3d

∇(u1)[
m+1
2 ] · ∇(u2)[

m+1
2 ]ρ1,ε

ti ,r (x, y, u1(x, r), η)

ρ
2,ε
ti ,r (x ′, y, u2(x ′, r), η).

It therefore follows from an application of Hölder’s inequality and Young’s in-
equality, the definition of the parabolic defect measure, and the nonnegativity of
the entropy defect measure that

4m
∫ ti+1

ti

∫
R3

∫
T3d

|ξ |m−1
2

∣∣ξ ′∣∣m−1
2 χ1

r χ2
r ∇xρ

ε
ti ,r∇x ′ρε

ti ,r dx dξ dx ′ dξ ′ dy dη dr

� 2
∫ ti+1

ti

∫
R2

∫
T3d

(
p1r + q1

r

)
ρ
1,ε
ti ,rρ

2,ε
ti ,r (x ′, y, u2(x ′, r), η) dx dξ dx ′ dy dη dr

+ 2
∫ ti+1

ti

∫
R2

∫
T3d

(
p2r + q2

r

)
ρ
2,ε
ti ,rρ

1,ε
ti ,r (x, y, u1(x, r), η) dx ′ dξ ′ dx dy dη dr.

(4.36)
Therefore, returning to (4.34), it follows from (4.35) and (4.36) that

∫
R

∫
Td

(
χ̃
1,ε
ti ,r ˜sgnε

ti ,r + χ̃
2,ε
ti ,r ˜sgnε

ti ,r − 2χ̃1,ε
ti ,r χ̃

2,ε
ti ,r

)
dy dη

∣∣∣∣
ti+1

r=ti

�
2∑

j=1

(
Err0, j

i − Err1, j
i + Err2, j

i − Err3, j
i

)
+ Err4i ,

(4.37)

where

Err4i := 2
∫ ti+1

ti

∫
R3

∫
T3d

m

(
|ξ |m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

χ1
r χ2

r ∇xρ
1,ε
ti ,r

∇x ′ρ2,ε
ti ,r dx dξ dx ′ dξ ′ dy dη dr. (4.38)

It remains to analyze the error terms.

Step 5: The error terms.We will first use Proposition B.1 to obtain estimates for
the characteristics.Observe that, for each (x, ξ), (x ′, ξ ′) ∈ T

d×R and r ∈ [ti , ti+1],
∣∣x − x ′∣∣ =

∣∣∣∣∣X
Y x,ξ

r,r−ti
,�

x,ξ
r,r−ti

ti ,r − X
Y x ′,ξ ′

r,r−ti
,�

x ′,ξ ′
r,r−ti

ti ,r

∣∣∣∣∣
� sup

(y,η)∈Td×R

∣∣∇x X y,η
ti ,r

∣∣ ∣∣∣Y x,ξ
r,r−ti − Y x ′,ξ ′

r,r−ti

∣∣∣
+ sup

(y,η)∈Td×R

∣∣∂η X y,η
ti ,r

∣∣ ∣∣∣�x,ξ
r,r−ti − �

x ′,ξ ′
r,r−ti

∣∣∣ ,
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and

∣∣ξ − ξ ′∣∣ =
∣∣∣∣∣�

Y x,ξ
r,r−ti

,�
x,ξ
r,r−ti

ti ,r − �
Y x ′,ξ ′

r,r−ti
,�

x ′,ξ ′
r,r−ti

ti ,r

∣∣∣∣∣
� sup

(y,η)∈Td×R

∣∣∇x�
y,η
ti ,r

∣∣ ∣∣∣Y x,ξ
r,r−ti − Y x ′,ξ ′

r,r−ti

∣∣∣
+ sup

(y,η)∈Td×R

∣∣∂η�
y,η
ti ,r

∣∣ ∣∣∣�x,ξ
r,r−ti − �

x ′,ξ ′
r,r−ti

∣∣∣ .
Therefore, assumption (2.3) and Proposition B.1 imply that, for C = C(T ) > 0,
for each (x, ξ), (x ′, ξ ′) ∈ T

d × R,

∣∣x − x ′∣∣ + ∣∣ξ − ξ ′∣∣ � C
(∣∣∣Y x,ξ

r,r−ti − Y x ′,ξ ′
r,r−ti

∣∣∣ + ∣∣∣�x,ξ
r,r−ti − �

x ′,ξ ′
r,r−ti

∣∣∣) . (4.39)

Second, it follows from properties of the convolution kernel that there exists
C = C(T ) > 0 such that, for every r ∈ [ti ,∞) and (x, ξ), (x ′, ξ ′), (y, η) ∈ T

d×R,

ρ
1,ε
ti ,r (x, y, ξ, η)ρ

2,ε
ti ,r (x ′, y, ξ ′, η) 	= 0,

which implies that

(∣∣∣Y x,ξ
r,r−ti − Y x ′,ξ ′

r,r−ti

∣∣∣ + ∣∣∣�x,ξ
r,r−ti − �

x ′,ξ ′
r,r−ti

∣∣∣) � Cε. (4.40)

Furthermore, in view of (4.39) and Proposition B.1 with k = n = 2, for C =
C(T ) > 0, for each r ∈ [ti , ti+1] and (x, ξ), (x ′, ξ ′) ∈ T

d × R,

∣∣∣∇x Y x,ξ
r,r−ti − ∇x ′Y x ′,ξ ′

r,r−ti

∣∣∣ � sup
(y,η)∈Td×R

(∣∣∣∇2
y Y y,η

r,r−ti

∣∣∣ + ∣∣∂η∇yY y,η
r,r−ti

∣∣)
(∣∣x − x ′∣∣ + ∣∣ξ − ξ ′∣∣)

�C(ti+1 − ti )
α
(∣∣x − x ′∣∣ + ∣∣ξ − ξ ′∣∣)

�C(ti+1 − ti )
α
(∣∣∣Y x,ξ

r,r−ti − Y x ′,ξ ′
r,r−ti

∣∣∣ +
∣∣∣�x,ξ

r,r−ti − �
x ′,ξ ′
r,r−ti

∣∣∣) .

(4.41)
Similarly, for C = C(T ) > 0, for each r ∈ [ti , ti+1] and (x, ξ), (x ′, ξ ′) ∈ T

d ×R,

∣∣∣∇x�
x,ξ
r,r−ti − ∇x ′�x ′,ξ ′

r,r−ti

∣∣∣ � sup
(y,η)∈Td×R

(∣∣∣∇2
y�

y,η
r,r−ti

∣∣∣ + ∣∣∂η∇y�
y,η
r,r−ti

∣∣)
(∣∣x − x ′∣∣ + ∣∣ξ − ξ ′∣∣)
� C(ti+1 − ti )

α
(∣∣x − x ′∣∣ + ∣∣ξ − ξ ′∣∣)

� C(ti+1 − ti )
α
(∣∣∣Y x,ξ

r,r−ti − Y x ′,ξ ′
r,r−ti

∣∣∣ +
∣∣∣�x,ξ

r,r−ti − �
x ′,ξ ′
r,r−ti

∣∣∣) .

(4.42)
Estimates (4.40), (4.41), and (4.42) will be now be used to estimate the first and
third error terms.
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We observe from (4.15) that, after applying the integration by parts formula of
Lemma 3.6,

∣∣∣Err0,1i

∣∣∣ � 2m

m + 1

∫ ti+1

ti

∫
Td

∣∣∣u1
∣∣∣

m−1
2

∣∣∣∣∣∇
(

u1
)[m+1

2

]∣∣∣∣∣ dx dr

× sup
(y,η,r)∈Td×R×[ti ,ti+1]

(∣∣∇y ˜sgnε
ti ,r (y, η)

∣∣ + ∣∣∂η ˜sgnε
ti ,r (y, η)

∣∣)

× sup
(x,x ′,ξ,ξ ′,r)∈T2d×R2×[ti ,ti+1](∣∣∣∇x Y x,ξ

r,r−ti − ∇x ′Y x ′,ξ ′
r,r−ti

∣∣∣ + ∣∣∣∇x�
x,ξ
r,r−ti − ∇x ′�x ′,ξ ′

r,r−ti

∣∣∣) .

The error terms {Err0, j
i } j∈{1,2} defined in (4.15) and the error terms {Err2, j

i } j∈{1,2}
defined in (4.25) are treated similarly. Since there exists C = C(T ) > 0 such that,
for each (y, η) ∈ T

d × R,

∣∣∇y ˜sgnε
ti ,r (y, η)

∣∣ + ∣∣∂η ˜sgnε
ti ,r (y, η)

∣∣ + ∣∣∣∇y χ̃
j,ε

ti ,r (y, η)

∣∣∣ + ∣∣∣∂ηχ̃
j,ε

ti ,r (y, η)

∣∣∣ � C

ε
,

(4.43)
it follows from the definition of the parabolic defect measures, Hölder’s inequality,
and Young’s inequality that, with the estimates (4.40), (4.41), and (4.42), for C =
C(m, T ) > 0, for each j ∈ {1, 2},

∣∣∣Err0, j
i

∣∣∣ + ∣∣∣Err2, j
i

∣∣∣ � C |P|α
(∫ ti+1

ti

∫
Td

∣∣∣u j
∣∣∣(m−1)∨0

dx dr

+
∫ ti+1

ti

∫
R

∫
Td

|ξ |(m−1)∧0 q j
r dx dξ dr

)
. (4.44)

The righthand side of (4.44) will be estimated in the final step of the proof using
Lemma 4.5 and Proposition 4.6 below.

The remaining two error terms are controlled using rough path estimates vir-
tually identical to (4.41) and (4.42). Namely, for C = C(T ) > 0, for each
(x, ξ), (x ′, ξ ′) ∈ T

d × R and r ∈ [ti , ti+1], it follows from (4.39) that

∣∣∣∂ξ Y x,ξ
r,r−ti − ∂ξ ′Y x ′,ξ ′

r,r−ti

∣∣∣ � sup
(y,η)∈Td×R

(∣∣∇y∂ηY y,η
r,r−ti

∣∣ + ∣∣∣∂2ηY y,η
r,r−ti

∣∣∣) (∣∣x − x ′∣∣ + ∣∣ξ − ξ ′∣∣)

� C(ti+1 − ti )
α
(∣∣x − x ′∣∣ + ∣∣ξ − ξ ′∣∣)

� C(ti+1 − ti )
α
(∣∣∣Y x,ξ

r,r−ti − Y x ′,ξ ′
r,r−ti

∣∣∣ + ∣∣∣�x,ξ
r,r−ti − �

x ′,ξ ′
r,r−ti

∣∣∣) .

(4.45)
Similarly, for C = C(T ) > 0, for each (x, ξ), (x ′, ξ ′) ∈ T

d ×R and r ∈ [ti , ti+1],
∣∣∣∂ξ�

x,ξ
r,r−ti − ∂ξ ′�x ′,ξ ′

r,r−ti

∣∣∣ � sup
(y,η)∈Td×R

(∣∣∇y∂η�
y,η
r,r−ti

∣∣ + ∣∣∣∂2η�
y,η
r,r−ti

∣∣∣)
(∣∣x − x ′∣∣ + ∣∣ξ − ξ ′∣∣)
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� C(ti+1 − ti )
α
(∣∣x − x ′∣∣ + ∣∣ξ − ξ ′∣∣)

� C(ti+1 − ti )
α
(∣∣∣Y x,ξ

r,r−ti − Y x ′,ξ ′
r,r−ti

∣∣∣ +
∣∣∣�x,ξ

r,r−ti − �
x ′,ξ ′
r,r−ti

∣∣∣) .

(4.46)

The error terms {Err1, j
i } j∈{1,2} defined in (4.19) and the error terms {Err3, j

i } j∈{1,2}
defined in (4.28) are treated in analogy with (4.44). The estimates (4.40), (4.43),
(4.45), and (4.46) imply that, for C = C(T ) > 0,

∣∣∣Err1, j
i

∣∣∣ +
∣∣∣Err3, j

i

∣∣∣ � C(ti+1 − ti )
α

∫ ti+1

ti

∫
R

∫
Td

(
p j

r + q j
r

)
dx dξ dr. (4.47)

Estimates (4.44) and (4.47) complete the analysis of the first four error terms.
The analysis of the final error term Err4i , defined in (4.38), will be broken down

into three cases: m = 1, m ∈ (2,∞), or m ∈ (0, 1) ∪ (1, 2]. The simplest of these
is the case m = 1. Indeed, if m = 1, then it is immediate from (4.38) that Err4i = 0.

Case m ∈ (2,∞): We form a velocity decomposition of the integral. For each
M > 1, let KM : R → [0, 1] be a smooth function satisfying

KM (ξ) :=
{
1 if |ξ | � M,

0 if |ξ | � M + 1.

Then, for each M > 1 and ε ∈ (0, 1),

Err4i = 2
∫ ti+1

ti

∫
R3

∫
T3d

KM (ξ)m

(
|ξ | m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

χ1
r χ2

r ∇xρ
1,ε
ti ,r∇x ′ρ2,ε

ti ,r

+ 2
∫ ti+1

ti

∫
R3

∫
T3d

(1 − KM (ξ))m

(
|ξ | m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

χ1
r χ2

r ∇xρ
1,ε
ti ,r∇x ′ρ2,ε

ti ,r .

(4.48)
For the first term on the righthand side of (4.48), the local Lipschitz continuity,

if m � 3, or the Hölder continuity, if m ∈ (2, 3), of the map ξ ∈ R �→ |ξ |m−1
2 ,

Lemma B.2, observation (4.40), and the definition of the convolution kernel imply
that, for C = C(m, T, M) > 0 and c = c(T ) > 0,

∣∣∣∣∣2
∫ ti+1

ti

∫
R3

∫
T3d

KM (ξ)m

(
|ξ |m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

χ1
r χ2

r ∇xρ
1,ε
ti ,r∇x ′ρ2,ε

ti ,r

∣∣∣∣∣
� C

∫ ti+1

ti

∫
R3

∫
T3d

m

(
|ξ |m−1

2 − ∣∣ξ ′∣∣m−1
2

)2 ∣∣∣∇xρ
1,ε
ti ,r

∣∣∣ ∣∣∣∇x ′ρ2,ε
ti ,r

∣∣∣
� C

ε2

∫ ti+1

ti

∫ cε

−cε
|ξ |(m−1)∧2 dξ � C |ti+1 − ti | ε(3∧m)−2.

(4.49)

For the second term on the righthand side of (4.48), we use the following
inequality, which is a consequence of the mean value theorem, for each ξ, ξ ′ ∈ R,

(
|ξ |m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

�
∣∣∣∣m − 1

2

∣∣∣∣
2 (

|ξ |m−3 + ∣∣ξ ′∣∣m−3
) ∣∣ξ − ξ ′∣∣2 .
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This implies using (4.40) and the definition of the convolution kernel that, for
C = C(m, T ) > 0 and c = c(T ) > 0,
∣∣∣∣∣2
∫ ti+1

ti

∫
R3

∫
T3d

(1 − KM (ξ))m

(
|ξ | m−1

2 − ∣∣ξ ′∣∣ m−1
2

)2

χ1
r χ2

r ∇xρ
1,ε
ti ,r ∇x ′ρ2,ε

ti ,r

∣∣∣∣∣
� C

∫ ti+1

ti

∫
R3

∫
T3d

(1 − KM (ξ))
(
|ξ |m−3 + ∣∣ξ ′∣∣m−3

) ∣∣χ1
r

∣∣ ∣∣χ2
r

∣∣ ∣∣∣ε∇xρ
1,ε
ti ,r

∣∣∣
∣∣∣ε∇x ′ρ2,ε

ti ,r

∣∣∣

� C

(∫ ti+1

ti

∫
{|u1|�M}

(∣∣u1
∣∣ − M

)m−2
+ +

∫ ti+1

ti

∫
{|u2|�M−cε}

(∣∣u2
∣∣ − M + cε

)m−2
+

)
.

(4.50)
The interpolation estimate Lemma 4.5 below, Hölder’s inequality, Proposition 4.6
below, and the dominated convergence theorem prove that the righthand side of
(4.50) vanishes in the limit M → ∞, uniformly in ε ∈ (0, 1). Therefore, (4.48),
(4.49), and (4.50) imply that, after summing over i ∈ {0, . . . , N − 1} and passing
first to the limit ε → 0 and second to the limit M → ∞,

lim sup
ε→0

N−1∑
i=0

∣∣∣Err4i
∣∣∣ = 0. (4.51)

Case m ∈ (0, 1) ∪ (1, 2]: For this case, the idea is to remove the singularity at
the origin and to use the full regularity of the solution implied by Proposition 4.7
below. The integration by parts formula of Lemma 3.6, which is justified using an
approximation argument and Proposition 4.6 below, implies that, for each (y, η) ∈
T

d × R,
∫ ti+1

ti

∫
R3

∫
T3d

m

(
|ξ |m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

χ1
r χ2

r ∇xρ
1,ε
ti ,r · ∇x ′ρ2,ε

ti ,r

= 4m

(m + 1)2

∫ ti+1

ti

∫
R

∫
T3d

ψm(u1, u2)

∣∣∣u1
∣∣∣−

1
2 ∇

(
u1
)[m+1

2

]

·
∣∣∣u2

∣∣∣−
1
2 ∇

(
u2
)[m+1

2

]
ρ
1,ε
ti ,rρ

2,ε
ti ,r ,

(4.52)

where

ψm(ξ, ξ ′) := |ξ | 2−m
2

∣∣ξ ′∣∣ 2−m
2

(
|ξ |m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

for ξ, ξ ′ ∈ R, (4.53)

and, for each j ∈ {1, 2},
ρ

j,ε
ti ,r (x, y, η) := ρ

j,ε
ti ,r (x, y, u j (x, t), η) for (x, y, η, t) ∈ T

2d × R × [ti ,∞).

It follows as in (4.40) that, for C1 = C1(T ) > 0,

ρ
1,ε
ti ,r · ρ

2,ε
ti ,r 	= 0 implies that

∣∣∣u1 − u2
∣∣∣ � C1ε. (4.54)

Observe that if max{|ξ | , ∣∣ξ ′∣∣} � 2C1ε, then a direct computation yields, for C =
C(T ) > 0 depending on C1,
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ψm(ξ, ξ ′) � |ξ |m
2
∣∣ξ ′∣∣ 2−m

2 + 2 |ξ | 12 ∣∣ξ ′∣∣ 12 + |ξ | 2−m
2

∣∣ξ ′∣∣m
2 � Cε. (4.55)

Conversely, without loss of generality suppose that |ξ | � 2C1ε with |ξ | �
∣∣ξ ′∣∣

and
∣∣ξ − ξ ′∣∣ � C1ε. Then, using a Lipschitz estimate, for C = C(m, T ) > 0

depending on C1,

ψm(ξ, ξ ′) � C |ξ | 2−m
2

∣∣ξ ′∣∣ 2−m
2

∣∣ξ ′∣∣m−3
ε2 � C |ξ | 2−m

2
∣∣ξ ′∣∣m−4

2 ε2 � C |ξ |−1 ε2 � Cε,

(4.56)
where the second to last inequality uses the fact that the assumptions guarantee∣∣ξ ′∣∣ � 1

2 |ξ |.
We will now form a velocity decomposition of the integral. For each δ ∈ (0, 1),

let K δ : R → [0, 1] denote a smooth cutoff function satisfying

{
K δ(ξ) = 1 if |ξ | � δ or 2

δ
� |ξ | ,

K δ(ξ) = 0 if 2δ � |ξ | � 1
δ
.

(4.57)

Returning to (4.52) consider the decomposition

∫ ti+1

ti

∫
R3

∫
T3d

m

(
|ξ |m−1

2 − ∣∣ξ ′∣∣m−1
2

)2

χ1
r χ2

r ∇xρ
1,ε
ti ,r · ∇x ′ρ2,ε

ti ,r

= 4m

(m + 1)2

∫ ti+1

ti

∫
R

∫
T3d

ψδ
m(u1, u2)

∣∣∣u1
∣∣∣−

1
2 ∇

(
u1
)[m+1

2

]

·
∣∣∣u2

∣∣∣−
1
2 ∇

(
u2
)[m+1

2

]
ρ
1,ε
ti ,rρ

2,ε
ti ,r

+ 4m

(m + 1)2

∫ ti+1

ti

∫
R

∫
T3d

ψ̃δ
m(u1, u2)

∣∣∣u1
∣∣∣−

1
2 ∇

(
u1
)[m+1

2

]

·
∣∣∣u2

∣∣∣−
1
2 ∇

(
u2
)[m+1

2

]
ρ
1,ε
ti ,rρ

2,ε
ti ,r ,

(4.58)

where, for each δ ∈ (0, 1), ψδ
m, ψ̃δ

m : R2 → R are defined by

ψδ
m(ξ, ξ ′) := (

K δ(ξ) + K δ(ξ ′) − K δ(ξ)K δ(ξ ′)
)
ψm(ξ, ξ ′), (4.59)

and

ψ̃δ
m(ξ, ξ ′) := (

1 − K δ(ξ)
) (
1 − K δ(ξ ′)

)
ψm(ξ, ξ ′). (4.60)

It follows from (4.53), (4.57), and the local Lipschitz continuity of the map

ξ ∈ R �→ |ξ |m−1
2 on the set

{
δ � |ξ | � 2/δ

}
that, C = C(m, δ) > 0,

∣∣∣ψ̃δ
m(ξ, ξ ′)

∣∣∣ � C
∣∣ξ − ξ ′∣∣2 .

Therefore, using Proposition 4.7 below and Young’s inequality, the second term of
(4.58) satisfies, for C = C(m, T, δ) > 0,
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∣∣∣∣
∫ ti+1

ti

∫
R

∫
T3d

(
ψ̃δ

m(u1, u2)
∣∣u1

∣∣− 1
2 ∇ (

u1)[m+1
2

]
· ∣∣u2

∣∣− 1
2 ∇ (

u2)[m+1
2

]
ρ
1,ε
ti ,rρ

2,ε
ti ,r

)∣∣∣∣

� Cε

(∫ ti+1

ti

∫
R

∫
Td

|ξ |−1 q1
r (x, ξ)

) 1
2
(∫ ti+1

ti

∫
R

∫
Td

∣∣ξ ′∣∣−1
q2

r (x, ξ ′)
) 1

2

� Cε

2∑
j=1

(
1 +

∥∥∥u j
0

∥∥∥2
L2(Td )

+
∫ ti+1

ti

∫
R

∫
Td

q j dx dξ dr

)
.

(4.61)
For the first term of (4.58), estimates (4.54), (4.55), and (4.56) imply that,

for C = C(m, T ) > 0, we have
∣∣ψδ

m(u1, u2)
∣∣ � Cε whenever ρ

1,ε
ti ,rρ

2,ε
ti ,r 	= 0.

Therefore, using definitions (4.59) and (4.60), the fact that ψδ
m(ξ, ξ ′) = 0 on the

set {ξ = ξ ′}, and the fact that the set

{u1 	= u2} ⊂
(
{u1 	= 0} ∪ {u2 	= 0}

)
,

we conclude that, for C = C(m, T ) > 0,

∣∣∣∣
∫ ti+1

ti

∫
R

∫
T3d

(
ψδ

m(u1, u2)
∣∣u1

∣∣− 1
2 ∇ (

u1)[m+1
2

]
· ∣∣u2

∣∣− 1
2 ∇ (

u2)[m+1
2

]
ρ
1,ε
ti ,rρ

2,ε
ti ,r

)∣∣∣∣
� C

∣∣∣∣
∫ ti+1

ti

∫
R

∫
T3d

ε−1ψδ
m(u1, u2)

(∣∣u1
∣∣− 1

2 ∇ (
u1)[m+1

2

]
· ∣∣u2

∣∣− 1
2 ∇ (

u2)[m+1
2

])
ερ

1,ε
ti ,rρ

2,ε
ti ,r

∣∣∣∣
� C

(∫ ti+1

ti

∫
R

∫
U δ

|ξ |−1 q1
r (x, ξ)

) 1
2
(∫ ti+1

ti

∫
R

∫
U δ

∣∣ξ ′∣∣−1
q2

r (x, ξ ′)
) 1

2

,

(4.62)
where, for each δ ∈ (0, 1),

U δ :=
2⋃

j=1

({
0 <

∣∣∣u j
∣∣∣ < 2δ

}
∪
{∣∣∣u j

∣∣∣ � 1/δ
})

. (4.63)

Therefore, estimates (4.61) and (4.62) imply that, for each δ ∈ (0, 1), for C =
C(m, T ) > 0,

lim sup
ε→0

∣∣Err4i ∣∣ � C

(∫ ti+1

ti

∫
R

∫
U δ

|ξ |−1 q1
r (x, ξ)

) 1
2
(∫ ti+1

ti

∫
R

∫
U δ

∣∣ξ ′∣∣−1
q2

r (x, ξ ′)
) 1

2

.

(4.64)
The dominated convergence theorem, Proposition 4.7 below, and (4.63) imply that
the righthand side of (4.64) vanishes in the limit δ → 0. Therefore, after summing
over i ∈ {0, . . . , N − 1}, it follows that

lim sup
ε→0

N−1∑
i=0

∣∣∣Err4i
∣∣∣ = 0, (4.65)

which, together with (4.51), completes the analysis of the error terms.
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Step 6: The conclusion. Returning to (4.37), and recalling the approximation
scheme (4.5), estimates (4.44), (4.47), (4.51), and (4.65) imply that, after summing
over i ∈ {0, . . . , N − 1} and passing to the limit ε → 0, for C = C(m, d, T ) > 0,

∫
R

∫
Td

∣∣χ1
r − χ2

r

∣∣2 dy dη

∣∣∣∣
T

r=0

� C |P|α
2∑

j=1

(∫ T

0

∫
Td

∣∣∣u j
∣∣∣(m−1)∨0

dx dr +
∫ T

0

∫
R

∫
Td

|ξ |(m−1)∧0 q j
r dx dξ dr

)

+ C |P|α
2∑

j=1

∫ T

0

∫
R

∫
Td

(
p j + q j

)
dx dξ dr.

(4.66)
Lemma 4.5 and Proposition 4.6 below imply that, for C = C(m, d, T ) > 0, for
each j ∈ {1, 2},∫ T

0

∫
Td

∣∣∣u j
∣∣∣(m−1)∨0

dx dr +
∫ T

0

∫
R

∫
Td

|ξ |(m−1)∧0 q j
r dx dξ dr

� C

⎛
⎝∥∥∥u j

0

∥∥∥(m−1)∨0
L1(Td )

+
(∫ T

0

∫
R

∫
Td

q j dx dξ dr

) (m−1)∨0
m+1

⎞
⎠

+ C

⎛
⎝∥∥∥u j

0

∥∥∥(1+m)∧2
L(1+m)∧2(Td )

+
∥∥∥u j

0

∥∥∥2m∧2
L1(Td )

+
(∫ T

0

∫
R

∫
Td

q j dx dξ dr

) 2m
m+1∧1

⎞
⎠ .

Therefore, after multiple applications of Hölder’s inequality and Young’s inequal-
ity, it follows that for C = C(m, d, T ) > 0, for each j ∈ {1, 2},∫ T

0

∫
Td

∣∣∣u j
∣∣∣(m−1)∨0

dx dr +
∫ T

0

∫
R

∫
Td

|ξ |(m−1)∧0 q j
r dx dξ dr

� C

(
1 +

∥∥∥u j
0

∥∥∥(m−1)∨0
L1(Td )

+
∥∥∥u j

0

∥∥∥2
L2(Td )

+
∫ T

0

∫
R

∫
Td

q j dx dξ dr

)
.

Therefore, applying this estimate to (4.66), for C = C(m, d, T ) > 0,

∫
R

∫
Td

∣∣χ1
r − χ2

r

∣∣2 dy dη

∣∣∣∣
T

r=0

� C |P|α
2∑

j=1

(
1 +

∥∥∥u j
0

∥∥∥2
L2(Td )

+
∥∥∥u j

0

∥∥∥(m−1)∨0
L1(Td )

+
∫ T

0

∫
R

∫
Td

(
p j + q j

)
dx dξ dr

)
.

Hence, using thedefinitionof the kinetic function, after passing to the limit |P| → 0,
we conclude that∫

Td

∣∣∣u1(·, T ) − u2(·, T )

∣∣∣ dx =
∫
R

∫
Td

∣∣∣χ1(·, ·, T ) − χ2(·, ·, T )

∣∣∣ dx dξ

�
∫
R

∫
Td

∣∣∣χ1(·, ·, 0) − χ2(·, ·, 0)
∣∣∣ dx dξ =

∫
Td

∣∣∣u1
0 − u2

0

∣∣∣ dx,

(4.67)

which completes the proof. ��
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Remark 4.3. We observe that the argument leading from (4.52) to (4.65) was the
only step in the proof of Theorem 4.2 that relied upon the positivity of the initial
data through the application of Proposition 4.7 below. The remaining arguments of
this paper are obtained for general initial data in L2(Td). This completes the proof
of Theorem 1.5. The details for Theorem 1.6 are similar, but require additional
estimates due to the unboundedness of the domain. The details can be found in the
first version of this paper [21].

We conclude this section with a few auxiliary estimates. The first, which is an
immediate corollary of Theorem 4.2, obtains an L1-estimate for pathwise kinetic
solutions.

Corollary 4.4. Let u0 ∈ L2(Td) and suppose that u is a pathwise kinetic solution
of (1.1) in the sense of Definition 3.4 with initial data u0. Then,

‖u‖L∞([0,∞);L1(Td )) � ‖u0‖L1(Td ) .

Furthermore, if u0 ∈ L2+(Td), for almost every t ∈ [0,∞),

‖u(·, t)‖L1(Td ) = ‖u0‖L1(Td ) .

Proof. Let u0 ∈ L2(Td) be arbitrary, and let u be the pathwise kinetic solution of
(1.1) with initial data u0. Repeating the proof of Theorem 4.2 with χ2 := 0 implies
that

‖u‖L∞([0,T ];L1(Td )) = ‖u − 0‖L∞([0,T ];L1(Td )) � ‖u0 − 0‖L1(Td ) = ‖u0‖L1(Td ) .

Indeed, in the case that χ2 = 0, the righthand side of (4.5) is bounded, for each
i ∈ {1, . . . , N − 1}, by the righthand side of (4.21). The nonnegativity of the
entropy and parabolic defect measures and estimates, estimates (4.44) and (4.47),
and a repetition of the arguments leading from (4.66) to (4.67) completes the proof.

For the second claim, suppose that u0 ∈ L2+(Td) and let u be the pathwise
kinetic solution of (1.1) with initial data u0, kinetic function χ , and exceptional
set N . It follows by repeating the same reasoning leading from (4.10) to (4.21)
with the sgn function replaced by its negative part sgn− := (sgn∧0) that, due to
the nonnegativity of the entropy and parabolic defect measures, after passing to
the limit first with respect to the regularization and second with respect to the time
splitting, for each t ∈ [0,∞)\N ,

0 �
∫
R

∫
Td

χ(x, ξ, t) sgn−(ξ) dx dξ �
∫
R

∫
Td

χ(u0(x), ξ) sgn−(ξ) dx dξ = 0.

Here, the first equality follows by the definition of the kinetic function, and the
final equality follows from the nonnegativity of u0. We therefore conclude that, if
u0 ∈ L2+(Td) then u � 0 almost everywhere on Td × [0,∞). The final claim now
follows by testing the equation with the function that is identically equal to one,
and using the nonnegativity of the solution. ��
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In the estimates to follow, we will repeatedly use the following interpolation
estimate. This estimate quantifies the gain in integrability implied by the finiteness
of the parabolic defect measure.

Lemma 4.5. For every z ∈ C∞(Td), for C = C(m, d, T ) > 0,

‖z‖m+1
Lm+1(Td )

=
∥∥∥∥z

[
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2

]∥∥∥∥
2
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� C
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L1(Td )
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∥∥∥∥∇z

[
m+1
2

]∥∥∥∥
2

L2(Td )

)
.

Proof. Let z ∈ C∞(Td) be arbitrary. The first equality is immediate from the
definitions. The remainder of argument is written for the case d � 3, since the
cases d = 1 and d = 2 are similar. In this case, for θ = θ(m, d) defined by

θ = dm

dm + 2
,

the log-convexity of the Sobolev norm yields the estimate, for the Sobolev exponent
1
2∗ = 1

2 − 1
d , for each z ∈ C∞(Td),

∥∥∥∥z
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2

]∥∥∥∥
L2(Td )
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2
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2
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2

L
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)
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)
,

where the final inequality follows from the triangle inequality and the estimate

∥∥∥∥
∫
Td

z

[
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L1(Td )

,

where a constant would appear if the measure
∣∣Td

∣∣ is not normalized to be one. The
Gagliardo-Nirenberg-Sobolev inequality and Hölder’s inequality then imply that,
for C = C(d) > 0, for each z ∈ C∞(Td),
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[
m+1
2

]∥∥∥∥
θ

L2(Td )

+
∥∥∥∥z

[
m+1
2

]∥∥∥∥
θ

L1(Td )

)

� ‖z‖(1−θ) m+1
2

L1(Td )

(
C

∥∥∥∥∇z

[
m+1
2

]∥∥∥∥
θ

L2(Td )

+
∥∥∥∥z

[
m+1
2

]∥∥∥∥
θ

L2(Td )

)
.

Finally, it follows from Young’s inequality that, for C = C(m, d) > 0,

∥∥∥∥z

[
m+1
2

]∥∥∥∥
L2(Td )

� C

(
‖z‖

m+1
2

L1(Td )
+
∥∥∥∥∇z

[
m+1
2

]∥∥∥∥
L2(Td )

)
+ 1

2

∥∥∥∥z

[
m+1
2

]∥∥∥∥
L2(Td )

,
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and, therefore, for C = C(m, d) > 0,
∥∥∥∥z

[
m+1
2

]∥∥∥∥
L2(Td )

� C

(
‖z‖

m+1
2

L1(Td )
+
∥∥∥∥∇z

[
m+1
2

]∥∥∥∥
L2(Td )

)
.

Taking the square of this equality completes the proof. ��
The following two propositions obtain higher integrability of the entropy and

kinetic defectmeasures in a neighborhood of the origin. This estimate is particularly
relevant for the fast diffusion case m ∈ (0, 1), since it effectively implies the L2-
integrability of ∇u[m].

Proposition 4.6. Let u0 ∈ L2(Td) and δ ∈ (0, 1] be arbitrary. Suppose that u is a
pathwise kinetic solution of (1.1) in the sense of Definition 3.4 with initial data u0.
Then, for each T > 0, there exists C = C(m, d, T ) > 0 such that

‖u‖1+δ

L∞([0,T ];L1+δ(Td ))
+ δ

∫ T

0

∫
R

∫
Td

|ξ |δ−1 (p + q) dx dξ dr

� C

⎛
⎝‖u0‖1+δ

L1+δ(Td )
+ ‖u0‖m+δ

L1(Td )
+
(∫ T

0

∫
R

∫
Td

q dx dξ dr

)m+δ
m+1

⎞
⎠ .

Proof. Let δ ∈ (0, 1] be arbitrary. Suppose that u0 ∈ L2(Td), and suppose that
u is a pathwise kinetic solution of (1.1) with initial data u0. We will write χ for
the kinetic function of u, (p, q) respectively for the entropy and parabolic defect
measures, and N for the exceptional set.

Let T ∈ [0,∞)\N be fixed but arbitrary. Definition 3.4, in particular the global
integrability of the parabolic and entropy defect measures, and Lemma 4.5 imply
that the map ξ ∈ R �→ ξ [δ] is an admissible test function. Therefore, for each
t ∈ [0, T ]\N ,

∫
R

∫
Td

χr
(
�x,ξ

r,r

)[δ]
dx dξ

∣∣∣∣
r=t

r=0
+ δ

∫ t

0

∫
R

∫
Td

∣∣�x,ξ
r,r

∣∣δ−1
∂ξ�

x,ξ
r,r (pr + qr ) dx dξ dr

=
∫ t

0

∫
R

∫
Td

m |ξ |m−1 χr �
(
�x,ξ

r,r

)[δ]
dx dξ dr.

(4.68)
For the first term on the righthand side of (4.68), the integration by parts formula

of Lemma 3.6, which is justified using an approximation argument and Lemma B.2
below, implies that, for each t ∈ [0, T ]\N ,

∫ t

0

∫
R

∫
Td

m |ξ |m−1 χr�
(
�x,ξ

r,r

)[δ]
dx dξ dr

= − 2mδ

m + 1

∫ t

0

∫
Td

|u|m−1
2 ∇(u)

[
m+1
2

]
· ∇�x,u

r,r

∣∣�x,u
r,r

∣∣δ−1 dx dr.

(4.69)

Lemma B.2 implies that, for C = C(T ) > 0, for each (x, t) ∈ T
d × [0, T ],

∇�x,u
r,r

∣∣�x,u
r,r

∣∣δ−1 � Ctα |u(x)|δ .
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Therefore, using Hölder’s inequality, Young’s inequality, and the definition of
the parabolic defect measure, the righthand side of (4.69) satisfies, for C1 =
C1(m, T ) > 0, for each t ∈ [0, T ]\N ,

− 2mδ

m + 1

∫ t

0

∫
Td

|u|m−1
2 ∇(u)

[
m+1
2

]
∇�x,u

r,r

∣∣�x,u
r,r

∣∣δ−1 dx dr

� C1tαδ

∫ t

0

∫
Td

|u|m+δ
2 |u| δ−1

2

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣ dx dr

� C1tαδ

(∫ t

0

∫
Td

|u|m+δ dx dr +
∫ t

0

∫
R

∫
Td

|ξ |δ−1 q dx dξ dr

)
.

(4.70)

The final term on the righthand side of (4.70) will be absorbed. Proposition B.1
implies that there exists t̃ ∈ (0, T ] such that

inf
(x,ξ,t)∈Td×R×(0,t̃]

∂ξ�
x,ξ
t,t > 0.

It follows from Lemma B.2 that, for C2 = C2(T ) > 0, for each t ∈ [0, t̃]\N ,

C2δ

∫ t

0

∫
R

∫
Td

|ξ |δ−1 ∂ξ�
x,ξ
r,r (pr + qr ) dx dξ dr

� δ

∫ t

0

∫
R

∫
Td

∣∣�x,ξ
r,r

∣∣δ−1
∂ξ�

x,ξ
r,r (pr + qr ) dx dξ dr. (4.71)

The estimates of Proposition B.1 imply that there exists t∗ ∈ (0, t̃]\N satisfying

inf
(x,ξ,t)∈Td×R×[0,t∗]

(
C2∂ξ�

x,ξ
r,r − C1tα

)
� C2

2
. (4.72)

Therefore, returning to (4.68), for each t ∈ (0, t∗]\N , estimates (4.70), (4.71), and
(4.72) imply that, for C = C(T ) > 0,

∫
R

∫
Td

χr
(
�x,ξ

r,r

)[δ]∣∣∣∣
r=t

r=0
+ δ

∫ t

0

∫
R

∫
Td

|ξ |δ−1 (pr + qr ) dx dξ dr

� C
∫ t

0

∫
Td

|u|m+δ dx dx . (4.73)

The definition of the kinetic function and Lemma B.2 imply that there exists
C = C(T ) > 0 such that, for each t ∈ [0, T ],

‖u(·, t)‖1+δ

L1+δ(Td )
� C

∫
R

∫
Td

χ(x, ξ, r)
(
�x,ξ

r,r

)[δ]
, (4.74)

and, by Definition 3.4, the initial data is attained in the sense that

∫
R

∫
Td

χ(x, ξ, 0)
(
�

x,ξ
0,0

)[δ]
dx dξ =

∫
R

∫
Td

χ(u0(x))ξ [δ] dx dξ = 1

1 + δ
‖u0‖1+δ

L1(Td )
.

(4.75)
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Finally, Corollary 4.4 and Lemma 4.5 imply that, for C = C(m, d, T ) > 0, for
each t ∈ [0, T ]\N ,

∫ t

0

∫
Td

|u|m+δ dx dr � C

(
‖u0‖m+δ

L1(Td )
+
(∫ t

0

∫
R

∫
Td

q dx dξ dr

)m+δ
m+1

)
.

(4.76)
Returning to (4.73), the estimates (4.74), (4.75), and (4.76) imply that, for each
t ∈ [0, t∗]\N , for C = C(m, d, T ) > 0,

‖u‖1+δ

L∞([0,t];L1+δ(Td ))
+ δ

∫ t

0

∫
R

∫
Td

|ξ |δ−1 (p + q) dx dξ dr

� C

(
‖u0‖1+δ

L1+δ(Td )
+ ‖u0‖m+δ

L1(Td )
+
(∫ t

0

∫
R

∫
Td

q dx dξ dr

)m+δ
m+1

)
.

(4.77)

The argument now follows by induction. Precisely, assume that for some k � 1,
the estimate of (4.77) is satisfied on the interval [0, kt∗∧T ]. The identical reasoning
applied to the interval [kt∗ ∧ T, (k +1)t∗ ∧ T ] and Corollary 4.4 yield the analogue
of (4.77) on the interval [kt∗ ∧ T, (k + 1)t∗ ∧ T ]. The inductive hypothesis and
linearity then imply the estimate on the interval [0, (k+1)t∗∧T ], where the constant
increases at every step. This completes the induction argument, since the base case
is (4.77), and therefore the proof. ��

The second proposition of this section improves the integrability of the entropy
and parabolic defect measures in a neighborhood of zero. Informally, this implies
regularity of u[ m

2 ] in L2([0, T ]; H1(Td)).

Proposition 4.7. Let u0 ∈ L2+(Td) be arbitrary. Suppose that u is a pathwise
kinetic solution of (1.1) in the sense of Definition 3.4 with initial data u0. For each
T > 0, there exists C = C(m, d, T ) > 0 such that

∫ T

0

∫
R

∫
Td

|ξ |−1 (p + q) dx dξ dr

� C

(
1 + ‖u0‖(m−1)∨0

L1(Td )
+ ‖u0‖2L2(Td )

+
∫ T

0

∫
R

∫
Td

q dx dξ dr

)
.

Proof. Let u0 ∈ L2+(Td) be arbitrary, and let u be a pathwise kinetic solution of
(1.1) with initial data u0. We will write χ for the kinetic function of u, (p, q) for
the entropy and parabolic defect measures, and N for the exceptional set.

Let T ∈ [0,∞)\N be fixed but arbitrary. Definition 3.4, Lemma 4.5, the non-
negativity of the initial condition, and Corollary 4.4 imply, following an approx-
imation argument, that the map ξ ∈ R �→ log(ξ) is an admissible test function.
Therefore, after applying the integration by parts formula, which is justified using
an approximation argument and Lemma B.2 below, for each t ∈ [0, T ]\N ,
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∫
R

∫
Td

χr log
(
�x,ξ

r,r

)
dx dξ

∣∣∣∣
r=t

r=0
+
∫ t

0

∫
R

∫
Td

log′ (�x,ξ
r,r

)
∂ξ�

x,ξ
r,r (pr + qr ) dx dξ dr

= − 2m

m + 1

∫ t

0

∫
Td

|u| m−1
2 ∇u

[
m+1
2

]
· log′ (�x,u

r,r

)∇�x,u
r,r dx dr. (4.78)

Lemma B.2 implies that there exists C = C(T ) > 0 such that

sup
(x,ξ,r)∈Td×(0,∞)×[0,T ]

∣∣log′ (�x,ξ
r,r

)∇�x,u
r,r

∣∣ � C.

Applying this estimate to the righthand side of (4.78), it follows from Hölder’s
inequality, Young’s inequality, and the definition of the parabolic defect measure
that, for C = C(m, T ) > 0, for each t ∈ [0, T ]\N ,∣∣∣∣

∫ t

0

∫
Td

|u|m−1
2 ∇u

[
m+1
2

]
· ∇�x,u

r,r log′ (�x,u
r,r

)
dx dr

∣∣∣∣
� C

(∫ t

0

∫
Td

|u|(m−1)∨0 dx dr +
∫ t

0

∫
R

∫
Td

|ξ |(m−1)∧0 q dx dξ dr

)
.

Therefore, Lemma 4.5 and Proposition 4.6 imply that, for C = C(m, d, T ) > 0,∣∣∣∣
∫ t

0

∫
Td

|u|m−1
2 ∇u

[
m+1
2

]
· ∇�x,u

r,r log′ (�x,u
r,r

)
dx dr

∣∣∣∣

� C

⎛
⎝‖u0‖(m−1)∨0

L1(Td )
+
(∫ T

0

∫
R

∫
Td

q dx dξ dr

) (m−1)∨0
m+1

⎞
⎠

+ C

⎛
⎝‖u0‖(1+m)∧2

L(1+m)∧2(Td )
+ ‖u0‖2m∧2

L1(Td )
+
(∫ T

0

∫
R

∫
Td

q dx dξ dr

) 2m
m+1∧1

⎞
⎠ .

(4.79)
For the first term of (4.78), Proposition 4.6 with δ = 1, Lemma B.2, the inte-

grability of the logarithm at zero, and the growth of the logarithm at infinity imply
that, for C = C(T ) > 0, for each t ∈ [0, T ]\N ,∣∣∣∣

∫
R

∫
Td

χr log
(
�x,ξ

r,r

)
dx dξ

∣∣∣∣
r=t

r=0

∣∣∣∣ � C
(
1 + ‖u0‖2L2(Td )

)
. (4.80)

Therefore, returning to (4.78), estimates (4.79) and (4.80) imply that, for C =
C(m, d, T ) > 0, for each t ∈ [0, T ]\N ,∫ t

0

∫
R

∫
Td

log′ (�x,ξ
r,r

)
∂ξ�

x,ξ
r,r (pr + qr ) dx dξ dr

� C

⎛
⎝1 + ‖u0‖2L2(Td )

+ ‖u0‖(m−1)∨0
L1(Td )

+
(∫ T

0

∫
R

∫
Td

q dx dξ dr

) (m−1)∨0
m+1

⎞
⎠

+ C

⎛
⎝‖u0‖(1+m)∧2

L(1+m)∧2(Td )
+ ‖u0‖2m∧2

L1(Td )
+
(∫ T

0

∫
R

∫
Td

q dx dξ dr

) 2m
m+1∧1

⎞
⎠ .

(4.81)
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The claim now follows similarly to Proposition 4.6: Proposition B.1 implies
that there exists t∗ ∈ [0, T ]\N such that

inf
(x,ξ,r)∈Td×R×[0,t∗]

∂ξ�
x,ξ
r,r � 1

2
.

Then, for C = C(m, d, T ) > 0, for each t ∈ [0, t∗],∫ t

0

∫
R

∫
Td

|ξ |−1 (p + q) dx dξ dr

� C

(
1 + ‖u0‖(m−1)∨0

L1(Td )
+ ‖u0‖2L2(Td )

+
∫ T

0

∫
R

∫
Td

q dx dξ dr

)
, (4.82)

where the righthand side of (4.81) simplifies to the righthand side of (4.82) after
multiple applications of Hölder’s inequality and Young’s inequality. Since the iden-
tical reasoning applies to any time interval of length less than or equal to t∗ > 0,
Corollary 4.4, Proposition 4.6 for δ = 1, and the linearity of the integral complete
the proof. ��
Remark 4.8. Proposition 4.7 is not true for signed initial data. Consider, for sim-
plicity, the case d = 1 and m = 1. Suppose that u0(x) = x in a neighborhood of
the origin. Then, since the heat flow preserves the linear behavior of the initial data
locally in time, the failure of Proposition 4.7 manifests as the non-integrability of
the map x ∈ R �→ 1/ |x | in a neighborhood of the origin.

5. Stable Estimates and Existence

In this section, we establish the existence of pathwise kinetic solutions to the equa-
tion {

∂t u = �u[m] + ∇ · (A(x, u) ◦ dz) in T
d × (0,∞),

u = u0 on T
d × {0}.

For this, it is necessary to derive stable estimates for the regularized equation,
defined for each η ∈ (0, 1) and ε ∈ (0, 1),
{

∂t uη,ε = �(uη,ε)[m] + η�u + ∇ · (A(x, uη,ε)żε
t

)
in T

d × (0,∞),

uη,ε = u0 on T
d × {0}, (5.1)

where, as ε → 0, the smooth paths {zε}ε∈(0,1) converge to z with respect to the
α-Hölder metric in the sense of (B.1). We will first establish estimates and the
existence of pathwise kinetic solutions in the sense of Definition 3.4 for initial data
u0 ∈ C∞(Td). The general statement will follow by density.

Returning for motivation to the kinetic formulation of the deterministic porous
medium equation, the kinetic function χ of a solution u satisfies

{
∂tχ = m |ξ |m−1 �xχ + ∂ξ (p + q) in T

d × (0,∞),

χ = χ(u0) on T
d × {0}.
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Following [56] and [12], estimates are obtained for the solution by testing the
equation with the maps ξ ∈ R �→ sgn(ξ) and ξ ∈ R �→ ξ . In the first case, owing
to the positivity of the parabolic and entropy defect measures, observe the informal
estimate

‖u‖L∞([0,∞);L1(Td )) = ‖χ‖L∞([0,∞);L1(Td×R)) � ‖χ0‖L1(Td×R) = ‖u0‖L1(Td ) .

In the second case, observe informally the estimate

1

2
‖u‖2L∞([0,∞);L2(Td ))

+
∫ ∞

0

∫
R

∫
Td

(p(x, ξ, s) + q(x, ξ, s)) dx dξ ds

� 1

2
‖u0‖2L2(Td )

.

In Proposition 5.1 we obtain the analogue of the L1-estimate, and in Proposi-
tion 5.2,we obtain the analogue of the L2-estimate and the estimate for the parabolic
and entropy defect measures. In the case of Proposition 5.1, the argument is only a
small modification of the relevant details of Theorem 4.2 and Corollary 4.4. In the
case of Proposition 5.2, the proof is essentially identical to the proof of Proposi-
tion 4.6 for δ = 1. We therefore omit the details.

Proposition 5.1. For each u0 ∈ L2(Td), η ∈ (0, 1) and ε ∈ (0, 1), the solution
uη,ε of (5.1) from Proposition A.1 satisfies

∥∥uη,ε
∥∥

L∞([0,∞);L1(Td ))
� ‖u0‖L1(Td ) .

Proposition 5.2. For each u0 ∈ L2(Td), η ∈ (0, 1) and ε ∈ (0, 1), let uη,ε denote
the solution of (5.1) from Proposition A.1. For each T > 0, there exists C =
C(m, d, T ) > 0 such that

∥∥uη,ε
∥∥2

L∞([0,T ];L2(Td ))
+
∫ T

0

∫
R

∫
Td

(
pη,ε(x, ξ, s) + qη,ε(x, ξ, s)

)
dx dξ ds

� C
(
‖u0‖2L2(Td )

+ ‖u0‖2L1(Td )
+ ‖u0‖m+1

L1(Td )

)
.

In general, we do not expect to obtain a stable estimate in time for the solutions
{uη,ε}η,ε∈(0,1). However, we can obtain some regularity for the time derivative of
the transported kinetic functions, for η ∈ (0, 1) and ε ∈ (0, 1),

χ̃η,ε(x, ξ, t) := χη,ε
(

X x,ξ,ε
0,t , �

x,ξ,ε
0,t , t

)
for (x, ξ, t) ∈ T

d ×R×[0,∞) . (5.2)

In effect, the transport cancels the oscillations introduced by the noise. The follow-
ing proposition proves that the collection {∂t χ̃

η,ε}η,ε∈(0,1) is uniformly bounded in
the negative Sobolev space H−s , for s > d

2 + 1:

Proposition 5.3. For η ∈ (0, 1), ε ∈ (0, 1) and u0 ∈ L2(Td), the transported
kinetic function (5.2) satisfies, for each T � 0, for C = C(m, d, T ) > 0,
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∥∥∂t χ̃
η,ε
r

∥∥
L1([0,T ];H−s(Td×R))

� C
(
1 + ‖u0‖2L1(Td )

+ ‖u0‖m+1
L1(Td )

+ ‖u0‖2L2(Td )

)
,

for any Sobolev exponent s > d
2 + 1.

Proof. Let ε ∈ (0, 1), η ∈ (0, 1), u0 ∈ L2(Td), T > 0, and s > d
2 + 1 be

fixed but arbitrary. For each δ ∈ (0, 1), let ρδ
1 and ρδ

d denote respectively the
standard 1-dimensional and d-dimensional convolution kernels of scale δ. Then,
for each δ ∈ (0, 1), define the regularization of the transported kinetic function, for
(x, ξ, t) ∈ T

d × R × [0,∞),

χ̃η,ε,δ(x, ξ, t) :=
∫
R

∫
Td

χη,ε
(

X x ′,ξ ′,ε
t , �

x ′,ξ ′,ε
t , t

)
ρδ

d(x ′ − x)ρδ
1(ξ

′ − ξ) dx ′ dξ ′

=
∫
R

∫
Td

χη,ε(x ′, ξ ′, t)ρε
d

(
Y x ′,ξ ′,ε

t,t −x
)

ρε
1

(
�

x ′,ξ ′,ε
t,t −ξ

)
dx ′ dξ ′,

where the final equality is a consequence of conservative property of the character-
istics (3.18).

After applying the equation satisfied by χ̃η,ε, and using identities (4.11) and
(4.12), it follows after integrating by parts that, for each r ∈ [0, T ],

∫
R

∫
Td

∂t χ̃
η,ε,δ
r ζ dx dξ

= −
∫
R

∫
Td

(∫
Rd

(
∇ (

uη,ε
)[m] + η∇uη,ε

)

·
(
ρδ

r (x ′, x, uη,ε(x, r), ξ)∇x ′Y x ′,uη,ε(x,r)
r,r

)
dx ′) · ∇xζ dx dξ

−
∫
R

∫
Td

(∫
Rd

(
∇ (

uη,ε
)[m] + η∇uη,ε

)

·
(
ρδ

r (x ′, x, uη,ε(x, r), ξ)∇x ′�x ′,uη,ε(x,r)
r,r

)
dx ′) ∂ξ ζ dx dξ

−
∫
R

∫
Td

(∫
R

∫
Td

(
pη,ε

r + qη,ε
r

)
ρδ

r ∂ξ ′Y x ′,ξ ′
r,r dx ′ dξ ′

)
· ∇xζ dx dξ

−
∫
R

∫
Td

(∫
R

∫
Td

(
pη,ε

r + qη,ε
r

)
ρδ

r ∂ξ ′�x ′,ξ ′
r,r dx ′ dξ ′

)
∂ξ ζ dx dξ.

(5.3)

The dependence on the convolution kernel is removed by integrating the variables
(x, ξ) ∈ T

d × R. The characteristics are uniformly bounded, for C = C(T ) > 0,
for each r ∈ [0, T ], using the estimates of Proposition B.1. Therefore, Hölder’s
inquality, Young’s inequality, and the boundedness of the domain imply that
∣∣∣∣
∫
R

∫
Td

∂t χ̃
η,ε,δ
r ζ dx dξ

∣∣∣∣
� C

∥∥∇(x,ξ)ζ
∥∥

L∞(Td×R;Rd+1)

(
η +

∫
Td

∣∣uη,ε
r

∣∣(m−1)∨0 dx

)

+ C
∥∥∇(x,ξ)ζ

∥∥
L∞(Td×R;Rd+1)

(∫
R

∫
Td

(
pη,ε

r + (1 + |ξ |(m−1)∨1)qη,ε
r

)
dx dξ

)
.
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Since s > d
2 + 1, the Sobolev embedding theorem and Proposition 5.1 imply that,

for C = C(m, d, T ) > 0, for each r ∈ [0, T ],∣∣∣∣
∫
R

∫
Td

∂t χ̃
η,ε,δ
r ζ dx dξ

∣∣∣∣
� C ‖ζ‖Hs (Td×R)

(
η +

∫
Td

∣∣uη,ε
r

∣∣(m−1)∨0 dx

)

+ C ‖ζ‖Hs (Td×R)

(∫
R

∫
Td

(
pη,ε

r + (1 + |ξ |(m−1)∨1)qη,ε
r

)
dx dξ

)
.

(5.4)

Since ζ ∈ C∞
c (Td ×R)was arbitrary, it follows from (5.4) that, after integrating

in time, for C = C(m, d, T ) > 0,

∥∥∂t χ̃
η,ε,δ
r

∥∥
L1([0,T ];H−s(Td ×R))

� C

(
η +

∫ T

0

∫
Td

∣∣uη,ε
∣∣(m−1)∨0 dx dr

)

+ C
∫ T

0

∫
Td

(
pη,ε + (1 + |ξ |(m−1)∨1)qη,ε

)
dx dξ dr.

Therefore, after passing to the limit δ → 0, a repetition of the arguments leading
to the estimate for (4.66) implies that, for C = C(m, d, T ) > 0,∥∥∂t χ̃

η,ε
r

∥∥
L1([0,T ];H−s(Td×R))

� C

(
1 + ‖u0‖(m−1)∨0

L1(Td )
+ ‖u0‖2L2(Td )

+
∫ T

0

∫
R

∫
Td

(p + q) dx dξ dr

)
.

Proposition 5.2, Hölder’s inequality, and Young’s inequality therefore imply that,
for C = C(m, d, T ) > 0,
∥∥∂t χ̃

η,ε
r

∥∥
L1([0,T ];H−s(Td×R))

� C
(
1 + ‖u0‖2L1(Td )

+ ‖u0‖m+1
L1(Td )

+ ‖u0‖2L2(Td )

)
,

which completes the proof. ��
It remains to establish the regularity of the kinetic function with respect to the

spatial and velocity variables. The regularity in the velocity variable follows from
Proposition C.1, and the spatial regularity follows from Proposition C.3. These
estimates are combined using Proposition C.6 to obtain joint regularity in both
variables.

Proposition 5.4. Let u0 ∈ L2(Td), η ∈ (0, 1), and ε ∈ (0, 1). If m ∈ (1,∞), for
each s ∈ (0, 2

m+1 ) and T � 0, there exists C = C(m, d, T, s) > 0 such that

∥∥χη,ε
∥∥

L1
t

(
[0,T ];W s,1

x,ξ (Td )
) � C

(
1 + ‖u0‖L1(Td ) + ‖u0‖m+1

L1(Td )
+ ‖u0‖2L2(Td )

)
.

If m ∈ (0, 1], for each s ∈ (0, 1) and T � 0, there exists C = C(m, d, T, s) > 0
such that∥∥χη,ε

∥∥
L1

t

(
[0,T ];W s,1

x,ξ (Td )
) � C

(
1 + ‖u0‖L1(Td ) + ‖u0‖2L1(Td )

+ ‖u0‖2L2(Td )

)
.
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Proof. Letu0 ∈ L2(Td),η ∈ (0, 1) and ε ∈ (0, 1)be arbitrary. Let s ∈ (0, 2
m+1∧1)

and T � 0 be arbitrary. It follows from Corollary C.7 that, for C = C(d, s) > 0,∥∥χη,ε
∥∥

L1
t

(
[0,T ];W s,1

x,ξ (Td×R)
)

� C

(∥∥χη,ε
∥∥

L1
t

(
[0,T ];L1

ξ (R;W s,1
x (Td ))

) + ∥∥χη,ε
∥∥

L1
t ([0,T ];L1

x (Td ;W s,1(R)))

)
.

(5.5)

Corollary C.2 implies that, for C = C(d, T, s) > 0,

∥∥χη,ε
∥∥

L1
t ([0,T ];L1

x

(
Td ;W s,1

ξ (R))
) � C

(
1 + ∥∥uη,ε

∥∥
L1

t ([0,T ];L1
x (Td ))

)
. (5.6)

Corollary C.5 and Proposition 5.1 imply that, for C = C(m, d, T, s) > 0, if
m ∈ (1,∞),∥∥χη,ε

∥∥
L1

t

(
[0,T ];L1

ξ (R;W s,1
x (Td ))

)

� C

(
‖u0‖L1(Td ) + ‖u0‖m+1

L1(Td )
+
∫ T

0

∥∥∥∥∇ (
uη,ε

)[m+1
2

]
(·, r)

∥∥∥∥
2

m+1

L2(Td )

dr

)
,

(5.7)
and, if m ∈ (0, 1],∥∥χη,ε

∥∥
L1

t

(
[0,T ];L1

ξ (R;W s,1
x (Td ))

)

� C

(
‖u0‖L1(Td ) + ‖u0‖2(1−m)

L1(Td )
+
∫ T

0

∥∥∥∥∇u

[
m+1
2

]
(·, r)

∥∥∥∥
2

L2(Td )

dr

)
.

(5.8)

Returning to (5.5), if m ∈ (1,∞), it follows from (5.6) and (5.7), using the fact
that 2/(m + 1) < 1, Hölder’s inequality, Young’s inequality, and the definition of
the parabolic defect measure that, for C = C(m, d, T, s) > 0,∥∥χη,ε

∥∥
L1

t

(
[0,T ];W s,1

x,ξ (Td×R)
)

� C

(
1 + ‖u0‖L1(Td ) + ‖u0‖m+1

L1(Td )
+
∫ T

0

∫
R

∫
Td

qη,ε dx dξ dt

)
.

Similarly, from (5.6) and (5.8), if m ∈ (0, 1], for C = C(m, d, T, s) > 0,∥∥χη,ε
∥∥

L1
t

(
[0,T ];W s,1

x,ξ (Td×R)
)

� C

(
1 + ‖u0‖L1(Td ) + ‖u0‖2(m−1)

L1(Td )
+
∫ T

0

∫
R

∫
Td

qη,ε dx dξ dt

)
.

Therefore, if m ∈ (1,∞), Proposition 5.2 and the fact that, for each a ∈ [0,∞),
we have a2 �

(
a ∨ am+1

)
, for C = C(m, d, T, s) > 0,

∥∥χη,ε
∥∥

L1
t

(
[0,T ];W s,1

x,ξ (Td )
) � C

(
1 + ‖u0‖L1(Td ) + ‖u0‖m+1

L1(Td )
+ ‖u0‖2L2(Td )

)
.
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If m ∈ (0, 1], Proposition 5.2 and the fact that, for each a ∈ [0,∞), we have
a2(1−m) �

(
a ∨ a2

)
, imply that, for C = C(m, d, T, s) > 0,

∥∥χη,ε
∥∥

L1
t

(
[0,T ];W s,1

x,ξ (Td )
) � C

(
1 + ‖u0‖L1(Td ) + ‖u0‖2L1(Td )

+ ‖u0‖2L2(Td )

)
,

which completes the proof. ��
The following corollary proves that the transported kinetic function χ̃η,ε inherits

the regularity of χη,ε (the proof is an immediate consequence of Proposition 5.4
and Corollary C.9):

Corollary 5.5. For each η ∈ (0, 1), ε ∈ (0, 1), and u0 ∈ L2(Td), and for each
s ∈ (0, 2

m+1 ∧ 1) and T � 0, there exists C = C(m, d, T, s) > 0 such that

∥∥χ̃η,ε
∥∥

L1([0,T ];W s,1(Td ))
� C

(
1 + ‖u0‖L1(Td ) + ‖u0‖(m+1)∨2

L1(Td )
+ ‖u0‖2L2(Td )

)
.

The following theorem establishes the existence of pathwise kinetic solutions
for initial data u0 ∈ L2(Td) (the proof is consequence of Proposition 5.3, Corol-
lary 5.5, and the Aubin–Lions–Simon lemma):

Theorem 5.6. For every u0 ∈ L2(Td), there exists a pathwise kinetic solution u to
the equation

{
∂t u = �u[m] + ∇ · (A(x, u) ◦ dzt ) in T

d × (0,∞),

u = u0 on T
d × {0}, (5.9)

in the sense of Definition 3.4. In particular, the solution satisfies the estimates of
Corollary 4.4 and Proposition 4.6.

Proof. Let u0 ∈ L2(Td) be arbitrary. Let {uη,ε}η,ε∈(0,1) denote the solutions of
the regularized equation (5.1) with initial data u0, with transported kinetic func-
tions {χ̃η,ε}η,ε∈(0,1), entropy defect measures {pη,ε}η,ε∈(0,1), and parabolic defect
measures {qη,ε}η,ε∈(0,1).

Since, for each s ∈ (0, 2
m+1 ∧ 1) and R > 0, the embedding of W s,1(Td ×

[−R, R]) into L1(Td × [−R, R]) is compact, and since L1(Td ×R) embeds con-
tinuously into H−s(Td × R) for s > d

2 + 1, it follows from Proposition 5.3,
Corollary 5.5, the Aubin–Lions–Simon lemma Aubin [1], Lions [41], and Simon
[61], and a diagonal argument that, for each T � 0, the family

{χ̃η,ε}η,ε∈(0,1) is precompact in L1([0, T ]; L1(Td × R)).

The conservative property of the characteristics (3.18) therefore implies that, for
each T � 0,

{χη,ε}η,ε∈(0,1) is precompact in L1([0, T ]; L1(Td × R)).

It is then immediate from the definition of the kinetic function that

{uη,ε}η,ε∈(0,1) is precompact in L1([0, T ]; L1(Td)). (5.10)



Well-Posedness of Nonlinear Diffusion Equations 295

Furthermore, using Proposition 5.2, the sequence of measures

{(
pη,ε, qη,ε

)}
η,ε∈(0,1) is weakly precompact in BUC(Td × R)∗, (5.11)

and
{
(uη,ε)

[
m+1
2

]}
η,ε∈(0,1)

is weakly precompact in L2([0, T ]; H1(Td)). (5.12)

Therefore, after passing to a subsequence {(ηk, εk) → (0, 0)}∞k=1, there exists
a function u ∈ L1([0, T ]; L1(Td)) such that, as k → ∞,

uηk ,εk → u strongly in L1([0, T ]; L1(Td)). (5.13)

Furthermore, as k → ∞,

(uηk ,εk )

[
m+1
2

]
⇀ u

[
m+1
2

]
weakly in L2([0, T ]; H1(Td)). (5.14)

Since, by definition, for each η ∈ (0, 1) and ε ∈ (0, 1), for (x, ξ, t) ∈ T
d × R ×

[0,∞),

pη,ε(x, ξ, t) := δ0(ξ − uη,ε(x, t))η
∣∣∇uη,ε

∣∣2 ,

and

qη,ε(x, ξ, t) := δ0(ξ − uη,ε(x, t))
4m

(m + 1)2

∣∣∣∣∇ (
uη,ε

)[m+1
2

]
(x, t)

∣∣∣∣
2

,

the estimates of Proposition 5.2 imply that there exist positive measures (p′, q ′)
such that, for each T > 0, as k → ∞,

(
pηk ,εk , qηk ,εk

)
⇀ (p′, q ′) weakly in BUC(Td × R × [0, T ])∗. (5.15)

It follows from the strong convergence (5.13) and the weak lower semicontinuity
of the weighted Sobolev norm that, in the sense of measures,

δ0(ξ−u(x, t))
4m

(m + 1)2

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

� q ′(x, ξ, t) for (x, ξ, t) ∈ T
d×R×[0,∞).

(5.16)
To see this, let f ∈ C∞

c (Td × R × [0, T ]) be an arbitrary nonnegative function.
The strong convergence (5.13) implies that, as k → ∞, for every p ∈ [1,∞),

√
f (uεk ,ηk ) → √

f (u) strongly in L p(Td × [0, T ]).
Hence, using the weak convergence (5.14),

√
f (uεk ,ηk )∇ (

uεk ,ηk
)[m+1

2

]
⇀

√
f (u)∇u

[
m+1
2

]
weakly in L p(Td × [0, T ]),
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for each p ∈ (1, 2). Therefore, the weak convergence (5.15), the definition of the
measures {qεk ,ηk }∞k=1, and the weak lower-semicontinuity of the L2-norm prove
that

4m

(m + 1)2

∫
Td

∫ T

0
f (u)

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

� lim inf
k→∞

4m

(m + 1)2

∫
Td

∫ T

0
f (uεk ,ηk )

∣∣∣∣∇ (
uεk ,ηk

)[m+1
2

]∣∣∣∣
2

= lim inf
k→∞

∫ T

0

∫
R

∫
Td

f qεk ,ηk

=
∫ T

0

∫
R

∫
Td

f q ′,

which, since f was arbitrary, establishes (5.16).
We define the parabolic defect measure

q(x, ξ, t) := δ0(ξ − u(x, t))
4m

(m + 1)2

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

for (x, ξ, t)

∈ T
d × R × [0,∞),

and, since (5.16) implies that that q ′ − q is nonnegative, we define the entropy
defect measure

p := p′ + q ′ − q � 0 on T
d × R × [0,∞).

Finally, as ε → 0, it follows from the regularity assumption (2.3), the choice of
{zε}ε∈(0,1) satisfying (B.1), and Proposition B.1 that, for each T � 0,

lim
ε→0

∥∥∥
∣∣∣Y x,ξ,ε

t,t − Y x,ξ
t,t

∣∣∣ +
∣∣∣�x,ξ,ε

t,t − �
x,ξ
t,t

∣∣∣
∥∥∥

L∞(Td×R×[0,T ]) = 0. (5.17)

For the kinetic function χ of u, the convergence (5.13) implies that, for a subset
N ⊂ (0,∞) of measure zero, for each t ∈ [0,∞)\N ,

lim
k→∞

∥∥uηk ,εk (·, t) − u(·, t)
∥∥

L1(Td )
= 0.

Therefore, the additional convergences (5.14), (5.15), and (5.17) imply that, for
each t0, t1 ∈ [0,∞)\N , for every ρ0 ∈ C∞(Td), for the solution ρt0,t of (3.25)
with initial data ρ0,

∫
R

∫
Td

χrρt0,r dx dξ

∣∣∣∣
t1

r=t0

=
∫ t1

t0

∫
R

∫
Td

m |ξ |m−1 χr�xρt0,r dx dξ dr

−
∫ t1

t0

∫
R

∫
Td

(pr + qr ) ∂ξρt0,r dx dξ dr,
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where, when t0 = 0,
∫
R

∫
Td

χ(x, ξ, 0)ρ0,0 dx dξ

= lim
k→∞

∫
R

∫
Td

χηk ,εk (x, ξ, 0)ρ0,0 dx dξ =
∫
R

∫
Td

χ(u0(x), ξ)ρ0 dx dξ.

This completes the proof that u is a pathwise kinetic solution. It is then immediate
that the solution satisfies the estimates of Corollary 4.4 and Proposition 4.6, which
completes the proof of the theorem. ��

We will now show that the solutions constructed in Theorem 5.6 depend con-
tinuously on the driving noise. The proof will follow from a compactness argument
relying on the estimates from the proof of Theorem 5.6, the rough path estimates
of Proposition B.1, and the uniqueness of pathwise kinetic solutions from Theo-
rem 4.2. In particular, these methods do not yield an explicit estimate quantifying
the convergence of the solutions in terms of the convergence of the noise. In the
statement below, the metric dα denotes the α-Hölder metric on the space of geo-
metric rough paths introduced in Section B.

Theorem 5.7. Let u0 ∈ L2+(Td) and T > 0. Let {zn}∞n=1 and z be a sequence of
n-dimensional, α-Hölder continuous geometric rough paths on [0, T ] satisfying

lim
n→∞ dα(zn, z) = 0. (5.18)

Let {un}∞n=1 and u denote the pathwise kinetic solutions on [0, T ] with initial data
u0 and driving signals {zn}∞n=1 and z respectively. Then,

lim
n→∞

∥∥un − u
∥∥

L∞([0,T ];L1(Td ))
= 0.

Proof. Let u0 ∈ L2+(Td) and T > 0. Let {zn}∞n=1 and z be α-Hölder continuous,
geometric rough paths on [0, T ] satisfying (5.18). The convergence implies that
there exists C > 0 such that, for each n � 1,

dα(zn, e) � C, (5.19)

where e denotes the constant path beginning from the origin defined in Section B.
Let {un}∞n=1 denote the solutions of (5.9) constructed in Theorem 5.6 with

initial data u0 and driving signals {zn}∞n=1 respectively. It follows from (5.19) and
the rough path estimates of Proposition B.1 that the solutions {un}∞n=1 satisfy the
estimates of Proposition 5.1, Proposition 5.2, Proposition 5.3, Proposition 5.4 and
Corollary 5.5 on the interval [0, T ] for a constant that is independent of n � 1.

A repetition of the proof of Theorem 5.6 proves that, after passing to a subse-
quence {nk}∞k=1, there exists a pathwise kinetic solution u of (5.9) with initial data
u0 and driving noise z such that, as k → ∞,

lim
k→∞

∥∥unk − u
∥∥

L∞([0,T ];L1(Td ))
= 0.
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However, since it follows from Theorem 4.2 that u is the unique solution of (5.9)
with initial data u0 and driving noise z, we conclude that, along the full sequence,

lim
n→∞

∥∥un − u
∥∥

L∞([0,T ];L1(Td ))
= 0,

which completes the proof. ��

Acknowledgements. Open access funding provided by Max Planck Society. We would like
to thank the referees for their careful reports. Their comments were of substantial benefit
to the paper. The first author was supported by the National Science Foundation Mathe-
matical Sciences Postdoctoral Research Fellowship under Grant No. 1502731. The second
author acknowledges financial support by the the Max Planck Society through the Max
Planck Research Group“Stochastic partial differential equations” and by the DFG through
the CRC “Taming uncertainty and profiting from randomness and low regularity in analysis,
stochastics and their applications”.

Open Access This article is distributed under the terms of the Creative Commons Attribu-
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Appendix A. A Regularized Equation and its Kinetic Formulation

Since equation (1.1) is not a priori well-defined, in this section we will consider
a uniformly elliptic regularization of (1.1). For each integer M � 1, define the
globally Lipschitz nonlinearity

φM (ξ) :=
{

ξ [m] if |ξ | � M,

ξ Mm−1 if |ξ | � M.
(A.1)

Then, for each δ ∈ (0, 1), for a standard one-dimensional convolution kernel ρδ
1,

for each M � 1 and δ ∈ (0, 1), define the convolution

φM,δ(η) :=
(
φM ∗ ρδ

1

)
(η) =

∫
R

φM (ξ)ρδ
1(ξ − η) dξ for each η ∈ R. (A.2)

The nonlinearity φM,δ will be used to approximate the porous medium nonlinearity
ξ ∈ R �→ ξ [m]. In fact, since the derivative of (A.1) is positive away from zero,
the nonlinearity (A.2) defines a uniformly elliptic equation. However, in order to
preserve H1-regularity in the limit (M, δ) → (∞, 0), we will additionally consider
an η-perturbation by the Laplacian, for η ∈ (0, 1).

It remains to regularize the noise. The assumption (2.2) that z is a geometric
rough path ensures that there exists a sequence of smooth paths

{
zε : [0,∞) → R

n}
ε∈(0,1) , (A.3)

http://creativecommons.org/licenses/by/4.0/
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such that, as ε → 0, the paths zε converge to z with respect to the α-Hölder norm on

the space of geometric rough paths C0,α([0, T ]; G

⌊
1
α

⌋
(Rn)) in the sense of (B.1).

The first proposition of this section is essentially classical, and establishes the
existence of solutions to a uniformly elliptic perturbation of equation (1.1) driven
by smooth noise. In the proof, we consider the family of smooth equations defined
by the family of nonlinearities (A.2), for M � 1 and δ ∈ (0, 1), and we obtain
stable estimates in order to pass simultaneously to the limit M → ∞ and δ → 0.

The estimates are based on testing the equationwith the solution and the compo-
sition of the solution with φM,δ . Therefore, an anti-derivative for (A.2) will appear
in the argument, which can be constructed via an explicit calculation. Indeed, for
each M � 1, define

ψ M (ξ) :=
{

1
m+1 |ξ |m+1 if |ξ | � M,
ξ2

2 Mm−1 + Mm+1

m+1 − Mm+1

2 if |ξ | � M.
(A.4)

Observe that, for each M � 1 and δ ∈ (0, 1), for the one-dimensional convolution
kernel ρδ

1 used in (A.2), the convolution

ψ M,δ := (ψ M ∗ ρδ
1) (A.5)

is an anti-derivative for (A.2).

Proposition A.1. For each η ∈ (0, 1), ε ∈ (0, 1), and u0 ∈ L2(Td), there exists a
classical solution of the equation

{
∂t u = �u[m] + η�u + ∇ · (A(x, u)żε

t

)
in T

d × (0,∞),

u = u0 on T
d × {0}, (A.6)

satisfying, for C = C(ε, T ) > 0,

‖u‖L∞(Td×[0,T ]) � C ‖u0‖L∞(Td ) .

For C = C(ε, T ) > 0,

‖u‖2L∞([0,T ];L2(Td ))
+
∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2([0,T ];L2(Td ;Rd ))

+
∥∥∥η 1

2 ∇u
∥∥∥2

L2([0,T ];L2(Td ;Rd ))
� C ‖u0‖L2(Td ) ,

and

‖u‖m+1
L∞([0,T ];Lm+1(Td ))

+
∥∥∥∇u[m]

∥∥∥2
L2([0,T ];L2(Td ))

� C
(
‖u0‖m+1

Lm+1(Td )
+ ‖u0‖2L2(Td )

)
.

Finally, for C = C(ε, T ) > 0,

‖∂t u‖2L2([0,T ];H−1(Td ))
� C

(
‖u0‖m+1

Lm+1(Td )
+ ‖u0‖2L2(Td )

)
.
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Proof. Let u0 ∈ L2(Td), η ∈ (0, 1), ε ∈ (0, 1), and T > 0 be arbitrary. For
arbitrary M � 1 and δ ∈ (0, 1), the existence of a smooth solution

uM,δ ∈
(
C2,1

(
T

d × (0, T )
)

∩ L2
(
[0, T ]; H1(Td)

))

to the smoothed equation
{

∂t uM,δ = �φM,δ(uM,δ) + η�uM,δ + ∇ · (A(x, uM,δ)żε
t

)
in T

d × (0,∞),

uM,δ = u0 on T
d × {0},

(A.7)
follows from Ladyzenskaja, Solonnikov, and Uraltceva [37, Chapter V], the defi-
nition of the smooth nonlinearity (A.2), the smooth noise zε, the η-perturbation by
the Laplacian, and the regularity assumption (2.3).

In view of (2.3), it is immediate from the maximum principle that, for C =
C(ε, T ) > 0, ∥∥∥uM,δ

∥∥∥
L∞(Td×[0,T ]) � C ‖u0‖L∞(Td ) . (A.8)

After testing (A.7) with u, it follows from Grönwall’s inequality, Hölder’s inequal-
ity, Young’s inequality, and (2.4) that, for C = C(ε, T ) > 0,∥∥∥uM,δ

∥∥∥
L∞([0,T ];L2(Td ))

+
∥∥∥η 1

2 ∇uM,δ
∥∥∥

L2([0,T ];L2(Td ;Rd ))
� C ‖u0‖L2(Td ) . (A.9)

Furthermore, in view of estimates (A.8) and (A.9), it follows from Hölder’s in-
equality, Young’s inequality, (2.3), and (2.4) that, after testing equation (A.7) with
φM,δ(uM,δ), for the anti-derivative ψ M,δ from (A.5), for C = C(ε, T ) > 0,

∥∥∥ψ M,δ(uM,δ)

∥∥∥
L∞([0,T ];L1(Td ))

+
∥∥∥∇φM,δ(uM,δ)

∥∥∥2
L2([0,T ];L2(Td ;Rd ))

�
∥∥∥ψ M,δ(u0)

∥∥∥
L1(Td )

+ C
∥∥∥uM,δ

∥∥∥2
L∞([0,T ];L2(Td ))

� C

(∥∥∥ψ M,δ(u0)

∥∥∥
L1(Td )

+ ‖u0‖2L2(Td )

)
.

(A.10)

Therefore, in combination, estimates (A.9) and (A.10) imply that, forC = C(ε, T ) >

0,
∥∥∥∂t u

M,δ
∥∥∥2

L2([0,T ];H−1(Td ))
� C

(∥∥∥ψ M,δ(u0)

∥∥∥
L1(Td )

+ ‖u0‖2L2(Td )

)
. (A.11)

The combination of estimates (A.9), (A.10), and (A.11) together with the
Aubins–Lions–Simon lemma, [1,41], and [61], imply that the collection{

uM,δ
}

M�1,δ∈(0,1)
,

is relatively pre-compact in L2([0, T ];Td). Therefore, after passing to a subse-
quence

{(Mk, δk) → (∞, 0)}∞k=1 ,
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there exists

u ∈
(

L2
(
([0, T ]; H1(Td)

)
) ∩ L∞ (

([0, T ]; L2(Td)
))

with

∂t u ∈ L2([0, T ]; H−1(Td)),

such that, as k → ∞,

uMk ,δk → u strongly in L2
([0, T ]; L2(Td)

)
,

uMk ,δk ⇀ u weakly in L2
([0, T ]; H1(Td)

)
,

∂t uMk ,δk ⇀ ∂t u weakly in L2
([0, T ]; H−1(Td)

)
.

(A.12)

The convergence (A.12) and [37, Chapter V] imply that u is a classical solution
of (A.6).

It is immediate from (A.8) and the strong convergence of (A.12) that, for C =
C(ε, T ) > 0,

‖u‖L∞(Td×[0,T ]) � C ‖u0‖L∞(Td ) . (A.13)

Definitions (A.1), (A.2), (A.4), and (A.5), estimates (A.9) and (A.10), the con-
vergence (A.12), and the weak lower-semicontinuity of the norm imply that, for
C = C(ε, T ) > 0,

‖u‖2L∞([0,T ];L2(Td ))
+
∥∥∥η 1

2 ∇u
∥∥∥2

L2([0,T ];L2(Td ;Rd ))
� C ‖u0‖2L2(Td )

. (A.14)

Similarly, it follows from estimate (A.10) and the convergence (A.12) that, for
C = C(ε, T ) > 0,

‖u‖m+1
L∞([0,T ];Lm+1(Td ))

+
∥∥∥∇u[m]

∥∥∥2
L2([0,T ];L2(Td ))

� C
(
‖u0‖m+1

Lm+1(Td )
+ ‖u0‖2L2(Td )

)
.

(A.15)
Equation (A.6) and estimates (A.14) and (A.15) then imply that, forC = C(ε, T ) >

0,

‖∂t u‖2L2([0,T ];H−1(Td ))
� C

(
‖u0‖m+1

Lm+1(Td )
+ ‖u0‖2L2(Td )

)
. (A.16)

Lastly, after testing equation (A.6) with u, which is justified by estimates (A.14),
(A.15), and (A.16), it follows from Hölder’s inequality, Young’s inequality, (A.14),
and (A.15) that, for C = C(ε, T, m) > 0,

∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2([0,T ];L2(Td ;Rd ))

= (m + 1)2

4m

∫ T

0

∫
Td

∇um · ∇u dx dt

� C
(
‖u0‖m+1

Lm+1(Td )
+ ‖u0‖2L2(Td )

)
.

(A.17)

The convergence (A.12) and estimates (A.13), (A.14), (A.15), (A.16), and (A.17)
complete the proof. ��
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In Section 5, estimates were obtained for the solutions of (A.7) which are stable
with respect to the η-perturbation by the Laplacian. To obtain these estimates, it was
necessary to pass to the kinetic formulation of (A.7), and to subsequently analyze the
underlying stochastic characteristics. It remains only to derive the kinetic equation
associated to (A.6).

The following approach follows the general strategy of [12], however in our
case, we must account for the x-dependence of the equation and the unbounded
porous medium nonlinearity: fix η, ε ∈ (0, 1). Let uη,ε denote a solution of{

∂t u = �u[m] + η�u + ∇ · (A(x, u)żε
t ) in T

d × (0,∞),

u = u0 on T
d × {0} .

(A.18)

In order to expand the divergence appearing in (A.18), we define the matrix-valued
function

b(x, ξ)=(bi j (x, ξ)) :=∂ξ A(x, ξ) ∈ Md×n for each (x, ξ) ∈ T
d × R, (A.19)

and the vector-valued

c(x, ξ) = (ci (x, ξ)) :=
(

d∑
i=1

∂xi ai j (x, ξ)

)
∈ R

n for each (x, ξ) ∈ T
d × R.

(A.20)
In combination, (A.18), (A.19), and (A.20) yield the equation{

∂t u = �u[m] + η�u + b(x, u)żε
t · ∇u + c(x, u) · żε

t in T
d × (0,∞),

u = u0 on T
d × {0} .

(A.21)
The entropy formulation of (A.21) is based upon studying the equations satisfied

by compositions S(uη,ε), for smooth functions S : R → R which are convex and
satisfy S(0) = S′(0) = 0. Indeed, after multiplying (A.21) by the composition
S′(uη,ε), the chain rule implies that S(uη,ε) is a solution of the equation

∂t S(uη,ε) = ∇ ·
(

m
∣∣uη,ε

∣∣m−1 ∇S(uη,ε)
)

+ η�S(uη,ε) + b(x, uη,ε)żε
t · ∇S(uη,ε)

+ (
c(x, uη,ε) · żε

t

)
S′(uη,ε) − S′′(uη,ε)m

∣∣uη,ε
∣∣m−1 ∣∣∇uη,ε

∣∣2
− S′′(uη,ε)η

∣∣∇uη,ε
∣∣2 , (A.22)

on Td × (0,∞), with initial data S(u0). The kinetic formulation of (A.22), through
the introduction of an additional velocity variable ξ ∈ R, replaces the ensemble of
equations (A.22), as defined by the collection of entropies {S}, by a single equation
in (d + 1)-variables. This is effectively achieved by factoring out S′(u).

Precisely, define the kinetic function χ : R2 → R by the rule

χ(s, ξ) :=
⎧⎨
⎩
1 if 0 < ξ < s,
−1 if s < ξ < 0,
0 else,

(A.23)

and consider the composition

χη,ε(x, ξ, t) := χ(uη,ε(x, t), ξ) for (x, ξ, t) ∈ T
d × R × [0,∞). (A.24)
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The identity, for each smooth S : R → R satisfying S(0) = 0,

S(uη,ε) =
∫
R

S′(ξ)χη,ε(x, ξ, t) dξ for x ∈ T
d and t ∈ [0,∞),

then suggests that, since S can be an arbitrary smooth, convex function satisfying
S(0) = S′(0) = 0, the kinetic function χη,ε is a solution of the equation

∂tχ
η,ε = m |ξ |m−1 �xχ

η,ε + η�xχ
η,ε + b(x, ξ)żε

t · ∇xχ
η,ε

− (
c(x, ξ) · żε

t

)
∂ξχ

η,ε + ∂ξ pη,ε(x, ξ, t) + ∂ξ qη,ε(x, ξ, t), (A.25)

on T
d × R × (0,∞), with initial data (x, ξ) ∈ T

d × R �→ χ(u0(x), ξ), for the
entropy defect measure

pη,ε(x, ξ, t) := δ0
(
ξ − uη,ε(x, t)

)
η
∣∣∇uη,ε

∣∣2 for each (x, ξ, t) ∈ T
d × R × [0,∞),

(A.26)
and for the parabolic defect measure

qη,ε(x, ξ, t) := δ0
(
ξ − uη,ε(x, t)

) 4m

(m + 1)2

∣∣∣∣∇ (
uη,ε

)[m+1
2

]∣∣∣∣
2

for each (x, ξ, t)

∈ T
d × R × [0,∞), (A.27)

where δ0 is one-dimensional Dirac mass centered at the origin. The following
proposition proves that this is indeed the case:

Proposition A.2. For each η ∈ (0, 1), ε ∈ (0, 1), and u0 ∈ L2(Td), let uη,ε

denote a solution of (A.6) from Proposition A.1. Then, the kinetic function χη,ε

defined in (A.24) is a distributional solution of (A.25) in the sense that, for every
t1, t2 ∈ [0,∞), for every ψ ∈ C∞

c (Td × R × [t1, t2])),
∫
R

∫
Td

χη,ε(x, ξ, t)ψ(x, ξ, t) dx dξ

∣∣∣∣
t2

t=t1

=
∫ t2

t1

∫
R

∫
Td

χη,ε∂tψ dx dξ dt

+
∫ t2

t1

∫
R

∫
Td

m |ξ |m−1 χη,ε�xψ + ηχη,ε�xψ dx dξ dt

−
∫ t2

t1

∫
R

∫
Td

χη,ε∇x · ((b(x, ξ)żε
t

)
ψ
) − χη,ε∂ξ

((
c(x, ξ) · żε

t

)
ψ
)
dx dξ dt

−
∫ t2

t1

∫
R

∫
Td

(
pη,ε + qη,ε

)
∂ξψ dx dξ dt.

(A.28)

Proof. Let η ∈ (0, 1), ε ∈ (0, 1), u0 ∈ L2(Td), and t1, t2 ∈ [0,∞) be arbitrary.
Let uη,ε denote a solution of (A.6) satisfying the estimates of Proposition A.1, and
let χη,ε denote its kinetic function defined in (A.24). The estimates of Proposition
A.6 imply that, for every ψ ∈ C∞

c (Td × R × [t1, t2]), the composition (x, t) ∈
R

d × [t1, t2] �→ ψ(x, uη,ε(x, t), t) is an admissable test function for (A.6).
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It is necessary to use the following identity, which holds for every for every
ψ ∈ C∞

c (Td × R × [t1, t2]), for each (x, t) ∈ T
d × [0,∞),

∂t u
η,ε(x, t)∂ξψ(x, uη,ε(x, t), t) = ∂t

(
ψ(x, uη,ε(x, t), t)

)−(∂tψ)(x, uη,ε(x, t), t).
(A.29)

It follows from (A.29) that, for any ψ ∈ C∞
c (Td × R × [t1, t2]), after defining

ψ̃(x, ξ, t) :=
∫ ξ

0
ψ(x, ξ ′, t) dξ ′ for (x, ξ, t) ∈ T

d × R × [t1, t2], (A.30)

and testing equation (A.6) with the composition (x, t) ∈ R
d × [0,∞) �→ ψ

(x, uη,ε(x, t), t),

∫
Td

ψ̃(x, uη,ε(x, t), t) dx

∣∣∣∣
t2

t=t1

=
∫ t2

t1

∫
Td

(
∂t ψ̃

)
(x, uη,ε(x, t), t) dx dt

−
∫ t2

t1

∫
Td

∇ (
uη,ε

)[m] · ((∇xψ) (x, uη,ε(x, t), t)

+∂ξψ(x, uη,ε(x, t), t)∇uη,ε(x, t)
)
dx dt

−
∫ t2

t1

∫
Td

η∇uη,ε · ((∇xψ) (x, uη,ε(x, t), t)

+∂ξψ(x, uη,ε(x, t), t)∇uη,ε(x, t)
)
dx dt

+
∫ t2

t1

∫
Td

(
b(x, uη,ε)żε

t · ∇uη,ε
)
ψ(x, uη,ε(x, t), t) dx dt

+
∫ t2

t1

∫
Td

(
c(x, uη,ε) · żε

t

)
ψ(x, uη,ε(x, t), t) dx dt. (A.31)

The estimates of Proposition A.1, in particular the fact that, for each T > 0,

uη,ε ∈ L2
(
[0, T ]; H1(Rd)

)
,

and definition (A.24) imply that the kinetic function χη,ε satisfies the distributional
equalities, for (x, ξ, t) ∈ T

d × R × [0,∞),

∇xχ
η,ε(x, ξ, t) = δ0

(
ξ − uη,ε(x, t)

)∇uη,ε(x, t) and ∂ξχ
η,ε(x, ξ, t)

= δ0(ξ) − δ0
(
ξ − uη,ε(x, t)

)
. (A.32)

The essential point is that uη,ε has a distributional derivative, and it is for this reason
that the η-perturbation by the Laplacian is retained.

Therefore, returning to (A.31), it follows by definition of the kinetic function
and the definition of ψ̃ from (A.30) that, for each t ∈ [t1, t2],∫

Td
ψ̃(x, u(x, t), t)) dx =

∫
R

∫
Td

∂ξ ψ̃(x, ξ, t)χ(uη,ε(x, t), ξ) dx dξ

=
∫
Td

ψ(x, ξ, t)χη,ε(x, ξ, t) dx dξ, (A.33)
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and
∫ t2

t1

∫
Td

(
∂t ψ̃

)
(x, uη,ε(x, t), t) dx dt

=
∫ t2

t1

∫
R

∫
Td

∂t∂ξ ψ̃(x, ξ, t)χη,ε(x, ξ, t) dx dξ dt

=
∫ t2

t1

∫
R

∫
Td

∂tψ(x, ξ, t)χη,ε(x, ξ, t) dx dξ dt. (A.34)

The identity∇ (
uη,δ

)[m] = m |uη,ε|m−1 ∇uη,ε, the definition of the parabolic defect
measure (A.27), and the distributional inequality (A.32) imply that

∫ t2

t1

∫
Td

∇ (
uη,ε

)[m] · ((∇xψ) (x, uη,ε(x, t), t) + ∂ξψ(x, uη,ε(x, t), t)∇uη,ε(x, t)
)
dx dt

=
∫ t2

t1

∫
R

∫
Td

m |ξ |m−1 ∇xχ
η,ε(x, ξ, t)∇xψ(x, ξ, t) + qη,ε(x, ξ, t)∂ξψ(x, ξ, t) dx dξ dt,

(A.35)
and the definition of the entropy defect measure (A.26) implies that

∫ t2

t1

∫
Td

η∇uη,ε · ((∇xψ) (x, uη,ε(x, t), t) + ∂ξψ(x, uη,ε(x, t), t)∇uη,ε(x, t)
)
dx dt

=
∫ t2

t1

∫
R

∫
Td

η∇xχ
η,ε(x, ξ, t) · ∇xψ(x, ξ, t) + pη,ε(x, ξ, t)∂ξψ(x, ξ, t) dx dξ dt.

(A.36)
It is immediate by apparent from the distributional equality (A.32) that

∫ t2

t1

∫
Td

(
b(x, uη,ε)żε

t · ∇uη,ε
)
ψ(x, uη,ε(x, t), t) dx dt

=
∫ t2

t1

∫
R

∫
Td

(
b(x, ξ)żε

t · ∇xχ
η,ε(x, ξ, t)

)
ψ(x, ξ, t) dx dξ dt. (A.37)

Finally, assumption (2.4) and the distributional equality (A.32) imply that

∫ t2

t1

∫
Td

(
c(x, uη,ε) · żε

t

)
ψ(x, uη,ε(x, t), t) dx dt

= −
∫ t2

t1

∫
R

∫
Td

(
c(x, ξ) · żε

t

)
∂ξχ

η,ε(x, ξ, t)ψ(x, ξ, t) dx dξ dt. (A.38)

After integrating by parts, equation (A.31) and equalities (A.33), (A.34), (A.35),
(A.36), (A.37), and (A.38) imply that, for every ψ ∈ C∞

c (Td × R × [t1, t2]),
∫
R

∫
Td

χη,ε(x, ξ, t)ψ(x, ξ, t) dx dξ

∣∣∣∣
t2

t=t1

=
∫ t2

t1

∫
R

∫
Td

χη,ε∂tψ dx dξ dt

+
∫ t2

t1

∫
R

∫
Td

m |ξ |m−1 χη,ε�xψ + ηχη,ε�xψ dx dξ dt
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−
∫ t2

t1

∫
R

∫
Td

χη,ε∇x · ((b(x, ξ)żε
t

)
ψ
) − χη,ε∂ξ

((
c(x, ξ) · żε

t

)
ψ
)
dx dξ dt

−
∫ t2

t1

∫
R

∫
Td

(
pη,ε + qη,ε

)
∂ξψ dx dξ dt. (A.39)

This completes the proof. ��

Appendix B. Rough Path Estimates

The theory of rough paths was first introduced by Lyons [52], and overviews of the
theory can be found in Friz and Hairer [25] or in Friz and Victoir [26]. We therefore
only sketch some of the main details here. For the remainder of this section fix
d � 1 and T � 0. Let x ∈ C1−var

([0, T ];Rd
)
be a path with bounded 1-variation.

For each M � 1 the M-step signature of x is defined as

SM (x)0,T :=
(
1,
∫ T

0
dxs,

∫
0<s0<s1<T

dxs1 ⊗ dxs2 , . . . ,

∫
0<s1<...<sM <T

dxs1 ⊗ . . . ⊗ dxsM

)
.

It is immediate from the definition that SM (x)0,T takes values in the the truncated
M-step tensor algebra

T M (Rd) := R ⊕ R
d ⊕

(
R

d
)⊗2 ⊕ . . . ⊕

(
R

d
)⊗M

.

Following a reparametrization of the path, it follows that SM (x)0,T actually lies in
the smaller space G M (Rd) ⊂ T M (Rd) defined by

G M (Rd) :=
{

SM (x)0,1 | x ∈ C1−var
(
[0, 1];Rd

) }
.

The spaceG M (Rd) comes equippedwith the so-called Carnot–Caratheodory norm,
for σ ∈ G M (Rd),

‖σ‖CC = inf

{ ∫ 1

0
|γ̇ | ds | γ ∈ C1−var

(
[0, 1];Rd

)
and SM (γ )0,1 = σ

}
.

This norm defines a homogenous on the space G M (Rd). We remark that an in-
homogenous but equivalent norm can also be chosen by defining the norm of an
element σ ∈ G M (Rd) to be the supremum of the respective L∞-norms of its
components.

The Carnot–Caratheodory norm induces, following [26, Definition 7.41], the
Carnot–Caratheodory metric dCC on G M (Rd). For β ∈ (0, 1), the homogenous
β-Hölder metric, for β ∈ (0, 1) and paths z, w taking values in G M (Rd), is defined
as

dβ(z, w) := sup
0�s�t�1

dCC (zt,s, wt,s)

|t − s|β .
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For β ∈ (0, 1), a geometric β-Hölder continuous rough path is a path z taking

values in T

⌊
1
β

⌋
(Rd) which can be approximated by the signatures of smooth paths

with respect to theβ-Höldermetric dβ . Precisely, a path z : [0, T ] → T

⌊
1
β

⌋
(Rd) is a

geometric rough path if there exists a sequence of smooth paths {zn : [0, T ] → R
d}

such that, as n → ∞,

dβ

(
z, S⌊ 1

β

⌋(zn)

)
→ 0. (B.1)

It can be shown that β-Hölder continuous geometric rough paths take values in the

spaceG

⌊
1
β

⌋
(Rd).Wewill denote byC0,β([0, T ]; G

⌊
1
β

⌋
(Rd)) the space ofβ-Hölder

continuous geometric rough paths starting at zero.
In the final part of this section, we will recall some stability estimates for the

solutions of rough differential equations. For each x ∈ R
d and z ∈ C0,β([0, T ];

G

⌊
1
β

⌋
(Rd))), for some β ∈ (0, 1), let X x,z be the solution of the equation{

dX x,z
t = V

(
X x,z

t
) ◦ dzt on (0,∞),

X x,z
0 = x .

(B.2)

The ensemble (B.2) defines a flow map ψ z : Rd × [0, T ] → R
d by the rule

ψ z
t (x) = X x,z

t for (x, t) ∈ R
d × [0, T ].

Thenext proposition encodes the regularity of the flowmapwith respect to the initial
condition and the driving signal. The regularity is inherited from the nonlinearity
V , which must be sufficiently regular to overcome the roughness of the noise. A
proof of the proposition can be found in Crisan, Diehl, Friz, and Oberhauser [13,
Lemma 13]. In the statement below, we will write e = 1 ⊕ 0 ⊕ · · · ⊕ 0 to denote
the signature of the zero path.

Proposition B.1. Fix T � 0, β ∈ (0, 1), γ > 1
β

� 1, and k ∈ N. Assume V ∈
Lipγ+k(Rd ;Rd), and for a R � 0, assume that z1, z2 ∈ C0,β

(
[0, T ]; G

⌊
1
β

⌋
(Rd)

)

with, for each j ∈ {1, 2},
d(z j , e)β � R. (B.3)

There exist C = C(R, ‖V ‖Lipγ+k ) > 0 and K = K (R, ‖V ‖Lipγ+k ) > 0 indepen-

dent of z1, z2 satisfying (B.3) such that, for all n ∈ {0, . . . , k},
sup

x∈Rd

∥∥Dn(ψ
z1
t − ψ

z2
t )(x)

∥∥
β

� Cdβ(z1, z2), (B.4)

and
sup

x∈Rd

∥∥∥Dn((ψ
z1
t )−1 − (ψ

z2
t )−1)(x)

∥∥∥
β

� Cdβ(z1, z2). (B.5)

Furthermore, for each n ∈ {0, . . . , k},
sup

x∈Rd

∥∥Dnψ
z1
t (x)

∥∥
β

� K and sup
x∈Rd

∥∥∥Dn(ψ
z1
t )−1(x)

∥∥∥
β

� K . (B.6)
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We conclude this section with a lemma which asserts that the characteristics in
velocity are locally in time comparable to their initial condition.

Lemma B.2. For each T > 0 there exists C = C(T ) � 1 such that, for each
(x, ξ) ∈ T

d × R and t ∈ [0, T ],

C−1 |ξ | �
∣∣∣�x,ξ

t,t

∣∣∣ � C |ξ | .

Furthermore, there exists C = C(T ) > 0 such that, for each (x, ξ) ∈ T
d × R and

t ∈ [0, T ], for α ∈ (0, 1
2 ) from (2.2),

∣∣∣∇�
x,ξ
t,t

∣∣∣ � Ctα (|ξ | ∧ 1) .

Proof. The proof is a consequence of assumption (2.3) and the estimates of Propo-
sition B.1. There exists t∗ ∈ (0,∞) such that, for each (x, ξ, t) ∈ T

d ×R×[0,∞),
for each s ∈ [0, t∗ ∧ t],

1

2
� ∂ξ�

x,ξ
t,s � 3

2
. (B.7)

The proof will follow by induction. For the base case, observe that, since for each
x ∈ T

d and t � 0 we have �
x,0
t,t = 0, it follows by integration and (B.7) that there

exists C = C(t∗) > 0 such that, for each (x, ξ) ∈ T
d × R and t ∈ [0, t∗],

C−1 |ξ | �
∣∣∣�x,ξ

t,t

∣∣∣ � C |ξ | . (B.8)

For the inductive statement, suppose that for some k ∈ N, there existsC = C(kt∗) >

0 such that, for each (x, ξ, t) ∈ T
d × R × [0, kt∗],

C−1 |ξ | �
∣∣∣�x,ξ

t,t

∣∣∣ � C |ξ | . (B.9)

The semigroup property implies that, for each (x, ξ, t) ∈ T
d ×R×[kt∗, (k +1)t∗],

�
x,ξ
t,t = �

Y x,ξ
t−t∗,t−t∗ ,�

x,ξ
t−t∗,t−t∗

t,t∗ .

It follows from (B.7), the fact that�
Y x,ξ

t−t∗,t−t∗ ,0
t,t∗ = 0, and integration that, for C � 1,

for each (x, ξ, t) ∈ T
d × R × [kt∗, (k + 1)t∗],

C−1
∣∣∣�x,ξ

t−t∗,t−t∗

∣∣∣ �
∣∣∣�x,ξ

t,t

∣∣∣ � C
∣∣∣�x,ξ

t−t∗,t−t∗

∣∣∣ .
Finally, since t − t∗ ∈ [0, kt∗] for each t ∈ [kt∗, (k + 1)t∗], the inductive statement
(B.9) implies that, for C = C((k + 1)t∗) > 0, for each (x, ξ, t) ∈ T

d × R ×
[kt∗, (k + 1)t∗],

C−1 |ξ | �
∣∣∣�x,ξ

t,t

∣∣∣ � C |ξ | . (B.10)

The base case (B.8) and (B.10) complete the proof.
The second claim is simpler and follows similarly from assumption (2.3) and

the estimates of Proposition B.1. For each T > 0 there exists C = C(T ) > 0 such
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that, for each (x, ξ) ∈ T
d ×R and t ∈ [0, T ], for α ∈ (0, 1

2 ) defining the regularity
of the noise in (2.2), ∣∣∣∂ξ∇�

x,ξ
t,t

∣∣∣ � Ctα.

Therefore, since for each (x, ξ) ∈ T
d × R and t � 0, we have ∇�

x,ξ
0,0 = 0 and

∇�
x,0
t,t = 0, the claim follows from the estimates of PropositionB.1 and integration.

This completes the proof. ��

Appendix C. Fractional Sobolev Regularity of the Kinetic Function

The purpose of this section is to prove the fractional Sobolev regularity of the kinetic
function χ of a pathwise kinetic solution u, in the sense of Definition 3.4. We will
first consider the kinetic function’s regularity in the velocity variable where, for
each x ∈ T

d , the map ξ ∈ R �→ χ(x, ξ) is the indicator function of either the open
interval (0, u(x)), if u(x) � 0, or the open interval (u(x), 0).

The first proposition proves that the space of BV functions locally embeds
into the fractional Sobolev space W s,1, for every s ∈ (0, 1). We will apply this
to the kinetic function χ in the corollary to follow, after making the elementary
observation that the one-dimensional indicator function of a finite interval is of
bounded variation.

Proposition C.1. Let d � 1, and suppose that U ⊂ R
d is a convex open subset.

Then, for every ψ ∈ BV(U ), and for each s ∈ (0, 1), there exists C = C(d, s) > 0
such that

‖ψ‖W s,1(U ) � C ‖ψ‖BV(U ) .

Proof. Let U ⊂ R
d be a convex open subset. Fix ψ ∈ BV(U ) and s ∈ (0, 1).

Then, choose a sequence {ψn}∞n=1 ⊂ (
W 1,1 ∩ C∞)

(U ) such that, as n → ∞,

lim
n→∞ ‖ψ − ψn‖L1(U ) = 0 and lim

n→∞
∣∣‖∇ψn‖L1(U ) − |∇ψ | (U )

∣∣ = 0, (C.1)

where |∇ψ | (U ) denotes the measure of U with respect to the total variation of the
measure ∇ψ . This sequence can be constructed, for instance, via convolution.

It is only necessary to estimate the fractional Sobolev semi-norm. For this, for
each n � 0,
∫

U×U

|ψn(x) − ψn(y)|
|x − y|d+s

dx dy =
∫

{|x−y|>1}∩(U×U )

|ψn(x) − ψn(y)|
|x − y|d+s

dx dy

+
∫

{|x−y|�1}∩(U×U )

|ψn(x) − ψn(y)|
|x − y|d+s

dx dy,

and, therefore,∫
U×U

|ψn(x) − ψn(y)|
|x − y|d+s

dx dy � 2 ‖ψn‖L1(U )
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+
∫

{|x−y|�1}∩(U×U )

|ψn(x) − ψn(y)|
|x − y|d+s

dx dy.

(C.2)

For the final term on the righthand side of (C.2), the regularity of the {ψn}∞n=1 and
the convexity of U imply that, for C = C(d, s) > 0,
∫

{|x−y|�1}∩(U×U )

|ψn(x)−ψn(y)|
|x − y|d+s

�
∫

{|x−y|�1}∩(U×U )∫ 1

0
|x − y|1−d−s |∇ψn| (x+r(y − x)) dr

�
∫

B1

|x |1−d−s
∫

U
|∇ψn|

�C ‖∇ψn‖L1(U ) . (C.3)

The statement now follows by passing to the limit n → ∞. Precisely, the
dominated convergence theorem, (C.1), (C.2), and (C.3) imply that, for each δ ∈
(0, 1), for C = C(d, s) > 0,∫

U×U

ψ(x) − ψ(y)

|x − y|d+s + δ
dx dy = lim

n→∞

∫
U×U

ψn(x) − ψn(y)

|x − y|d+s + δ
dx dy

� lim
n→∞

∫
U×U

ψn(x) − ψn(y)

|x − y|d+s
dx dy

� lim
n→∞ C

(‖ψn‖L1(U ) + ‖∇ψn‖L1(U )

)
= C

(‖ψ‖L1(U ) + |∇ψ | (U )
) = C ‖ψ‖BV(U ) .

(C.4)
Hence, after passing to the limit δ → 0 in (C.4), by Fatou’s lemma, for C =
C(d, s) > 0, ∫

U×U

ψ(x) − ψ(y)

|x − y|d+s
dx dy � C ‖ψ‖BV(U ) . (C.5)

Since by definition ‖ψ‖L1(U ) � ‖ψ‖BV(U ), it follows from (C.5) that, for C =
C(d, s) > 0,

‖ψ‖W s,1(U ) � C ‖ψ‖BV(U ) .

This completes the argument. ��
Wewill use Proposition C.2 to understand, for each x ∈ T

d , the regularity of the
map ξ ∈ R �→ χ(x, ξ). Note that this regularity does not rely upon any properties
of a pathwise kinetic solution except its integrability.

Corollary C.2. Let u : T
d → R be measurable, and let χ denote the kinetic

function of u. Then, for each s ∈ (0, 1), for C = C(d, s) > 0,

‖χ‖
L1

x

(
Td ;W s,1

ξ (R)
) � C

(
1 + ‖u‖L1(Td )

)
.
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Proof. Let u : Td → R be an arbitrary measureable function, and let χ denote the
kinetic function of u. Let s ∈ (0, 1) be arbitrary. From the definition of the kinetic
function (A.23), it is immediate that, for each x ∈ T

d ,

‖χ(x, ·)‖BVξ (R) � 2 + |u(x)| .
The claim now follows from Proposition C.1. ��

We obtain the spatial regularity of a kinetic function χ associated to a pathwise
kinetic solution u with initial data u0 ∈ L2+(Td). The higher integrability of the
initial data implies with Proposition 5.2 that the corresponding parabolic defect
measure q is globally integrable in velocity, locally in time. Precisely, for each
T > 0, for C = C(T ) > 0,

∫ T

0

∫
Td

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

(x, t) dx dt = (m + 1)2

4m

∫ T

0

∫
R

∫
Td

q(x, ξ, t) dx dξ dt

� C < ∞.

The following two propositions prove that any function u ∈ L1(Td) satisfying the
estimate

∫
Td

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

dx < ∞,

is in the fractional Sobolev space W s,m+1(Td), for any s ∈ (0, 2
m+1 ), when m ∈

(0,∞), and is in the Sobolev space W 1,1(Td) when m ∈ (0, 1]. In fact, in the case
m ∈ (0, 1], an application of Hölder’s inequality and Lemma 4.5 imply that the

solution is actually in W 1, 2
2−m (Td), but since this fact will not be used the details

are omitted. The first of these propositions is a small modification of the results of
Ebmeyer [20].

Proposition C.3. Suppose that m ∈ (1,∞). Let u ∈ L1(Td), and suppose that

∫
Td

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

dx < ∞. (C.6)

Then, for each s ∈
(
0, 2

m+1

)
, there exists C = C(m, d, s) > 0 such that

‖u‖m+1
W s,m+1(Td )

� C

(
‖u‖m+1

L1(Td )
+
∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2(Td ;Rd )

)
.

Proof. Let u ∈ L1(Td) satisfying (C.6), m ∈ (1,∞), and s ∈ (0, 2
m+1 ) be arbi-

trary. It is first necessary to estimate the Lm+1-norm of u. Lemma 4.5 implies that,
for C = C(m, d) > 0,

‖u‖m+1
Lm+1(Td )

� C

(
‖u‖m+1

L1(Td )
+
∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2(Td ;Rd )

)
. (C.7)
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It remains necessary to estimate the fractional Sobolev norm. The estimate will
rely on the elementary inequality, for C = C(m) > 0,

|r − s|m+1 � C

∣∣∣∣r
[

m+1
2

]
− s

[
m+1
2

]∣∣∣∣
2

, (C.8)

which relies upon the assumption m ∈ (1,∞) and can be proven, for instance, by
a Taylor expansion. Form the decomposition

∫
R2d

∣∣u(x) − u(x ′)
∣∣m+1

|x − x ′|d+s(m+1)
dx dx ′ =

∫
{|x−x ′|�1}

∣∣u(x) − u(x ′)
∣∣m+1

|x − x ′|d+s(m+1)
dx dx ′

+
∫

{|x−x ′|>1}

∣∣u(x) − u(x ′)
∣∣m+1

|x − x ′|d+s(m+1)
dx dx ′.

(C.9)
The second term of (C.9) satisfies, for C = C(m) > 0,

∫
{|x−x ′|>1}

∣∣u(x) − u(x ′)
∣∣m+1

|x − x ′|d+s(m+1)
dx dx ′ � C ‖u‖m+1

Lm+1(Rd )
. (C.10)

For the first term of (C.9), in view of inequality (C.8), for C = C(m) > 0,

∫
{|x−x ′|�1}

∣∣u(x) − u(x ′)
∣∣m+1

|x − x ′|d+s(m+1)
dx dx ′

� C
∫

{|x−x ′|�1}

∣∣∣∣u
[

m+1
2

]
(x) − u

[
m+1
2

]
(x ′)

∣∣∣∣
2

|x − x ′|d+s(m+1)
dx dx ′

� C
∫

B1

|x |−(d+s(m+1)−2) dx
∫
Td

∣∣∣∣∇u

[
m+1
2

]
(x)

∣∣∣∣
2

dx . (C.11)

The choice s ∈ (0, 2
m+1 ) guarantees that, for C = C(d, s) > 0,
∫

B1

|x |−(d+s(m+1)−2) dx � C < ∞.

Therefore, after combining (C.9), (C.10), and (C.11), for C = C(m, d, s) > 0,

∫
R2d

∣∣u(x) − u(x ′)
∣∣m+1

|x − x ′|d+s(m+1)
dx dx ′ � C

(
‖u‖m+1

Lm+1(Td )
+
∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2(Td ;Rd )

)
.

(C.12)
The claim now follows from (C.7) and (C.12). ��

The second proposition establishes the the Sobolev regularity for diffusion
exponents m ∈ (0, 1]. The regularity is established in W 1,1(Td), although a small
modification of this argument and Lemma 4.5 readily prove that the solutions are in

the stronger space W 1, 2
2−m (Td). The proof is essentially a consequence of Hölder’s

inequality.
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Proposition C.4. Suppose that m ∈ (0, 1]. Let u ∈ L1(Td), and suppose that
∫
Td

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

dx < ∞. (C.13)

Then, for C = C(m) > 0,

‖u‖W 1,1(Td ) � C

(
‖u‖L1(Td ) + ‖u‖2(1−m)

L1(Td )
+
∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2(Td )

)
.

Proof. Let u ∈ C∞(Td) satisfying (C.13) and m ∈ (0,∞) be arbitrary. It is only
necessary to estimate the L1-norm of the gradient. First, observe the equality

∇u = |u| 1−m
2 |u|m−1

2 ∇u.

Hölder’s inequality and m ∈ (0, 1] imply that, for C = C(m) > 0,

‖∇u‖L1(Td ) � C
∥∥∥|u| 1−m

2

∥∥∥
L2(Td )

∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
L2(Td )

� C ‖u‖1−m
L1(Td )

∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
L2(Td )

.

Therefore, it follows from Young’s inequality that, for C = C(m) > 0,

‖u‖W 1,1(Td ) � C

(
‖u‖L1(Td ) + ‖u‖2(1−m)

L1(Td )
+
∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2(Td )

)
,

from which the argument follows using the density of smooth functions in
L1(Td). ��

The following corollary proves that the kinetic function of a function u ∈
L1(Td) satisfying (C.6) is locally in W s,1(Rd), for s ∈ (0, 2

m+1 ∧ 1), after integra-
tion in the velocity variable (the proof essentially amounts to showing the standard
fact that, for each δ ∈ (0, 1 − s), whenever p � q ∈ [1,∞), the fractional space
W s,p embeds locally into W s+δ,q ):

Corollary C.5. Let u ∈ L1(Td), and suppose that
∫
Td

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

dx < ∞. (C.14)

Then, if m ∈ (1,∞), for each s ∈
(
0, 2

m+1

)
, the corresponding kinetic function χ

satisfies, for C = C(m, d, s) > 0,

‖χ‖
L1

ξ

(
R;W s,1

x (Td )
) � C

(
‖u‖L1(Td ) +

∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

m+1

L2(Td ;Rd )

)
.

If m ∈ (0, 1], for each s ∈ (0, 1), the corresponding kinetic function satisfies, for
C = C(m, s) > 0,

‖χ‖
L1

ξ

(
R;W s,1

x (Td )
) � C

(
‖u‖L1(Td ) + ‖u‖2(1−m)

L1(Td )
+
∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2(Td )

)
.
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Proof. Let u ∈ L1(Td) satisfying (C.14) be arbitrary, and let χ denote the cor-
responding kinetic function. First, we consider arbitrary m ∈ (1,∞) and s ∈
(0, 2

m+1 ). It follows by definition of the kinetic function (A.23) that

‖χ‖L1
ξ (R;L1(Td )) = ‖u‖L1(Td ) . (C.15)

For the fractional Sobolev semi-norm, the definition of the kinetic function implies
that∫

R

∫
T2d

∣∣χ(x, ξ) − χ(x ′, ξ)
∣∣

|x − x ′|d+s
dx dx ′ dξ =

∫
T2d

∣∣u(x) − u(x ′)
∣∣

|x − x ′|d+s
dx dx ′. (C.16)

Then, fix δ = δ(m, s) ∈ (0, 2
m+1 − s). It follows from (C.16) that

∫
R

∫
T2d

∣∣χ(x, ξ) − χ(x ′, ξ)
∣∣

|x − x ′|d+s
=
∫
T2d

( ∣∣u(x) − u(x ′)
∣∣m+1

|x − x ′|d+(s+δ)(m+1)

) 1
m+1 ∣∣x − x ′∣∣−(

dm
m+1−δ

)
.

Therefore, following an application of Hölder’s inequality,

∫
R

∫
T2d

∣∣χ(x, ξ) − χ(x ′, ξ)
∣∣

|x − x ′|d+s
� ‖u‖W s+δ,m+1(Td )

(∫
T2d

∣∣x − x ′∣∣−d+ δ(m+1)
m

) m
m+1

.

(C.17)
Since, for C = C(m, d, s) > 0,∫

T2d

∣∣x − x ′∣∣−d+ δ(m+1)
m dx dx ′ � C < ∞,

it follows from (C.15) and (C.17) that, for C = C(m, d, s) > 0,

‖χ‖L1
ξ (R;W s,1(Td )) � C

(‖u‖L1(Td ) + ‖u‖W s+δ,m+1(Td )

)
. (C.18)

Finally, since s + δ ∈ (0, 2
m+1 ), Proposition C.3 and (C.18) imply that, for C =

C(m, d, s) > 0,

‖χ‖L1
ξ (R;W s,1(Td )) � C

(
‖u‖L1(Td ) +

∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

m+1

L2(Td ;Rd )

)
. (C.19)

It remains to consider the case of arbitrary m ∈ (0, 1] and s ∈ (0, 1). In this
case, it follows from (C.16) that, for C = C(s) > 0,

∫
R

∫
T2d

∣∣χ(x, ξ) − χ(x ′, ξ)
∣∣

|x − x ′|d+s
dx dx ′ dξ �

∫
T2d

∣∣u(x) − u(x ′)
∣∣

|x − x ′|d+s
dx dx ′ � ‖u‖W 1,s (Td )

� C ‖u‖W 1,1(Rd ) . (C.20)

Therefore, from the definition and Proposition C.4, for C = C(m, s) > 0,

‖u‖W s,1(Td ) � C

(
‖u‖L1(Td ) + ‖u‖2(1−m)

L1(Td )
+
∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2(Td )

)
.

Together with (C.19), this completes the argument. ��
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We will now combine Corollaries C.2 and C.5 in order to obtain the regularity
of the kinetic function jointly in the spatial and velocity variables.Wewill apply the
following proposition to the case U1 = T

d , U2 = R, and s1 = s2 ∈ (0, 2
m+1 ∧ 1):

Proposition C.6. Let n1, n2 � 1 and p ∈ [1,∞). Let U1 ⊂ R
n1 and U2 ⊂ R

n2 be
open subsets. Suppose that u : U1 × U2 → R satisfies, for s1, s2 ∈ (0, 1),

‖u‖
L p

x

(
U1;W s2,p

y (U2)
) + ‖u‖

L p
y

(
U2;W s1,p

x (U1)
) < ∞. (C.21)

Then, for s = min{s1, s2}, for C = C(n1, n2, p) > 0,

‖u‖W s,p(U1×U2) � C

(
‖u‖

L p
x

(
U1;W s2,p

y (U2)
) + ‖u‖

L p
y

(
U2;W s1,p

x (U1)
)
)

.

Proof. Fix positive integers n1, n2 � 1, open subsets U1 ⊂ R
n1 and U2 ⊂ R

n2 ,
fractional Sobolev exponents s1, s2 ∈ (0, 1) and a function u : U1 × U2 → R

satisfying (C.21). It is immediate from the definition that

‖u‖L p(U1×U2) � min

{
‖u‖

L p
x

(
U1;W s2,p

y (U2)
) , ‖u‖

L p
y

(
U2;W s1,p

x (U1)
)
}

. (C.22)

It remains only to estimate the fractional Sobolev semi-norm.
In the argument to follow, we will denote points x, x ′ ∈ R

n1 and y, y′ ∈ R
n2 .

Then, for s = min{s1, s2} ∈ (0, 1), for C = C(p) > 0,

∫
(U1×U2)

2

∣∣u(x, y) − u(x ′, y′)
∣∣p

(|x − x ′| + |y − y′|)n1+n2+sp dx dx ′ dy dy′

� C
∫

{|x−x ′|+|y−y′|�1}∩(U1×U2)
2

∣∣u(x, y) − u(x ′, y′)
∣∣p

(|x − x ′| + |y − y′|)n1+n2+sp dx dx ′ dy dy′

+ C
∫

{|x−x ′|+|y−y′|>1}∩(U1×U2)
2

∣∣u(x, y) − u(x ′, y′)
∣∣p

(|x − x ′| + |y − y′|)n1+n2+sp dx dx ′ dy dy′.

(C.23)
For the first term of (C.23), in view of (C.22),

∫
{|x−x ′|+|y−y′|>1}∩(U1×U2)

2

∣∣u(x, y) − u(x ′, y′)
∣∣p

(|x − x ′| + |y − y′|)n1+n2+sp dx dx ′ dy dy′

� 2min

{
‖u‖p

L p
x

(
U1;W s2,p

y (U2)
) , ‖u‖p

L p
y

(
U2;W s1,p

x (U1)
)
}

.

(C.24)
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The second term of (C.23) is decomposed using the triangle inequality to obtain,
for C = C(p) > 0,

∫
{|x−x ′|+|y−y′|�1}∩(U1×U2)

2

∣∣u(x, y) + u(x ′, y′)
∣∣p

(|x − x ′| + |y − y′|)n1+n2+sp dx dx ′ dy dy′

� C
∫

{|x−x ′|+|y−y′|�1}∩(U1×U2)
2

∣∣u(x, y) − u(x ′, y)
∣∣p

(|x − x ′| + |y − y′|)n1+n2+sp dx dx ′ dy dy′

+ C
∫

{|x−x ′|+|y−y′|�1}∩(U1×U2)
2

∣∣u(x ′, y) − u(x ′, y′)
∣∣p

(|x − x ′| + |y − y′|)n1+n2+sp dx dx ′ dy dy′.

(C.25)
For the first term on the righthand side of (C.25), for C = C(n2) > 0, since

s1 � s,

∫
{|x−x ′|+|y−y′|�1}∩(U1×U2)

2

∣∣u(x, y) − u(x ′, y)
∣∣p

(|x − x ′| + |y − y′|)n1+n2+sp dx dx ′ dy dy′

� C
∫

U2

∫ 1

0

∫
(U1)

2

∣∣u(x, y) − u(x ′, y)
∣∣p

(|x − x ′| + r)n1+n2+sp rn2−1 dx dx ′ dr dy

� C
∫

U2

∫ 1

0

∫
(U1)

2

∣∣u(x, y) − u(x ′, y)
∣∣p

(|x − x ′| + r)n1+1+sp dx dx ′ dr dy

� C
∫

U2

∫
(U1)

2

∣∣u(x, y) − u(x ′, y)
∣∣p

|x − x ′|n1+sp dx dx ′ dy

� C ‖u‖p
L p

y
(
U2;W s,p

x (U1)
) � C ‖u‖p

L p
y

(
U2;W s1,p

x (U1)
) .

(C.26)

For the second term on the righthand side of (C.25), since s2 � s, the analogous
computation proves that, for C = C(n1) > 0,

∫
{|x−x ′|+|y−y′|�1}∩(U1×U2)

2

∣∣u(x ′, y) − u(x ′, y′)
∣∣p

(|x − x ′| + |y − y′|)n1+n2+sp dx dx ′ dy dy′

� C ‖u‖p

L p
x

(
U1;W s2,p

y (U2)
) . (C.27)

In combination, estimates (C.22), (C.24), (C.26), and (C.27) combined with
(C.23) and (C.25) prove that, for C = C(n1, n2, p) > 0,

‖u‖W s,p(U1×U2) � C

(
‖u‖

L p
x

(
U1;W s2,p

y (U2)
) + ‖u‖

L p
y

(
U2;W s1,p

x (U1)
)
)

.

This completes the argument. ��
We now apply Proposition C.6 to the kinetic function corresponding to a func-

tion u ∈ L1(Td) satisfying (C.8). The estimates are obtained from Corollaries C.2
and C.5.
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Corollary C.7. Let u ∈ L1(Td), and suppose that

∫
Rd

∣∣∣∣∇u

[
m+1
2

]∣∣∣∣
2

dx < ∞. (C.28)

Then, if m ∈ (1,∞), for each s ∈
(
0, 2

m+1

)
, the corresponding kinetic function χ

satisfies, for C = C(m, d, s) > 0,

‖χ‖W s,1
x,ξ (Td×R)

� C

(
1 + ‖u‖L1(Td ) +

∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

m+1

L2(Rd ;Rd )

)
.

If m ∈ (0, 1], for each s ∈ (0, 1), the corresponding kinetic function χ satisfies,
for C = C(m, s) > 0,

‖χ‖
L1

ξ

(
R;W s,1

x (Td )
) � C

(
1 + ‖u‖L1(Td ) + ‖u‖2(1−m)

L1(Td )
+
∥∥∥∥∇u

[
m+1
2

]∥∥∥∥
2

L2(Td )

)
.

Proof. Let u ∈ L1(Td) satisfying (C.28) be arbitrary, and let χ denote the corre-
sponding kinetic function. Fix m ∈ (0,∞) and s ∈ (0, 2

m+1 ∧ 1). In the statement
of Proposition C.6, choose n1 = d, n2 = 1, U1 = T

d , U2 = R and s1 = s2 = s,
which implies that, for C = C(d) > 0,

‖χ‖W s,1
x,ξ (Td×R)

� C

(
‖χ‖

L1
x

(
Td ;W s,1

ξ (R)
) + ‖χ‖

L1
ξ

(
R;W s,1

x (Td )
)
)

. (C.29)

The claim is now an immediate consequence of Corollaries C.2 and C.5. ��
The final proposition of this section proves that the transport under the char-

acteristics system preserves the fractional Sobolev norm locally in time. For each
(x, ξ) ∈ T

d × R, t0 � 0, and ε ∈ [0, 1), where ε = 0 corresponds to the system
(3.21), recall the forward characteristic system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dX x,ξ,ε
t0,t = −b

(
X x,ξ,ε

t0,t , �
x,ξ,ε
t0,t

)
◦ dzε

t in (t0,∞),

d�x,ξ,ε
t0,t = c

(
X x,ξ,ε

t0,t , �
x,ξ,ε
t0,t

)
◦ dzε

t in (t0,∞),(
X x,ξ,ε

t0,t0 , �
x,ξ,ε
t0,t0

)
= (x, ξ).

(C.30)

The following statement is used to transfer the regularity of a kinetic function χ to
the transported kinetic function:

χ̃(x, ξ, t) := χ
(

X x,ξ,ε
t0,t ,�

x,ξ,ε
t0,t , t

)
for (x, ξ, t) ∈ T

d × R × [t0,∞),

for arbitrary ε ∈ (0, 1) and t0 � 0. We first prove the statement for an arbitrary
measure preserving diffeomorphism of Td × R.
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Proposition C.8. Let s ∈ (0, 1) and p ∈ [1,∞). Suppose that T : Td × R →
T

d × R is a measure-preserving C1-diffeomorphism with bounded gradient. For
every measurable function ψ : Td × R → R, define

ψ̃(x, ξ) = ψ(T (x, ξ)) for (x, ξ) ∈ T
d × R.

Then, for every measurable ψ : Td ×R → R, for every open subset U ⊂ T
d ×R,

there exists a C = C(T ) > 0 such that
∥∥∥ψ̃∥∥∥

W s,p(T −1(U ))
� C ‖ψ‖W s,p(U ) .

Proof. Fix s ∈ (0, 1) and p ∈ [1,∞). Suppose that T : Td × R → T
d × R is a

measure-preserving C1-diffeomorphismwith bounded gradient. Letψ : Td ×R →
R be an arbitrary measurable function, and let U ⊂ T

d × R be an arbitrary open
set. Since T preserves the measure, it is immediate that

∥∥∥ψ̃∥∥∥
L p(T −1(U ))

= ‖ψ‖L p(U ) . (C.31)

The fractional Sobolev seminorm is estimated in a similar fashion. It follows again
from the fact that T preserves the measure that

∫
T −1(U )×T −1(U )

∣∣∣ψ̃(x) − ψ̃(x ′)
∣∣∣p

|x − x ′|(d+1)+sp
dx dξ ′

=
∫

U×U

∣∣ψ(x) − ψ(x ′)
∣∣p

∣∣T −1(x) − T −1(x ′)
∣∣(d+1)+sp

dx dx ′. (C.32)

Similar to estimate (4.39), since, for each x, x ′ ∈ T
d × R,

∣∣x − x ′∣∣ =
∣∣∣T (T −1(x)) − T (T −1(x ′))

∣∣∣
� ‖∇T ‖L∞(Td×R;M(d+1)×(d+1))

∣∣∣T −1(x) − T −1(x ′)
∣∣∣ ,

there exists C = C(T ) > 0 for which, for each x, x ′ ∈ T
d × R,

∣∣x − x ′∣∣∣∣T −1(x) − T −1(x ′)
∣∣ � C. (C.33)

In combination, equality (C.32) and inequality (C.33) imply that, for C = C(T ) >

0,

∫
T −1(U )×T −1(U )

∣∣∣ψ̃(x) − ψ̃(x ′)
∣∣∣p

|x − x ′|(d+1)+sp
dx dξ ′ � C

∫
U×U

∣∣ψ(x) − ψ(x ′)
∣∣p

|x − x ′|(d+1)+sp
dx dx ′.

The result follows from (C.31) and (C.33). ��
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In the final corollary of this section, we apply Proposition C.8 to the transport
mapdefinedby the characteristics (C.30). The proof is an immediate consequence of
the fact that the characteristics preserve the Lebesguemeasure (3.18), the regularity
assumption (2.3), and the estimates of Proposition B.1.

Corollary C.9. Let s ∈ (0, 1) and p ∈ [1,∞). For every ε ∈ [0, 1), t0 � 0, and
t � t0, define the C1-diffeomorphism T ε

t0,t : Td ×R → T
d ×R to be the transport

map defined by the characteristics (C.30). That is,

T ε
t0,t (x, ξ) =

(
X x,ξ,ε

t0,t , �
x,ξ,ε
t0,t

)
for (x, ξ) ∈ T

d × R.

For each open subset U ⊂ T
d ×R and for each ψ ∈ W s,p(U ) define, for ε ∈ [0, 1),

t0 � 0, and t � t0,

ψ̃ε
t0,t (x, ξ) = ψ(T ε

t0,t (x, ξ)) for (x, ξ) ∈ T
d × R.

For each ε ∈ [0, 1), t0 � 0 and t � t0, there exists C = C(|t − t0|) > 0 such that
∥∥∥ψ̃ε

t0,t

∥∥∥
W s,p

((
T ε

t0,t

)−1
(U )

) � C ‖ψ‖W s,p(U ) .
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