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Abstract

Assume we start with an initial vortex-sheet configuration which consists of
two inviscid fluids with density bounded below flowing smoothly past each other,
where a strictly positive fixed coefficient of surface tension produces a surface
tension force across the common interface, balanced by the pressure jump. We
model the fluids by the compressible Euler equations in three space dimensions
with a very general equation of state relating the pressure, entropy and density such
that the sound speed is positive.We prove that, for a short time, there exists a unique
solution of the equations with the same structure.

The mathematical approach consists of introducing a carefully chosen artificial
viscosity-type regularisationwhich allows one to linearise the system so as to obtain
a collection of transport equations for the entropy, pressure and curl together with a
parabolic-type equation for the velocitywhich becomes fairly standard after rotating
thevelocity according to the interface normal.Weprove ahighorder energy estimate
for the non-linear equations that is independent of the artificial viscosity parameter
which allows us to send it to zero. This approach loosely follows that introduced
by Shkoller et al. in the setting of a compressible liquid-vacuum interface.

Although already considered by Coutand et al. [10] and Lindblad [17], we
also make some brief comments on the case of a compressible liquid-vacuum inter-
face, which is obtained from the vortex sheets problem by replacing one of the
fluids by vacuum, where it is possible to obtain a structural stability result even
without surface tension.
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1. Introduction

1.1. Description of a Vortex Sheet With or Without Surface Tension and its
Stability

In this work, a vortex sheet refers to a virtual surface separating two inviscid
fluids or two phases of the same inviscid fluid across which there is no fluid flow.We
consider the three-dimensional vortex-sheet problem, which means that the fluids
occupy three space dimensions and the surface is two-dimensional, but our results
can easily be adapted to the two-dimensional problem. In general the tangential
velocity is discontinuous across the surface, although we do not require this, and
the density and entropy (depending on the equations of state satisfied by the two
fluid phases) may jump. The fluid flow is modelled by the conversation of mass,
momentum and energy, which leads to the use of the compressible Euler equations
for the fluid either side of the surface. Conservation of momentum implies that the
jump in pressure across the surface is not arbitrary, but must balance any surface
force. Such structures are often seen in nature, such as when two currents of air at
different temperatures meet in the atmosphere, or when oil is spilt on top of water.
Vortex sheets can also develop in certain situations starting with smooth initial data
for the Euler equations of gas dynamics.

We note that there are trivial vortex-sheet solutions to the Euler equations con-
sisting of two constant states separated by a flat surface with zero normal velocity
and zero pressure jump (Fig. 1). For the rest of this section we denote the velocity
of these constant states by ū+ and ū−, the density by ρ̄+ and ρ̄−, and the sound
speed by c̄+ and c̄−. We are interested in whether such structures are stable, at least
for a short time. In this work we do not require the initial data to be a perturbation
of the flat vortex sheet described, but it is a good example to have in mind.

In the absence of a surface tension force which acts to flatten the surface of
discontinuity, vortex sheets with a jump in tangential velocity are unstable in gen-
eral. If the fluids are incompressible then we always have instability—this is the
well-known Kelvin-Helmholtz instability. Miles [19] showed by normal modes
analysis that compressible vortex sheets in two dimensions are linearly unstable
unless the following stability criterion is satisfied:

|[ū]| � (c̄
2
3+ + c̄

2
3−)

3
2

where [ū] = ū+ − ū−, under the simplifying assumption

ρ̄+c̄2+ = ρ̄−c̄2−.

In this case they are linearly stable. In factCoulombel and Secchi [9] and [8] have
shown usingNash–Moser iteration that (isentropic) vortex sheets in two dimensions
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Fig. 1. Flat vortex sheet

are stable for a short time under this condition (as a strict inequality) if the initial
perturbation of the flat vortex sheet is small enough in a high-order Sobolev norm.
Fejer andMiles [15] also showed, using a simple extension of the two dimensional
argument, that vortex sheets in three dimensions are always linearly unstable.

Still in the absence of a surface tension, if the vortex sheet has no jump in
tangential velocity initially, but the density jumps, then Rayleigh-Taylor instability
will occur. Even if the Rayleigh-Taylor condition is satisfied (loosely speaking the
pressure at the surface of discontinuity increases in the direction of the denser fluid),
so that Rayleigh-Taylor instability does not occur, it seems that for general pertur-
bations preserving the continuity of the velocity initially, the tangential velocity
will immediately become discontinuous and then we will have the same instability
as described above.

We therefore consider here vortex sheets in three dimensions with surface ten-
sion (Fig. 2), in the hope that surface tension will provide a stabilising effect. We
assume that surface tension gives rise to a pressure force per unit area acting to flat-
ten the surface which is proportional to the sum of the curvatures in two orthogonal
directions, thus its strength is

σ

∣
∣
∣
∣

1

R1
+ 1

R2

∣
∣
∣
∣
= 2σ |H | = σ

∣
∣∇ · n̂∣

∣ ,

where R1 and R2 are the principle radii of curvature of the surface, H is the mean
curvature of the surface, n̂ is a unit normal to the surface andwe callσ the coefficient
of surface tension, which has units of force per unit length. Note that although n̂ is
defined only on the surface, we compute ∇ · n̂ as ∇ · ĥ, where ĥ is any (sufficiently
smooth) unit vector field on R

3 which coincides with n̂ on the surface, which one
can check is independent of the choice of ĥ. In this work the coefficient of surface
tension σ > 0 will be a constant.
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Fig. 2. Perturbation of a flat vortex sheet

1.2. Existing Results and Methodology for Similar Problems

The case of incompressible vortex sheets with surface tension has been studied
by Cheng et al. [6], where they succeed in proving short-time structural stability.
Their paper [6] is based on the methodology of the previous work of Coutand and
Shkoller [12] and [11] for the incompressible liquid-vacuum interface problem.
The difference here is that we consider the case of compressible vortex sheets
with a very general pressure law. All we will need is that the sound speed is well-

defined—that is ∂p
∂ρ

∣
∣
∣
s

> 0. We will also assume we are away from vacuum, that

is the density is bounded below away from zero. We have already mentioned the
short-time structural stability result proved by Coulombel and Secchi [9] and
[8] for compressible (isentropic) vortex sheets in two space dimensions without
surface tension, which does not hold in three space dimensions as shown by the
linear stability analysis of Fejer and Miles [15].

Another possible stabilisation effect on vortex sheets other than surface tension
is the existence of a background magnetic field, assuming the fluid is electrically
conducting, and this gives rise to current-vortex sheets in magnetohydrodynamics
(MHD). Trakhinin [20] and Chen and Wang [4,5] have succeeded in proving
short-time existence of compressible current-vortex sheets under certain stability
criteria involving the non-parallel jump in the magnetic field. Coulombel et al. [7]
have obtained an a priori energy estimate for incompressible current-vortex sheets
under equivalent stability criteria.

The one-phase problem (where one of the twophases is replaced by vacuum) has
been solved for the case of an incompressible liquid by Coutand and Shkoller
[12] and [11] with and without surface tension and previously by Lindblad [18]
without surface tension, and for the case of a compressible liquid by Coutand
et al. [10] with and without surface tension and previously by Lindblad [17]
without surface tension. Also, the case of a gas–vacuum boundary has been solved
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under certain boundary conditions by Coutand and Shkoller [13] and Jang and
Masmoudi [16].

Note that standard approaches to hyperbolic PDEs such as the linearisation
approach described inBenzoni et al. [3], or the addition of non-degenerate artificial
viscosity as described in Evans [14], are not directly applicable to our problem as
they destroy the structure of the equations on which our energy estimate relies.

Rather than follow the Nash–Moser scheme of [4,9,17,20], which can often
be very technical, we introduce a degenerate artificial viscosity type regularisation
inspired by [10,13,16], and prove a priori estimates on the nonlinear equations in a
somewhat similarmanner to [6], but using a change of coordinateswhich is a simple
lift of the graph of the free-surface, similar to that of [7], rather than Lagrangian
coordinates.

1.3. The Euler Equations for Inviscid Compressible Fluids

1.3.1. Statement of the Equations and Jump Conditions The Euler equations
for compressible fluids are a system of PDEs for the macroscopic fluid variables
pressure, p, density, ρ, specific internal energy, e and velocity, u as functions of
time and space, which are written as follows:

∂tρ + ∇ · (ρu) = 0 (1)

∂t (ρu) + ∇ · (ρu ⊗ u + pI ) = 0 (2)

∂t

(

ρe + ρ
|u|2
2

)

+ ∇ ·
(

u

(

ρe + ρ
|u|2
2

+ p

))

= 0. (3)

Here, we have used the notation∇· for divergence, which is defined to act row-wise
on matrices. The matrix u ⊗ u has (i, j)-entry uiu j and I is the identity matrix, so
the i-entry of∇ ·(ρu⊗u+ pI ) is

∑3
j=1 ∂x j (ρuiu j )+∂xi p. They can be derived by

considering conservation of mass, momentum and energy and neglecting viscous
forces and heat conduction. In order to close the system of equations, we assume
that the pressure is given by the equation of state p = p(ρ, e).

The above equations should be satisfied in a classical sense where the fluid is
sufficiently smooth. Now let us assume that the fluid is smooth either side of a
surface of discontinuity Γ (t). We will assume Γ (t) is smooth with a well defined
unit normal n̂(t, x), andmoveswith normal velocity λ(t, x), for x ∈ Γ (t). Since the
above equations are written in divergence form, theymay be interpreted in the weak
sense in a region which contains the surface Γ which means that we may derive
jump conditions which must be satisfied across the surface of discontinuity without
surface tension in order to have a weak solution in the entire region, which leads
to the well-known Rankine-Hugoniot conditions. With surface tension present on
the surface of discontinuity Γ we must take into account the corresponding surface
force produced, which gives rise to the following jump conditions:

[mn̂] = 0

mn̂[un̂] + [p] = −σ∇ · n̂
mn̂[u τ̂ ] = 0
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mn̂

[(

e + 1

2
u2

)

+ p

ρ

]

+ λ[p] = −σ(∇ · n̂)λ,

where we have defined the mass flux mn̂ := ρ(u · n̂ − λ), un̂ = u · n̂ is the normal
component of u, u τ̂ is the tangential part of u, and [a] = a+ −a− denotes the jump
in the quantity a across Γ (t).

For vortex sheets, where by definition mn̂ = 0, the above conditions simplify
to the following jump conditions:

(un̂)± = λ

[p] = −σ∇ · n̂.

1.3.2. Entropy and a Symmetric Form of the Equations The Euler equations
as we have written them are not symmetric, which makes it impossible to obtain
high-order energy estimates by differentiating the equations and integrating by
parts. It turns out that the equations can be made symmetric in regions of smooth
flow by a change of dependent variables involving the physical entropy.

The physical quantity, entropy per unit mass, s, can be defined as a function of
ρ and e through the fundamental thermodynamic relation

T ds = de + pdV = de − p

ρ2 dρ,

where V = 1
ρ
is the volume per unit mass and this equation also defines the state

variable temperature T = T (ρ, e), which must be strictly positive. Equivalently,
we may take s to be any smooth function s(ρ, e) with ∂s

∂e

∣
∣
ρ

> 0 for ρ > 0 that
satisfies the equation

∂s

∂ρ

∣
∣
∣
∣
e
+ p

ρ2

∂s

∂e

∣
∣
∣
∣
ρ

= 0. (4)

We now use the dependent variable s instead of e in the Euler equations. We

also assume that ∂p
∂ρ

∣
∣
∣
s

> 0 so that we may write ρ = ρ(p, s) and replace the

dependent variable ρ with p. It is easy to check assuming sufficient smoothness
and using (4) that the equations become

1

ρc2
(∂t + u · ∇)p + ∇ · u = 0 (5)

ρ(∂t + u · ∇)u + ∇ p = 0 (6)

(∂t + u · ∇)s = 0, (7)

where c =
√

∂p
∂ρ

∣
∣
∣
s

> 0 is called the sound speed. This system is symmetric, and

makes sense provided ρ > 0 and c > 0, which we will ensure throughout.
From the above discussion it should be clear that under the assumptions ρ > 0,

c > 0 there is no loss of generality in considering classical solutions of the system
just written instead of the original system (1)–(3).
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Let us now fix the equations of state

ρ± = ρ±(p, s) : R
2 → R (8)

for the density in the + and − regions as smooth functions of p and s in the region

where ρ± > 0. Similarly we define c± =
√

∂p±
∂ρ

∣
∣
∣
s±

and we assume c± > 0 for

ρ± > 0.

2. Notation

Notation. Let Ω be an open set in R
d and let k � 0. Then Ck

b (Ω) will denote the
space of k-times continuously differentiable bounded functions onΩ with bounded
derivatives up to order k. Note we write Cb(Ω) := C0

b (Ω).
We write Ck

c (Ω) for the space of k-times continuously differentiable functions
on Ω with compact support in Ω and we write C∞

c (Ω) for the space of infinitely
differentiable functions on Ω with compact support in Ω .

Notation. We shall often need to refer to a quantity, say a, defined in two regions,
denoted by + and −. We will write a+ for the quantity represented by a in the +
region and a− for the quantity represented by a in the − region. Sometimes for
brevity we will use a± in formulae which hold for both a+ and a− and sometimes
for ease of reading we will omit the subscripts ± altogether in such formulae, but
the meaning should be clear from the context.

Notation. For a vector w ∈ R
3, we will write w′ for the first 2 components of

w, so that w = (w′, w3). For example, x = (x ′, x3), so that x ′ denotes horizontal
position, u = (u′, u3), so that u′ denotes horizontal velocity, and ∇ = (∇′, ∂x3), so
that ∇′ denotes horizontal gradient.

We will also write Δ′a for the two-dimensional Laplacian ∂2x1a + ∂2x2a for any
function a(x1, x2, x3).

Wewill refer to the x1 and x2 directions as the horizontal or tangential directions
and the x3 direction as the vertical or normal direction. It will be important to
distinguish these directions throughout what follows.

To avoid confusion, we will never use a prime ′ to denote a derivative.

Notation. Suppose a ∈ L1
loc((0, T ) × R

d), where d = 2 or d = 3 in the main
body of this work, has weak derivatives up to order m. Then we write

∂αa = ∂
α0
t ∂α1

x1 · · · ∂αd
xd a

where α ∈ N
1+d
0 is a multi-index with |α| � m.

It is important to note that our definition of ∂α includes time derivatives.
If a ∈ L1

loc(R
d) is a function of space only or if a ∈ L1

loc((0, T )×R
d) as above,

and has weak spatial derivatives up to order m, then we write

∇αa = ∂α1
x1 · · · ∂αd

xd a

where α ∈ N
d
0 is a multi-index with |α| � m.
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We also write

∂a = (∂t a, ∂x1a, . . . , ∂xk a), ∇a = (∂x1a, . . . , ∂xk a).

Note that for convenience, we will sometimes write ∂αa where α ∈ N
1+3
0 but

a ∈ L1
loc((0, T ) × R

2). Clearly in this case derivatives with respect to x3 are zero.
If there is a possibility of confusion, then we will either explicitly write α3 = 0
or use the notation α′ to denote a multi-index α ∈ N

1+2
0 , so that ∂α′

involves no
derivatives with respect to x3. We use the same convention for ∇αa. Explicitly,

∂α′
a = ∂

α0
t ∂α1

x1 ∂α2
x2 a, ∇α′

a = ∂α1
x1 ∂α2

x2 a, ∂ ′a = (∂t a, ∂x1a, ∂x2a),

∇′a = (∂x1a, ∂x2a).

Sometimes we will also write ∂ la for the collection of all the time and space
derivatives of a of order l, and the product of this with another such quantity should
be interpreted as sums of products of elements of the two quantities, and may be
scalar or vector-valued as appropriate.

Notation. If we write w ∈ X where X usually denotes a space of scalar-valued
functions, but w = (w1, . . . , wk) is a vector-valued function, then we mean that
wi ∈ X for each i . Similarly, if we write ∂αw then we mean (∂αw1, . . . , ∂

αwk).

Notation. Let Ω± be two C1 domains with common C1 boundary Γ . If a± are
functions defined on Ω± which are uniformly continuous, and so can be defined
on Γ by continuity, write

[a] = a+|Γ − a−|Γ .

If a± ∈ H1(Ω±) then we also use

a±|Γ
to denote the trace of a± on Γ and we recall that

‖a±|Γ ‖H0.5(Γ ) � C‖a±‖H1(Ω±).

See, for example, Adams and Fournier [1] for a proof.

It will be useful to have the following definition for smoothing later on.

Definition 1. For d = 2 or 3, let η be the standard mollifier on R
d . In particular

η ∈ C∞
c (Rd) is supported in {|x | � 1}with 0 � η � C for some constantC andwe

have
∫

Rd η(x) dx = 1. For ε ∈ (0, 1), set ηε(x) = ε−dη( x
ε
) so that ηε ∈ C∞

c (Rd)

is supported in {|x | � ε} with 0 � ηε � Cε−d and
∫

Rd ηε(x) dx = 1.

It will also be useful to have the following definition of Sobolev extension.
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Definition 2. Let Ω ⊂ R
3 be a Lipschitz domain. We let ExtΩ : L1

loc(Ω) →
L1
loc(R

3) denote a Sobolev extension operator such that

‖ExtΩ a‖Wk,p(R3) � Ck‖a‖Wk,p(Ω)

for all a ∈ L1
loc(Ω), all p ∈ [1,∞] and all k � 0, where Ck denotes a constant

depending on k and the constants of the Lipschitz domainΩ . For example we could
take Stein’s extension operator. In fact we really only need the extension operator
to satisfy the above inequality for k up to a certain order—for example, k � 30
would do, and we only need the case where Ω is a half-space.

3. The Main Theorem

3.1. Definition of Vortex Sheets with Surface Tension

Definition 3. Fix T ∈ (0,∞). Let f ∈ C1
b((0, T

′)×R
2)with∇′ f ∈ C1

b((0, T
′)×

R
2) for all T ′ ∈ (0, T ), which we call the (graph of) the front or interface.
Define the moving domains Ω±(t) as

Ω+(t) = {x ∈ R
3 : x3 > f (t, x ′)}

Ω−(t) = {x ∈ R
3 : x3 < f (t, x ′)}.

We also write

ΩT+ = {(t, x) ∈ (0, T ) × R
3 : x3 > f (t, x ′)}

ΩT− = {(t, x) ∈ (0, T ) × R
3 : x3 < f (t, x ′)}.

Define the moving boundary (or front or interface) Γ (t) as

Γ (t) = {x ∈ R
3 : x3 = f (t, x ′)}.

We also write

Γ T = {(t, x) ∈ (0, T ) × R
3 : x3 = f (t, x ′)}.

Define

n := (−∇′ f, 1) and n̂ := n

|n|
as a spatial normal and the spatial unit normal to the interface pointing into Ω+(t).
Note that since these are independent of x3, we can think of them as being defined
on (0, T )×R

2 or on Γ T via n(t, x) = (−∇′ f (t, x ′), 1) for (t, x) ∈ Γ T . Note also
the normal velocity of the interface is given by ∂t f

|n| .
Let p±, (ui )± (i = 1, 2, 3), s± ∈ C1

b(Ω
T ′
± ) for all T ′ ∈ (0, T ). Write the

vectors u± = ((u1)±, (u2)±, (u3)±) and U± = (p±, u±, s±). Note that U±|t=0
and f |t=0 are defined by uniform continuity.

We define ρ±(t, x) := ρ±(p±(t, x), s±(t, x)) and c±(t, x) := c±(p±(t, x),
s±(t, x)), where ρ±(p, s) and c±(p, s) are the equations of state defined in (8).
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We will say that (U+,U−, f ) is a vortex sheet solution of the Euler equations
with surface tension on the time interval (0, T ) with initial data (U 0+,U 0−, f 0) :=
(U+|t=0,U−|t=0, f |t=0) provided that ρ±(t, x) > 0 in ΩT± , and p±, u±, s±, f
satisfy the following system of PDEs.

1

ρc2
(∂t + u · ∇)p + ∇ · u = 0 (9)

ρ(∂t + u · ∇)u + ∇ p = 0 (10)

(∂t + u · ∇)s = 0 (11)

in ΩT± ,

∂t f = u± · n (12)

[p] = −σ∇′ · n̂ (13)

on Γ T .

3.2. The Initial Data and the Compatibility Conditions

Definition 4. We say that (p0±, u0±, s0±, f 0) are initial data for the system (9)–(13)
if the following holds. We require that f 0 ∈ C1

b(R
2). We define the initial domains

Ω0±, the initial boundary Γ 0 and the initial normal n0 and unit normal n̂0 in the
obvious way, replacing f (t, x ′) in Definition 3 by f 0(x ′).

We also require that p0±, u0±, s0± ∈ Cb(Ω
0±) are uniformly continuous functions

(where u0± are vectors representing the initial velocity), so that we may define them
on the interface Γ 0 by uniform continuity. Finally, we require

ρ0±(x) := ρ±(p0±(x), s0±(x)) > 0

for all x ∈ Ω0±.

Definition 5. For integer j � 0, we define the following differential operators
∂
j
0 associated with the system (9)–(13) which act on differentiable expressions
involving the initial data and its derivatives (including compositions). We call the
operator ∂

j
0 the initial time derivative operator of order j associated to the system

(9)–(13).
To start with, we define ∂

j
0 p

0±, ∂
j
0 u

0±, ∂
j
0 s

0±, ∂
j
0 f 0 as follows. We set

∂00 = id

then for j � 0 we inductively define

∂
j+1
0 f 0 := ∂

j
t (u+(t)

∣
∣
Γ (t) · n(t))

∣
∣
t=0 := ∂

j
t (u+(t, x ′, f (t, x ′)) · n(t))

∣
∣
t=0 (14)

∂
j+1
0 p0± := ∂

j
t (−(u±(t) · ∇)p±(t) − ρ±(t)c2±(t)∇ · u±(t))

∣
∣
t=0 (15)

∂
j+1
0 u0± := ∂

j
t (−(u±(t) · ∇)u±(t) − 1

ρ±(t)
∇ p±(t))

∣
∣
t=0 (16)
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∂
j+1
0 s0± := ∂

j
t (−(u±(t) · ∇)s±(t))

∣
∣
t=0 (17)

where the right hand sidemeanswe think of u±(t) etc. as functions of t and formally
differentiate with respect to t j times according to the chain and Leibniz rules, then
replace ∂ lt u±(t) for 0 � l � j by ∂ l0u

0± etc. Note that it is necessary for us to pick

either+ or− in the above definition for ∂ j+1
0 f 0 since we have not yet imposed any

compatibility conditions on the initial data. Note we require sufficient regularity on
the initial data for the above to make sense.

We can now generalise the operators ∂
j
0 to general differentiable expressions

involving the initial data and its derivatives (including compositions) in the obvious
way. Suppose H(p0±, u0±, s0±, f 0) is such an expression. For j � 0, we set

∂
j
0 (H(p0±, u0±, s0±, f 0)) := ∂

j
t (H(p±(t), u±(t), s±(t), f (t)))

∣
∣
t=0

where, as above, the right hand side means we think of u±(t) etc as functions of
t and formally differentiate with respect to t j times according to the chain and
Leibniz rules, then replace ∂ lt u±(t) for 0 � l � j by ∂ l0u

0±, etc.

Definition 6. Let (p0±, u0±, s0±, f 0) be initial data for the system (9)–(13). We say
that the initial data (p0±, u0±, s0±, f 0) satisfy the compatibility conditions for the
system (9)–(13) up to order k, for integer k � 0, if the following holds for all
x ′ ∈ R

2:

∂
j
0 [u0∣∣

Γ 0(x
′) · n0(x ′)] = 0 (18)

for 0 � j � k and

[∂ j
0 (p0

∣
∣
Γ 0(x

′))] = −σ∂
j
0 (∇′ · n̂0)(x ′) (19)

for 0 � j � k, where

u0
∣
∣
Γ 0(x

′) := u0(x ′, f 0(x ′))
p0

∣
∣
Γ 0(x

′) := p0(x ′, f 0(x ′)).

3.3. The Energy Functional

Definition 7. Let f ∈ L1
loc((0, T ) × R

2), U± ∈ L1
loc(Ω

T±). We define the energy
E for the vortex sheet equations, associated to (U+,U−, f ), as follows.

Define the energy E : (0, T ] → [0,∞] by
E(t) =

∑

±
ess sup
τ∈(0,t)

‖U±‖2L∞(Ω±(τ )) +
∑

±

∑

1�|α|�3

ess sup
τ∈(0,t)

‖∂αU±‖2L2(Ω±(τ ))

+ ess sup
τ∈(0,t)

‖ f ‖2L∞(R2)
+

∑

1�|α′|�3

ess sup
τ∈(0,t)

‖∂α′
f ‖2H1(R2)

+
2

∑

j=0

ess sup
τ∈(0,t)

‖∇′∂ j
t f ‖2H3.5− j (R2)

.



616 Ben Stevens

Note that we adopt the convention that if the solution does not have sufficiently
many weak derivatives in ΩT± to define the energy then it is infinite, and if we
write E(T ′) < ∞ then this implies that all the weak derivatives in ΩT ′

± present in
the energy exist. Note also that if E(T ′) < ∞ then E is uniformly continuous on
(0, T ′].

Similarly, let (U 0+,U 0−, f 0) be initial data for the system (9)–(13). We define
the energy E0 ∈ [0,∞] of the initial data as
E0 =

∑

±
‖U 0±‖2

L∞(Ω0±)
+

∑

±

∑

1�|β|+ j�3

‖∇β∂
j
0U

0±‖2
L2(Ω0±)

+ ‖ f 0‖2L∞(R2)
+

∑

1�|β ′|+ j�3

‖∇β ′
∂
j
0 f 0‖2H1(R2)

+
2

∑

j=0

‖∇′∂ j
0 f 0‖2H3.5− j (R2)

.

Note that we may consider the class of initial data such that E0 < ∞, which
has the obvious meaning that U 0 ∈ L∞(Ω0±), f 0 ∈ L∞(Γ 0), ∇U 0 ∈ H2(Ω0±),

∇′ f 0 ∈ H3.5(Γ 0), which allows us to define ∂
j
0 (U 0+,U 0−, f 0) for 0 � j � 3

using Definition 5, and we then require ∂
j
0 f 0 ∈ H4− j (Γ 0) for 1 � j � 3 and

∂
j
0 f 0 ∈ H4.5− j (Γ 0) for 1 � j � 2. (Note that the required regularity of ∂

j
0U

0± for
1 � j � 3 automatically follows from Definition 5 and the spatial regularity).

3.4. Statement of the Main Theorem

Theorem 1. Let (U 0+,U 0−, f 0) be initial data as described in Definition 4 with
energy E0 < ∞. Assume that this initial data satisfies the compatibility conditions
(18)–(19) up to order 2, and note that these conditions make sense up to order 2
since we have E0 < ∞. Assume also that the initial density satisfies

inf
x∈Ω0±

ρ0±(x) =: δ0 > 0. (20)

Then there exists a time T 0 > 0 and a vortex sheet solution (U+,U−, f ) of the
Euler equations with surface tension on the time interval (0, T 0), as in Definition 3.
Moreover,

E(T 0) � C0, ρ± � δ0

2
in ΩT 0

±

The time T 0 > 0 is bounded below as follows:

T 0 � T

(

E0,
1

δ0

)

> 0,

where T (·) is a smooth decreasing function. Similarly, the constant C0 > 0 is
bounded above as follows:

C0 � C

(

E0,
1

δ0

)

< ∞,

where C(·) is a smooth increasing function.
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In addition, the solution (U+,U−, f ) is unique on the time interval (0, T 0) in
the sense that it is the only solution of the equations given in Definition 3 on the time
interval (0, T 0) with initial data (U 0+,U 0−, f 0) satisfying the following properties

E(T 0) < ∞, inf
(t,x)∈ΩT 0±

ρ± > 0.

Proof. See Sections 4–15. 
�
Remark 1. In fact a statement of stability also holds in addition to uniqueness, but
this is more easily stated after fixing the domains, so we leave this to Theorem 2.

4. Summary of the Proof of Theorem 1

4.1. Fixing the Domains

Weneed to introduce a change of coordinates on thewhole spacewhichmaps the
unknown domains ΩT± separated by Γ T to/from some fixed domains (0, T ) × Ω±
separated by a fixed boundary (0, T ) × Γ . We could use Lagrangian coordinates
on one side of the interface with a Sobolev extension to the other side (which
is forced by the discontinuity in the velocity), as used in [6], but this has the
disadvantage of producing a different set of equations in Ω+ and Ω−. We use the
more straightforward approach of constructing a liftψ of f defined on (0, T )×Ω±
such that ψ |Γ = f , where Ω+ = R

3
>0,Ω− = R

3
<0 and Γ = {x ∈ R

3 : x3 = 0} =
R
2. We then use the change of coordinates mapping back to the original domains

(t, x) �→ (t, x ′, x3 + ψ(t, x)). To construct ψ , we merely multiply f by a smooth
cut-off function depending on x3. Compared to constructing a lift of f that gains
half a degree of regularity from f as used in [7], this has the advantage that ψ is
smooth in the x3-direction, and we do not need the extra half a degree of regularity
due to the presence of surface tension.

4.2. The μ-Approximate Equations: A Degenerate Parabolic-Type Regularisation

We introduce some degenerate artificial viscosity inspired by [10,13,16] in
order to regularise the equations whilst preserving a good energy estimate.

We define the μ-approximate equations (39)–(43) in Section 8 which reduce
to the equations in the fixed domains (25)–(29) in the case μ = 0. There are
four main points to note. Firstly, we regularise the divergence of the velocity by
adding the term μ∇ψ(ρc2∇ψ · u) to the right hand side of the velocity equation.
This preserves the curl estimate, and it also preserves our estimate of ∂x3 p (which
comes from writing it in terms of the material derivative of the pressure). This
forces us to replace [p] with [p − μρc2∇ψ · u] in the pressure interface condition
(29). Secondly, we regularise u · n = ∂t f by adding the term μ(Δ′ − 1)(u · n) to
the right hand side of the pressure interface condition (29), which overcomes the
fact that surface tension only regularises f in space not in time. Thirdly, we smooth
the coefficient ρ in the velocity equation (26), which is fairly harmless but allows
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us to overcome a difficulty in the curl equation when solving the μ-approximate
equations. Fourthly, we add some known smooth functions g1 and g2 to the right
hand side of the velocity equation and pressure interface condition respectively in
order to preserve the compatibility conditions.

4.3. The μ-Independent Energy Estimate and Reduction to Solving
the μ-Approximate Equations

The key to the whole result is to prove that some high-order energy associated
to solutions of the μ-approximate equations, which we will call the μ-independent
energy, remains bounded independent of μ on some time interval which has a
lower bound independent of μ, provided that the solution exists for that length of
time.

The μ-independent energy is chosen to include roughly space and time deriva-
tives of the solution up to order 3, L2 in space and L∞ in time. In addition there is
one extra space derivative on f with up to 3 time derivatives, and 1.5 extra space
derivatives on f with up to 2 time derivatives, which is an automatic consequence
of the elliptic-type equation for f given by the surface tension term in the pressure
interface condition (13). We need 3 derivatives on the solution in order to be able
to estimate terms involving one derivative of the solution in L∞ using the Sobolev
embedding theorem.

The energy estimate is split into several parts which we briefly describe as
follows. Firstly, we estimate the tangential space derivatives of the solution by dif-
ferentiating the equations and performing a standard energy estimate. The boundary
term generatedmay be estimated by applying tangential derivatives to the boundary
conditions and using the extra spatial regularity of f provided by surface tension.
Next, we estimate the time derivatives of the solution in a similar manner, the major
difference being the treatment of the boundary term, which we must split into two
parts, one of which is estimated by converting it to an integral over the interior, and
one of which we can estimate using the boundary conditions. Finally, we estimate
the normal derivatives by taking the curl of the velocity equation and performing a
standard energy estimate then obtaining estimates for the divergence of the velocity
and the normal derivative of the pressure by directly rearranging the pressure and
velocity equations. The high-order space derivative estimate of f is obtained from
the elliptic-like pressure interface condition.

4.4. Linearisation of the μ-Approximate Equations

Wehave designed theμ-approximate equations so that for fixedμ the equations
have a nice linearised structure when linearised carefully. In fact the linearisation
reduces to solving the following equations in order, which are given in Section 10.
Firstly, we solve the very simple ODE ∂t f = ū ·n̄ for f . Next, we solve scalar linear
transport equationswhere the transport is parallel to the interface for the entropy, the
pressure, and (the components of) the curl,ω. We carefully replace uψ with uψ (see
Section 10 for the definition) which is chosen so that uψ

3|Γ = ū · n̄ − ∂t f = 0 by
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virtue of the equation just given for f . Finally, we solve a parabolic-type equation
for the velocity, where the full parabolicity comes from the fact that we may add
the curl of the curl of the velocity to one side of the equation and the curl of the
‘curl’ ω just obtained from the transport equation for the curl, ω, to the other side
of the equation.

The transport equations are standard, but the solution of the parabolic-type
equation for the velocity requires some work and is detailed in Section 12. Note
that we solve the equation in the domains Ω± simultaneously whilst maintaining
the boundary condition [u ·n] = 0. It seems very difficult to preserve an appropriate
energy estimate without maintaining the condition [u ·n] = 0, which contrasts with
the incompressible case considered in [6]. Also, note that in order to be able to pose
the equations in standard function spaces we first rotate the velocity to obtain

�

u so
that the condition [u · n] = 0 becomes [�

u 3] = 0, after which we proceed much as
in the solution of a simple linear parabolic equation.

4.5. Obtaining a Fixed Point of the Linearised Equations

In Section 14 we use the contraction mapping theorem to prove the existence of
a fixed point of the linearised equations, which is a solution of the μ-approximate
equations by construction. This is fairly standard once we have obtained the
appropriate energy estimate for the linearised equations, given in Proposition
11 and proved in Section 13. This completes the proof of the existence part of
Theorem 1.

4.6. Proof of Uniqueness

The proof of uniqueness is very similar to the μ-independent energy estimate
with μ set to zero. Given two solutions satisfying the conclusions of the existence
part of theorem on the fixed domains, Theorem 2, we define the ‘difference’ energy
by replacing the solution by the difference of two solutions in the termswhichmake
up the energy for the fixed equations as defined in Definition 15, and decreasing the
number of derivatives by one. We then show that this energy is bounded by a factor
depending on the individual energies of the solutions as defined by Definition 15
multiplying the sum of the difference energy at time zero and a time integral of
the difference energy. Applying Gronwall’s lemma gives a stability result for the
equations in the fixed domains, from which uniqueness follows.

5. The Theorem in the Fixed Domains

In this section we present the equations we obtain from the system (9)–(13)
rewritten onfixed domains after a change of variables,which is detailed in Section 6.

5.1. Important Notational Convention

Everything that follows after Section 6 will be devoted to the proof of the
theorem in the fixed domains. Hence, to keep the notation simple, we will now
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redefine everything in the fixed domains, which will involve using some of the
same symbols as in the moving domains for corresponding quantities, such as
(U+,U−, f ) for the solution, E for the energy, ∂

j
0 for the initial time derivatives

associated with the system etc. In Section 6, where we show how the theorem in
the fixed domains implies the main theorem, we will place a tilde, ,̃ over variables
in the fixed domains in order to distinguish corresponding quantities, but otherwise
we will reserve the tilde, ,̃ for other purposes.

5.2. The Fixed Domains, the Lifting Operator and the Transformed Derivatives

Definition 8. Define the fixed domains Ω± as

Ω+ = {x ∈ R
3 : x3 > 0}

Ω− = {x ∈ R
3 : x3 < 0}.

Define the fixed boundary (or front or interface) Γ as

Γ = {x ∈ R
3 : x3 = 0}.

Definition 9. Let a ∈ R�0. We define the lifting operator La : L2(R2) → L2(R3)

by

(La f )(x) := χ

(
x3

3(1 + a)

)

f (x ′),

where χ ∈ C∞
c (R) is a smooth cut-off function with 0 � χ � 1, χ(x3) = 1 for

|x3| � 1, χ(x3) = 0 for |x3| � 3 and
∣
∣∂x3χ(x3)

∣
∣ � 1 for all x3 ∈ R.

Note that this implies the following.

(La f )(x ′, 0) = f (x ′)
∂x3(L

a f )(x ′, 0) = 0
∣
∣∂x3(L

a f )(x)
∣
∣ � 1

3(1 + a)

∣
∣ f (x ′)

∣
∣ .

Clearly for T > 0wemay also define La : L2((0, T )×R
2) → L2((0, T )×R

3)

by

(La f )(t, x) := χ

(
x3

3(1 + a)

)

f (t, x ′).

Note that La f inherits the regularity of f andderivatives of La f can be bounded
by those of f independently of a. This means that all constants will be independent
of a unless explicitly stated otherwise.
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Definition 10. Givenψ ∈ C1((0, T )×R
3) bounded with bounded derivatives, and

a vector u ∈ R
3 (which we later take as a function of t and x), we define

Jψ := 1 + ∂x3ψ (21)

∂ψ := ∂ − 1

Jψ
∂ψ∂x3 (22)

∇ψ := ∇ − 1

Jψ
∇ψ∂x3 = ∇′ + 1

Jψ
(−∇′ψ, 1)∂x3 (23)

uψ := (u′, 1

Jψ
(u3 − u′ · ∇′ψ − ∂tψ)). (24)

The quantity Jψ will be the Jacobian of the change of coordinates introduced
later and ∂ acting on the fluid variables in the moving domains will transform to ∂ψ

acting on the newfluid variables in the fixed domains after the change of coordinates
introduced later—see Lemma 1.

5.3. Definition of the Equations in the Fixed Domains

Definition 11. Fix T ∈ (0,∞).
Let f ∈ C1

b((0, T
′) × R

2) with ∇′ f ∈ C1
b((0, T

′) × R
2) for all T ′ ∈ (0, T ),

which we call the (graph of) the front or interface (although it is not the graph of
the fixed interface Γ = R

2). Define

n := (−∇′ f, 1) and n̂ := n

|n| ,

which we call a spatial normal and the spatial unit normal to the interface pointing
into Ω+ (although they are not actually normals to the fixed interface Γ = R

2).
Let p±, (ui )± (i = 1, 2, 3), s± ∈ C1

b((0, T
′) × Ω±) for all T ′ ∈ (0, T ). For

convenience we write u± = ((u1)±, (u2)±, (u3)±),U± = (p±, u±, s±). Note that
U±|t=0 and f |t=0 are defined by uniform continuity.

We define ρ±(t, x) := ρ±(p±(t, x), s±(t, x)) and c±(t, x) := c±(p±(t, x),
s±(t, x)), where ρ±(p, s) and c±(p, s) are the equations of state defined in (8).

We will say that (U+,U−, f ) is a solution of the equations in the fixed domains
on the time interval (0, T )with lifting operator La and initial data (U 0+,U 0−, f 0) :=
(U+|t=0,U−|t=0, f |t=0) provided that ρ±(t, x) > 0 and Jψ(t, x) > 0 in (0, T ) ×
Ω±, and p±, u±, s±, f satisfy the following system of PDEs:

1

ρc2
(∂t + uψ · ∇)p + ∇ψ · u = 0 (25)

ρ(∂t + uψ · ∇)u + ∇ψ p = 0 (26)

(∂t + uψ · ∇)s = 0 (27)

in (0, T ) × Ω±,

∂t f = u± · n (28)

[p] = −σ∇′ · n̂ (29)
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on (0, T ) × Γ , where ψ is a lift of f defined by

ψ := La f. (30)

Remark 2. Note that for ψ defined by (30), because of the properties of the lifting
operator, we have the following on the interface Γ :

Jψ = 1

∇ψ = ∇′ + n∂x3

on Γ . Also, if u and f satisfy the Equation (28), then we have the following on the
interface Γ :

uψ = (u′, 0).

5.4. The Initial Data and the Compatibility Conditions

Definition 12. We define initial data for the system (25)–(30) in the same way as
we did for themoving equations inDefinition 4, replacingΩ0± withΩ±. In addition,
we use the obvious notation

ψ0 := La f 0,

and we require

Jψ0 := 1 + ∂x3ψ
0 > 0 for all x ∈ Ω±.

Definition 13. In the same way as we defined the initial time derivatives in Defin-
ition 5, we may define the initial time derivatives ∂

j
0 associated with the equations

in the fixed domains, which act on differentiable expressions involving the initial
data (U 0+,U 0−, f 0). Note that we have used the same notation ∂

j
0 as we used for

the moving domains in Definition 5 because from now on, with the exception of
Section 6, we will be working in the fixed domains.

Definition 14. Let (p0±, u0±, s0±, f 0) be initial data for the system (25)–(30). We
say that the initial data (p0±, u0±, s0±, f 0) satisfy the compatibility conditions for
the system (25)–(30) up to order k, for integer k � 0, if the following holds:

∂
j
0 [u0 · n0] = 0 (31)

for 0 � j � k and

[∂ j
0 p

0] = −σ∂
j
0 (∇′ · n̂0). (32)

on Γ for 0 � j � k.
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5.5. The Energy Functional

Definition 15. We define the energy E and initial energy E0 for the fixed equations
exactly as we did for the moving equations as in Definition 7 but with Ω±(t)
replaced by Ω±.

Definition 16. We define the energy EΔ : (0, T ] → R�0 of the difference of the

states (Ui+,Ui−, f i ) for i = 1, 2 defined on the time interval (0, T ) as

EΔ(t) =
∑

±

∑

0�|α|�2

ess sup
τ∈(0,t)

‖∂α(U 1 −U 2)‖2L2(Ω±)

+
∑

0�|α|�2

ess sup
τ∈(0,t)

‖∂α( f 1 − f 2)‖2H1(Γ )

+
∑

0�|α|�1

ess sup
τ∈(0,t)

‖∂α( f 1 − f 2)‖2H2.5(Γ )
.

Note that this is effectively the energy E(t) reduced by one order of regularity
evaluated at the difference of two solutions.

Similarly, we define the initial energy E0
Δ of the difference of two sets of initial

data (U 0,i
+ ,U 0,i

− , f 0,i ) for i = 1, 2 as

E0
Δ =

∑

±

∑

0�|β|+ j�2

‖∇β(∂
j,1
0 U 0,1 − ∂

j,2
0 U 0,2)‖2L2(Ω±)

+
∑

0�|β|+ j�2

‖∇β(∂
j,1
0 f 0,1 − ∂

j,2
0 f 0,2)‖2H1(Γ )

+
∑

0�|β|+ j�1

‖∇β(∂
j,1
0 f 0,1 − ∂

j,2
0 f 0,2)‖2H2.5(Γ )

where ∂
j,i
0 denotes the initial time derivatives of order j as defined in Definition 13

acting on the initial data (U 0,i
+ ,U 0,i

− , f 0,i ) for i = 1, 2.

5.6. Statement of the Theorem in the Fixed Domains

Theorem 2. Let (U 0+,U 0−, f 0) be initial data as described in Definition 12 with
energy E0 < ∞. Assume that this initial data satisfies the compatibility conditions
(31)–(32) up to order 2, and note that these conditions make sense up to order 2
since we have E0 < ∞. Assume also that the initial data satisfies

inf
x∈Ω±

ρ0±(x) =: δ0 > 0 (33)

inf
x∈R3

Jψ0 =: κ0 > 0. (34)
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Then there exists a time T 0 > 0 and a solution (U+,U−, f ) of equations in the
fixed domains on the time interval (0, T 0) with lifting operator La, as in Definition
11. Moreover,

E(T 0) � C0, ρ± � δ0

2
in (0, T 0) × Ω±, Jψ � 1

2
κ0 in (0, T 0) × R

3

The time T 0 > 0 is bounded below as follows:

T 0 � T

(

E0,
1

δ0
,
1

κ0

)

> 0

where T (·) is a smooth decreasing function. Similarly, the constant C0 > 0 is
bounded above as follows:

C0 � C

(

E0,
1

δ0
,
1

κ0

)

< ∞,

where C(·) is a smooth increasing function. Note that these bounds are independent
of the constant a in the lifting operator La.

In addition, the solution (U+,U−, f ) is unique on the time interval (0, T 0)

in the sense that it is the only solution of the equations given in Definition 11 on
the time interval (0, T 0) with initial data (U 0+,U 0−, f 0) satisfying the following
properties:

E(T 0) < ∞, inf
t∈(0,T 0)

inf
x∈Ω±

ρ± > 0, inf
t∈(0,T 0)

inf
x∈R3

Jψ > 0.

In fact, the following stability statement is satisfied.Given two sets of initial data
(U 0,i

+ ,U 0,i
− , f 0,i ) for i = 1, 2 satisfying the hypotheses above, let T 0,1 and T 0,2

be the associated existence times as given above and set T 0 = min{T 0,1, T 0,2}.
Let (U 1+,U 1−, f 1) and (U 2+,U 2−, f 2) be two solutions of the equations in the fixed
domains as defined in Definition 11 on the time interval (0, T 0) with initial data
(U 0,i

+ ,U 0,i
− , f 0,i ) respectively, with the properties

Ei (T 0) =: Ci < ∞, inf
t∈(0,T 0)

inf
x∈Ω±

ρi± =: δi > 0, inf
t∈(0,T 0)

inf
x∈R3

Jψ i =: κ i > 0

for i = 1, 2, where the superscript i for i = 1, 2 is used to denote quantities asso-
ciated with the solutions (Ui+,Ui−, f i ). Assume also that U 0,1 − U 0,2 ∈ L2(Ω±)

and f 0,1 − f 0,2 ∈ L2(Γ ) so that

E0
Δ < ∞

where the initial difference energy E0
Δ is defined in Definition 16. Then

EΔ(t) � C1,2E0
Δ exp(C1,2t)

for t ∈ (0, T 0) where EΔ(t) is defined in Definition 16 and the constant C1,2 is
bounded above as follows:

C1,2 � F

(

C1,C2,
1

δ1
,
1

δ2
,
1

κ1 ,
1

κ2

)

,

for some smooth increasing function F(·).
Proof. See Sections 7–15. 
�
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6. Fixing the Domains

In this section we show how the equations and theorem in the fixed domains
relate to the equations and theorem in the original moving domains.

6.1. The Change of Coordinates

Lemma 1. Let f ∈ C1((0, T ) × R
2) and let a � 0 be a constant. Assume that

inf
t∈(0,T )

inf
x∈R3

Jψ � κ > 0

where ψ = La f , Jψ := 1 + ∂x3ψ and the lifting operator La is defined in
Definition 9. Define θ± ∈ C1((0, T ) × Ω±) by

θ±(t, x) = (t, x ′, x3 + ψ(t, x)).

Then θ± : (0, T ) × Ω± → ΩT± are diffeomorphisms, where the domains ΩT± are
defined as in Definition 3 in terms of f .

Moreover, if w ∈ C1(ΩT±) and we set w̃ = w ◦ θ , then

(∂w) ◦ θ =
(

∂ − 1

Jψ
∂ψ∂x3

)

w̃ =: ∂ψw̃. (35)

In particular, note that if in addition v ∈ C0(ΩT±) is a vector-valued function and
ṽ := v ◦ θ , then

((∂t + v · ∇)w) ◦ θ = (∂t + ṽψ · ∇)w̃ (36)

where

ṽψ :=
(

ṽ′, 1

Jψ
(ṽ3 − ṽ′ · ∇′ψ − ∂tψ)

)

.

Proof. Note that Jψ := 1 + ∂x3ψ � κ > 0 implies x3 �→ x3 + ψ(t, x) is a
strictly increasing function of x3 for fixed (t, x ′). Hence, since (t, x ′) �→ (t, x ′),
we have that θ± biject with their images. Now, since ψ |x3=0 = f , we have that
θ±|x3=0 : (0, T ) × Γ → Γ T bijectively, and since x3 �→ x3 + ψ(t, x) is strictly
increasing, θ± : (0, T ) × Ω± → ΩT± bijectively. The rest is a simple application
of the chain rule. 
�
Proposition 1. Let T > 0, a � 0 and let f ∈ C1

b((0, T
′) × R

2) with ∇′ f ∈
C1
b((0, T

′) × R
2) for all T ′ ∈ (0, T ). Assume that

inf
t∈(0,T )

inf
x∈R3

Jψ � κ > 0

where ψ = La f . Let θ± : (0, T ) × Ω± → ΩT± be defined in terms of f as in
Lemma 1. Let Ũ± ∈ C1

b((0, T
′) × Ω±) for all T ′ ∈ (0, T ) and let

U± = Ũ± ◦ θ−1.
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Then (Ũ+, Ũ−, f ) is a solution of the equations in the fixed domains Ω± with
lifting operator La on the time interval (0, T ), as in Definition 11, if and only if
(U+,U−, f ) is a solution of the equations in the moving domains ΩT± on the time
interval (0, T ), as in Definition 3.

Proof. Firstly, note that ρ± > 0 if and only if ρ̃± > 0 since they have the same
image.

Using the coordinate change relations (35)–(36), we immediately see (Ũ+, Ũ−,

f ) satisfies the Equations (26)–(27) in (0, T ) × Ω± if and only if (U+,U−, f )
satisfies the Equations (10)–(11) in ΩT± . We note that U±|Γ (t) = Ũ±|Γ , which
immediately implies that (Ũ+, Ũ−, f ) satisfies the Equations (28)–(29) on (0, T )×
Γ if and only if (U+,U−, f ) satisfies the Equations (12)–(13) on Γ T .

This completes the proof. 
�
Proposition 2. Let (U 0+,U 0−, f 0) be initial data for the main theorem, Theorem 1.

Let ψ0 := La f 0 as defined by (9) and assume Jψ0
> 0. Define Ũ 0± :=

U 0± ◦ θ0± where θ0± : Ω± → Ω0± are defined by x �→ (x ′, x3 + ψ0(x)) and are
diffeomorphisms as shown in Proposition 1.

Then (Ũ 0+, Ũ 0−, f 0) are initial data for the theorem in the fixed domains, The-
orem 2.

Moreover, let us write ∂
j
0 for the initial time derivatives associated with the

equations in the moving domains as defined in Definition 5 and ∂̃
j
0 for the initial

time derivatives associated with the equations in the fixed domains as defined in
Definition 13.

Let H(p0±, u0±, s0±, f 0) be a differentiable expression involving the initial data
(U 0+,U 0−, f 0) and suppose we can write

H(p0±, u0±, s0±, f 0) ◦ θ0± = H̃( p̃0±, ũ0±, s̃0±, f 0)

where H̃( p̃0±, ũ0±, s̃0±, f 0) is a differentiable expression involving the initial data
in the fixed domains (Ũ 0+, Ũ 0−, f 0). Then for j � 0, we have

∂̃
j
0 (H̃( p̃0±, ũ0±, s̃0±, f 0)) = ∂

j
0 (H(p0±, u0±, s0±, f 0) ◦ θ0±). (37)

Proof. This is straightforward to check using the definition of the initial time
derivatives. 
�

6.2. Reduction to the Case of Fixed Domains

Proposition 3. Theorem 1 in the moving domains follows from Theorem 2 in the
fixed domains.

Proof. Assume that Theorem 2 holds. We aim to show that Theorem 1 holds.
Let (U 0+,U 0−, f 0) be initial data for themain theorem, Theorem 1,which satisfy

the hypotheses of this theorem.
Let ψ0 := La f 0 as defined by (9), where we set

a = ‖ f 0‖L∞(Γ ).
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Note from the definition of La that this automatically implies

‖∂x3ψ0‖L∞(R3) � 1

3
.

so

Jψ0 := 1 + ∂x3ψ
0 � κ0 > 0 in R

3,

where in this case we can take κ0 = 2
3 . Define Ũ

0± := U 0± ◦ θ0± where θ0± : Ω± →
Ω0± are defined by x �→ (x ′, x3 + ψ0(x)) and are diffeomorphisms as shown in
Lemma 1.

It is easy to check using Proposition 2 that (Ũ 0+, Ũ 0−, f 0) are initial data for
the theorem on the fixed domains, Theorem 2, which satisfy the hypotheses of this
theorem. Note that we obtain the energy relation

Ẽ0 � F̃(E0) < ∞,

where F̃ is a smooth increasing function by using the Sobolev embedding theorem,
the chain rule, and the fact that θ0± are Lipschitz diffeomorphisms. Here, E0 denotes
the energy of (U 0+,U 0−, f 0) as defined in Definition 7 and Ẽ0 denotes the energy of
(Ũ 0+, Ũ 0−, f 0) as defined in Definition 15. Clearly, we have inf x∈Ω± ρ̃0± = δ0 > 0
since ρ̃0± and ρ0± have the same image. Now we let T 0 > 0 be given by Theorem 2
depending on this initial data.

It is now straightforward to show that the existence part of Theorem 1 follows
by applying Theorem 2 to obtain a solution (Ũ+, Ũ−, f ) on a time interval (0, T 0)

of the system (25)–(30) with initial data (Ũ 0+, Ũ 0−, f 0) and then showing that com-
position of Ũ± with θ−1, where θ−1 is constructed from f as in Lemma 1, is the
solution to the equations on the moving domains that we seek, for which we use
Proposition 1.

To prove the existence part, we start with two solutions (Ui+,Ui−, f i ) for i =
1, 2 on themoving domains satisfying the stated properties required for uniqueness,
defined on the time interval (0, T 0) where T 0 is as stated above, and depends only
on the initial data. We then compose with θ i (constructed from f i ) to obtain two
solutions to the equations on the fixed domains, then we apply the uniqueness result
for the fixed domains to conclude they are equal. 
�

The sections which follow will be devoted to proving Theorem 2 in the fixed
domains, from which we have shown that Theorem 1 follows.

7. Smoothing the Initial Data

Here we show that it is sufficient to prove Theorem 2 for smooth initial data.

7.1. Constructing Smooth Compatible Initial Data

Lemma 2. Let l � 0 be an integer and d � 2 be an integer. Let hk ∈
Hl−k+0.5(Rd−1) for 0 � k � l. Then there exists g ∈ Hl+1(Rd) such that
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Tr(∂kxd g) = hk for 0 � k � l

and

‖g‖Hl+1(Rd ) � C
l

∑

k=0

‖hk‖Hl−k+0.5(Rd−1).

Moreover, the map L : (h0, . . . , hl) �→ g is linear.

Proof. This is a fairly standard result. We sketch the proof as follows.
Write x = (x ′, xd) ∈ R

d with x ′ ∈ R
d−1. Let χ ∈ C∞

c (R) be a smooth positive
cut-off function with χ(s) = 1 for |s| � 1. We define g : R

d → R by

g(x) =
l

∑

k=0

1

k! x
k
dχ(xd

〈

D′〉)hk(x ′) :=
l

∑

k=0

F−1(
1

k! x
k
dχ(xd

〈

ξ ′〉)F(hk)(ξ ′))

where F denotes the Fourier transform. One can easily check that the map L :
(h0, . . . , hl) �→ g has the required properties. 
�
Proposition 4. Let (U 0+,U 0−, f 0) be initial data which satisfy the hypotheses of
Theorem2, so inparticular satisfy the compatibility conditions (31)–(32)up toorder
2. Then for ε > 0 there are functions U 0

ε± = (p0ε±, u0ε±, s0ε±) ∈ C∞(Ω±), f 0ε ∈
C∞(R2) which form a set of initial data for the system (25)–(30).

We also have

∂
ε, j
0 ∇βU 0

ε± ∈ L2(Ω±), ∂
ε, j
0 ∇β f 0ε ∈ L2(Γ )

for all j+|β| � 1, where we write ∂
j
0 for the initial time derivatives associated with

the initial data (U 0+,U 0−, f 0) and ∂
ε, j
0 for the initial time derivatives associated

with the initial data (U 0
ε+,U 0

ε−, f 0ε ).
Additionally, this set of initial data satisfies the compatibility conditions given

in Definition 14 up to order 2. Also, it converges to the original initial data as
ε → 0 in the following sense:

‖U 0
ε −U 0‖L∞(Ω±) → 0 as ε → 0

‖∂ε, j
0 ∇βU 0

ε − ∂
j
0∇βU 0‖L2(Ω±) → 0 as ε → 0 for 0 � |β| + j � 3

‖ f 0ε − f 0‖L∞(R2) → 0 as ε → 0

‖∂ε, j
0 ∇β f 0ε − ∂

j
0∇β f 0‖H1(R2) → 0 as ε → 0 for 0 � |β| + j � 3

‖∂ε, j
0 ∇β f 0ε − ∂

j
0∇β f 0‖H2.5(R2) → 0 as ε → 0 for 0 � |β| + j � 2.

In particular,

E0
ε → E0 as ε → 0.
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Using the obvious notation

ρ0
ε±(x) := ρ±(p0ε±(x), s0ε±(x)), ψ0

ε := La f 0ε ,

we have

inf
x∈Ω±

ρ0
ε± =: δ0ε � δ0

2
in Ω±, inf

x∈Ω±
Jψ0

ε =: κ0
ε � 1

2
κ0

for all ε > 0, where δ0 > 0 and κ0 ∈ (0, 1) are defined as

inf
x∈Ω±

ρ0± =: δ0, inf
x∈Ω±

Jψ0 =: κ0,

and we have

δ0ε → δ0 as ε → 0, κ0
ε → κ0 as ε → 0.

Proof. We give a sketch of the proof. We mollify (U 0+,U 0−, f 0) by convolution
with the standard mollifier (applying Sobolev extension first as necessary) to obtain
p̃0ε±, ũ0ε±, s̃0ε±, f̃ 0ε . We then set the following:

s0ε± = s̃0ε±, f 0ε = f̃ 0ε , (u0ε+)′ = (ũ0ε+)′, (u0ε−)′ = (ũ0ε−)′.

We then add correction terms to p̃0ε+ and (ũ0ε)3+ to produce p0ε+ and (u0ε)3+ so

that ∂ε, j
0 (u0ε+ · n0ε) = ∂

j
0 (u0 · n0) ∗ ηε for 0 � j � 2, where here ηε is the mollifier

in two space dimensions. This is done by writing the initial time derivatives on the
boundary in terms of normal derivatives (done using the definition of the initial
time derivatives plus an inductive argument), which allows us to specify the normal
derivatives of the correction term needed on Γ in terms of p̃0ε+, ũ0ε+, s̃0ε+, f̃ 0ε and
we use Lemma 2 to construct a correction term in the interior with the desired
normal derivatives on the boundary.

Similarly,we add correction terms to p̃0ε− and (ũ0ε)3− to produce p0ε− and (u0ε)3−
so that the compatibility conditions (31)–(32) up to order 2 are satisfied up to order
2 by the smoothed initial data.

Note that since we have used Lemma 2 to construct our correction terms with
the same regularity as U 0± uniformly in ε, the correction terms disappear as ε → 0
by virtue of the fact that the initial data (U 0+,U 0−, f 0) satisfies the compatibility
conditions up to order 2, and the claimed convergences hold. 
�
Proposition 5. Let (U 0+,U 0−, f 0) be initial data which satisfy the hypotheses of
Theorem 2, so in particular satisfy the compatibility conditions up to order 2. Then
there exists a sequence of initial data (U 0

m+,U 0
m−, f 0m), m � 1, which satisfies all

the conclusions of Proposition 4 (replacing ε → 0 with m → ∞) and in addition
each element of the sequence satisfies the compatibility condition (31) up to order
3.

Proof. We smooth the initial data as in Proposition 4 then add a correction term
1
3! x

3
3χ( x3

η
)q0ε− to p0ε to produce p0ε,η− for η > 0 where q0ε− is chosen such that the

initial data with this corrected pressure satisfies the compatibility condition (31) up
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to order 3. We then extract a subsequence (εm, ηm) where we first choose εm then
ηm to ensure convergence. 
�

7.2. Reduction to the Case of Smooth Initial Data

Proposition 6. Suppose we can prove the existence part of Theorem 2 under the
additional assumption that the initial data (U 0+,U 0−, f 0) are smooth, ie ∇αU 0± ∈
L2(Ω±) and ∇α′

f 0 ∈ L2(R2) for all |α| � 1, and that the compatibility con-
dition (31) holds up to order 3. Then Theorem 2 follows (without the smoothness
assumption).

Proof. This is a straightforward, if technical, consequence of Proposition 5 together
with the energy estimate and bounds on the constantsC0 and T 0 in terms of the size
of the initial data given in the statement of Theorem 2 and weak-∗ compactness,
the Sobolev embedding theorem and the Sobolev compact embedding theorem on
bounded domains. 
�

8. The µ-Approximate Equations

Herewe define a sort of viscous regularisation of the Equations (25)–(30) on the
fixed domains. For brevity we do not redefine quantities whose definition is obvious
given notation we have introduced previously. Also, we will not write explicitly
the dependence on μ of a solution to the μ-approximate equations else the notation
would be too messy.

8.1. Definition of the μ-Approximate Equations

Definition 17. For μ > 0, given the density functions ρ±(t) ∈ C1
b(Ω±) for each t ,

we define the smoothed density ρμ± as

ρμ± = (ExtΩ± ρ±) ∗ ημ

∣
∣
Ω± ,

where the Sobolev extension operators ExtΩ± are defined in Definition 2 and the
standard mollifier ημ is defined in Definition 1. Note that we mollify only in space,
not in time. We also apply this definition to the initial data ρ0±.

Note that by properties of mollification and Sobolev extension,

‖ρμ − ρ‖L∞(Ω±) � μC‖∇ρ‖L∞(Ω±),

hence

‖ρμ − ρ‖L∞(Ω±) → 0 as μ → 0, (38)

provided ‖∇ρ‖L∞(Ω±) is bounded.
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Definition 18. Let μ ∈ (0, 1].
Fix T ∈ (0,∞). Also fix (g1)± ∈ Cb((0, T ) × Ω±; R

3), g2 ∈ Cb((0, T ) × Γ )

and write g = (g1, g2) which we will call the right hand side of the equations.
Let f ∈ C1

b((0, T
′)×R

2)with∇′ f ∈ C1
b((0, T

′)×R
2) for all T ′ ∈ (0, T ). Let

U± = (p±, u±, s±) ∈ C1
b((0, T

′) × Ω±) for all T ′ ∈ (0, T ). In addition, assume
u± ∈ C2

b (Ω±), u±|Γ · n ∈ C2
b (R

2) for each t ∈ (0, T ).
We will say that (U+,U−, f ) is a solution of the μ-approximate equations on

the time interval (0, T ) with lifting operator La and right hand side g, with initial
data

(U 0+,U 0−, f 0) := (U+|t=0,U−|t=0, f |t=0)

if ρ(t, x) > 0, ρμ(t, x) > 0 and Jψ(t, x) > 0 in (0, T ) × Ω±, and p±, u±, s±, f
satisfy the following system of PDEs:

1

ρc2
(∂t + uψ · ∇)p + ∇ψ · u = 0 (39)

ρμ(∂t + uψ · ∇)u + ∇ψ p = μ∇ψ(ρc2∇ψ · u) + g1 (40)

(∂t + uψ · ∇)s = 0 (41)

in (0, T ) × Ω±,

∂t f = u± · n (42)

[p − μρc2∇ψ · u] = −σ∇′ · n̂ + μ(Δ′ − 1)(u · n) + g2 (43)

on (0, T ) × Γ ,

ψ := La f. (44)

8.2. Initial Data and the Compatibility Conditions

Definition 19. In the same way as we defined the initial time derivatives in Def-
inition 5, we may define the initial time derivatives ∂

μ,g, j
0 associated with the

μ-approximate equations with lifting operator La and right hand side g, which act
on differentiable expressions involving the initial data (U 0+,U 0−, f 0).

Definition 20. Let (U 0+,U 0−, f 0) be initial data for the μ-approximate equations
with lifting operator La and right hand side g. We say that (U 0+,U 0−, f 0) satisfies
the normal velocity jump compatibility condition up to order k if

∂
μ,g, j
0 [u0 · n0] = 0 (45)

for 0 � j � k. We say that (U 0+,U 0−, f 0) satisfies the pressure interface compati-
bility condition up to order k if

∂
μ,g, j
0 [p0 − μρ0(c0)2∇ψ0 · u0] = ∂

μ,g, j
0 (−σ(∇′ · n̂0) + μ(Δ′ − 1)(u0|Γ · n0))

+ ∂
j
t g2(t)|t=0 (46)

for 0 � j � k.
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8.3. Energy for the μ-Approximate Equations

Here, we introduce two separate energies, Eμ and Eμ, associated with the
approximate equations. We will call the energy Eμ theμ-independent energy since
it will be used in aμ-independent energy estimate and should be thought of as being
like the energy E for the equations in the fixed domains as defined in Definition 15
but with some extra termsmultiplied by powers ofμ added which correspond to the
addition of the terms involving μ to the equations in the fixed domains, allowing
us to close the energy estimate for the μ-approximate equations. We will call the
energy Eμ the higher orderμ-approximate energy and we will use this for solutions
of the μ-approximate equations with μ fixed. The advantage of introducing this
energy is that we may perform the μ-independent energy estimate on solutions
of the μ-approximate equations with Eμ(T ) < ∞ without having to worry about
whether the solution has enough derivatives for us to differentiate the equations.

Definition 21. Let f ∈ L1
loc((0, T ) × R

2), U± ∈ L1
loc((0, T ) × Ω±). Define the

lower-order energy Eμ : (0, T ] → [0,∞] for the μ-approximate equations asso-
ciated to the vector (U+,U−, f ), as follows:

Eμ(t) = E(t) + μ2
∑

±

∑

0� j�2

ess sup
τ∈(0,t)

‖∂ j
t ∇u‖2H3− j (Ω±)

+ μ2
∑

±

∫ t

0
‖∂3t u‖2H1(Ω±)

dτ

+ μ
∑

0� j�3

∫ t

0
‖∂ j

t (u · n)‖2H4− j (R2)
dτ

+ μ2
∑

0� j�2

ess sup
τ∈(0,t)

‖∂ j
t (u · n)‖2H4.5− j (R2)

,

where E(t) denotes the energy for the fixed equations associated to (U+,U−, f ),
as defined in Definition 15.

We define the initial lower-order energy E0
μ for the μ-approximate equa-

tions with lifting operator La and right hand side g associated to the initial data
(U 0+,U 0−, f 0) as

E0
μ = E0 + μ2

∑

±

2
∑

j=0

‖∂μ,g, j
0 ∇u0‖H3− j (Ω±)

+ μ2
∑

0� j�2

‖∂μ,g, j
0 (u0 · n0)‖2H4.5− j (R2)

,

where in the definition of E0 we replace ∂
j
0 with ∂

μ,g, j
0 .
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Definition 22. Let f ∈ L1
loc((0, T ) × R

2), U± ∈ L1
loc((0, T ) × Ω±). Define the

higher order energy Eμ : (0, T ] → [0,∞] associated with (U+,U−, f ) as follows:

Eμ(t) = Eμ(t) + ess sup
τ∈(0,t)

∑

±

∑

0� j�3

‖∂ j
t ∇U‖2H3− j (Ω±)

+
∑

±

∫ t

0
‖∂4t U‖2L2(Ω±)

dτ

+ ess sup
τ∈(0,t)

∑

±

∑

0� j�2

‖∂ j
t (∇ψ × u)‖2H4− j (Ω±)

+
∑

±

∑

0� j�3

∫ t

0
‖∂ j

t ∇u‖2H4− j (Ω±)
dτ

+
∑

0� j�3

ess sup
τ∈(0,t)

‖∂ j
t ∇′ f ‖2H4.5− j (Γ )

+
∫ t

0
‖∂4t f ‖2H1(Γ )

dτ

+ ess sup
τ∈(0,t)

∑

0� j�3

‖∂ j
t (u · n)‖2H4− j (Γ )

+
∑

0� j�3

∫ t

0
‖∂ j

t (u · n)‖2H5.5− j (Γ )
dτ.

Note that if Eμ(T ′) < ∞ then Eμ is uniformly continuous on (0, T ′].
We define the higher-order initial energy E0

μ for the μ-approximate equa-
tions with lifting operator La and right hand side g associated to the initial data
(U 0+,U 0−, f 0) as

E0
μ = E0

μ +
∑

±

∑

0� j�3

‖∂μ,g, j
0 ∇U 0‖2H3− j (Ω±)

+
∑

±

∑

0� j�2

‖∂μ,g, j
0 (∇ψ0 × u0)‖2H4− j (Ω±)

+
∑

0� j�3

‖∂μ,g, j
0 ∇′ f 0‖2H4.5− j (Γ )

+
∑

0� j�3

‖∂μ,g, j
0 (u0 · n0)‖2H4− j (Γ )

.

Note that wewill use this energy for fixedμwhen proving existence of solutions
to the μ-approximate equations and estimates involving it will always depend on
μ.

Definition 23. Given a right hand side function g for shorthandwedefine the energy
associated with g as

Eg(t) :=
∑

±

3
∑

j=0

ess sup
τ∈(0,t)

‖∂ j
t g1‖2H5− j (Ω±)

+
4

∑

j=0

ess sup
τ∈(0,t)

‖∂ j
t g2‖2H5− j (Γ )

(47)

for t ∈ (0, 1]. Note that if Eg(T ′) < ∞ then Eg is uniformly continuous on (0, T ′].
Note that for simplicity we have not attempted to make the order of Eg(t) in

space as low as possible since eventually g will depend on the smoothed initial data
for the original problem in the fixed domains.
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Definition 24. We say that initial data (U 0+,U 0−, f 0) for the μ-approximate equa-
tions is smooth if

E0
max < ∞,

where the high-order initial energy E0
max is defined as:

E0
max =

∑

±
‖U 0‖2L∞(Ω±) + ‖ f 0‖2L∞(Γ ) +

∑

±
‖∇U 0‖H20(Ω±) + ‖∇′ f 0‖2H20(Γ )

.

(48)

8.4. Statement of Existence of Solutions to the μ-Approximate Equations

Theorem 3. Let μ ∈ (0, 1] and let (U 0+,U 0−, f 0) be smooth initial data for the
μ-approximate equations with lifting operator La and right hand side g, with
E0
max < ∞. Assume that this initial data satisfies the compatibility condition (45)

up to order 3 and the condition (46) up to order 2. Assume that the right hand side
g satisfies Eg(1) < ∞. Assume also that the initial data satisfy

inf
x∈Ω±

ρ0 =: δ0 > 0 (49)

inf
x∈Ω±

ρ0
μ =: δ0μ > 0 (50)

inf
x∈R3

Jψ0 =: κ0 > 0. (51)

Then there is a time T 0
μ ∈ (0, 1] and a solution (U+,U−, f ) of the μ-

approximate equations with lifting operator La and right hand side g on the time
interval (0, T 0

μ), as in Definition 18. Moreover,

Eμ(T 0
μ) � C0

μ < ∞, ρ � δ0

2
in (0, T 0

μ) × Ω±,

ρμ �
δ0μ

2
in (0, T 0

μ) × Ω±, Jψ � 1

2
κ0 in (0, T 0

μ) × R
3

The constant C0
μ > 0 is bounded above as follows:

C0
μ � Cμ

(

E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

< ∞,

where Cμ(·) is a smooth increasing function of its arguments, and may depend on
μ.

The time T 0
μ > 0 is bounded below as follows:

T 0
μ � Tμ

(

E0
max,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

> 0,

where Tμ(·) is a smooth decreasing function of its arguments, and may depend on
μ. Note that the time interval of existence here depends on the high-order energy
E0
max of the initial data.

Proof. See Sections 10–14. 
�
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Theorem 4. Let μ ∈ (0, 1] and let (U 0+,U 0−, f 0) and g satisfy the hypotheses of
Theorem 3. Then there exists Tμ ∈ (0, 1] and a solution (U+,U−, f ) of the μ-
approximate equations with lifting operator La and right hand side g on the time
interval (0, Tμ), satisfying the following additional properties:

Eμ(t) < ∞, inf
τ∈(0,t)

inf
x∈Ω±

ρ > 0, inf
τ∈(0,t)

inf
x∈Ω±

ρμ > 0, inf
τ∈(0,t)

inf
x∈R

Jψ > 0

for all t ∈ (0, Tμ), and if Tμ < 1, then one of the following holds as t ↑ Tμ:

Eμ(t) → ∞, inf
x∈Ω±

ρ → 0, inf
x∈Ω±

ρμ → 0, inf
x∈Ω±

Jψ → 0

Note carefully that the blow-up condition is on the lower-order energy Eμ(t).

Proof. See Section 14.3.2. 
�

8.5. Statement of the μ-Independent Energy Estimate for the μ-Approximate
Equations

Proposition 7. Let (U+,U−, f ) be a solution of theμ-approximate equations with
lifting operator La and right hand side g as defined in Definition 18 on the time
interval (0, T ) with initial data (U 0+,U 0−, f 0), where μ ∈ (0, 1]. Suppose in addi-
tion that Eμ(T ) < ∞ and that the initial data satisfies the conditions (49)–(51).

Then there exists a time 0 < T 0 � 1 and a constant C0 > 0 such that

Eμ(min{T 0, T }) � C0, ρ± � δ0

2
in (0,min{T 0, T }) × Ω±,

ρμ± �
δ0μ

2
in (0,min{T 0, T }) × Ω±, Jψ � 1

2
κ0 in (0,min{T 0, T }) × R

3.

The time T 0 > 0 is bounded below as follows:

T 0 � T

(

E0
μ,

1

δ0
,
1

κ0 ,
1

δ0μ
, Eg(1)

)

> 0,

where T (·) is a smooth decreasing function of its arguments. Similarly, the constant
C0 > 0 is bounded above as follows:

C0 � C

(

E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

< ∞,

where C(·) is a smooth increasing function of its arguments.

Proof. See Section 9. 
�
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8.6. Reduction to Solving the μ-Approximate Equations

Proposition 8. Let μ ∈ (0, 1], let (U 0+,U 0−, f 0) and g satisfy the hypotheses of
Theorem 3, and suppose that Theorem 4 and Proposition 7 hold. Then there exists
T 0 ∈ (0, 1] and a solution (U+,U−, f ) of the μ-approximate equations with
lifting operator La and right hand side g on the time interval (0, T 0), satisfying
the following additional properties:

Eμ(T 0) � C0, ρ± � δ0

2
in (0, T 0) × Ω±,

ρμ± �
δ0μ

2
in (0, T 0) × Ω±, Jψ � 1

2
κ0 in (0, T 0) × R

3.

The time T 0 > 0 is bounded below as follows:

T 0 � T

(

E0
μ,

1

δ0
,
1

κ0 ,
1

δ0μ
, Eg(1)

)

> 0,

where T (·) is a smooth decreasing function of its arguments. Similarly, the constant
C0 > 0 is bounded above as follows:

C0 � C

(

E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

< ∞,

where C(·) is a smooth increasing function of its arguments.

Proof. This is straightforward using Theorem 4 and especially the blow-up criteria
therein, together with the energy estimate given in Proposition 7. 
�
Proposition 9. Let (U 0+,U 0−, f 0) be smooth initial data for the original equations
in the fixed domains satisfying the compatibility condition (32) up to order 2, and
(31) up to order 3, plus the conditions

inf
x∈Ω±

ρ0 =: δ0 > 0, inf
x∈R3

Jψ0 =: κ0 > 0.

Note that by being smooth we mean E0
max < ∞ where E0

max is given in terms of
(U 0+,U 0−, f 0) by (48). Then there exists a μ0 ∈ (0, 1] depending only on the initial
density ρ0 = ρ(p0(x), s0(x)) and functions c1(t, x), c2(t, x) depending only on μ

and the initial data (U 0+,U 0−, f 0) which are smooth for ρ0, ρ0
μ, Jψ0

> 0 such that
the following is true. Firstly,

inf
x∈Ω±

ρ0
μ =: δ0μ � δ0

2

for all μ ∈ (0, μ0]. Secondly,
Ec(1) → 0 as μ → 0,

where c = (c1, c2) and Ec is defined in (47) with c replacing g. Thirdly, the initial
data (U 0+,U 0−, f 0) satisfy the compatibility condition (46) up to order 2, and (45)
up to order 3 for the μ-approximate equations with right hand side c = (c1, c2).
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Proof. First of all, fix μ0 ∈ (0, 1] such that ρ0
μ � δ0

2 for all μ ∈ (0, μ0].
We define the functions c1 and c2 to make the initial data (U 0+,U 0−, f 0) com-

patible with the μ-approximate equations with right hand side c = (c1, c2). We
set

c1±(t) =
2

∑

k=0

tk

k!c
k
1± and c2(t) =

2
∑

k=0

tk

k!c
k
2

where the coefficients ck1±, ck2 are defined below. Note that

∂
j
t c1±(t)|t=0 = c j1± for 0 � j � 2

∂
j
t c2(t)|t=0 = c j2 for 0 � j � 2.

We want to have, for 0 � j � 3,

∂
μ,c, j
0 U 0± = ∂

j
0U

0± (52)

∂
μ,c, j
0 f 0 = ∂

j
0 f 0, (53)

where ∂
j
0 are the initial time derivatives associated with the equations on the fixed

domains as defined in (13). We see that the equations defining ∂
μ,c, j
0 are all the

same as the equations defining ∂
j
0 except for the velocity equation (40). Let us

assume inductively that (52)–(53) hold for 0 � k � j (and note the case j = 0 is
trivial). This means it makes sense for us to subtract the formula for ∂

j
0 u

0 from the

formula for ∂
μ,c, j
0 u0 to obtain

∂
μ,c, j+1
0 u0± − ∂

j+1
0 u0±

= ∂
j
0

((

1

ρ0±
− 1

ρ0
μ±

)

∇ψ0
p0± + μ

ρ0
μ±

∇ψ0
(ρ0±(c0±)2∇ψ0 · u0±)

)

+
∑

k+l= j,l �= j

∂k0

(

1

ρ0
μ±

)

cl1± + 1

ρ0
μ±

c j1±.

Thus we define inductively, for 0 � j � 2,

c j1± = −ρ0
μ±

∑

k+l= j,l �= j

∂k0

(

1

ρ0
μ±

)

cl1±

− ρ0
μ±∂

j
0

((

1

ρ0±
− 1

ρ0
μ±

)

∇ψ0
p0± + μ

ρ0
μ±

∇ψ0
(ρ0±(c0±)2∇ψ0 · u0±)

)

.

Hence (52)–(53) hold for 0 � j � 3. Having established this, we will now
write ∂

j
0 instead of ∂

μ,c, j
0 for the rest of this proof where appropriate, when acting

on this specific initial data (U 0+,U 0−, f 0).



638 Ben Stevens

Wewant the initial data (U 0+,U 0−, f 0) to be compatible with theμ-approximate
equations, that is, to satisfy the compatibility condition (46) up to order 2 and the
compatibility condition (45) up to order 3.

The fact that (45) holds up to order 3 for (U 0+,U 0−, f 0) follows directly from
the fact that (31) holds up to order 3 and (52)–(53) hold for 0 � j � 3. This means
∂
j
0 (u0+ · n0) = ∂

j
0 (u0− · n0) for 0 � j � 3 so we can write simply ∂

j
0 (u0 · n0). We

define

c j2 := −μ(Δ′ − 1)∂ j
0 (u0 · n0) − μ[∂ j

0 (ρ0(c0)2∇ψ0 · u0)].
Using the compatibility condition (32) for 0 � j � 2, we have

∂
j
0 [p0 − μρ0(c0)2∇ψ0 · u0] − ∂

j
0 (−σ(∇′ · n̂0) + μ(Δ′ − 1)(u0|Γ · n0))

= −∂
j
0 [μρ0(c0)2∇ψ0 · u0] − ∂

j
0 (μ(Δ′ − 1)(u0 · n0))

= c j2 ,

which is the compatibility condition (46). Thus (46) holds up to order 2.
It is now straightforward to show that Ec(1) → 0 as μ → 0. 
�

Proposition 10. Suppose that Theorem 4 and Proposition 7 are true.
Then the main theorem in the fixed domains, Theorem 2, follows, excluding the

statement of uniqueness.

Proof. The proof is standard given Propositions 8 and 9, hence we sketch the
details. We let (U 0+,U 0−, f 0) be initial data for the original equations in the fixed
domains satisfying the hypotheses therein plus the extra smoothness and compat-
ibility allowed by Proposition 6. Let μ0 ∈ (0, 1] and cμ = (cμ

1 , cμ
2 ) for each

μ ∈ (0, μ0] be given by Proposition 9 and use these as the right hand side of the
μ-approximate equations so the initial data are compatible.

Now it is quite straightforward using Proposition 8, and especially the energy
estimate therein, together with weak-∗ compactness and Sovolev compact embed-
ding, to let μ → 0 along a subsequence to obtain a solution of the equations in the
fixed domains with the desired properties. 
�

8.7. The Curl of the Velocity Equation

It will be necessary during theμ-independent energy estimate to take the curl of
the velocity equation. We will also introduce a linearised equation for the curl later,
which is motivated by taking the curl of the velocity equation before linearisation.
For these reasons we present the curl of the velocity equation, written as an equation
for the curl of the velocity, ∇ψ × u, below.

Lemma 3. Suppose that u satisfies the μ-approximate velocity equation (40). Sup-
pose that in addition to the regularity stated inDefinition 18, we have ∂tψ, ∂t u, g1 ∈
H1
loc(Ω±), p, s, u,∇ψ,∇u ∈ H2

loc(Ω±). Then∇ψ ×u satisfies the following equa-
tion.

ρμ(∂t + uψ · ∇)(∇ψ × u) = −∇ψρμ × (∂t + uψ · ∇)u − ρμ(εi jk∂
ψ
j ul∂

ψ
l uk)
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+ ∇ψ × g1 (54)

in (0, T )×Ω±, where (εi jk∂
ψ
j ul∂

ψ
l uk)denotes the vectorwith i-th component given

by εi jk∂
ψ
j ul∂

ψ
l uk and we have used summation convention for repeated indices.

In particular, our definition of initial time derivatives allows us to restrict the
above equation to the time t = 0 and replace ∂t with ∂

μ,g,1
0 etc.

Proof. We could apply∇ψ× to theμ-approximate velocity equation (40) directly,
but it is easiest first to transform back to the original domains Ω±(t). We recall the
velocity equation

ρμ(∂t + uψ · ∇)u + ∇ψ p = μ∇ψ(ρc2∇ψ · u) + g1.

Setting p̌ = p ◦ θ−1, ǔ = u ◦ θ−1 and š = s ◦ θ−1, ρ̌μ = ρμ ◦ θ−1, ρ̌ = ρ ◦ θ−1,
č = c ◦ θ−1, ǧ1 = g1 ◦ θ−1, where the diffeomorphism θ is defined in Lemma 1,
and using the coordinate change relations (35)–(36), we obtain

ρ̌μ(∂t + ǔ · ∇)ǔ + ∇ p̌ = μ∇(ρ̌č2∇ · ǔ) + ǧ1.

in ΩT± . Now we apply ∇× to obtain

ρ̌μ(∂t+ǔ · ∇)(∇ × ǔ)+(∇ρ̌μ) × (∂t + ǔ · ∇)ǔ + ρ̌μ(εi jk∂x j ǔl∂xl ǔk) = ∇ × ǧ1.

Then we use the coordinate change relations (35)–(36) again to obtain

ρμ(∂t + uψ · ∇)(∇ψ × u) + (∇ψρμ) × (∂t + uψ · ∇)u + ρμ(εi jk∂
ψ
j ul∂

ψ
l uk)

= ∇ψ × g1

as required. 
�

9. Proof of the µ-Independent Energy Estimate for the μ-Approximate
Equations

In this section we assume we are given a solution (U+,U−, f ) of the μ-
approximate Equations (39)–(44) satisfying the hypotheses of Proposition 7 and
we proceed to show that the conclusions of Proposition 7 hold.

9.1. Notation for Constants and Functions of the Energy and Initial Data

Definition 25. It will be convenient to define some generic constants/functions
depending on the energy and initial data in a given way.

Firstly, we will always write F for a generic smooth increasing function of its
arguments which is independent of μ.

We will write C for a generic constant which is independent of the solution,
including being independent of the initial data, and independent of μ.
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We define M0 as a generic constant of the form

M0 := F

(

E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

.

We define K (t) as a generic function of t of the form

K (t) := F(Eμ(t), M0).

Remark 3. Note that for t bounded above, we may bound the square of the expres-
sionM0+t K (t) by an expression of the same form. In fact, sincewe are considering
short-time existence only, we have chosen to always bound t above by 1, where 1
is chosen as a convenient strictly positive constant.

Note that throughout this section we will group lower order terms into generic
remainder terms, denoted by R with appropriate superscripts and subscripts to
denote the order of the remainder. We define these remainder terms and prove
estimates for them in Section 9.18 in order to try and focus on the more important
estimates in the main body of the proof of the μ-independent energy estimate.

9.2. The Material Derivative Operators

Definition 26. We define the material derivative operators Du±
t by

Du±
t = ∂t + uψ

± · ∇.

It is important to note that we allow Du−
t to act on functions on Ω+ by defining

u− on Ω+ by Sobolev extension, and vice-versa, in which case Du−
t (or Du+

t ) is
no longer a material derivative in Ω+ (or Ω−), but it has the important advantage
of being continuous across the interface Γ .

Note that Du±
t acts along Γ since

Du±
t = ∂t + u′± · ∇′ (55)

on Γ as uψ
3± = 0 on Γ .

We also define the material derivative of the pressure ṗ by

ṗ± = Du±
t p±.

Note that, by virtue of the pressure equation (39) which is the same as (25), we
have the important relation

ṗ = −ρc2∇ψ · u

for solutions of the equations.
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9.3. Restriction of the Time Interval

Note that by uniform continuity and the conditions (49)–(51), there exists a
0 < T̃ � min{T, 1}, which may depend on the solution, such that

ρ � 1

2
δ0 (56)

ρμ � 1

2
δ0μ (57)

Jψ � 1

2
κ0 (58)

for t ∈ (0, T̃ ).
We define T ′ to be the supremum over all such T̃ .
In the estimates below will assume that t ∈ (0, T ′) until stated otherwise. Part

of our goal will be to prove that T ′ can be taken bigger than T 0, which depends
only on the initial data.

Our main aim will be to show that for t ∈ (0, T ′) we have

Eμ(t) � (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

,

where we are free to choose ε ∈ (0, 1]. We could absorb the term ε
1
2 t K (t)Eμ(t)

into the term 1

ε
3
2
t K (t) but because this is how the estimate naturally comes out,

and also to maintain consistency with later similar notation, we leave it like this.

9.4. Using the Energy to Extend the Assumptions on the Initial Data

We claim that the following inequalities hold:

‖ρ − ρ0‖L∞(Ω±) � t K (t) (59)

‖ρμ − ρ0
μ‖L∞(Ω±) � t K (t) (60)

‖∂x3ψ − ∂x3ψ
0‖L∞(Ω±) � t K (t). (61)

This is easy to check using the Sobolev embedding theorem H2(Ω±) ⊂ L∞(Ω±)

and the fundamental theorem of calculus.

9.5. Estimate of the Lower Order Terms in the Energy

We claim that

‖U, ψ‖L∞(Ω±) � M0 + t K (t) (62)

‖ f ‖W 1,∞(Γ ) � M0 + t K (t) (63)

‖∂αU‖2L2(Ω±)
� M0 + t K (t) (64)

‖∂α f ‖2H1(Γ )
+ ‖∂β f ‖2H2.5(Γ )

� M0 + t K (t), (65)

where 1 � |α| � 2 and |β| = 1. Indeed, this is easy to check using the funda-
mental theorem of calculus and the Sobolev embedding theorem for the first two
inequalities.
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9.6. The Differentiated Equations and the Corrected Pressure, Velocity and
Entropy

Once we have differentiated the equations enough times, the lower order terms
may all be estimated in terms of the energy by the Sobolev embedding theo-
rem, and hence we may try to obtain energy estimates in the same way as for
constant-coefficient linear equations. One problem is that the pressure and velocity
equations involve a time derivative of the lift of the front, ψ , whose time deriva-
tives can only be estimated to the same order as the velocity etc, so it cannot be
treated as a coefficient. Treating ψ like the other unknowns U makes the equa-
tions non-symmetric so that we cannot obtain energy estimates directly. To rectify
this, we introduce corrected pressure, velocity and entropy functions—introduced
in the linear setting by Alinhac [2] and referred to as the good unknowns—
which absorbs the highest order derivatives of ψ into the unknowns. Note that
we only need to use these when estimating the highest order time derivatives,
although we may use them for estimating other derivatives as well simply for
convenience.

9.6.1. The Differentiated Interior Equations We apply ∂α to the equations
(39)–(41), where 1 � |α| � 3, and use the Leibniz and chain rules to obtain the
following equations (note that, prior to differentiation, we have replaced ρc2∇ψ ·u
with − ṗ, which is more convenient to work with):

1

ρc2
(∂t + uψ · ∇)∂α p

c − 1

ρc2 Jψ
(∂t∂

αψ + u · ∇∂αψ − 1

Jψ
(∂x3∂

αψ)(∂tψ + u · ∇ψ))∂x3 p

+ ∇ψ · ∂αu − ∇∂αψ

Jψ
· ∂x3u + ∇ψ

(Jψ)2
∂x3∂

αψ · ∂x3u = R|α|(U, ψ) (66)

ρμ(∂t + uψ · ∇)∂αu − ρμ

Jψ
(∂t∂

αψ + u · ∇∂αψ − 1

Jψ
(∂x3∂

αψ)(∂tψ

+ u · ∇ψ))∂x3u + ∇ψ∂α p − ∇∂αψ

Jψ
∂x3 p + ∇ψ

(Jψ)2
∂x3∂

αψ∂x3 p

= −μ∇ψ∂α ṗ + R|α|(U, ψ) + μR|α|(U, ψ, ṗ) (67)

(∂t + uψ · ∇)∂αs − 1

Jψ
(∂t∂

αψ + u · ∇∂αψ − 1

Jψ
(∂x3∂

αψ)(∂tψ + u · ∇ψ))∂x3s

= R|α|(U, ψ) (68)

in (0, T ′)×Ω±. The lower order remainder terms on the right hand side are defined
in Definitions 28 and 29. Note that in fact, we could absorb the terms involving
∇∂αψ into the remainder, but not the terms involving ∂t∂

αψ if ∂α consists of all
time derivatives.

Indeed, we now assume that α0 � 2. Because ∂α contains a maximum of 2
time derivatives, we may absorb the terms involving high-order derivatives of ψ in
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the Equations (66)–(67) into the remainder terms. Hence we obtain the following
equations:

1

ρc2
(∂t + uψ · ∇)∂α p + ∇ψ · ∂αu = R|α|(U, ψ) (69)

ρμ(∂t + uψ · ∇)∂αu + ∇ψ∂α p + μ∇ψ∂α ṗ = R|α|(U, ψ) + μR|α|(U, ψ, ṗ)
(70)

(∂t + uψ · ∇)∂αs = R|α|(U, ψ) (71)

in (0, T ′) × Ω±.

9.6.2. The Corrected Pressure, Velocity and Entropy For α a multi-index with
2 � |α| � 3, we define the corrected unknowns (pressure, velocity and entropy) as

Uα = ∂αU − ∂αψ

Jψ
∂x3U. (72)

We write

Uα = (pα, uα, sα).

Note that, provided |α| is large enough, ∂Uα = ∂∂αU − ∂∂αψ

Jψ ∂x3U plus lower
order terms, and we see exactly this term in the differentiated pressure equations.
This is the motivation for the definition of Uα .

Lemma 4. For 2 � |α| � 3 and |β| = 2, we have

‖∂αU‖2L2(Ω±)
� C‖Uα‖2L2(Ω±)

+ (M0 + t K (t))‖∂α f ‖2H1(Γ )
(73)

‖Du−
t ∂βU‖2L2(Ω±)

� C‖Du−
t Uβ‖2L2(Ω±)

+ (M0 + t K (t))‖(∂β f, ∂ ′∂β f )‖2H1(Γ )

(74)

‖Uα‖2L2(Ω±)
� C‖∂αU‖2L2(Ω±)

+ (M0 + t K (t))‖∂α f ‖2H1(Γ )
. (75)

Proof. This is easy to check using the lower order estimates (62)–(64) and the
Sobolev embedding theorem plus Holder’s inequality to estimate the L2 norm of a
product in terms of the product of H1 norms where necessary. 
�
Lemma 5. For 2 � |α| � 3, we have

(∂t + uψ · ∇)∂αU = (∂t + uψ · ∇)Uα + (∂t + uψ · ∇)∂αψ

Jψ
∂x3U + R|α|(U, ψ)

= (∂t + uψ · ∇)Uα + 1

Jψ
((∂t + u · ∇)∂αψ

− 1

Jψ
(∂tψ + u · ∇ψ)∂x3∂

αψ)∂x3U

+ R|α|(U, ψ)
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and

∇ψ∂αU = ∇ψUα + ∇ψ∂αψ

Jψ
∂x3U + R|α|(U, ψ)

= ∇ψUα + 1

Jψ
(∇∂αψ − ∇ψ

Jψ
∂x3∂

αψ)∂x3U + R|α|(U, ψ),

where Rk(U, ψ) denotes the same generic remainder term given in Definition 28.

Proof. We may simply differentiate the formula (72) to find

∂∂αU = ∂Uα + ∂∂αψ

Jψ
∂x3U + ∂αψ

Jψ
∂∂x3U − ∂αψ

(Jψ)2
∂∂x3ψ∂x3U,

and we note that the last two terms on the right have the same form as the remainder
R|α|(U, ψ), provided that 2 � |α| � 3. Then we simply use the definitions of ∇ψ

and uψ . 
�

We now substitute

∂αU = Uα + ∂αψ

Jψ
∂x3U

in the Equations (66)–(68) for 2 � |α| � 3 and use the above lemma to obtain

1

ρc2
(∂t + uψ · ∇)pα + ∇ψ · uα = R|α|(U, ψ) (76)

ρμ(∂t + uψ · ∇)uα + ∇ψ pα = −μ∇ψ∂α ṗ + R|α|(U, ψ) + μR|α|(U, ψ, ṗ)
(77)

(∂t + uψ · ∇)sα = R|α|(U, ψ) (78)

in (0, T ′) × Ω±.

9.6.3. Tangential and Time Derivatives of the Jump Conditions We may dif-
ferentiate the jump conditions (42)–(43) with respect to time and the horizontal
directions to obtain

∂t∂
α f = ∂αu± · n − u′± · ∇′∂α f + R|α|−1

Γ (U, f ) (79)

[∂α p + μ∂α ṗ] = −σ∇′ · ∂α n̂ + μ(Δ′ − 1)∂α(u · n) + ∂αg2 (80)

on (0, T ′) × Γ , where α is a multi-index with |α| � 3 and α3 = 0. We find it
convenient not to try and write these in terms of the corrected pressure and velocity
for the time being. The lower order remainder terms on the right hand side are
defined in Definition 30.
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9.6.4. Differentiating the Unit Normal

Lemma 6. Let 1 � |α| � 3 with α3 = 0. Then

∂α

(∇′ f
|n|

)

= ∂α∇′ f
|n| − (∇′ f · ∂α∇′ f )∇′ f

|n|3 + R|α|−1
Γ ( f )

where the remainder R|α|−1
Γ ( f ) is defined in Definition 31.

Proof. This is a simple application of the product rule. 
�
Lemma 7. Let w ∈ R

2 be any vector (in particular we are interested in w =
∂α∇′ f ). Then

1

|n|3 |w|2 � 1

|n| |w|2 − 1

|n|3
∣
∣∇′ f · w

∣
∣2

Proof. This is a simple application of Cauchy–Schwarz. 
�

9.7. A Slightly Lower Order Estimate for the Front

Let |α| = 3 with α3 = 0. In this section we wish to estimate ∂α f as opposed
to ∂α∇′ f .

Suppose ∂α = ∂xi ∂
β for |β| = 2. Then in fact

‖∂α f ‖2L2(Γ )
� ‖∂β∇′ f ‖2L2(Γ )

� M0 + t K (t),

where we have used the lower order estimate (65).
Otherwise, ∂α = ∂t∂

β for |β| = 2. Then the Equation (79) implies

∂t∂
β f = ∂βu · n − u′ · ∂β∇′ f + R1

Γ (U, f ).

Hence, using the lower order estimates (62)–(65) and the lower order remainder
estimate (122), we have

‖∂t∂β f ‖2L2(Γ )
� (M0 + t K (t))

(

1 + ‖∂βu‖2L2(Γ )

)

� (M0 + t K (t))

(

1 + ε‖∂βu‖2H1(Ω−)
+ 1

ε
‖∂βu‖2L2(Ω−)

)

� (M0 + t K (t))

(
1

ε
+ εEμ(t)

)

,

where we have used the lower order estimate (64) in the last line.
Hence we have shown that

∑

|α|=3

‖∂α f ‖2L2(Γ )
� (M0 + t K (t))

(
1

ε
+ εEμ(t)

)

. (81)
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9.8. Estimate of the Entropy

We multiply Equation (78) by sα , where 2 � |α| � 3, and use the product rule
to obtain

1

2
∂t

∣
∣sα

∣
∣2 + 1

2
∇ · (uψ

∣
∣sα

∣
∣2) = 1

2
(∇ · uψ)

∣
∣sα

∣
∣2 + R|α|(U, ψ)sα

= R|α|(U, ψ)sα

in (0, T ′) × Ω±. Note that we have absorbed the lower-order term generated by
the product rule into the remainder R|α|(U, ψ) on the right hand side. Then we
integrate over Ω± and apply the divergence theorem for Sobolev functions to the
second term on the left. Note that since (uψ)3± = 0 on Γ we are left with no
boundary terms. Hence we obtain

1

2

d

dt

∫

Ω±

∣
∣sα

∣
∣2 dx =

∫

Ω±
R|α|(U, ψ)sα dx .

Applying Cauchy’s inequality to the right hand side, we obtain

d

dt
‖sα‖2L2(Ω±)

� ‖R|α|(U, ψ)‖2L2(Ω±)
+ ‖sα‖2L2(Ω±)

.

Then using the estimate of the remainder given by lemma 118, and the estimate of
sα from (73), then integrating from 0 to t , we obtain

‖sα‖2L2(Ω±)
� M0 + t K (t). (82)

9.9. Estimate of the Tangential Derivatives of the Pressure, Velocity and Front

Here we come to one of the main parts of the energy estimate. Let α be a multi-
index with |α| = 3 and α3 = 0, so that ∂α contains no normal derivatives. Assume
also that α0 � 2, so that we may, if we wish, write ∂α = ∂xi ∂

β for some 1 � i � 2
and |β| = 2.

We intend to multiply the differentiated pressure and velocity equations (69)–
(70) by ∂α p and ∂αu respectively, then integrate by parts to obtain an energy
estimate as for the entropy. Unfortunately, since there are normal derivatives in
these equations, we will generate a boundary term on the interface. To deal with
this boundary term we will need to use the pressure interface condition (43) and the
equation (42) for the front. Note that we have differentiated these in the tangential
and time directions to obtain (80) and (79), but we cannot do the same for the
normal derivatives. Hence we will have to estimate these separately. In this section
we exclude the estimate of the highest order time derivatives since the surface
tension regularises the front in space, but not in time.

We multiply (69) by ∂α p and (70) by ∂αu. We then add the resulting equations
to obtain

1

ρc2
((∂t + uψ · ∇)∂α p)∂α p + ρμ((∂t + uψ · ∇)∂αu) · ∂αu + (∇ψ · ∂αu)∂α p
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+ (∇ψ∂α p) · ∂αu = −μ∇ψ∂α ṗ · ∂αu + R3(U, ψ)∂α p + (R3(U, ψ)

+ μR3(U, ψ, ṗ)) · ∂αu

in (0, T ′) × Ω±. Now we use the product rule to obtain

1

2
∂t

(
1

ρc2
∣
∣∂α p

∣
∣2

)

+ 1

2
∂t (ρμ

∣
∣∂αu

∣
∣2) + 1

2
∇ ·

(
1

ρc2
uψ

∣
∣∂α p

∣
∣2

)

+ 1

2
∇ · (ρμu

ψ
∣
∣∂αu

∣
∣
2
)

+ ∇′ · (∂α p∂αu) + ∂x3

(
(−∇′ψ, 1)

Jψ
∂α p · ∂αu

)

+ μ(∇′∂α ṗ + ∂x3

(
(−∇′ψ, 1)

Jψ
∂α ṗ)

)

· ∂αu

= R3(U, ψ)∂α p + R3(U, ψ) · ∂αu + μR3(U, ψ, ṗ) · ∂αu

where we have absorbed some lower order terms into the remainder on the right
hand side. Now we integrate over Ω± and apply the divergence theorem. Note that
the outward unit normal to Γ in Ω± is (0, 0,∓1). The terms which are tangential
divergences vanish, and (uψ)3± = 0 on Γ hence the third and fourth terms vanish.
We obtain

d

dt

∫

Ω±

1

ρc2
∣
∣∂α p

∣
∣
2 dx + d

dt

∫

Ω±
ρμ

∣
∣∂αu

∣
∣
2 dx ∓ 2

∫

Γ

(∂α p + μ∂α ṗ)∂αu · n dx ′

− μ

∫

Ω±
∂α ṗ∇ψ · ∂αu dx =

∫

Ω±
R3(U, ψ)∂α p + (R3(U, ψ)

+ μR3(U, ψ, ṗ)) · ∂αu dx .

We note that

∂α ṗ = −∂α(ρc2∇ψ · u) = −ρc2∇ψ · ∂αu + R3(U, ψ).

Hence

d

dt

∫

Ω±

1

ρc2
∣
∣∂α p

∣
∣
2 dx + d

dt

∫

Ω±
ρμ

∣
∣∂αu

∣
∣
2 dx ∓ 2

∫

Γ

(∂α p + μ∂α ṗ)∂αu · n dx ′

+ μ

∫

Ω±
ρc2

∣
∣∇ψ · ∂αu

∣
∣
2
dx

=
∫

Ω±
R3(U, ψ)∂α p + (R3(U, ψ) + μR3(U, ψ, ṗ)) · ∂αu

+ μR3(U, ψ)∇ψ · ∂αu dx .

We integrate in time from 0 to t , apply Cauchy’s inequality and use the estimates
(118) and (124) for the terms on the right hand side. Hence we obtain

∫

Ω±

1

ρc2
∣
∣∂α p

∣
∣2 dx +

∫

Ω±
ρμ

∣
∣∂αu

∣
∣2 dx + μ

∫ t

0

∫

Ω±
ρc2

∣
∣∇ψ · ∂αu

∣
∣
2
dx dτ
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∓ 2
∫ t

0

∫

Γ

(∂α p + μ∂α ṗ)∂αu · n dx ′ dτ � (M0 + t K (t))(
1

ε
+ εEμ(t)).

To deal with the boundary integral over Γ , which is a key point in the estimates
and is where we need to use the presence of surface tension, we must sum over ±
to obtain a jump condition. Doing this we obtain

∑

±

∫

Ω±

1

ρc2
∣
∣∂α p

∣
∣
2 dx +

∑

±

∫

Ω±
ρμ

∣
∣∂αu

∣
∣
2 dx

+ μ
∑

±

∫ t

0

∫

Ω±
ρc2

∣
∣∇ψ · ∂αu

∣
∣
2
dx dτ

− 2Iα � (M0 + t K (t))(
1

ε
+ εEμ(t)),

where

I α =
∫ t

0

∫

Γ

[n · ∂αu(∂α p + μ∂α ṗ)] dx ′ dτ.

To estimate I α , firstly, we use the differentiated equation for the front, (79), to
replace n · ∂αu, and we obtain the following:

I α =
∫ t

0

∫

Γ

[n · ∂αu∂α(p + μ ṗ)] dx ′ dτ

=
∫ t

0

∫

Γ

∂t∂
α f [∂α(p + μ ṗ)] dx ′ dτ +

∫ t

0

∫

Γ

[u′ · ∂α∇′ f ∂α(p + μ ṗ)] dx ′ dτ

+
∫ t

0

∫

Γ

[R2
Γ (U, f )∂α(p + μ ṗ)] dx ′ dτ

= I α
1 + I α

2 + I α
3 ,

where, as before, R2
Γ (U, f ) denotes a remainder term given in Definition 30 and

we feel free to absorb lower order terms of the correct form into this remainder.
Firstly, we note that, using the remainder estimate (125), we have

∣
∣I α
3

∣
∣ � 1

ε
M0 + 1

ε
t K (t) + ε(M0 + t K (t))Eμ(t).

Let us consider I α
1 . Using the differentiated pressure interface condition (80),

we have

I α
1 = −σ

∫ t

0

∫

Γ

∂t∂
α f ∂α∇′ · n̂ dx ′ dτ + μ

∫ t

0

∫

Γ

∂t∂
α f ∂α(Δ′ − 1)(u · n) dx ′ dτ

+
∫ t

0

∫

Γ

∂t∂
α f ∂αg2 dx

′ dτ

= σ

∫ t

0

∫

Γ

∂t∂
α f ∇′ · ∂α(

∇′ f
|n| ) dx ′ dτ +μ

∫ t

0

∫

Γ

∂t∂
α f ∂α(Δ′ − 1)∂t f dx

′ dτ

+
∫ t

0

∫

Γ

R3
Γ ( f )2 dx ′ dτ



Short-Time Structural Stability 649

= −σ

∫ t

0

∫

Γ

∂t∂
α∇′ f · ∂α(

∇′ f
|n| ) dx ′ dτ − μ

∫ t

0

∫

Γ

∣
∣∇′∂α∂t f

∣
∣2 dx ′ dτ

− μ

∫ t

0

∫

Γ

∣
∣∂α∂t f

∣
∣
2 dx ′ dτ +

∫ t

0

∫

Γ

R3
Γ ( f )2 dx ′ dτ

= I α
11 − μ

∫ t

0

∫

Γ

∣
∣∇′∂α∂t f

∣
∣2 dx ′ dτ − μ

∫ t

0

∫

Γ

∣
∣∂α∂t f

∣
∣2 dx ′ dτ

+
∫ t

0

∫

Γ

R3
Γ ( f )2 dx ′ dτ,

where we have used integration by parts in the second to last line. Assuming there
was no factor of 1

|n| in I α
11, we could use the product rule to convert the integrand

to 1
2∂t

∣
∣∂α∇′ f

∣
∣2. We intend to do almost the same thing, but to deal with the factor

of 1
|n| we will need to use Lemma 6.
We have

−I α
11 = σ

∫ t

0

∫

Γ

∂t∂
α∇′ f · (

∂α∇′ f
|n| − (∇′ f · ∂α∇′ f )∇′ f

|n|3 + R2
Γ ( f )) dx ′ dτ

= σ

∫ t

0

∫

Γ

∂t∂
α∇′ f · ∂α∇′ f

|n| − ∂t (∇′ f · ∂α∇′ f ) (∇
′ f · ∂α∇′ f )

|n|3 dx ′ dτ

+ σ

∫ t

0

∫

Γ

∂t∂
α∇′ f · R2

Γ ( f ) dx ′ dτ + σ

∫ t

0

∫

Γ

R3
Γ ( f ) · R3

Γ ( f ) dx ′ dτ

= 1

2
σ

∫ t

0

d

dt

∫

Γ

1

|n|
∣
∣∂α∇′ f

∣
∣2 − 1

|n|3
∣
∣∇′ f · ∂α∇′ f

∣
∣2 dx ′ dτ

− σ

∫ t

0

∫

Γ

∂t∂
β∇′ f · ∂xi R

2
Γ ( f ) dx ′ dτ + σ

∫ t

0

∫

Γ

R3
Γ ( f ) · R3

Γ ( f ) dx ′ dτ

� 1

2
σ

∫

Γ

1

|n|
∣
∣∂α∇′ f

∣
∣
2 − 1

|n|3
∣
∣∇′ f · ∂α∇′ f

∣
∣
2 dx ′ − M0

− σ

∫ t

0
‖∂t∂β f ‖H1(Γ )‖R2

Γ ( f )‖H1(Γ ) dτ − σ

∫ t

0
‖R3

Γ ( f )‖2L2(Γ )
dτ,

where we have used the fact that ∂α = ∂xi ∂
β together with integration by parts for

the second term on the right. We now apply Lemma 7 to the first term on the right
hand side.

Hence

−I α
11 � 1

2
σ

∫

Γ

1

|n|3
∣
∣∂α∇′ f

∣
∣2 dx ′ − M0 − t K (t),

where we have used the remainder estimate (120).
Hence we obtain

−I α
1 � 1

2
σ

∫

Γ

1

|n|3
∣
∣∂α∇′ f

∣
∣
2 dx ′ + μ

∫ t

0

∫

Γ

∣
∣∇′∂α(u · n)

∣
∣
2 dx ′ dτ

+ μ

∫ t

0

∫

Γ

∣
∣∂α(u · n)

∣
∣2 dx ′ dτ − M0 − t K (t).
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Now we proceed to estimate I α
2 . We have

∣
∣I α
2

∣
∣ �

∑

±

∣
∣
∣
∣

∫ t

0

∫

Γ

u′± · ∂α∇′ f ∂α(p± + μ ṗ±) dx ′ dτ
∣
∣
∣
∣

�
∑

±

∫ t

0
‖u′± · ∂xi ∂

β∇′ f ‖H0.5(Γ )‖∂xi ∂β(p± + μ ṗ±)‖H−0.5(Γ ) dτ

�
∑

±

∫ t

0
‖u±‖2W 1,∞(Γ )

‖∂xi ∂β∇′ f ‖2H0.5(Γ )
dt +

∑

±

∫ t

0
‖∂β p±‖2H0.5(Γ )

dτ

+ μ2
∑

±

∫ t

0
‖∂β ṗ±‖2H0.5(Γ )

dτ

� t K (t),

where we have again used the Sobolev trace estimate and the estimate (111) for
ṗ.

Putting what we have so far together and using the inequalities (56)–(57) and
the lower order estimates (62)–(63), we have

∑

±
‖∂α p‖2L2(Ω±)

+
∑

±
‖∂αu‖2L2(Ω±)

+ μ
∑

±

∫ t

0
‖∇ψ · ∂αu‖2L2(Ω±)

dτ

+ ‖∂α∇′ f ‖2L2(Γ )
+ μ

∫ t

0
‖∂α(u · n)‖2H1(Γ )

dτ

� (M0 + t K (t))

(
1

ε
+ εEμ(t)

)

. (83)

9.10. Estimate of the Time Derivatives of the Corrected Pressure and Velocity and
the Front

We cannot apply the elliptic-type estimate for the front to estimate the highest
order time derivatives, although part of the approach will be similar to the previous
section. Instead we will need to use the structure of the equations. We also need to
use the corrected unknowns in order to deal with the highest order time derivative
of ψ .

We let β be a multi-index with |β| = 2, β3 = 0 and β0 � 1, then we apply the
operator Du−

t := ∂t + uψ
− · ∇ (with u− defined on Ω+ by Sobolev extension) to

the corrected pressure and velocity equations (76)–(77) with index β to obtain the
following equations:

1

ρc2
(∂t + uψ · ∇)Du−

t pβ + ∇ψ Du−
t uβ = R3(U, ψ) (84)

ρμ(∂t + uψ · ∇)Du−
t uβ + ∇ψ Du−

t pβ + μ∇ψ Du−
t ∂β ṗ = R3(U, ψ)

+ μR3(U, ψ, ṗ). (85)
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We now proceed as for the tangential derivatives. Multiplying (84) by Du−
t pβ and

(85) by Du−
t uβ , integrating over Ω± and summing over ± and integrating from 0

to t , we obtain

∑

±

∫

Ω±

1

ρc2
∣
∣Du−

t pβ
∣
∣
2
dx +

∑

±

∫

Ω±
ρμ

∣
∣Du−

t uβ
∣
∣
2
dx

+ μ
∑

±

∫ t

0

∫

Ω±
ρc2

∣
∣∇ψ · (Du−

t ∂βu)
∣
∣
2
dx dτ

− 2
∫ t

0

∫

Γ

[n · Du−
t uβ(Du−

t pβ + μDu−
t ∂β ṗ)] dx ′ dτ

� (M0 + t K (t))(
1

ε
+ εEμ(t)),

where we have used the remainder estimates (118) and (124).
Define

K β =
∫ t

0

∫

Γ

[n · Du−
t uβ(Du−

t pβ + μDu−
t ∂β ṗ)] dx ′ dτ.

First we go back to using the original rather than the corrected unknowns by replac-

ing uβ with ∂βu − ∂βψ

Jψ ∂x3u and replacing pβ similarly to obtain

K β =
∫ t

0

∫

Γ

[n · Du−
t uβ(Du−

t pβ + μDu−
t ∂β ṗ)] dx ′ dτ = K β

1 − K β
2 − K β

3 + K β
4

where

K β
1 =

∫ t

0

∫

Γ

[n · Du−
t ∂βuDu−

t ∂β(p + μ ṗ)] dx ′ dτ

and K β
2 , K β

3 , K β
4 are the other terms generated when expanding the brackets. Using

the remainder estimates (119) and (125) it is almost immediate that

∣
∣
∣K

β
2

∣
∣
∣ +

∣
∣
∣K

β
3

∣
∣
∣ +

∣
∣
∣K

β
4

∣
∣
∣ � (M0 + t K (t))

(
1

ε
+ εEμ(t)

)

.

We now consider K β
1 . We use the differentiated equation for the front, (79), to

replace n · Du−
t ∂βu, and we obtain the following:

K β
1 =

∫ t

0

∫

Γ

[n · Du−
t ∂βuDu−

t ∂β(p + μ ṗ)] dx ′ dτ

=
∫ t

0

∫

Γ

∂t D
u−
t ∂β f [Du−

t ∂β(p + μ ṗ)] dx ′ dτ

+
∫ t

0

∫

Γ

[u′ · Du−
t ∂β∇′ f Du−

t ∂β(p + μ ṗ)] dx ′ dτ



652 Ben Stevens

+
∫ t

0

∫

Γ

[R2
Γ (U, f )Du−

t ∂β(p + μ ṗ)] dx ′ dτ

=
∫ t

0

∫

Γ

∂t D
u−
t ∂β f [Du−

t ∂β(p + μ ṗ)] dx ′ dτ

+
∫ t

0

∫

Γ

(u′+ · ∇′)Du−
t ∂β f [Du−

t ∂β(p + μ ṗ)] dx ′ dτ

+
∫ t

0

∫

Γ

([u′] · ∇′)Du−
t ∂β f Du−

t ∂β(p− + μ ṗ−) dx ′ dτ

+
∫ t

0

∫

Γ

[R2
Γ (U, f )Du−

t ∂β(p + μ ṗ)] dx ′ dτ

= K β
11 + K β

12 + K β
13 + K β

14.

Applying the remainder estimate lemma (125), we have

∣
∣
∣K

β
14

∣
∣
∣ � (M0 + t K (t))

(
1

ε
+ εEμ(t)

)

.

The estimate of K β
11 is similar to the estimate of I α

1 . Using the differentiated
pressure interface condition (80) with ∂α replaced by Du−

t ∂β and integrating by
parts, we have

K β
11 = −σ

∫ t

0

∫

Γ

∂t D
u−
t ∂β f Du−

t ∂β∇′ · n̂+μ∂t D
u−
t ∂β f Du−

t ∂β(Δ′−1)∂t f dx
′ dτ

+ K β
112

= σ

∫ t

0

∫

Γ

∂t D
u−
t ∂β f ∇′ · Du−

t ∂β(
∇′ f
|n| ) + μ∂t D

u−
t ∂β f ∇′ · Du−

t ∂β∇′∂t f dx ′ dτ

− μ

∫ t

0

∫

Γ

∂t D
u−
t ∂β f Du−

t ∂β∂t f dx
′ dτ + K β

112 + K β
113 + K β

114

= −σ

∫ t

0

∫

Γ

∂t D
u−
t ∂β∇′ f · Du−

t ∂β(
∇′ f
|n| )

− μ∇′∂t Du−
t ∂β f · Du−

t ∂β∇′∂t f dx ′ dτ

− μ

∫ t

0

∫

Γ

∂t D
u−
t ∂β f Du−

t ∂β∂t f dx
′ dτ + K β

112 + K β
113 + K β

114 + K β

115

= −σ

∫ t

0

∫

Γ

∂t D
u−
t ∂β∇′ f · Du−

t ∂β(
∇′ f
|n| ) dx ′ dτ

− μ

∫ t

0

∫

Γ

∣
∣∇′Du−

t ∂β∂t f
∣
∣
2 + ∣

∣Du−
t ∂β∂t f

∣
∣
2
dx ′ dτ +

7
∑

i=2

K β
11i ,

where

K β
112 =

∫ t

0

∫

Γ

∂t D
u−
t ∂β f Du−

t ∂βg2 dx
′ dτ
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and each of K β
113, . . . , K

β
117 denotes a remainder term generated when a derivative

hits the u′− in Du−
t and we will omit to write them out explicitly. Let us also label

the first term on the right as

K β
111 = −σ

∫ t

0

∫

Γ

∂t D
u−
t ∂β∇′ f · Du−

t ∂β(
∇′ f
|n| ) dx ′ dτ.

The remainder terms K β
112, . . . , K

β
117 can be estimated usingHolder’s inequality

togetherwith the Sobolev embedding theorem, the Sobolev trace estimate, the chain
rule, the lower order estimates (62)–(65), the existing tangential estimate for ∇′ f
given in (83) and integration by parts in space and time. We omit these technical
estimates, which are made slightly more involved than one would like by the fact
that we are working with a relatively low order energy functional (ie it contains 3
rather than 4 derivatives of u). We merely state that

7
∑

i=2

∣
∣
∣K

β
11i

∣
∣
∣ � (M0 + t K (t))(

1

ε
+ εEμ(t)).

Having estimated the lower order terms, we return to the more important esti-
mate of K β

111. We use Lemma 6 to obtain the following:

−K β
111=σ

∫ t

0

∫

Γ

∂t D
u−
t ∂β∇′ f · (

Du−
t ∂β∇′ f

|n| − (∇′ f · Du−
t ∂β∇′ f )∇′ f
|n|3 ) dx ′ dτ

+
∫ t

0

∫

Γ

∂t D
u−
t ∂β∇′ f · (R0∞,Γ (U, f )R2

Γ ( f )) dx ′ dτ

= σ

∫ t

0

∫

Γ

∂t D
u−
t ∂β∇′ f · D

u−
t ∂β∇′ f

|n|
− ∂t (∇′ f · Du−

t ∂β∇′ f ) (∇
′ f · Du−

t ∂β∇′ f )
|n|3 dx ′ dτ

+
∫ t

0

∫

Γ

∂t D
u−
t ∂β∇′ f · R0∞,Γ (U, f )R2

Γ ( f ) dx ′ dτ

+
∫ t

0

∫

Γ

R0∞,Γ (U, f )R3
Γ ( f )R3

Γ ( f ) dx ′ dτ

= 1

2

∫ t

0
σ
d

dt

∫

Γ

1

|n|
∣
∣Du−

t ∂β∇′ f
∣
∣
2 − 1

|n|3
∣
∣∇′ f · Du−

t ∂β∇′ f
∣
∣
2
dx ′ dτ

+
∫ t

0

∫

Γ

∂t D
u−
t ∂β∇′ f · R0∞,Γ (U, f )R2

Γ ( f ) dx ′ dτ

+
∫ t

0

∫

Γ

R0∞,Γ (U, f )R3
Γ ( f )R3

Γ ( f ) dx ′ dτ.

We now apply Lemma 7 to the first term on the right hand side and we apply
the remainder estimates (114) and (120) to the last term. The other term is esti-
mated using integration by parts in time, followed by Cauchy’s inequality and the
remainder estimates (114), (117), (120) and (123).
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We obtain

−K β
111 � 1

2
σ

∫

Γ

1

|n|3
∣
∣Du−

t ∂β∇′ f
∣
∣
2
dx ′ − (M0 + t K (t))

(
1

ε
+ εEμ(t)

)

.

Thus we have shown that

−K β
11 � 1

2
σ

∫

Γ

1

|n|3
∣
∣Du−

t ∂β∇′ f
∣
∣
2
dx ′ − (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

The estimate of K β
12 is similar to the estimate of K β

11, except this time
the remainder terms are easier to deal with because we have replaced a time
derivative with a tangential derivative. In the end instead of obtaining an exact
time derivative, we will obtain an exact horizontal derivative which disappears
using the divergence theorem. One complication arises from the fact that the

term −μ
∫ t
0

∫

Γ

∣
∣∇′Du−

t ∂β∂t f
∣
∣
2
dx ′ dτ is replaced with the term μ

∫ t
0

∫

Γ
(u+ ·

∇′)∇′Du−
t ∂β f · ∇′Du−

t ∂β∂t f dx ′ dτ , which does not have a sign, but we may
estimate this using Cauchy’s inequality and the existing tangential estimate (83),
and the fact that ∂β f = ∂t∂

γ f for some |γ | = 1 (from the assumption β0 � 1)
together with the presence of the μ-dependent term involving ∂t f = u · n in the
energy. Thus we obtain

∣
∣
∣K

β
12

∣
∣
∣ � (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

We proceed to estimate K β
13. Note that, by rearranging the differentiated equa-

tion (79) for the front, we obtain

Du−
t ∂β f = ∂βu− · n + R|β|−1

Γ (U, f ). (86)

Using the equation (86), we have

K β
13 =

∫ t

0

∫

Γ

n · ([u′] · ∇′)∂βu−Du−
t ∂β(p− + μ ṗ−) dx ′ dτ

+
∫ t

0

∫

Γ

R2
Γ (U, f ) · ∂∂β(p− + μ ṗ−) dx ′ dτ.

We want to convert this into an integral over the interior Ω−. First of all we need
to go back to using the corrected pressure and velocity. We obtain

K β
13 =

∫ t

0

∫

Γ

n · ([u′] · ∇′)uβ
−Du−

t (pβ
− + μ∂β ṗ−) dx ′ dτ

+
∫ t

0

∫

Γ

R2
Γ (U, f ) · ∂∂β(p− + μ ṗ−) dx ′ dτ

+
∫ t

0

∫

Γ

∇′∂βu− · R2
Γ (U, f ) dx ′ dτ +

∫ t

0

∫

Γ

R2
Γ (U, f ) · R2

Γ (U, f ) dx ′ dτ

= K β
131 + K β

132 + K β
133 + K β

134.
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Using the remainder estimates (119) and (125), we have

∣
∣
∣K

β
132 + K β

133 + K β
134

∣
∣
∣ � (M0 + t K (t))

(
1

ε
+ εEμ(t)

)

.

To estimate K β
131 we convert the boundary integral into an integral over the

interior Ω−. Note that we may add the integral of derivatives in the tangential
directions because these integrate to zero. We also note that (−∇′ψ, 1)|Γ = n, and
Jψ |Γ = 1. Note that by extending u+ to Ω− by Sobolev extension we obtain a
natural definition for [u′] = u+ − u− in Ω−. We obtain

K β
131 =

∫ t

0

∫

Ω−
∇′ · (([u′] · ∇′)uβDu−

t (pβ + μ∂β ṗ))

+ ∂x3(
1

Jψ
(−∇′ψ, 1) · ([u′] · ∇′)uβDu−

t (pβ + μ∂β ṗ)) dx dτ

=
∫ t

0

∫

Ω−
([u′] · ∇′)(∇′ · uβ + (−∇′ψ, 1)

Jψ
· ∂x3u

β)Du−
t (pβ + μ∂β ṗ) dx dτ

+
∫ t

0

∫

Ω−
([u′] · ∇′)uβ · Du−

t (∇′(pβ + μ∂β ṗ)

+ (−∇′ψ, 1)

Jψ
∂x3(p

β + μ∂β ṗ)) dx dτ

+
∫ t

0

∫

Ω−
R3(U, ψ) · (R3(U, ψ) + μR3(U, ψ, ṗ)) dx dτ.

Using the corrected pressure and velocity equations (76)–(77), we obtain

K β
131 = −

∫ t

0

∫

Ω−

1

ρc2
(([u′] · ∇′)Du−

t pβDu−
t pβ) dx dτ

−
∫ t

0

∫

Ω−

1

ρc2
(([u′] · ∇′)Du−

t pβDu−
t μ∂β ṗ) dx dτ

−
∫ t

0

∫

Ω−
ρμ(([u′] · ∇′)uβ · Du−

t Du−
t uβ) dx dτ

+
∫ t

0

∫

Ω−
R3(U, ψ) · (R3(U, ψ) + μR3(U, ψ, ṗ)) dx dτ

= K β
1311 + K β

1312 + K β
1313 + K β

1314.

The remainder estimates (118) and (124), together with Cauchy’s inequality,
imply

∣
∣
∣K

β
1314

∣
∣
∣ � 1

ε
t K (t) + ε(M0 + K (t))Eμ(t).

Using the divergence theorem and the remainder estimate (118), we have
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∣
∣
∣K

β
1311

∣
∣
∣ � 1

2

∣
∣
∣
∣

∫ t

0

∫

Ω−
∇′ · (

1

ρc2
[u′]Du−

t pβDu−
t pβ) dx dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

∫

Ω−
R3(U, ψ) · R3(U, ψ) dx dτ

∣
∣
∣
∣

� M0 + t K (t).

Using the definition of ṗ = −ρc2∇ψ · u and pβ , we have

∣
∣
∣K

β
1312

∣
∣
∣ = μ

∣
∣
∣
∣

∫ t

0

∫

Ω−

1

ρc2
([u′] · ∇′)Du−

t pβDu−
t ∂β ṗ dx dτ

∣
∣
∣
∣

� μ

∣
∣
∣
∣

∫ t

0

∫

Ω−

1

ρc2
([u′] · ∇′)∂β ṗDu−

t ∂β ṗ dx dτ

∣
∣
∣
∣

+ μ

∣
∣
∣
∣

∫ t

0

∫

Ω−
R3(U, ψ)Du−

t ∂β ṗ dx dτ

∣
∣
∣
∣

� 1

ε̃
(M0+t K (t))μ

∫ t

0
(‖ρc2∇ψ · ∇′∂βu‖2L2(Ω−)

+‖R3(U, ψ)‖2L2(Ω−)
) dτ

+ε̃μ

∫ t

0
‖ρc2∇ψ · (Du−

t ∂βu)‖2L2(Ω−)
dτ + 1

ε
t K (t)+ε(M0+t K (t))Eμ(t)

� 1

ε̃
(M0+t K (t))(

1

ε
+εEμ(t))+ε̃μ

∫ t

0
‖ρc2∇ψ · (Du−

t ∂βu)‖2L2(Ω−)
dτ,

where we have used the lower order estimates (62), (64) and the remainder estimate
(124). We have also used crucially the tangential estimate (83) already obtained to
estimate the term involving μ

∫ t
0‖∇ψ · ∇′∂βu‖2

L2(Ω−)
dτ .

To estimate K β
1313, we use integration by parts in time and space and the diver-

gence theorem:

∣
∣
∣K

β
1313

∣
∣
∣ �

∣
∣
∣
∣

∫ t

0

∫

Ω−
Du−
t (ρμ([u′] · ∇′)uβ · Du−

t uβ) dx dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

∫

Ω−
ρμ([u′] · ∇′)Du−

t uβ · Du−
t uβ dx dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

∫

Ω−
R3(U, ψ) · R3(U, ψ) dx dτ

∣
∣
∣
∣

�
∣
∣
∣
∣

∫

Ω−
ρμ([u′] · ∇′)uβ · Du−

t uβ dx

∣
∣
∣
∣

t

0

∣
∣
∣
∣

+ 1

2

∣
∣
∣
∣

∫ t

0

∫

Ω−
∇ · (uψ

−ρμ([u′] · ∇′)uβ · Du−
t uβ) dx dτ

∣
∣
∣
∣

+ 1

2

∣
∣
∣
∣

∫ t

0

∫

Ω−
∇′ · (ρμ[u′]Du−

t uβ · Du−
t uβ) dx dτ

∣
∣
∣
∣
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+
∣
∣
∣
∣

∫ t

0

∫

Ω−
R3(U, ψ) · R3(U, ψ) dx dτ

∣
∣
∣
∣

�
∣
∣
∣
∣

∫

Ω−
R0∞(U, ψ)∇′uβ · ∂uβ dx

∣
∣
∣
∣

t

0

∣
∣
∣
∣
+

∫ t

0
K (t) dτ,

wherewe have used the remainder estimate (118) and the fact that (uψ
−)3|Γ = 0.We

now apply Cauchy’s lemma to the first term on the right, followed by the estimate
we already have for the tangential derivative ∇′uβ given by (83) together with (75)
and the lower order remainder estimate (116), to obtain

∣
∣
∣K

β
1313

∣
∣
∣ � 1

ε
1
2

‖R0∞(U, ψ)‖2L∞(Ω−)‖∇′uβ‖2L2(Ω−)
+ ε

1
2 ‖∂uβ‖2L2(Ω−)

+ t K (t)

� (M0 + t K (t))(
1

ε
3
2

+ ε
1
2 Eμ(t)).

Thus we have eventually shown that

−K β � 1

2
σ

∫

Γ

1

|n|3
∣
∣Du−

t ∂β∇′ f
∣
∣
2
dx ′ + μ

∫ t

0

∫

Γ

∣
∣∇′Du−

t ∂β(u · n)
∣
∣
2

+ ∣
∣Du−

t ∂β(u · n)
∣
∣
2
dx ′ dτ − (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

− 1

ε̃
(M0+t K (t))

(
1

ε
+εEμ(t)

)

−ε̃μ

∫ t

0
‖ρc2∇ψ · (Du−

t ∂βu)‖2L2(Ω−)
dτ.

Hence, choosing ε̃ sufficiently small so that the term involving ε̃ above may be
absorbed into the left hand side of the estimate below, and using the inequalities
(56)–(57) and the lower order estimates (62)–(63), we have

∑

±
‖Du−

t pβ‖2L2(Ω±)
+

∑

±
‖Du−

t uβ‖2L2(Ω±)

+ μ
∑

±

∫ t

0
‖∇ψ · (Du−

t ∂βu)‖2L2(Ω±)
dτ

+ ‖Du−
t ∂β∇′ f ‖2L2(Γ )

+ μ

∫ t

0
‖Du−

t ∂β(u · n)‖2H1(Γ )
dτ

� (M0 + t K (t))(
1

ε
3
2

+ ε
1
2 Eμ(t)). (87)

In particular, we obtain

‖Du−
t ∂β∇′ f ‖2L2(Γ )

+ μ

∫ t

0
‖Du−

t ∂β(u · n)‖2H1(Γ )
dτ

� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.
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Combining this with the tangential estimates for the terms μ
∫ t
0‖∇′∂β(u ·

n)‖2
H1(Γ )

dτ and ‖∇′∂β∇′ f ‖2
L2(Γ )

and the lower order estimate (62), we obtain

‖∂ ′∂β∇′ f ‖2L2(Γ )
+ μ

∫ t

0
‖∂ ′∂β(u · n)‖2H1(Γ )

dτ

� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

. (88)

Note that if we combine this estimate with the estimate (82) for the corrected
entropy and the estimate (73), we obtain the estimate for the entropy

‖∂αs‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

(89)

for |α| = 3.
Finally, we convert the estimate (87) into an estimate for the non-corrected

pressure and velocity using the estimate (74) together with the estimate (88) for the
front. We obtain

∑

±
‖Du−

t ∂β p‖2L2(Ω±)
+

∑

±
‖Du−

t ∂βu‖2L2(Ω±)

+ μ
∑

±

∫ t

0
‖∇ψ · (Du−

t ∂βu)‖2L2(Ω±)
dτ

� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

. (90)

9.11. A Weighted Normal Derivative Estimate

It is useful to think of the operator Du±
t as like a time plus a tangential derivative,

which is true on the boundary, since Du±
t |Γ = ∂t+(uψ

±)′·∇′ because (uψ)3±|Γ = 0.
But in the interior in fact we have

Du
t = ∂t + (uψ)′ · ∇′ + (uψ)3∂x3 .

Hence it will be useful to have an estimate for (uψ)3∂x3∂
β p and (uψ)3∂x3∂

βuwhere
|β| = 2, and this will be a straightforward energy estimate since (uψ)3|Γ = 0.

Let w be given by either w = ExtΩ−(uψ)3+ in R
3 or w = ExtΩ+(uψ)3− in R

3

or w± = (uψ)3± in Ω±.
We let β be a multi-index with |β| = 2. We let ∂α = ∂x3∂

β in the differentiated
Equations (69)–(70). We then multiply by w to obtain the following:

1

ρc2
(∂t + uψ · ∇)(w∂α p) + ∇ψ · (w∂αu) = R|α|(U, ψ)

ρ(∂t + uψ · ∇)(w∂αu) + ∇ψ(w∂α p) + μ∇ψ(w∂α ṗ)

= R|α|(U, ψ) + μR|α|(U, ψ, ṗ).
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We multiply the first equation by w∂α p and the second by w∂αu then sum the
equations, integrate over Ω± and from 0 to t and use the divergence theorem
together with the fact that w = 0 on Γ and the symmetry of the equations plus the
inequalities (56) and (57) to obtain

∫

Ω±

∣
∣w∂α p

∣
∣
2 dx +

∫

Ω±

∣
∣w∂αu

∣
∣
2 dx + μ

∫ t

0

∫

Ω±

∣
∣w∇ψ · ∂αu

∣
∣
2
dx dτ

� (M0 + t K (t))

(
1

ε
+ εEμ(t)

)

. (91)

Note that during the estimate we replaced ∂α ṗ with −ρc2∇ψ · ∂αu up to lower
order terms.

Assume now β is a multi-index with |β| = 2 and β3 = 0. Combining the above
estimate with the high-order time derivative estimate (90), and using the fact that

Du−
t = ∂t + (uψ

−)′ · ∇′ + (uψ)3−∂x3,

we obtain the following simpler time derivative estimate:

∑

±
‖∂t∂β p‖2L2(Ω±)

+
∑

±
‖∂t∂βu‖2L2(Ω±)

+ μ
∑

±

∫ t

0
‖∇ψ · ∂t∂

βu‖2L2(Ω±)
dτ

� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

(92)

for |β| = 2 with β3 = 0.

9.12. Estimate of the Curl

We know that the curl of the velocity, ∇ψ × u, satisfies the Equation (54). We
apply ∂β to this equation for 1 � |β| � 2 and gather the lower order terms on the
right hand side, noting that the high order terms in ψ can be treated as remainder
terms since they all involve at most three time derivatives. We obtain

ρμ(∂t + uψ · ∇)∇ψ × ∂βu = R|β|+1(U, ψ) (93)

in (0, T ′) × Ω±.
For β a multi-index with 1 � |β| � 2, we define the corrected curl as

ωβ = ∇ψ × ∂βu. (94)

Thus the corrected curl satisfies the equation

ρμ(∂t + uψ · ∇)ωβ = R|β|+1(U, ψ) (95)

in (0, T ′) × Ω±.
Now it is straightforward to estimate the corrected curl in the standard manner,

since (uψ)3± = 0 on Γ so there is no boundary term. We multiply Equation (95)
by ωβ and use the product rule, then integrate over Ω± and from 0 to t and use the
inequality (57) to obtain

‖ωβ‖2L2(Ω±)
� M0 + t K (t). (96)
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9.13. Estimate of the Normal Derivatives of the Pressure and Velocity

For 1 � |β| � 2, we define the corrected divergence as

ηβ = ∇ψ · ∂βu. (97)

We aim to combine our estimate of the corrected curl along with an estimate of
the corrected divergence with β3 = 0 to obtain an estimate for ∂x3∂

βu. We also
aim to obtain an estimate of the normal derivative of the pressure directly from the
equations.We then use an inductive argument to estimate all the normal derivatives.
This is detailed below.

To estimate the normal derivative of the pressure, we will need the following
lemma, which is used by Coutand et al. [10] and Coutand and Shkoller [13],
hence we don’t repeat its straightforward proof here.

Lemma 8. Let w ∈ W 1,1(0, T ) and let g ∈ L1(0, T ). Let μ � 0 and suppose that

w + μ
dw

dt
� g

for almost every t ∈ (0, T ). Then, for any t ∈ (0, T ),

sup
τ∈(0,t)

w(τ) � w(0) + ess sup
τ∈(0,t)

|g(τ )| .

We also need the following lemma, which says that the normal derivative of
∂βu can be expressed in terms of the corrected divergence, the corrected curl, the
tangential derivatives and the derivatives of ψ .

Lemma 9. Let v ∈ H1(Ω±; R
3). Then

∂x3vi = Gi (∇ψ) · (∂x1v, ∂x2v,∇ψ · v,∇ψ × v),

where Gi (∇ψ) is a smooth vector-valued function for each i = 1, 2, 3.

Proof. First we note that we can write ∇ψ · v as

∇ψ · v = ∇′ · v′ − ∇′ψ
Jψ

· ∂x3v
′ + 1

Jψ
∂x3v3.

Hence, rearranging,

∂x3v3 = Jψ(∇ψ · v) − Jψ∇′ · v′ + ∇′ψ · ∂x3v
′.

From the definition of ∇ψ×, we have

(∇ψ × v)1 = ∂x2v3 − ∂x3v2 − 1

Jψ
∂x2ψ∂x3v3 + 1

Jψ
∂x3ψ∂x3v2

(∇ψ × v)2 = ∂x3v1 − ∂x1v3 − 1

Jψ
∂x3ψ∂x3v1 + 1

Jψ
∂x1ψ∂x3v3.

Rearranging, we obtain
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∂x3v2 = −Jψ(∇ψ × v)1 + Jψ∂x2v3 − ∂x2ψ∂x3v3

∂x3v1 = Jψ(∇ψ × v)2 + Jψ∂x1v3 − ∂x1ψ∂x3v3.

Using these two identities in the equation for ∂x3v3, we obtain

∂x3v3= Jψ(∇ψ · v)− Jψ∇′ · v′+∂x1ψ(Jψ(∇ψ × v)2+ Jψ∂x1v3 − ∂x1ψ∂x3v3)

+ ∂x2ψ(−Jψ(∇ψ × v)1 + Jψ∂x2v3 − ∂x2ψ∂x3v3).

Rearranging, we obtain

∂x3v3(1 + ∣
∣∇′ψ

∣
∣
2
)= Jψ(∇ψ · v)− Jψ∇′ · v′+∂x1ψ(Jψ(∇ψ × v)2+ Jψ∂x1v3)

+ ∂x2ψ(−Jψ(∇ψ × v)1 + Jψ∂x2v3).

Dividing by 1+ ∣
∣∇′ψ

∣
∣2, we obtain the desired result for ∂x3v3. Putting this expres-

sion back into the identities for ∂x3v2 and ∂x3v1, we obtain the result. 
�
Corollary 1. Let 1 � |β| � 2. Then

‖∂x3∂βu‖L2(Ω±)

� ‖R0∞(U, ψ)‖L∞(Ω±)(‖∇′∂βu‖L2(Ω±) + ‖ηβ‖L2(Ω±) + ‖ωβ‖L2(Ω±)).

Proof. This is immediate from the above lemma applied to v = ∂βu, where we
have replaced Gi (∇ψ) by the remainder R0∞(U, ψ). 
�

Now, let |β| = 2. Note that by (66), and the fact that ηβ = ∇ψ · ∂βu, we have

ηβ = − 1

ρc2
(∂t + uψ · ∇)∂β p + R|β|(U, ψ) + R0∞(U, ψ) · ∇ p∂t∂

βψ,

where we have absorbed all the high-order terms inψ involving a spatial derivative
into the remainder R|β|(U, ψ). Note also that ‖∂t∂βψ‖H1(Ω±) can be estimated by
the estimates (81) and (88). Thus

‖ηβ‖2L2(Ω±)
� (M0 + t K (t))

(

1 + ‖∂t∂β p‖2L2(Ω±)
+ ‖∇′∂β p‖2L2(Ω±)

+‖(uψ)3∂x3∂
β p‖2L2(Ω±)

+ ‖∇ p‖2H1(Ω±)
‖∂t∂βψ‖2H1(Ω±)

)

� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t) + ‖∂t∂β p‖2L2(Ω±)

+‖∇′∂β p‖2L2(Ω±)

)

, (98)

where we have used the estimates (56), (62), (64) and the lower order remainder
estimate (121), together with the weighted normal derivative estimate (91).

Also, from the third component of (67), we have

∂x3∂
β(p + μ ṗ) = −Jψρμ(∂t + uψ · ∇)∂βu3

+ R|β|(U, ψ) + R0∞(U, ψ) · ∇u3∂t∂
βψ,
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where again we have absorbed all the high-order terms in ψ involving a spatial
derivative into the remainder R|β|(U, ψ) and we note also that ‖∂t∂βψ‖H1(Ω±) can
be estimated by the estimates (81) and (88). Now we must take some care to deal
with the term involving μ ṗ. In fact we chose this approximation to the original
equations, as originally done byCoutand et al. [10] andCoutand and Shkoller
[13], specifically so that this term can be easily estimated. We multiply by ∂x3∂

β p
and integrate in space to obtain

1

2

∫

Ω±

∣
∣∂x3∂

β p
∣
∣
2
dx � −1

2
μ
d

dt

∫

Ω±

∣
∣∂x3∂

β p
∣
∣
2
dx + μ2‖(∂x3∂βuψ) · ∇ p‖2L2(Ω±)

+ μ

∫

Ω±
(∇ · uψ)

∣
∣∂x3∂

β p
∣
∣
2
dx+(M0 + t K (t))(

1

ε
3
2

+ε
1
2 Eμ(t)

+ ‖Du±
t ∂βu‖2L2(Ω±)

),

where we have used the divergence theorem together with the fact that (uψ)3± = 0
on Γ , the lower order estimate (64), the lower order remainder estimate (121) and
Cauchy’s inequality.

Using the fundamental theorem of calculus, together with the fact that
(uψ

−)3|Γ = 0 and with the divergence theorem to convert a time derivative into
a material derivative, we can show

μ

∫

Ω±
(∇ · uψ)

∣
∣∂x3∂

β p
∣
∣
2
dx � M0 + t K (t),

where we have used the remainder estimate (118) and the estimate (111) for ṗ.
Similarly, we have

μ2‖(∂x3∂βuψ) · ∇ p‖2L2(Ω±)
� M0 + t K (t).

Combining these estimates, we obtain

‖∂x3∂β p‖2L2(Ω±)
+ μ

d

dt
‖∂x3∂β p‖2L2(Ω±)

� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t) + ‖Du±

t ∂βu‖2L2(Ω±)

)

� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t) + ‖∂t∂βu‖2L2(Ω±)

+ ‖∇′∂βu‖2L2(Ω±)

)

,

where we have used the lower order estimates (62), (64) and the weighted normal
derivative estimate (91). Applying Lemma 8, we obtain

‖∂x3∂β p‖2L2(Ω±)

� (M0 + t K (t))

(

1

ε
3
2

+ ε
1
2 Eμ(t) + ess sup

τ∈(0,t)
‖∂t∂βu‖2L2(Ω±)

+ ess sup
τ∈(0,t)

‖∇′∂βu‖2L2(Ω±)

)

. (99)
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Now we claim that

‖∂x3∂βu‖2L2(Ω±)
� (M0 + t K (t))(

1

ε
3
2

+ ε
1
2 Eμ(t)) (100)

‖∂x3∂β p‖2L2(Ω±)
� (M0 + t K (t))(

1

ε
3
2

+ ε
1
2 Eμ(t)). (101)

We proceed by induction on β3. In the case that β3 = 0, we note that we may apply
(83) and (92) to the right hand side of (98) and (99) to obtain

‖ηβ‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

‖∂x3∂β p‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

Then we apply the estimate from Corollary 1 together with the lower order remain-
der estimate (121), the estimate (83) for the tangential derivatives, the estimate (96)
for the corrected curl and the estimate just obtained for the corrected divergence to
conclude that

‖∂x3∂βu‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

,

which proves the result in the case β3 = 0.
Now we suppose the result is true for β3 � k for some 0 � k � |β| − 1 and

try to show it is true for β3 = k + 1. But this is straightforward and is done in the
same way. Note that the previous induction step gives us the estimate for

‖∂γ u‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

‖∂γ p‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

,

where |γ | = 3 and γ3 � k + 1. We apply these estimates to the right hand side of
(98) and (99) to obtain

‖ηβ‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

‖∂x3∂β p‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

Then we apply the estimate from Corollary 1 together with the lower order remain-
der estimate (121), the previous induction step for the term∇′∂βu, the estimate (96)
for the corrected curl and the estimate just obtained for the corrected divergence to
conclude the result for the case β3 = k + 1. This proves the claim.



664 Ben Stevens

9.14. Estimate of the Artificial Viscosity Term

Let us observe that we may rearrange the differentiated velocity equation (67)
to obtain

−μ∇ψ∂β ṗ = ρμ(∂t + uψ · ∇)∂βu

+ ∇ψ∂β p + R|β|(U, ψ) + R0∞(U, ψ)∇ · u∂∂βψ

+ μR|β|(U, ψ, ṗ),

where |β| � 2. We use the fact that we have already obtained estimates for every-
thing on the right hand side in L2(Ω±) to obtain

μ2‖∇ψ∂β ṗ‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

Using the fact that

∂x3∂
β ṗ = Jψ(∇ψ)3∂

β ṗ

and the lower order estimate for ∇ψ , we easily obtain

μ2‖∇∂β ṗ‖2L2(Ω±)
� (M0 + t K (t))(

1

ε
3
2

+ ε
1
2 Eμ(t)). (102)

Using the fact that ṗ = −ρc2∇ψ · u together with the chain rule and existing
estimates we also obtain

μ2‖∇ψ · ∇∂βu‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

. (103)

9.15. Elliptic-Type Estimate for the Front

In this section we derive an elliptic type estimate for the front using the pressure
interface condition (43).

Lemma 10.

‖∂α∇′ f ‖2H0.5(Γ )
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

(104)

for 0 � |α| � 3, α0 � 2 and α3 = 0.

Proof. Let α be a multi-index with 0 � |α| � 3, α0 � 2 and α3 = 0, so that

we can write ∂α = ∂β∂xi for some i ∈ {1, 2}. Let 〈

D′〉0.5 denote the half-order

derivative operator which corresponds to multiplying by
〈

ξ ′〉0.5 in Fourier space -
see the notation in the appendix.

Applying
〈

D′〉0.5 to the differentiated pressure interface condition (80), we have
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〈

D′〉0.5 [∂α(p + μ ṗ)] = σ
〈

D′〉0.5 ∇′ · ∂α

(∇′ f
|n|

)

+ μ(Δ′ − 1)
〈

D′〉0.5 ∂α∂t f

+ 〈

D′〉0.5 ∂αg2.

We multiply both sides by
〈

D′〉0.5 ∂α f and integrate by parts to obtain

∫

Γ

(〈

D′〉0.5 [∂β(p + μ ṗ)]
) (〈

D′〉0.5 ∂xi ∂
α f

)

dx ′

= σ

∫

Γ

(
〈

D′〉0.5 ∂α

(∇′ f
|n|

))

·
(〈

D′〉0.5 ∂α∇′ f
)

dx ′

+ μ

∫

Γ

(〈

D′〉0.5 ∂α∇′∂t f
) (〈

D′〉0.5 ∂α∇′ f
)

dx ′

+ μ

∫

Γ

(〈

D′〉0.5 ∂α∂t f
) (〈

D′〉0.5 ∂α f
)

dx ′ +
∫

Γ

(〈

D′〉0.5 R2
Γ ( f )

)2
dx ′

where the remainder R2
Γ ( f ) is defined in Definition 31. We now use Lemma 6 to

differentiate ∇′ f
|n| , together with the fractional product rule given in Lemma 31 from

the appendix, and following the notation of this lemma, we denote the remainder
term by R(G(∇′ f ), ∂α∇′ f ), where G is a smooth function. We obtain

∫

Γ

(
〈

D′〉0.5 [∂β(p + μ ṗ)])(〈D′〉0.5 ∂α∂xi f ) dx
′

= σ

∫

Γ

1

|n|
∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2 − 1

|n|3
∣
∣
∣∇′ f · 〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′

+ σ

∫

Γ

〈

D′〉0.5 R2
Γ ( f ) · 〈

D′〉0.5 ∂α∇′ f dx ′

+ σ

∫

Γ

R(G(∇′ f ), ∂α∇′ f ) · 〈

D′〉0.5 ∂α∇′ f dx ′

+ μ
1

2

d

dt

∫

Γ

∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′

+
∫

Γ

(
〈

D′〉0.5 ∂t R
2
Γ ( f ))

〈

D′〉0.5 R2
Γ ( f ) dx ′ +

∫

Γ

(
〈

D′〉0.5 R2
Γ ( f ))2 dx ′

� σ

∫

Γ

1

|n|3
∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′ − 1

δ
‖R(G(∇′ f ), ∂α∇′ f )‖2L2(Γ )

− δ

∫

Γ

∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′ + μ

1

2

d

dt

∫

Γ

∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′

− ‖R2
Γ ( f )‖2H1(Γ )

− ‖∂t R2
Γ ( f )‖2L2(Γ )

− C‖∂α∇′ f ‖2L2(Γ )
,

where we have used Lemma 7. We have also used Cauchy’s inequality in the last
step, and we are free to choose 0 < δ � 1. Note that ∂R2

Γ ( f ) is a sum of terms of
the form G(∇′ f )(∂∂γ (∇′ f, g2) + ∂∇′ f R2( f )) where |γ | � 2 and G is a smooth
function. We recall that we have already estimated ∂∂γ ∇′ f in (88). Hence, using



666 Ben Stevens

Cauchy’s inequality, the remainder estimate (123), and the estimate of the remainder
from Lemma 31, we obtain

σ

∫

Γ

1

|n|3
∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′ + 1

2
μ
d

dt

∫

Γ

∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′

� C

δ
‖〈D′〉0.5 [∂β(p + μ ṗ)]‖2L2(Γ )

+ δ‖〈D′〉0.5 ∂α∇′ f ‖2L2(Γ )

+ 1

δ
(M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

We choose δ = σ

2‖n‖3L∞(Γ )

and rearrange and use the Sobolev trace theorem to

obtain

σ

∫

Γ

1

|n|3
∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′ + μ

d

dt

∫

Γ

∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′

� C
∑

±

‖n‖3L∞(Γ )

σ
‖∂β(p + μ ṗ)‖2H1(Ω±)

+ (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

,

where we have used the lower order estimate (64) and the existing energy estimates
(83), (101) and (102). Now we apply the Lemma 8 to obtain

∫

Γ

∣
∣
∣

〈

D′〉0.5 ∂α∇′ f
∣
∣
∣

2
dx ′ � (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

This completes the proof. 
�

9.16. Estimate of the Additional Terms in the Energy Involving μ

The following estimates are in fact not essential for the closure of the energy
estimate (with an energy involving fewer μ-dependent terms, although we have
included the extra terms in the energy for convenience later on), so we will skip
most of the details.

By applying ∂α where |α| = 3 and α0 � 2 to the curl equation (54) and
multiplying byμ2∂α(∇ψ ×u) then integrating in space and time and using existing
estimates where necessary, we obtain the estimate

μ2‖∇ψ × ∂αu‖2 � (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

(105)

for |α| = 2. Note that we need to use the fact that we have mollified the coefficient
ρ to give ρμ, and that ‖∇ρμ‖L2(Ω±) � C 1

μ
‖ρ‖L2(Ω±).

Applying ∂α where |α| = 2 to the curl equation (54), we obtain

ρμ∇ψ × ∂t∂
αu = −ρμ(uψ · ∇)∇ψ × ∂αu + R3(U, ψ).
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Multiplying by μ, squaring, integrating in time and using the remainder estimate
(118), we obtain

μ2
∫ t

0
‖∇ψ × ∂t∂

αu‖2 dτ � t K (t) (106)

for |α| = 2.
Now we obtain an elliptic-type estimate for u · n similar to the elliptic estimate

we obtained for f . First we prove a very simple lemma which we will reuse later.

Lemma 11. Let z ∈ H1(Γ ) and h ∈ Hs(Γ ) for s ∈ R�0 with

(1 − Δ′)z = h

on Γ in the sense of distributions. Then z ∈ Hs+2(Γ ) with

‖z‖Hs+2(Γ ) � C‖h‖Hs (Γ ).

Proof. Taking Fourier transforms with respect to x ′, we have
〈

ξ ′〉2 ẑ = ĥ.

Multiplying by
〈

ξ ′〉s , then squaring, we obtain

∣
∣
∣

〈

ξ ′〉s+2
ẑ
∣
∣
∣

2 =
∣
∣
∣

〈

ξ ′〉s ĥ
∣
∣
∣

2
.

Integrating overR
2 and using the definition of the Sobolev norm in terms of Fourier

transforms, we obtain z ∈ Hs+2(Γ ) with

‖z‖2Hs+2(Γ )
= ‖h‖2Hs (Γ )

as required. 
�
Now we let 0 � j � 2 and apply ∂

j
t to the pressure interface condition (43).

We obtain

μ(1 − Δ′)∂ j
t (u · n) = ∂

j
t (−[p] − σ∇′ · n̂ + g2 − μ[ ṗ]).

We apply the above lemma with

z = μ∂
j
t (u · n)

h = ∂
j
t (−[p] − σ∇′ · n̂ + g2 − μ[ ṗ])

and the Sobolev trace estimate to conclude that

μ2‖∂ j
t (u · n)‖2H4.5− j (Γ )

� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

, (107)

where we have used the chain and product rules, the lower order estimates (62),
(64), (65) and the existing estimates (83), (88), (92), (101), (100), (89) and (103).
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Let 1 � |α| � 3 with α3 = 0. We apply the Hodge decomposition estimate
given in Proposition 36 along with the lower order estimate (64) to obtain

‖∂αu‖2H1(Ω±)
� (M0 + t K (t))(‖∂αu‖2L2(Ω±)

+ ‖∇ψ · ∂αu‖2L2(Ω±)

+ ‖∇ψ × ∂αu‖2L2(Ω±)
+ ‖∂αu · n‖2H0.5(Γ )

)

� (M0 + t K (t))(‖∂αu‖2L2(Ω±)
+ ‖∇ψ · ∂αu‖2L2(Ω±)

+ ‖∇ψ × ∂αu‖2L2(Ω±)

+ ‖∂α(u · n)‖2H0.5(Γ )
+ ‖u · ∂αn‖2H0.5(Γ )

+
∑

β+γ=α,β �=α,γ �=α

‖∂βu · ∂γ n‖2H0.5(Γ )
).

Now in the case α0 � 2, we multiply by μ2 apply the existing estimates (103),
(105), (83), (92), (100), (104) and the Sobolev embedding theorem to obtain

μ2‖∂αu‖2H1(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

In the caseα0 = 3, wemultiply byμ2, integrate in time, apply the existing estimates
(106), (83), (92), (100), (104) and the Sobolev embedding theorem, and rewrite the
term ‖u · ∂αn‖2

H0.5(Γ )
as ‖u · ∂2t ∇′(u · n)‖2

H0.5(Γ )
to obtain

μ2
∫ t

0
‖∂αu‖2H1(Ω±)

dτ � (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

. (108)

Now it remains to estimate ‖∂αu‖H1(Ω±) for 0 � |α| � 3 where α3 � 1, but we
may apply Lemma 9 to obtain, for |α| = 3 and α0 � 2:

∂x3∂
αui = Gi (∇ψ) · (∂x1∂

αu, ∂x2∂
αu,∇ψ · ∂αu,∇ψ × ∂αu),

where Gi (∇ψ) is a smooth vector-valued function for each i = 1, 2, 3. We claim
inductively on α3 for 0 � α3 � 3 that

μ2‖∂x3∂αui‖2L2(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

Indeed, we have already proved the case α3 = 0. So we assume it is true for α3 � k
where 0 � k � 2 and try to prove it is true for α3 = k+1. Using the above formula
we have

μ2‖∂x3∂αui‖2L2(Ω±)

� μ2(M0+t K (t))(‖∇′∂αu‖2L2(Ω±)
+‖∇ψ · ∂αu‖2L2(Ω±)

+‖∇ψ × ∂αu‖2L2(Ω±)
)

� (M0 + t K (t))(
1

ε
3
2

+ ε
1
2 Eμ(t)),

where we have used the induction hypothesis for the first term on the right, the
estimate (103) for the second term on the right and the estimate (105) for the third
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term on the right. This completes the proof of the induction step. Hence we have
finally proved that

μ2‖∂αu‖2H1(Ω±)
� (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

(109)

for 1 � |α| � 3 with α0 � 2.

9.17. Conclusion of the Energy Estimate

Combining the estimates (62), (64), (65), (81), (83), (92), (88), (89), (100),
(101), (104), (109), (108) and (107) we obtain

Eμ(t) � (M0 + t K (t))

(
1

ε
3
2

+ ε
1
2 Eμ(t)

)

.

Now for each t we may choose ε
1
2 = 1

2(M0+t K (t))
and rearrange to obtain

Eμ(t) � M0 + t K (t), (110)

wherewe have redefinedM0 and K (t). From this, the result of Proposition 7 follows
from a well-known argument which proceeds by setting

T 0 = sup

{

t ∈ (0, T ′) :Eμ(t) � 2M0, inf
τ∈(0,t)

inf
Ω±

ρ � 2δ0

3
,

inf
τ∈(0,t)

inf
Ω±

ρμ �
2δ0μ
3

, inf
τ∈(0,t)

inf
R3

Jψ � 2κ0

3

}

,

and using continuity together with the inequalities (59)–(61) and (110) evaluated
at t = T 0 to obtain a lower bound of the desired form for T 0.

9.18. Remainder Estimates

One of the key observations in deriving high-order energy estimates is that once
we have differentiated the equations enough times, the lower order terms may all
be estimated in terms of the energy by the Sobolev embedding theorem, and hence
we may try and obtain energy estimates in the same way as for constant-coefficient
linear equations. To make the analysis as clear as possible, in this section we define
the types of generic remainder term which are generated and prove estimates for
them, so that we can concentrate on dealing with the important higher-order terms
in the main body of the proof of the energy estimate. We have only sketched the
proofs in this section as they are generally straightforward but technical.

Remark 4. We note thatU+ can be extended to (0, T )×Ω− in such a way that the
Sobolev norm of the extended function is controlled by a constant times the Sobolev
norm of the original function, and similarly U− can be extended to (0, T ) × Ω+.
Hence in the following section on remainders, we will write U when we could be
referring to either U+ or U−, or their extensions to (0, T ) × Ω− or (0, T ) × Ω+.
We can do this because the estimates only depend on a control of their Sobolev
norms, and our energy functional is symmetric with respect to ± terms.
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We start with an estimate of ṗ in terms of the energy.

Lemma 12. Let 0 � |β| � 2 and 0 � |α| � 3. We have

μ2‖∂β ṗ‖2H1(Ω±)
� (M0 + t K (t))Eμ(t) (111)

μ2
∫ t

0
‖∂α ṗ‖2L2(Ω±)

dτ � (M0 + t K (t))Eμ(t). (112)

Proof. We use the fact that

μ ṗ = −μρc2∇ψ · u,

together with the chain rule, the Sobolev embedding theorem and the Sobolev
product lemma, Lemma 30. 
�

Now we define the remainder terms.

Definition 27. Let 0 � k � 1. We will write Rk∞(U, ψ) for a generic remainder
term of the form

Rk∞(U, ψ) = G({∂β(U, ρμ,ψ, ∂ψ, g1) : |β| � k}),
whereG is a smooth function of its arguments in the regionρ > 0, ρμ > 0, Jψ > 0.
Similarly, for 0 � k � 1, we will write Rk∞,Γ (U, f ) for a generic remainder term
of the form

Rk∞,Γ (U, ψ) = G({∂β(U |Γ , f, ∂ ′ f ) : |β| � k}),
where G is a smooth function of its arguments. We will also write R∞,Γ ( f ) for a
generic remainder term of the form

R∞,Γ ( f ) = G(∇′ f, g2),

where G is a smooth function of its arguments.

Definition 28. Let 0 � k � 3. We will write Rk(U, ψ) for a generic remainder
term which consists of sums of terms of the form

G({∂ j
x3ψ : 0 � j � k + 1})R0∞(U, ψ)

n
∏

i=1

∂αi
(U, ρμ,∇′ψ, ∂tψ, g1)e(i)

(which is not allowed in the case k = 0) and

G({∂ j
x3ψ : 0 � j � k + 1})R0∞(U, ψ) · ∂αg1.

Here, n is an integer with 1 � n � k + 1, αi are multi-indices with 0 �
∣
∣αi

∣
∣ �

k and 1 �
∑n

i=1

∣
∣αi

∣
∣ � k + 1, (U, ρμ,∇′ψ, ∂tψ, g1)e(i) denotes an entry of

(U, ρμ,∇′ψ, ∂tψ, g1) depending on i , R0∞(U, ψ) is defined in Definition 27, G is
a smooth function of its arguments, and |α| � k. Finally, we impose the important
constraint that if we have (U, ρμ,∇′ψ, ∂tψ, g1)e(i) = ∂tψ then

∣
∣αi

∣
∣ � k − 1 or

∂αi
contains at least one space derivative (so it is not all time derivatives).
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Definition 29. Let 0 � k � 3. We will write Rk(U, ψ, ṗ) for a generic remainder
term which consists of sums of terms of the form

Rk(U, ψ)

or

G({∂ j
x3ψ : 0 � j � k + 1})R0∞(U, ψ) · (

n
∏

i=1

∂αi
(U, ρμ,∇′ψ, g)e(i))∂

β ṗ.

Here, n is an integerwith 0 � n � k+1,αi aremulti-indiceswith 0 �
∣
∣αi

∣
∣ � k,β is

a multi-index with 0 � |β| � k and 0 �
∑n

i=1

∣
∣αi

∣
∣ + |β| � k, (U, ρμ,∇′ψ, g)e(i)

denotes an entry of (U, ρμ,∇′ψ, g) depending on i , R0∞(U, ψ) is defined in Defi-
nition 27, and G is a smooth function of its arguments.

Definition 30. Let 1 � k � 2. We will write Rk
Γ (U, f ) for a generic remainder

term which consists of sums of terms of the form

R0∞,Γ (U, f )
n

∏

i=1

∂αi
(U |Γ , ∂ ′ f )e(i).

Here, n is an integer with 1 � n � k + 1, αi are multi-indices with αi
3 = 0,

1 �
∣
∣αi

∣
∣ � k and

∑n
i=1

∣
∣αi

∣
∣ � k+1, (U |Γ , ∂ ′ f )e(i) denotes an entry of (U |Γ , ∂ ′ f )

depending on i , and R0∞,Γ (U, f ) is defined in Definition 27.

We may sometimes write R0
Γ (U, f ), which is defined to be zero.

Definition 31. Let 1 � k � 3. We will write Rk
Γ ( f ) for a generic remainder term

which consists of sums of terms of the form

R∞,Γ ( f )
n

∏

i=1

∂αi
(∇′ f, g2)e(i).

Here, n is an integer with 1 � n � k + 1, αi are multi-indices with αi
3 = 0,

1 �
∣
∣αi

∣
∣ � k and

∑n
i=1

∣
∣αi

∣
∣ � k + 1, (∇′ f, g2)e(i) denotes an entry of (∇′ f, g2)

depending on i , and R∞,Γ ( f ) is defined in Definition 27.
We may sometimes write R0

Γ ( f ), which is defined to be zero.

Now we provide estimates for the remainder terms.

Lemma 13. For t ∈ (0, T ′), the remainder terms Rk∞(U, ψ), Rk∞,Γ (U, f ) and
R∞,Γ ( f ) satisfy

‖Rk∞(U, ψ)‖2L∞(Ω±) � K (t) for 0 � k � 1 (113)

‖Rk∞,Γ (U, f )‖2L∞(Γ ) � K (t) for 0 � k � 1 (114)

‖R∞,Γ ( f )‖2L∞(Γ ) � K (t) (115)

‖Rk∞(U, ψ)‖2L∞(Ω±) � M0 + t K (t) for k = 0 (116)

‖Rk∞,Γ (U, f )‖2L∞(Γ ) � M0 + t K (t) for k = 0. (117)
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Proof. We simply use the Sobolev embedding theorem, plus uniform continuity
for the second estimate, and the fundamental theorem of calculus for the last two
estimates. 
�
Lemma 14. Given t ∈ (0, T ′), the remainder terms Rk(U, ψ), Rk(U, ψ, ṗ),
Rk

Γ (U, f ) and Rk
Γ ( f ) satisfy the following estimates.

‖Rk(U, ψ)‖2L2(Ω±)
� K (t) for 0 � k � 3 (118)

‖Rk
Γ (U, f )‖2L2(Γ )

� K (t) for 0 � k � 2 (119)

‖Rk
Γ ( f )‖2L2(Γ )

� K (t) for 0 � k � 3 (120)

‖Rk(U, ψ)‖2L2(Ω±)
� M0 + t K (t) for 0 � k � 2 (121)

‖Rk
Γ (U, f )‖2L2(Γ )

� M0 + t K (t) for 0 � k � 1 (122)

‖Rk
Γ ( f )‖2L2(Γ )

� M0 + t K (t) for 0 � k � 2. (123)

Also, for 0 � k � 3 and 1 � |α| � 3, we have

μ

∫ t

0

∫

Ω±

∣
∣
∣Rk(U, ψ, ṗ) · ∂αU

∣
∣
∣ dx dτ � 1

ε
t K (t) + ε(M0 + t K (t))Eμ(t) (124)

where we are free to choose ε in the range 0 < ε � 1.
Finally, let 0 � k � 2, and let α be a multi-index with α3 � |α| − 1 and

1 � |α| � 3. Thuswehave either ∂α = ∂x j ∂
β for some1 � j � 2and |β| = |α|−1,

or ∂α = ∂t∂
β for some |β| = |α| − 1. Then

∣
∣
∣
∣

∫ t

0

∫

Γ

Rk
Γ (U, f )∂α(U, μ ṗ) dx ′ dτ

∣
∣
∣
∣
� (M0 + t K (t))(

1

ε
+ εEμ(t)), (125)

where we are free to choose ε in the range 0 < ε � 1.

Proof. The estimates (121)–(123) follow from (118)–(120) using the fundamental
theorem of calculus.

To prove (118), we use (113), plus the Sobolev product lemma, Lemma 30,
applied to the product which occurs in the remainder,

∏n
i=1 ∂αi

(U, ρμ,∇′ψ, ∂tψ,

g1)e(i). We do this by setting mi = 3 − ∣
∣αi

∣
∣ and m = 2 > 3

2 = d
p and checking

∑n
i=1 mi = 3n − ∑n

i=1

∣
∣αi

∣
∣ � (n − 1)m. We conclude by using the definition of

the energy.
The proof of (124) is similar, except we obtain

‖Rk(U, ψ, ṗ)‖L2(Ω±) � K (t)
∑

±

3
∑

j=0

‖∂ j
t ṗ‖H3− j (Ω±).

Applying Cauchy’s inequality we obtain the desired estimate, where we have used
the estimates (111)–(112) for ṗ.
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To prove (119), we note that since ∂t f = u · n = u3 − u′ · ∇′ f by (42), we can
in fact write Rk

Γ (U, f ) as a sum of terms of the form

R0∞,Γ (U, f )
n

∏

i=1

∂αi
(U |Γ ,∇′ f )e(i).

We note that in fact this has the form

Rk(U, ψ)|Γ ,

where Rk(U, ψ) is defined in Definition 28. Hence, using the Sobolev trace lemma,

‖Rk
Γ (U, f )‖2L2(Γ )

� ‖Rk(U, f )‖2H1(Ω±)
� ‖Rk+1(U, f )‖2L2(Ω±)

� K (t),

where we have used (118).
To prove (125), we convert the above to an integral on the left hand side to one

over the interior. We have
∣
∣
∣
∣

∫ t

0

∫

Γ

Rk
Γ (U, f )∂α(U, μ ṗ) dx ′ dτ

∣
∣
∣
∣

�
∑

±

∣
∣
∣
∣

∫ t

0

∫

Ω±
∂x3(R

k(U, ψ)∂α(U, μ ṗ)) dx dτ

∣
∣
∣
∣

�
∑

±

∣
∣
∣
∣

∫ t

0

∫

Ω±
Rk+1(U, ψ)∂α(U, μ ṗ) + Rk(U, ψ)∂α∂x3(U, μ ṗ) dx dτ

∣
∣
∣
∣

�
∑

±

∣
∣
∣
∣

∫ t

0

∫

Ω±
Rk(U, ψ)∂α∂x3(U, μ ṗ) dx dτ

∣
∣
∣
∣
+ 1

ε

∫ t

0
‖Rk+1(U, ψ)‖2L2(Ω±)

dτ

+ ε
∑

±
μ2

∫ t

0
‖∂α ṗ‖2L2(Ω±)

dτ

�
∑

±

∣
∣
∣
∣

∫ t

0

∫

Ω±
Rk(U, ψ)∂α∂x3(U, μ ṗ) dx dτ

∣
∣
∣
∣

+ 1

ε
t K (t) + ε(M0 + t K (t))Eμ(t),

where we have used the estimates (111)–(112) for ṗ. To deal with the first term on
the right, we integrate by parts horizontally in space if ∂α = ∂x j ∂

β or in time if
∂α = ∂t∂

β to transfer a derivative to the remainder term, then we use the estimates
(118) and (111) or (112).

The proof of (120) is similar to the proof of (118), so we skip the details. 
�

10. The Linearised Equations

In this section we introduce a linearisation of the μ-approximate equations
which is carefully chosen so that it admits an energy estimate without loss of
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regularity with respect to the coefficients and hence fits nicely into the contraction-
mapping framework which we intend to use to prove the existence of a fixed point
which solves the μ-approximate equations. See Section 4.4 for a brief motivation
of the choice of linearisation.

10.1. Definition of the Linearised Equations

Definition 32. Let T̄ ∈ (0,∞), f̄ ∈ C1
b((0, T̄ ) × R

2), Ū± = ( p̄±, ū±, s̄±) ∈
C1
b((0, T̄ ) × Ω±). Assume that

[ū · n̄] = 0.

We say (U+,U−, f ), where f ∈ C1
b((0, T ) × R

2), U± = (p±, u±, s±) ∈
C1
b((0, T ) × Ω±) with u ∈ C2

b (Ω±) for each t ∈ (0, T ) and f, u · n ∈ C2
b (Γ ) for

each t ∈ (0, T ), is a solution of the linearised equations with lifting operator La

and right hand side g on the time interval (0, T ) (where T ∈ (0, T̄ ]), linearised
about the state (Ū+, Ū−, f̄ ), if the following holds:

(U+|t=0,U−|t=0, f |t=0) = (Ū+|t=0, Ū−|t=0, f̄ |t=0)

ρ > 0, ρμ > 0, Jψ := 1 + ∂x3ψ > 0

where

ψ := La f (126)

and p±, u±, s±, f satisfy the following system of PDEs.
Firstly,

∂t f = ū · n̄ on (0, T ) × Γ. (127)

In the following equations, we have defined

uψ :=
(

ū′, 1

Jψ
(ū3 − ū′ · ∇′ψ̄ − ∂tψ)

)

.

Note carefully that the term ∇′ψ̄ , where ψ̄ := La f̄ , instead of ∇′ψ is used so that
(uψ)3|Γ = 0.

Next, the following (decoupled) transport equations are to be satisfied in
(0, T ) × Ω±.

(∂t + uψ · ∇)s = 0 (128)

(∂t + uψ · ∇)p + ρ̄c̄2∇ψ · ū = 0. (129)

We define ρ and ρμ from p and s in the obvious manner following previous
notation.
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Next, as an intermediate step, we require that there exist ω± ∈ C1
b((0, T ) ×

Ω±) which we call the linearised curl, solving the following transport equation in
(0, T ) × Ω±.

ρμ(∂t + uψ · ∇)ω = −∇ψρμ × (∂t + uψ · ∇)ū − ρμ(εi jk∂
ψ
j ūl∂

ψ
l ūk) + ∇ψ × g1

(130)

with

ω|t=0 = (∇ψ̄ × ū)|t=0. (131)

Where (εi jk∂
ψ
j ūl∂

ψ
l ūk) denotes the vector with i-th component εi jk∂

ψ
j ūl∂

ψ
l ūk and

we have used summation convention for repeated indices.We call this the linearised
curl equation.

Finally, we require that the velocity u± solves the following parabolic-type
equation:

ρμ(∂t + uψ · ∇)u − μ∇ψ(ρc2∇ψ · u) + μ∇ψ × (ρc2∇ψ × u)

= −∇ψ p + μ∇ψ × (ρc2ω) + g1 (132)

in (0, T ) × Ω± and

[u · n] = 0 (133)

μ(Δ′ − 1)(u · n) + μ[ρc2∇ψ · u] = [p] + σ∇′ · n̂ − g2 (134)

n × (∇ψ × u±) = n × ω± (135)

on (0, T ) × Γ .

10.2. Definition of the Linearised Energy

Definition 33. We define the linearised energy EL : (0, T ] → [0,∞] associated to
the vector (U+,U−, f ) as being equal to theμ-approximate energyEμ(t) associated
to the vector (U+,U−, f ) defined in Definition 22, but without the term involving
∇ψ × u.

We define the energy EL(ω) : (0, T ] → [0,∞] associated with the curl ω as

EL(ω)(t) :=
∑

±

2
∑

j=0

ess sup
τ∈(0,t)

‖∂ j
t ω‖2H4− j (Ω±)

+
∑

±
ess sup
τ∈(0,t)

‖∂3t ω‖2L2(Ω±)

+
∑

±

∫ t

0
‖∂3t ω‖2H1(Ω±)

dτ.

We also define the slightly lower-order energy Eμ(ω) : (0, T ] → [0,∞]
associated with ω as

Eμ(ω)(t) :=
∑

±

2
∑

j=0

ess sup
τ∈(0,t)

‖∂ j
t ω‖2H2− j (Ω±)

+ μ2
∑

±

2
∑

j=0

ess sup
τ∈(0,t)

‖∂ j
t ω‖2H3− j (Ω±)

.
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10.3. Notation for Constants and Functions of the Energy and Initial Data

Definition 34. For fixed μ > 0 it will be convenient to define some generic con-
stants/functions depending on the energy and initial data in a given way which are
also allowed to depend on μ.

We will write Fμ for a generic smooth increasing function of its arguments
which depends on μ.

We will write Cμ for a generic constant which is independent of the solution,
including being independent of the initial data, which depends on μ.

We define M0
μ as generic a constant of the form

M0
μ := Fμ

(

E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

.

We write Ēμ to denote the energy Eμ with (U+,U−, f ) replaced by
(Ū+, Ū−, f̄ ), and we define ĒL similarly.

We define Kμ(t) as a generic function of t of the form

Kμ(t) := Fμ(Ēμ(t), Eμ(t), Eμ(ω)(t), M0
μ).

Similarly, we define KL(t) as a generic function of t of the form

KL(t) := Fμ(ĒL(t), EL(t), EL(ω)(t), M0
μ).

Remark 5. Note that in the following sections, constants and generic functions will
be independent of T (for 0 < T � 1). In particular, we will only use the Sobolev
embedding theorem with respect to space and not with respect to time.

Lemma 15. Suppose ω± = ∇ψ × u±. Then

Eμ(ω)(t) � Fμ(Eμ(t))

Kμ(t) � Fμ(Ēμ(t), Eμ(t), M0
μ)

Eμ(t) � EL(t) + EL(ω)(t)

EL(t) � Eμ(t)

EL(ω)(t) � Fμ(Eμ(t))Eμ(t).

Proof. The first inequality follows from the definitions of Eμ(ω)(t) and Eμ(t) and
the product rule. The second inequality follows from the first. The third and fourth
inequalities are immediate from the definitions of Eμ(t), EL(t) and EL(ω)(t). The
fifth inequality follows from the definitions of EL(ω)(t) and Eμ(t) and the product
rule. 
�
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10.4. Statement of the Energy Estimate for the Linearised Equations

Proposition 11. Let (U 0+,U 0−, f 0) be initial data for the μ-approximate equations
with initial energy E0

μ < ∞. Assume that

inf
Ω±

ρ0 =: δ0 > 0, inf
Ω±

ρ0
μ =: δ0μ > 0, inf

R3
Jψ0 =: κ0 > 0.

Let (Ū+, Ū−, f̄ ) be a background state satisfying the conditions stated in the
Definition 32 of the linearised equations above defined on the interval (0, T̄ ).
Suppose that in addition the following conditions hold:

Ēμ(T̄ ) < ∞
∂
j
t (Ū+, Ū−, f̄ )|t=0 = ∂

μ,g, j
0 (U 0+,U 0−, f 0) for 0 � j � 3.

Let (U+,U−, ω+, ω−, f ) be a solution of the linearised equations with background
state (Ū+, Ū−, f̄ ) as defined in theDefinition 32 on some time interval (0, T )where
T ∈ (0, T̄ ). Suppose in addition that

EL(T ) + EL(ω)(T ) < ∞, ρ � δ0

4
, ρμ �

δ0μ

4
, Jψ � 1

4
κ0

for t ∈ (0, T ).
Then in fact the energy satisfies the following bound:

EL(t)+EL(ω)(t) � M0
μ+Kμ(t)(t+

∫ t

0
ĒL(τ )+EL(τ )+EL(ω)(τ ) dτ)+ 1

4
ĒL(t)

for t ∈ (0, T ). Moreover, we have

ρ � δ0 − t Kμ(t), ρμ � δ0μ − t Kμ(t), Jψ � κ0 − t Kμ(t)

on the time interval (0, T ).

Proof. See Section 13. 
�

10.5. Statement of Existence and Uniqueness of Solutions to the Linearised
Equations

Proposition 12. Let (U 0+,U 0−, f 0) be initial data for the μ-approximate equations
with initial energy E0

μ < ∞ satisfying the compatibility condition (45) up to order
3 and the condition (46) up to order 2. Assume that

inf
Ω±

ρ0 =: δ0 > 0, inf
Ω±

ρ0
μ =: δ0μ > 0, inf

R3
Jψ0 =: κ0 > 0.

Let (Ū+, Ū−, f̄ ) be a background state satisfying the conditions stated in the
Definition 32 of the linearised equations above defined on the interval (0, T̄ ).
Suppose that in addition the following conditions hold:

ĒL(T̄ ) < ∞
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∂
j
t (Ū+, Ū−, f̄ )|t=0 = ∂

μ,g, j
0 (U 0+,U 0−, f 0)

for 0 � j � 3. (136)

Then there exists a T ∈ (0, T̄ ] and a solution (U+,U−, ω+, ω−, f ) of the lin-
earised equations on the time interval (0, T ), as defined in Definition 32, satisfying
the following additional properties:

EL(T ) + EL(ω)(T ) < ∞, ρ � δ0

4
, ρμ �

δ0μ

4
, Jψ � 1

4
κ0

for all t ∈ (0, T ) and

∂
j
t (U+,U−, ω+, ω−, f )|t=0 = ∂

μ,g, j
0 (U 0+,U 0−,∇ψ0

× u0+,∇ψ0 × u0−, f 0) for 0 � j � 3.

Moreover if T < T̄ then one of the following holds as t ↑ T .

inf
x∈Ω±

ρ → δ0

4
, inf

x∈Ω±
ρμ → δ0μ

4
, inf

x∈R3
Jψ → 1

4
κ0.

Also, the solution is unique on the time interval (0, T ) amongst solutions with
the above properties.

Proof. See Sections 11–12 for the proof. 
�

10.6. The Curl of the Linearised Velocity Equation

We record here the result of taking the curl of the linearised velocity equation,
although we will only need this when it comes to proving a fixed point of the
linearised equations solves the μ-approximate equations.

Lemma 16. Suppose that u satisfies the linearised velocity equation (132). Suppose
that in addition to the regularity stated in Definition 32, we have ∂tψ, ∂t u, g1, ū ∈
H1
loc(Ω±), p, s, u,∇ψ, ψ̄,∇u ∈ H2

loc(Ω±). Then ∇ψ × u satisfies the following
equation.

ρμ(∂t + ūψ · ∇)(∇ψ × u) = −∇ψρμ × (∂t + ūψ · ∇)u − ρμ(εi jk∂
ψ
j ūl∂

ψ
l uk)

+ ∇ψ × g1

− μ∇ψ × (∇ψ × (∇ψ × u)) + μ∇ψ × (∇ψ × ω)

− ∇ψ × (ρμ

1

Jψ
ū′ · ∇′(ψ − ψ̄)∂x3u) (137)

in (0, T )×Ω±, where (εi jk∂
ψ
j ūl∂

ψ
l uk)denotes the vectorwith i-th component given

by εi jk∂
ψ
j ūl∂

ψ
l uk and we have used summation convention for repeated indices.

Proof. The proof is almost identical to the proof of Lemma 3. 
�
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11. Solving the Linearised Equations for the Front, Entropy, Pressure and
Curl

In this section we assume we are given the background state (Ū+, Ū−, f̄ ) on
the time interval (0, T̄ ) and initial data (U 0+,U 0−, f 0) such that (Ū+, Ū−, f̄ ) and
(U 0+,U 0−, f 0) satisfy the hypotheses of Proposition 12.

We start with the very simple construction of the front f and the lift ψ of the
front f .

Proposition 13. There exists a T̃ ∈ (0, T̄ ] and f ∈ L∞((0, T̃ ) × Γ ) such that

∂t f = ū · n̄

on (0, T̃ ) × Γ and

∂
j
t f |t=0 = ∂

μ,g, j
0 f 0 for 0 � j � 3.

Moreover, f has the following regularity:

∂
j
t ∇′ f ∈ L∞((0, T̃ ); H4.5− j (Γ )) for 0 � j � 3

∂
j+1
t f ∈ L2((0, T̃ ); H5.5− j (Γ )) for 0 � j � 3

∂
j+1
t f ∈ L∞((0, T̃ ); H4− j (Γ )) for 0 � j � 3

and such an f is unique.
Also, defining

ψ = La f,

we have

inf
x∈R3

Jψ � 1

4
κ0

for all t ∈ (0, T̃ ), and if T̃ < T̄ , then

inf
x∈R3

Jψ → 1

4
κ0 as t ↑ T̃ .

Proof. This is clear by direct integration and then setting

T̃ = sup

{

t ∈ (0, T̄ ) : inf
τ∈(0,t)

inf
x∈R3

Jψ � κ0

4

}

and using continuity. 
�
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Lemma 17. In this lemma functions will be defined either on Ω+ or Ω−.
Let b ∈ L∞((0, T );W 1,∞(Ω±; R

3)), h ∈ L2((0, T ); H1(Ω±)) and w0 ∈
L1
loc((0, T ) × Ω±) with ∇w0 ∈ L2(Ω±). Suppose also that b3|Γ = 0.

Then there exists a unique solution w ∈ L1
loc((0, T ) × Ω±) with ∇w, ∂tw ∈

L2((0, T ); L2(Ω±)) of the equation

(∂t + b · ∇)w = h

in (0, T ) × Ω± with

w|t=0 = w0.

Moreover, if for some k � 1, l � 0 with k + l � 3 and all 1 � j � k,

∂
j
t b ∈ L∞((0, T ); Hk− j+l(Ω±))

∂
j−1
t h ∈ L∞((0, T ); Hk− j+l(Ω±))

∇b ∈ L∞((0, T ); Hk−1+l(Ω±))

∇h ∈ L2((0, T ); Hk−1+l(Ω±))

∇w0 ∈ Hk−1+l(Rd),

then

∂
j
t w ∈ L∞((0, T ); Hk− j+l(Ω±))

∇w ∈ L∞((0, T ); Hk−1+l(Ω±))

for all 1 � j � k.

Proof. Uniqueness follows easily by applying a standard energy estimate (which
is easily derived because b3|Γ = 0) to the difference of two solutions and using
Gronwall’s lemma.

To prove the existencewe simply apply the Sobolev extension operator ExtΩ± in
space to extend b, h andw0 to be defined onR

3. Then we are left with a completely
standard scalar linear transport equation on the whole space which we may solve to
obtain w ∈ L1

loc((0, T ) × R
3) with ∇w, ∂tw ∈ L2((0, T ); L2(R3)) satisfying the

equation in (0, T ) × R
3. Then w|Ω± satisfies the equation in Ω± and is the unique

solution by the above.
Also, the regularity ofw|Ω± follows from the regularity ofw on thewhole space

given by the standard theory of transport equations and the Sobolev embedding
theorem. 
�
Proposition 14. Let T̃ , f and ψ be given by Proposition 13. Then there exist
T ∈ (0, T̃ ) and s, p, ω ∈ L∞((0, T )×Ω±) satisfying the linearised equations for
the entropy, pressure and curl, (128)–(130), with

∂
j
t s|t=0 = ∂

μ,g, j
0 s0 for 0 � j � 3 (138)

∂
j
t p|t=0 = ∂

μ,g, j
0 p0 for 0 � j � 3 (139)
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∂
j
t ω|t=0 = ∂

μ,g, j
0 (∇ψ0 × u0) for 0 � j � 3. (140)

Moreover, they have the following regularity:

∂
j
t s, ∂

j
t p, ∂

j
t ω ∈ L∞((0, T ); H4− j (Ω±)) for 1 � j � 3

∇s,∇ p,∇ω ∈ L∞((0, T ); H3(Ω±))

∂4t s, ∂
4
t p ∈ L∞((0, T ); L2(Ω±))

∂4t ω ∈ L2((0, T ); L2(Ω±)),

and such s, p, ω are unique. In addition,

ρ � δ0

4
in (0, T ) × Ω±

ρμ �
δ0μ

4
in (0, T ) × Ω±,

and if T < T̃ , then one of the following holds:

inf
x∈Ω±

ρ → δ0

4
as t ↑ T

inf
x∈Ω±

ρμ → δ0μ

4
as t ↑ T .

Proof. We start by solving the linearised entropy equation (128). Apply Lemma 17
with b = uψ , h = 0 andw0 = s0 to obtain a unique solution s ∈ L1

loc((0, T̃ )×Ω±)

with∇s ∈ L2((0, T̃ ); L2(Ω±)) and ∂t s ∈ L2((0, T̃ ); L2(Ω±)) to the equationwith
s(0) = s0. The claimed regularity easily follows from the regularity of ū, ψ̄ ,ψ and
s0.

To see that the initial time derivativesmatch, we use the fact that the background
state satisfies (136) togetherwith s(0) = s0, which show that the linearised equation
for s is the same as the μ-approximate equation for s when restricted to t = 0,
which shows that (138) holds for j = 1. We then proceed by induction.

We apply exactly the same reasoning for the pressure. We then set T = sup{t ∈
(0, T̃ ) : infτ∈(0,t) infx∈Ω± ρ � δ0

4 , infτ∈(0,t) infx∈Ω± ρμ � δ0μ
4 } to provide the

bounds on the density, which we recall is a function of s and p. We then treat the
curl in the same way as the entropy and pressure, except that due to the fact that we
only have ∂4t u ∈ L2((0, T ); L2(Ω±)), we obtain only ∂4t ω ∈ L2((0, T ); L2(Ω±)).

�

12. Solving the Linearised Parabolic-Type Equation for the Velocity

The basic approach to solving the linearised equation for the velocity uses a
weak form of the equation and a Galerkin approximation with energy estimates for
the Galerkin approximation providing additional regularity—see eg Evans [14] for
a simple version of this method.
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In this section we assume we are given the background state (Ū+, Ū−, f̄ ) on
the time interval (0, T̄ ) and initial data (U 0+,U 0−, f 0)which together satisfy the
hypotheses of Proposition 12. Given this initial data and background state, we
assume that f and ψ are given by Proposition 13, s, p, T , ρ, ρμ and ω are given
by Proposition 14.

12.1. Notation for Constants Depending on the Background State and the
Solutions to Preceding Equations

Definition 35. It will be useful to define constants depending on ∇′ f , ρμ, ρc2

which we will use as a bound on coefficients of the equations. For 0 � j � 1, we
define C∞, j > 0 as a generic constant which is bounded above as follows:

C∞, j (t) � Fμ

(
∑

±

j
∑

k=0

ess sup
τ∈(0,t)

‖∂kt (ρc2)‖2W j−k,∞(Ω±)
,

∑

±

j
∑

k=0

ess sup
τ∈(0,t)

‖∂kt (ρμ, ∂tρμ)‖2W j−k,∞(Ω±)
,

j+1
∑

k=0

ess sup
τ∈(0,t)

‖∂kt ∇′ f ‖2H2.5+ j−k (Γ )
,
1

δ0
,
1

δ0μ
,
1

κ0

)

,

for some smooth increasing function Fμ depending on μ.

12.2. Statement of Existence and Uniqueness of Solutions to the Parabolic-Type
Linearised Equation for the Velocity

Proposition 15. Let f and ψ be given by Proposition 13, s, p, T , ρ, ρμ and ω be
given by Proposition 14. Then there exists u ∈ L∞((0, T ) × Ω±) such that

ρμ(∂t + uψ · ∇)u − μ∇ψ(ρc2∇ψ · u) + μ∇ψ × (ρc2∇ψ × u)

= −∇ψ p + μ∇ψ × (ρc2ω) + g1

in (0, T ) × Ω± and

[u · n] = 0

μ(Δ′ − 1)(u · n) + μ[ρc2∇ψ · u] = [p] + σ∇′ · n̂ − g2

n × (∇ψ × u±) = n × ω±

on (0, T ) × Γ and

∂
j
t u|t=0 = ∂

μ,g, j
0 u0 for 0 � j � 3.

Moreover

∑

±

∑

0� j�3

ess sup
τ∈(0,t)

‖∂ j
t ∇u‖2H3− j (Ω±)

dτ +
∑

±

∑

0� j�3

∫ t

0
‖∂ j

t ∇u‖2H4− j (Ω±)
dτ
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+
∑

±

∫ t

0
‖∂4t u‖2L2(Ω±)

dτ +
3

∑

j=0

ess sup
τ∈(0,t)

‖∂ j
t (u · n)‖2H4− j (Γ )

+
3

∑

j=0

∫ t

0
‖∂ j

t (u · n)‖2H5.5− j (Γ )
dτ < ∞.

Proof. See the remainder of this chapter for the proof. 
�

12.3. Rotating the Velocity to Fix the Normal Jump Condition

Definition 36. For the purposes of this section we will extend ∇′ f from Γ to ∇′ f
˜defined on R

3 via a linear lifting operator which gains half a derivative, so that

‖∇′ f
˜

‖Hl+1(R3) � C‖∇′ f ‖Hl+0.5(Γ )

for l � 0. See Lemma 2 for a construction of such a lifting operator.
We define the matrix N depending on∇′ f

˜

as a scalar multiple of an orthogonal

matrix, with columns as follows:

N = 1
∣
∣
∣n
˜

∣
∣
∣

(

τ̂
˜

1
τ̂
˜

2 n̂
˜

)

,

where

n
˜

= (−∇′ f
˜

, 1)

τ
˜

1 = (1, 0, ∂x1 f

˜

)

τ
˜

2 = n
˜

× τ
˜

1 = (−∂x1 f

˜

∂x2 f

˜

, 1 + (∂x1 f

˜

)2, ∂x2 f

˜

)

and

τ̂
˜

1 =
τ
˜

1

∣
∣
∣τ
˜

1
∣
∣
∣

, τ̂
˜

2 =
τ
˜

2

∣
∣
∣τ
˜

2
∣
∣
∣

, n̂
˜

=
n
∣̃
∣
∣n
˜

∣
∣
∣

are orthogonal each other, so that (τ̂
˜

1
, τ̂
˜

2
, n̂
˜

) form a right-handed orthonormal basis
of R

3 for each (t, x) ∈ (0, T ) × R
3.

We write NT for the transpose of N and N−1 for its inverse. Note that by
orthogonality, we have

N−1 =
∣
∣
∣n
˜

∣
∣
∣

2
NT .

Note that orthogonality also implies that, for any vector w,

Nw = 1
∣
∣
∣n
˜

∣
∣
∣

(w1τ̂
˜

1 + w2τ̂
˜

2 + w3n̂
˜

)
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(Nw) · n
˜

= w3

(N−1w)3 = w · n
˜

.

We also write N̄ to denote the matrix given by replacing f with f̄ in the
definition of N .

Definition 37. We define the rotated initial velocity

�

u 0 := N−1|t=0u
0.

The initial time derivatives act on
�

u 0 in the obvious way. For 0 � j � 3,

∂
μ,g, j
0

�

u 0 := ∂
j
t (N−1(t)u(t))|t=0,

where on the right hand side we take the formal derivative with respect to t then
replace ∂ lt u|t=0 with ∂

μ,g,l
0 u0 for 0 � l � j . Note that we have ∂

j
t f |t=0 = ∂

μ,g, j
0 f 0

for 0 � j � 3, so if we write N 0 for the matrix defined by replacing ∇′ f with
∇′ f 0 in the definition of N , then we may write ∂

j
t N |t=0 = ∂

μ,g, j
0 N 0.

Definition 38. We say that the rotated velocity function
�

u±∈ C2
b ((0, T ) × Ω±)

with
�

u 3∈ C2
b ((0, T ) × Γ ) is a solution of the rotated linearised equations for the

velocity if
�

u (0) =�

u 0 and
�

u satisfies the following equations:

ρμ

1
∣
∣
∣n
˜

∣
∣
∣

2 ∂t
�

u −μNT∇ψ(ρc2∇ψ · (N
�

u )) + μNT∇ψ × (ρc2∇ψ × (N
�

u ))

+ ρμN
T (uψ · ∇)(N

�

u ) + ρμN
T (∂t N )

�

u +NT (∇ψ p − μ∇ψ × (ρc2ω))

= NT g1 (141)

in (0, T ) × Ω± and

[�

u 3] = 0 (142)

μ(Δ′ − 1)
�

u 3 +μ[ρc2∇ψ · (N
�

u )] = [p] + σ∇′ · n̂ − g2 (143)

n × (∇ψ × (N
�

u±)) = n × ω± (144)

on (0, T ) × Γ .

Proposition 16. Suppose �

u is a solution of the rotated linearised equations for the
velocity as defined in Definition 38 satisfying

∂
j
t

�

u |t=0 = ∂
μ,g, j
0

�

u 0 for 0 � j � 3
∑

±

∑

0� j�3

ess sup
τ∈(0,t)

‖∂ j
t ∇ �

u‖2H3− j (Ω±)
dτ +

∑

±

∑

0� j�3

∫ t

0
‖∂ j

t ∇ �

u‖2H4− j (Ω±)
dτ

+
∑

±

∫ t

0
‖∂4t �

u‖2L2(Ω±)
dτ +

3
∑

j=0

ess sup
τ∈(0,t)

‖∂ j
t

�

u 3‖2H4− j (Γ )



Short-Time Structural Stability 685

+
3

∑

j=0

∫ t

0
‖∂ j

t
�

u 3‖2H5.5− j (Γ )
dτ

< ∞.

Then u := N
�

u is a solution of the linearised equations for the velocity (132)–
(135) with

∂
j
t u|t=0 = ∂

μ,g, j
0 u0 for 0 � j � 3

∑

±

∑

0� j�3

ess sup
τ∈(0,t)

‖∂ j
t ∇u‖2H3− j (Ω±)

dτ +
∑

±

∑

0� j�3

∫ t

0
‖∂ j

t ∇u‖2H4− j (Ω±)
dτ

+
∑

±

∫ t

0
‖∂4t u‖2L2(Ω±)

dτ +
3

∑

j=0

ess sup
τ∈(0,t)

‖∂ j
t (u · n)‖2H4− j (Γ )

+
3

∑

j=0

∫ t

0
‖∂ j

t (u · n)‖2H5.5− j (Γ )
dτ < ∞.

Proof. This is straightforward to check by setting
�

u= N−1u in the equations
(141)–(144). Note that the energy estimate requires the fact that

∫ t

0
‖N‖2H5(Ω±)

dτ � C
∫ t

0
‖∇′ f ‖2H4.5(Γ )

dτ < ∞,

due to the lifting property. 
�

12.4. The Spaces for a Weak Form of the Equations

Definition 39. For r ∈ [1,∞], we define the domains Ωr± and interface Γr as
follows:

Ωr± := Ω± ∩ Br (0)

Γr := Γ ∩ Br (0),

where Br (0) denotes the open ball of radius r about 0, and is equal to R
3 in the

case r = ∞. For r < ∞ we refer to these as the bounded domains.

Definition 40. For r ∈ [1,∞], we define the Hilbert spaces B0
r and B1

r as follows.

B0
r := {v = (v+, v−) ∈ L2(Ωr+; R

3) × L2(Ωr−; R
3)}.

For each t ∈ [0, T ] (at the end points we use uniform continuity for the following
definition) we define the inner product (·, ·)B0

r (t) on B0
r as follows, for v,w ∈ B0

r .

(v,w)B0
r (t) =

∑

±
(ρμ(t)

1
∣
∣
∣n
˜

(t)
∣
∣
∣

2 v,w)L2(Ωr±).
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We define the inner product (·, ·)B0
r
as

(v,w)B0
r

= (v,w)B0
r (0),

which is independent of time. We will use this inner product on B0
r when apply-

ing any results from functional analysis. The other inner products are defined for
notational convenience. Note that for all t ∈ [0, T ] the inner product (·, ·)B0

r (t) is

equivalent to the standard inner product on L2(Ωr+) × L2(Ωr−) since there exists
a constant C∞,0 > 0 such that

1

C∞,0
� ρμ±(t, x) � C∞,0

1

C∞,0
�

∣
∣
∣n
˜

(t, x)
∣
∣
∣ � C∞,0

for all (t, x).
We define

B1
r := {v = (v+, v−) ∈ H1(Ωr+; R

3) × H1(Ωr−; R
3) :

[v3] = 0, v3|Γr ∈ H1(Γr ), v||x |=r = 0}.
Note that by v||x |=r = 0 we mean that the H1(Ωr±)-trace of v on {|x | = r} ∩ Ω±
is zero and the H1(Γr )-trace of v3 on {|x | = r} ∩ Γ is zero, and this condition
should be dropped entirely in the case r = ∞. For each t ∈ [0, T ] (at the end points
we use uniform continuity for the following definition) we define the semi-norm-
inducing-inner product {·, ·}B1

r (t) on B1
r as follows, for v,w ∈ B1

r .

{v,w}B1
r (t) =

∑

±
(ρ(t)c2(t)∇ψ(t) · (N (t)v),∇ψ(t) · (N (t)w))L2(Ωr±)

+
∑

±
(ρ(t)c2(t)∇ψ(t) × (N (t)v),∇ψ(t) × (N (t)w))L2(Ωr±)

+ (∇′v3,∇′w3)L2(Γr )
+ (v3, w3)L2(Γr )

.

We define the semi-norm-inducing-inner product {·, ·}B1
r
as

{v,w}B1
r

= {v,w}B1
r (0),

which is independent of time.
We will write the induced semi-norm as

|v|2B1
r (t) := {v, v}B1

r (t).

We then define the time-dependent full inner product and induced norm on B1
r

as

(v,w)B1
r (t) = (v,w)B0

r (t) + {v,w}B1
r (t)

‖v‖2B1
r (t) = (v, v)B0

r (t) + {v, v}B1
r (t)
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and the time-independent full inner product

(v,w)B1
r

= (v,w)B0
r

+ {v,w}B1
r
.

We will use this inner product on B1
r when applying any results from functional

analysis. The other inner products are defined for notational convenience.
We will sometimes write B0 and B1 in the case r = ∞.

Proposition 17. The map Φ : B1
r → Φ(B1

r ) ⊂ H1(Ωr+; R
3) × H1(Ωr−; R

3) ×
H1(Γr ), given by

v �→ (v+, v−, v3|Γ ),

is an isomorphism between Hilbert spaces, where the target space is equipped with
the obvious product inner product, and there exists C∞,0 > 0 independent of time
such that

‖v‖2
B1
r (t)

C∞,0
� ‖Φ(v)‖2 := ‖v+‖2H1(Ωr+)

+ ‖v−‖2H1(Ωr−)
+ ‖v3‖2H1(Γr )

� C∞,0‖v‖2B1
r (t)

for all t ∈ [0, T ].

Proof. The proof is straightforward using the orthogonality of
∣
∣n
˜

∣
∣ N (t) and the

Hodge decomposition estimate given in Proposition 36 applied to N (t)v. 
�

Corollary 2. For r < ∞, B1
r is compactly embedded in B0

r (with norms ‖·‖B1
r (t)

and ‖·‖B0
r (t) respectively).

Proof. Using the above result and the standard Sobolev compact embedding
theorem, we have B1

r ⊂ H1(Ωr+; R
3) × H1(Ωr−; R

3) ⊂⊂ L2(Ωr+; R
3) ×

L2(Ωr−; R
3), where the symbol ⊂⊂ means compactly contained. Now we have

already shown that L2(Ωr+; R
3) × L2(Ωr−; R

3) is isomorphic to B0
r with equiv-

alent norms, and this proves the result. 
�

Definition 41. For r ∈ [1,∞], we define the space Xr as follows:

Xr = {v ∈ L∞((0, T ); B1
r ) : ∂tv ∈ L2((0, T ); B0

r )}.

We will sometimes write X for the case r = ∞.
Note that if v ∈ X then v ∈ C([0, T ]; B0

r ), since ∂tv ∈ L2((0, T ); B0
r ).
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12.5. Construction of a Galerkin Basis

Lemma 18. Let m � 1 be an integer, and let z1, . . . , zm ∈ B0
r be orthonormal

with respect to the inner product (·, ·)B0
r
. Define the matrix M(t) depending on

t ∈ (0, T ) by

(M(t))kl = (zk, zl)B0
r (t).

Then M(t) is uniformly positive definite on (0, T ), ie there exists a constant C∞,0 >

0 independent of t such that

bT M(t)b � 1

C∞,0
|b|2

for all b ∈ R
m, and hence M(t), is invertible with

∣
∣
∣M(t)−1

∣
∣
∣ � C∞,0

for some C∞ > 0 independent of t . Hence, since M ∈ W 1,∞(0, T ) with

|∂t M | � C∞,0,

we have that M−1 ∈ W 1,∞(0, T ) with
∣
∣
∣∂t M

−1
∣
∣
∣ � C∞,0.

Proof. The proof is straightforward by considering bT M(t)b for b ∈ R
m . 
�

Lemma 19. For r < ∞, there exists a sequence of functions (zk)∞k=1 ⊂ B1
r which

form an orthogonal Hilbert space basis for B1
r (with norm ‖·‖B1

r
) and an orthonor-

mal Hilbert space basis for B0
r (with norm ‖·‖B0

r
). We call these the Galerkin basis

functions. Moreover, the functions zk satisfy the following eigenvalue equation:

(zk, w)B1
r

= λk(zk, w)B0
r

for all w ∈ B1
r , (145)

where λk > 0 for each k.

Proof. We define the bounded linear operator S : B0
r → B0

r as follows:

S f = u

where u ∈ B1
r ⊂ B0

r is the unique solution to the equation

(u, w)B1
r

= ( f, w)B0
r

for all w ∈ B1
r . (146)

It is a standard calculation (usually applied to the Laplacian operator) to show that
S is a well-defined (using the Riesz representation theorem) symmetric positive
definite operator and it is compact since S f ∈ B1

r ⊂⊂ B0
r . We then use the spectral

decomposition theorem for compact self-adjoint operators to obtain an orthonormal
basis (zk)∞k=1 of B0

r that are eigenfunctions of S with eigenvalues λ−1
k > 0. The

eigenvalue property can also by used to show that (zk)∞k=1 is an orthogonal basis of
B1
r . 
�
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12.6. Existence, Uniqueness and Regularity Theory for Weak Equations of the
Appropriate Form

Notation. If v is a vector, we will write (v,∇v) as a matrix containing all the
entries of v and all the derivatives ∂x j vi for 0 � i, j � 3. We write just ∇v for the
matrix with entries ∂x j vi for 0 � i, j � 3.

For simplicity, we will denote a linear function of v,∇v or (v,∇v) whose
output may be a scalar, a vector, or a matrix, by an expression of the form

Av

A∇v

or A(v,∇v)

respectively, where A is a tensor of the appropriate rank.
We will also be using G to denote a generic scalar, vector or matrix as appro-

priate, but note in particular that if G is a matrix and (·, ·) denotes an inner product
then

(G,∇v) =
3

∑

i, j=1

Gi j∂x j vi .

Also, if G is a matrix then G j will denote the j-th column of G and ∇· acts on the
rows of G.

We may write CG for a finite constant which depends on G (or, later on, Gi for
1 � i � 4).

Definition 42. We will sometimes find it convenient to write

(∂tv,w)B0
r (t) =

∑

±
(A0∂tv,w)L2(Ωr±)

{v,w}B1
r (t) =

∑

±
(A1(v,∇v), (w,∇w))L2(Ωr±) + (v3, w3)H1(Γr )

for a scalar function A0 and a tensor of appropriate rank A1.
We also define the tensor A2 such that

A2(v,∇v) = μNT ∂x3

(
(−∇′ψ, 1)

Jψ

)

ρc2∇ψ · (Nv)

− μNT ∂x3

(
(−∇′ψ, 1)

Jψ

)

× (∇ψ × (Nv)) + ρμN
T (uψ · ∇)(Nv)

+ ρμN
T (∂t N )v.

We will write CA for a finite constant that depends Ai for 0 � i � 2.
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Proposition 18. Let r ∈ [1,∞] and let Wr be a linear subspace of B1
r . Let

G1 ∈ L2((0, T ) × Ωr±) be a vector, G2 ∈ L2((0, T ) × Ωr±) be a matrix,
G3 ∈ L2((0, T ) × Γr ) be a scalar and G4 ∈ L2((0, T ) × Γr ) be a 2-vector.
Suppose that v ∈ X ∩ Wr is such that

(∂tv,w)B0
r (t) + μ{v,w}B1

r (t) +
∑

±
(A2(v,∇v),w)L2(Ωr±)

=
∑

±
(G1, w)L2(Ωr±) +

∑

±
(G2,∇w)L2(Ωr±) + (G3, w3)L2(Γr )

+ (G4,∇′w3)L2(Γr )

for all w ∈ Wr for almost every t ∈ (0, T ). Then we have the estimates

ess sup
τ∈(0,t)

‖v‖2B0
r (τ )

� C∞,0(‖v(0)‖2B0
r

+
∫ t

0

∑

±
(‖G1‖2L2(Ωr±)

+ ‖G2‖2L2(Ωr±)
) + ‖G3‖2L2(Γr )

+ ‖G4‖2L2(Γr )
dτ)

×
∫ t

0
‖v‖2B1

r (τ )
dτ (147)

� C∞,0

∫ t

0
‖v(0)‖2B0

r
+

∑

±
(‖G1‖2L2(Ωr±)

+ ‖G2‖2L2(Ωr±)
) + ‖G3‖2L2(Γr )

+ ‖G4‖2L2(Γr )
dτ. (148)

Moreover, suppose that we have G2 ∈ L∞((0, T ); L2(Ωr±)), ∂tG2 ∈
L2((0, T )×Ωr±), G3,G4 ∈ L∞((0, T ); L2(Γr )), ∂tG3, ∂tG4 ∈ L2((0, T )×Γr ),
∂tv ∈ L2((0, T );Wr ), so that in particular v ∈ C([0, T ]; B1

r ). Then

∫ t

0
‖∂tv‖2B0

r (τ )
dτ + ess sup

τ∈(0,t)
‖v‖2B1

r (t)

� C∞,1

ε

∫ t

0
‖v(0)‖2B0

r
+

∑

±
(‖G1‖2L2(Ωr±)

+ ‖G2‖2L2(Ωr±)
) + ‖G3‖2L2(Γr )

+ ‖G4‖2L2(Γr )
dτ

+ C∞,0(‖v(0)‖2B1
r

+
∑

±
ess sup
τ∈(0,t)

(‖G2‖2L2(Ωr±)
+ ‖G3‖2L2(Γr )

+ ‖G4‖2L2(Γr )
))

+ ε

∫ t

0

∑

±
‖∂tG2‖2L2(Ωr±)

+ ‖∂tG3‖2L2(Γr )
+ ‖∂tG4‖2L2(Γr )

dτ (149)

where we are free to choose ε ∈ (0, 1].
Proof. To prove (147) we test the equation with w = v ∈ Wr . We then use the
product rule, together with Cauchy’s inequality and the fact that ‖v‖H1(Ωr±) +
‖v3‖H1(Γr )

� C∞,0‖v‖B1
r (t) as proved in Proposition 17 to obtain
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‖v‖2B0
r (t) + 2μ

∫ t

0
‖v‖2B1

r (τ )
dτ � C∞,0

∫ t

0
‖v‖B0

r (τ ) dτ + ‖v(0)‖2B0
r

+ C∞,0

∫ t

0

∑

±
‖G1‖2L2(Ωr±)

+
∑

±
‖G2‖2L2(Ωr±)

+ ‖G3‖2L2(Γr )
+ ‖G4‖2L2(Γr )

dτ.

ApplyingGronwall’s inequalitywe conclude (147). Returning to the above inequal-
ity and taking the supremum over τ ∈ (0, t) which allows us to absorb the term
‖v(0)‖2

B0
r
into the left hand side, then using (147), we obtain (148). This proves the

first part of the result.
We now assume the additional regularity as stated in the second part of the

proposition. Since we have ∂tv ∈ Wr for almost every t ∈ (0, T ), we may set
w = ∂tv in the equation. We use the product rule on the term {v, ∂tv}B1

r (t) then
integrate in time, use Cauchy’s inequality and integration by parts in time where
necessary to conclude (149). 
�
Proposition 19. Let 1 � r < ∞.

Let G1 ∈ L2((0, T ) × Ωr±) be a vector, G2 ∈ L∞((0, T ); L2(Ωr±))

with ∂tG2 ∈ L2((0, T ) × Ωr±) be a matrix, G3 ∈ L∞((0, T ); L2(Γr )) with
∂tG3 ∈ L2((0, T ) × Γr ) be a scalar and G4 ∈ L∞((0, T ); L2(Γr )) with
∂tG4 ∈ L2((0, T ) × Γr ) be a 2-vector. Then there exists a unique v ∈ Xr with

v(0) = 0

such that

(∂tv,w)B0
r (t) + μ{v,w}B1

r (t) +
∑

±
(A2(v,∇v),w)L2(Ωr±)

=
∑

±
(G1, w)L2(Ωr±) +

∑

±
(G2,∇w)L2(Ωr±) + (G3, w3)L2(Γr )

+ (G4,∇′w3)L2(Γr )
(150)

for all w ∈ B1
r for almost every t ∈ (0, T ), and v satisfies the estimate (149).

Proof. Firstly, we claim that for each integer m � 1, there exist functions
d1m, . . . , dmm ∈ H1(0, T ) such that

vm :=
m

∑

k=1

dkm(t)zk ∈ H1((0, T ); B1
r )

satisfies the Equation (150) for all test functionsw ∈ Wm
r := 〈z1, . . . , zm〉, and also

vm |t=0 = 0, where (zk)∞k=1 is the Galerkin basis defined in Lemma 19. Explicitly,

vm |t=0 = 0,

and the following holds for almost every t ∈ (0, T ):

(∂tvm, w)B0
r (t) + μ{vm, w}B1

r (t) +
∑

±
(A2(vm,∇vm), w)L2(Ωr±)
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=
∑

±
(G1, w)L2(Ωr±) +

∑

±
(G2,∇w)L2(Ωr±) + (G3, w3)L2(Γr )

+ (G4,∇′w3)L2(Γr )
, (151)

for all w ∈ Wm
r := 〈z1, . . . , zm〉.

Indeed, we define (d1m, . . . , dmm ) as the solution of the following system:

m
∑

k=1

ddkm
dt

(t)(zk, zl)B0
r (t)

+
m

∑

k=1

dkm(t)

(

μ{zk, zl}B1
r (t) +

∑

±
(A2(zk,∇zk), zl)L2(Ωr±)

)

=
∑

±
(G1, zl)L2(Ωr±) +

∑

±
(G2,∇zl)L2(Ωr±) + (G3, (zl)3)L2(Γr )

+ (G4,∇′(zl)3)L2(Γr )
,

for all 1 � l � m with dkm(0) = 0 for all k. Note that we have shown in Lemma
18 that the matrix (M(t))kl := (zk, zl)B0

r (t) multiplying the vector dm is invertible

with inverse inW 1,∞(0, T ), hence we can write this as a standard first-order linear
system of ODEs of the form

ddm
dt

= A(t)dm + b(t),

where A(t) ∈ W 1,∞(0, T ), b(t) ∈ L2(0, T ). Hence, by standard theory, a solution
dm = (d1m, . . . , dmm ) exists on the interval (0, T ) with d1m, . . . , dmm ∈ H1(0, T ).

We then define

vm :=
m

∑

k=1

dkm(t)zk .

It is clear by the construction of dkm and linearity that vm satisfies the Equation (151)
for all test functions w ∈ 〈z1, . . . , zm〉, and also vm |t=0 = 0.

This proves the claim. We also note that, if, in addition, we are given that
∂tG1 ∈ L2((0, T )×Ω±), then b(t) ∈ H1(0, T ) and hence d1m , . . . , dmm ∈ H2(0, T )

and vm ∈ H2((0, T ); B1
r ).

Note that since vm, ∂tvm ∈ Wm
r , and given the regularity of the Gi , we see

that vm satisfies the estimate (149). Using this energy estimate, we can now prove
the existence of a weak solution. Indeed, using weak-∗ compactness, there exists a
v ∈ X and a subsequence vml such that

vml

∗
⇀ v in L∞((0, T ); B1)

∂tvml

∗
⇀ ∂tv in L2((0, T ); B0).
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We also have by weak-∗ lower semi-continuity of norms that v satisfies the same
estimate. We claim that v is a weak solution of the equation. Indeed, let w ∈
C1([0, T ]; B1

r ) be a function of the form

w =
M

∑

k=1

ak(t)zk .

Pick L such thatml � M for all l � L . Then, by linearity, we have that the equation
(151) holds for vml with test function w(t), for all l � L and almost every t . We
integrate from0 to T , then let l → ∞ and use theweak/weak-∗ convergences above.
We obtain that the time-integrated equation holds for v with test function w. Since
(zk)∞k=1 are dense in B1

r , wemay approximate any test functionw ∈ L2([0, T ]; B1
r )

with functions of this form, thus obtaining that the time-integrated equation holds
for v with any test function w ∈ L2([0, T ]; B1

r ). In particular, we have that the
equation (150) holds for v for all w ∈ B1

r for almost every t . This proves that v

is a weak solution of the equation. It is straightforward and standard to show that
v(0) = 0, and uniqueness follows easily by applying the energy estimate (147) to
the difference of two solutions. 
�
Proposition 20. The previous proposition holds in the case r = ∞.

Proof. This is achieved in a straightforward fashion by setting

G1
r = φrG

1 + G2∇φr , G2
r = φrG

2

G3
r = φrG

3 + ∇′ψr · G4, G4
r = φrG

4,

where φr is such that φr ∈ C∞
c (Br (0)) with φr = 1 on Br

2
(0) and |∇φr | � C

where C is independent of r . We may apply the previous result to obtain a weak
solution vr ∈ Xr to the equation with Gi

r replacing Gi for 1 � i � 4, and then we
may extend vr by zero to obtain vr±(t) ∈ B1 for almost every t . We then use the
energy estimate (149) and weak-∗ compactness to obtain a solution v ∈ X with the
desired properties. The proof of uniqueness is the same as for r < ∞. 
�
Proposition 21. Let 1 � r < ∞. Suppose the assumptions of Proposition 19 hold,
and let v ∈ Xr be the unique weak solution given by this proposition.

Suppose in addition that G1 ∈ L∞((0, T ); L2(Ωr±)), ∂tG1 ∈ L2((0, T ) ×
Ωr±) and that G2|t=0 ∈ H1(Ωr±). Let us write

∑

±
(G1|t=0, w)L2(Ωr±) −

∑

±
(∇ · G2|t=0, w)L2(Ωr±) = (h, w)B0

r

so that h ∈ B0
r is given by

h =
∣
∣
∣n
˜

0
∣
∣
∣

2

ρ0
μ

(G1|t=0 − ∇ · G2|t=0)
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and suppose that

−
∑

±
(±)(G2

3|t=0, w3)L2(Γr )
+ (G3|t=0, w3)L2(Γr )

+ (G4|t=0,∇′w3)L2(Γr )
= 0

for all w ∈ B1
r .

Then in fact we have

∂tv ∈ L∞((0, T ); B0
r )

∂tv ∈ L2((0, T ); B1
r )

with the estimate

ess sup
τ∈(0,t)

‖∂tv‖B0
r (τ ) +

∫ t

0
‖∂tv‖B1

r (τ ) dτ � C∞,1CG

where CG denotes a constant depending in an affine manner on the appropriate
norms of Gi .

Finally, suppose thatwehave the extra regularity ∂t G2 ∈ L∞((0, T ); L2(Ωr±)),
∂2t G

2 ∈ L2((0, T ) × Ωr±), ∂tG3, ∂tG4 ∈ L∞((0, T ); L2(Γr )), ∂2t G
3, ∂2t G

4 ∈
L2((0, T ) × Γr ). Suppose also that h ∈ B1

r .
Then in fact we have

∂tv ∈ L∞((0, T ); B1
r )

∂2t v ∈ L2((0, T ); B0
r )

∂tv|t=0 = h

with the estimate

ess sup
τ∈(0,t)

‖∂tv‖B1
r (τ ) +

∫ t

0
‖∂2t v‖B0

r (τ ) dτ � CA(CG + ‖h‖B1
r
)

where CG denotes a constant depending in an affine manner on the appropriate
norms of Gi . Moreover, ∂tv satisfies the equation

(∂2t v,w)B0
r (t) + μ{∂tv,w}B1

r (t) +
∑

±
(A2(∂tv,∇∂tv),w)L2(Ωr±)

=
∑

±
(G1,1, w)L2(Ωr±) +

∑

±
(G2,1,∇w)L2(Ωr±) + (G3,1, w3)L2(Γr )

+ (G4,1,∇′w3)L2(Γr )

for all w ∈ B1
r for almost every t ∈ (0, T ), where we have defined

G1,1 := ∂tG
1 − ∂t A

0∂tv − μ∂t A
1(v,∇v) − ∂t A

2(v,∇v)

G2,1 := ∂tG
3 − μ∂t A

1(v,∇v)

G3,1 := ∂tG
3

G4,1 := ∂tG
4. (152)

Note that in the first two lines above ∂t A1(v,∇v) should be understood to mean
the appropriate part or row of the full tensor ∂t A1(v,∇v).
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Proof. We let vm be the same sequence of approximate solutions as in Proposition
19.

Note that since ∂tG1 ∈ L2((0, T ) × Ωr±), we know from the construction of
the Galerkin basis in Proposition 19 that vm ∈ H2((0, T ); B1

r ). This allows us to
differentiate the Equation (151) with respect to t . One can then apply the energy
estimates (147)–(148) to ∂tvm . We can prove ‖∂tvm |t=0‖B0

r
� ‖h‖B0

r
by evaluating

(151) at t = 0, integrating by parts, and using the compatibility condition which we
have assumed. One can then use weak-∗ compactness to pass to the limit m → ∞
along a subsequence to obtain the first set of additional time regularity estimates
for v.

Assuming the additional regularity properties stated in the proposition, we can
apply the estimate (149) to ∂tvm . We use the condition h ∈ B1

r plus the special
construction of our Galerkin basis to show that

(∂tvm |t=0, w)B1
r

= (h, w)B1
r

for all w ∈ Wm
r , and hence

‖∂tvm |t=0‖B1
r

� ‖h‖B1
r
.

One can then use weak-∗ compactness to pass to the limit m → ∞ along a subse-
quence to obtain the second set of additional time regularity estimates for v.

It is straightforward then to show that

∂tv|t=0 = h.


�
Proposition 22. The previous proposition holds in the case r = ∞.

Proof. This follows straightforwardly from the above in the same way that Propo-
sition 20 followed from Proposition 19. 
�
Proposition 23. Suppose v ∈ X satisfies

(∂tv,w)B0(t) + μ{v,w}B1(t) +
∑

±
(A2(v,∇v),w)L2(Ω±)

=
∑

±
(G1, w)L2(Ω±) +

∑

±
(G2,∇w)L2(Ω±) + (G3, w3)L2(Γ ) + (G4,∇′w3)L2(Γ )

for all w ∈ B1 for almost every t ∈ (0, T ), where G1,G2,G3,G4 have the
following regularity.

G1 ∈ L2((0, T ); L2(Ω±)), G2 ∈ L2((0, T ); H1(Ω±))

G3 ∈ L2((0, T ); L2(Γ )), G4 ∈ L2((0, T ); H1(Γ )).

Assume also

v(0) ∈ B1.
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Then in fact

v ∈ L2((0, T ); H2(Ω±))

v3 ∈ L2((0, T ); H2(Γ ))

with corresponding norms bounded by CA(CG + ‖v(0)‖B1). In particular, the
following estimate holds for any ε ∈ (0, 1].

‖∇′v‖2B0(t) + 2μ
∫ t

0
‖∇′v‖2B1(τ )

dτ � C‖v(0)‖2B1(t)

+ C∞,1

∫ t

0

∑

±
‖G1‖2L2(Ω±)

+
∑

±
‖G2‖2H1(Ω±)

+ ‖G3‖2L2(Γ )
+ ‖G4‖2H1(Γ )

dτ

+ C∞,1

ε

∫ t

0
‖v‖2H1(Ω±)

dτ + ε

∫ t

0
‖∂tv‖2L2(Ω±)

dτ. (153)

In addition, the following equations are satisfied:

ρμ

1
∣
∣
∣n
˜

∣
∣
∣

2 ∂tv − μNT∇ψ(ρc2∇ψ · (Nv)) + μNT∇ψ × (ρc2∇ψ × (Nv))

+ ρμN
T (uψ · ∇)(Nv) + ρμN

T (∂t N )v = G1 − ∇ · G2

almost everywhere in (0, T ) × Ω± and

μ(Δ′ − 1)v3 + μ[ρc2∇ψ · (Nv)] = −[G2
33] + G3 − ∇′ · G4

μNT (ρ±c2±n × (∇ψ × (Nv±))) = −(G2
13±,G2

23±, 0)

almost everywhere on (0, T ) × Γ .
Moreover, suppose for some 1 � k � 3 that

G1 ∈ L2((0, T ); Hk(Ω±)), G2 ∈ L2((0, T ); Hk+1(Ω±))

G3 ∈ L2((0, T ); Hk(Γ )), G4 ∈ L2((0, T ); Hk+1(Γ ))

v(0) ∈ Hk+1(Ω±), v3(0) ∈ Hk+1(Γ )

and

∂tv ∈ L2((0, T ); Hk(Ω±)) ∩ L∞((0, T ); Hk−1(Ω±)).

Then v ∈ L2((0, T ); Hk+1(Ω±)) ∩ L∞((0, T ); Hk(Ω±)), v3 ∈ L2((0, T );
Hk+1(Γ )) with corresponding norms bounded by

CA(CG + ‖v(0)‖Hk+1(Ω±) + ‖v3(0)‖Hk+1(Γ ) +
∫ T

0
‖∂tv‖Hk (Ω±) dt).
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Proof. The proof is technical but straightforward using difference quotients and a
standard energy estimate obtained by testing the weak equation with

w = −D−h
i (ζ 2

i D
h
i v)

for |h| �= 0 sufficiently small and 1 � i � 3, where Dh
i is standard notation for a

difference quotient of step-size h in the xi -direction, ζ3 is a cut-off functionwhich is
zero near x3 = 0 to exclude boundary terms and ζ1, ζ2 are equal to 1. For the higher
order regularity we use an inductive argument and the Sobolev embedding theorem.
Note that the compatibility condition is hidden in the requirement v(0) ∈ B1. This
completes the proof. 
�

12.7. Proof of Existence, Uniqueness and Regularity of Solutions of the Equations
for the Rotated Velocity

Definition 43. We say
�

u is a weak solution of the rotated equations for the velocity
if

�

u − �

u 0∈ X ,

�

u |t=0 =�

u 0

and the following holds for almost every t ∈ (0, T ).

(∂t
�

u , w)B0(t) + μ{�

u , w}B1(t) +
∑

±
(A1(

�

u ,∇ �

u ), w)L2(Ω±)

=
∑

±
(G1, w)L2(Ω±) +

∑

±
(G2,∇w)L2(Ω±) + (G3, w3)L2(Γ )

+ (G4,∇′w3)L2(Γ ) (154)

for all w ∈ B1. Note that we rely on the fact that [�

u 0
3] = 0, which is true due

to the compatibility condition (45) at order zero, for the term {�

u , w}B1(t) to be
well-defined.

The functions G1, G2, G3 and G4 are defined such that
∑

±
(G1, w)L2(Ω±) +

∑

±
(G2,∇w)L2(Ω±)

= (NT (g1 + ∂x3(
(−∇′ψ, 1)

Jψ
)p − μ∂x3(

(−∇′ψ, 1)

Jψ
) × ρc2ω),w)L2(Ω±)

+ (p,∇ψ · (Nw))L2(Ω±) + μ(ρc2ω,∇ψ × (Nw))L2(Ω±)

G3 = g2

G4 = σ n̂.

Note that Gi have the form

G1 = G(N ,∇N ,∇ψ, p, ω, ρc2, g1)

G2 = G(N ,∇ψ, p, ω, ρc2)
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G3 = g2

G4 = G(∇′ f )

for G a generic smooth function which may be scalar, vector, matrix valued etc.

Proposition 24. There exists unique solution �

u with
�

u − �

u 0∈ X and
�

u (0) =�

u 0

to the weak velocity equation above.
For 0 � j � 3, we have ∂

j
t ∇ �

u∈ L∞((0, T ); H3− j (Ω±)) ∩ L2((0, T );
H4− j (Ω±)), ∂4t

�

u∈ L2((0, T ); L2(Ω±)), ∂
j
t

�

u 3∈ L2((0, T ); H5− j (Γ )) ∩
L∞((0, T ); H4− j (Γ )), and, for 0 � j � 3,

∂
j
t

�

u |t=0 = ∂
μ,g, j
0

�

u 0
.

Moreover,
�

u is the unique solution to the equations for the rotated velocity with
�

u (0) =�

u 0 as defined in Definition 38.

Proof. This is straightforward, if technical, using propositions 20, 23 and 22 induc-
tively applied in the correct order together with the Sobolev embedding theorem
and the fact that the initial data satisfies the compatibility condition (45) up to order
3 and the compatibility condition (46) up to order 2. The definition of G1, . . . ,G4

ensures that
�

u is the unique solution to the equations for the rotated velocity. 
�
We now show the additional boundary regularity. We will use the elliptic esti-

mate lemma, Lemma 11.

Lemma 20. For 0 � j � 3, we have ∂
j
t

�

u 3∈ L2((0, T ); H5.5− j (Γ )).

Proof. Applying ∂
j
t to the pressure interface condition (143) we have

(1 − Δ′)∂ j
t

�

u 3 = ∂
j
t

(
1

μ
(−[p] − σ∇′ · n̂ + g2) + [ρc2∇ψ · (N

�

u )]
)

.

We apply the Lemma 11 with

z = ∂
j
t

�

u 3

h = ∂
j
t

(
1

μ
(−[p] − σ∇′ · n̂ + g2) + [ρc2∇ψ · (N

�

u )]
)

and the Sobolev trace estimate to conclude that for almost every t , ∂
j
t

�

u 3∈
H5.5− j (Γ ) with

‖∂ j
t

�

u 3‖2H5.5− j (Γ )

� C‖∂ j
t

(
1

μ
(−[p] − σ∇′ · n̂ + g2) + [ρc2∇ψ · (N

�

u )]
)

‖2H3.5− j (Γ )
.

Integrating from 0 to t and using existing estimates together with the product rule,
we obtain

∫ t

0
‖∂ j

t
�

u 3‖2H5.5− j (Γ )
< ∞.

This completes the proof. 
�
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Applying Proposition 24, Lemma 20 and Proposition 16, we prove Proposition
15. Together with the results in the previous section, we have proved Proposition
12.

13. Proof of the Energy Estimate for the Linearised Equations

In this sectionwe prove the energy estimate for the linearised equations stated in
Proposition11.The energy estimate is necessary as part of the constructionof awell-
defined contraction map sending a background state to a solution of the linearised
equations linearised about that state. Themain steps in the energy estimate are quite
clear. The front is estimated by direct integration and the entropy, pressure and curl
are estimated in the standard manner of energy estimates for transport equations,
with some minor differences in the curl estimate. The velocity is then estimated in
a manner which is fairly standard for parabolic equations. We then obtain a slightly
higher order estimate for u · n from the elliptic equation provided by the interface
condition (134).

Our main task will be to show that

EL(t) + EL(ω)(t) � 1

ε
M0

μ + 1

ε
Kμ(t)(t +

∫ t

0
ĒL(τ ) + EL(τ ) + EL(ω)(τ ) dτ)

+ ε(M0
μ + t Kμ(t))(ĒL(t) + EL(t) + EL(ω)(t))

where we are free to choose ε ∈ (0, 1].
Let us also observe that we have

∂
j
t (U+,U−, ω+, ω−, f )|t=0

= ∂
μ,g, j
0 (U 0+,U 0−,∇ψ0 × u0+,∇ψ0 × u0−, f 0) for 0 � j � 3, (155)

even though we have only assumed the case j = 0, which we can deduce in the
same way as in the proof of Proposition 14.

13.1. Lower Order Estimate

Lemma 21. We have the following lower order estimates:
∑

±
ess sup
τ∈(0,t)

‖G(p, s, u)‖2L∞(Ω±) + ess sup
τ∈(0,t)

‖G( f )‖2W 1,∞(Γ )
� M0

μ + t Kμ(t)

(156)
∑

1�|β|�2

ess sup
τ∈(0,t)

‖∂β(p, s, u)‖2L2(Ω±)
+

∑

0�|β|�1

ess sup
τ∈(0,t)

‖∂β∇u‖2H1(Ω±)

� M0
μ + t Kμ(t) (157)

∑

0�|β|�2

‖∂β∇′ f ‖2H1.5(Γ )
� M0

μ + t Kμ(t), (158)

where G is a smooth function of its arguments.

Proof. These follow easily from the fundamental theorem of calculus and the chain
rule. 
�



700 Ben Stevens

13.2. Estimate of the Front

Proposition 25. Define

EL( f )(t) := ess sup
τ∈(0,t)

∑

0� j�3

‖∂ j
t ∇′ f ‖2H4.5− j (Γ )

+
∫ t

0
‖∂4t f ‖2H1(Γ )

dτ.

The front satisfies the following estimates for t ∈ (0, T ).

EL( f )(t) � M0
μ + C

ε

∫ t

0
EL(τ ) dτ + εĒL(t) (159)

ess sup
τ∈(0,t)

∑

0� j�3

‖∂ j
t ∇′ f ‖2H3− j (Γ )

+
∑

0� j�3

∫ t

0
‖∂ j+1

t ∇′ f ‖2H3− j (Γ )
dτ

� M0
μ + C

∫ t

0
ĒL(τ ) dτ (160)

∑

0� j�3

∫ t

0
‖∂ j+1

t f ‖2H5.5− j (Γ )
dτ +

∑

0� j�3

ess sup
τ∈(0,t)

‖∂ j+1
t f ‖2H4− j (Γ )

� C ĒL(t).

(161)

Moreover, we have

Jψ � κ0 − t Kμ(t). (162)

Proof. This is straightforward using the fact that ∂t f = ū · n̄, the definition of the
energy EL(t), plus Cauchy’s inequality for the first estimate. For the final inequality
we use the fundamental theorem of calculus. 
�

13.3. Estimate of the Entropy, Pressure and Curl

We start with an estimate for general transport equations of the correct form.

Lemma 22. In this lemma functions will be defined either on Ω+ or Ω−.
Supposewearegivenb ∈ L∞((0, T );W 1,∞(Ω±; R

3)), h ∈ L2((0, T ); L2(Ω±))

and w ∈ L2((0, T ); H1(Ω±)) with ∂tw ∈ L2((0, T ); L2(Ω±)). Suppose also that
b3|Γ = 0 and that w satisfies the equation

(∂t + b · ∇)w = h

in (0, T ) × Ω±. Then w satisfies the following estimates, where we are free to
choose ε ∈ (0, 1].

ess sup
τ∈(0,t)

‖w‖2L2(Ω±)
� ‖w(0)‖2L2(Ω±)

+ (
1

ε
+ ess sup

τ∈(0,t)
‖b‖2W 1,∞(Ω±)

)

×
∫ t

0
‖w‖2L2(Ω±)

dτ + ε

∫ t

0
‖h‖2L2(Rd )

dτ (163)
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∫ t

0
‖∂tw‖2L2(Ω±)

dτ � C ess sup
τ∈(0,t)

‖b‖2W 1,∞(Ω±)

∫ t

0
‖∇w‖2L2(Ω±)

dτ

+ C
∫ t

0
‖h‖2L2(Ω±)

dτ. (164)

Moreover, if h ∈ L2((0, T ); H1(Ω±)) and w(0) ∈ H1(Ω±) then

ess sup
τ∈(0,t)

‖w‖2H1(Ω±)
�‖w(0)‖2H1(Ω±)

+(
1

ε
+ess sup

τ∈(0,t)
‖b‖2W 1,∞(Ω±)

)

∫ t

0
‖w‖2H1(Rd )

dτ

+ ε

∫ t

0
‖h‖2H1(Ω±)

dτ, (165)

where we are free to choose ε ∈ (0, 1].

Proof. The first is a standard energy estimate with the crucial point being that
b3|Γ = 0, and the third estimate can be proved by differentiating with respect to xi
then using the first. The second is obtained simply by rearranging the equation.


�

Lemma 23. We have that uψ satisfies the following estimate:

‖∂γ uψ‖2L∞(Ω±) � Kμ(t) for 0 � |γ | � 1.

Proof. Let us note that

uψ = G(∂tψ,∇ψ,∇′ψ̄, ū)

for some smooth function G (at least in the region where Jψ > 0). The estimate
follows immediately using the chain rule and the Sobolev embedding theorem. 
�

Proposition 26. Define

EL(s)(t) :=
∑

±
ess sup
τ∈(0,t)

⎛

⎝‖s‖2L∞(Ω±) +
∑

1�|α|�3

‖∂αs‖2H1(Ω±)

⎞

⎠

+
∑

±

∫ t

0
‖∂4t s‖2L2(Ω±)

dτ.

The entropy s satisfies the following energy estimate:

EL(s)(t) � M0
μ + Kμ(t)

(∫ t

0
EL(τ ) + ĒL(τ ) dτ

)

(166)

for t ∈ (0, T ).
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Proof. Let 1 � |α| � 3 and apply ∂α to the linearised entropy equation (128) to
obtain

∂t∂
αs + uψ · ∇∂αs = Rα

L(s)

where

Rα
L(s) = −

∑

β+γ=α,γ �=α

∂βuψ · ∂γ ∇s.

One can easily show using the Sobolev embedding theorem andHolder’s inequality
that

‖Rα
L(s)‖2H1(Ω±)

� Kμ(t)(ĒL(t) + EL(t)).

Now we use the estimates (165) and (164) to conclude the result. 
�
Proposition 27. Define

EL(p)(t) :=
∑

±
ess sup
τ∈(0,t)

⎛

⎝‖p‖2L∞(Ω±) +
∑

1�|α|�3

‖∂α p‖2H1(Ω±)

⎞

⎠

+
∑

±

∫ t

0
‖∂4t p‖2L2(Ω±)

dτ.

The pressure p satisfies the following energy estimate.

EL(p)(t) � M0
μ + 1

ε
Kμ(t)

(∫ t

0
EL(τ ) + ĒL(τ ) dτ

)

+ ε(M0
μ + t Kμ(t))(ĒL(t)

+ EL(t)) (167)

for t ∈ (0, T ), where we are free to choose ε > 0.

Proof. Let 1 � |α| � 3 and apply ∂α to the linearised pressure equation (129) to
obtain

∂t∂
α p + uψ · ∇∂α p = ∂αGp + Rα

L(p)

where

Gp := −ρ̄c̄2∇ψ · ū.

Note that we have

‖Rα
L(p)‖2H1(Ω±)

� Kμ(t)(ĒL(t) + EL(t)),

exactly as in the estimate of the entropy. Using the Sobolev embedding theorem
we can show that

∫ t

0
‖∂αGp‖2H1(Ω±)

dτ � (M0
μ + t Kμ(t))(ĒL(t) + EL(t))

∫ t

0
‖∂αGp‖2L2(Ω±)

dτ � Kμ(t)
∫ t

0
ĒL(t) + EL(t) dτ.

Now we use the estimates (165) and (164) to conclude the result. 
�
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Proposition 28. We have

ρμ(t, x) � δ0 − t Kμ(t) (168)

ρμ(t, x) � δ0μ − t Kμ(t). (169)

Proof. We use the fundamental theorem of calculus and the Sobolev embedding
theorem. 
�
Proposition 29. The curl ω satisfies the following energy estimates.

EL(ω)(t) � M0
μ + 1

ε
Kμ(t)(t +

∫ t

0
ĒL(t) + EL(t) + EL(ω)(t) dτ

+ ε(M0
μ + t Kμ(t))(ĒL(t) + EL(t) + EL(ω)(t)) (170)

∫ t

0
‖∂3t ω‖2H1(Ω±)

dτ � Kμ(t)(t +
∫ t

0
ĒL(t) + EL(t) + EL(ω)(t) dτ) (171)

∫ t

0
‖∂4t ω‖2L2(Ω±)

dτ � (M0
μ + t Kμ(t))(1 + ĒL(t) + EL(t) + EL(ω)(t)) (172)

for t ∈ (0, T ), where we are free to choose ε > 0.

Proof. Let 1 � |α| � 3 and apply ∂α to the linearised curl equation (130) to obtain

(∂t + uψ · ∇)∂αω = ∂αGω + Rα
L(ω)

where

Rα
L(ω) = −

∑

γ+δ=α,δ �=α

∂γ uψ · ∂δ∇ω

and

Gω := 1

ρμ

(−∇ψρμ × (∂t + uψ · ∇)ū − ρμ(εi jk∂
ψ
j ūl∂

ψ
l ūk) + ∇ψ × g1).

One can straightforwardly show using the Sobolev embedding theorem and
Holder’s inequality that

‖Rα
L(ω)‖2H1(Ω±)

� Kμ(t)(ĒL(t) + EL(t) + EL(ω)(t)).

Using the Sobolev embedding theorem we can show that
∫ t

0
‖∂αGω‖2L2(Ω±)

dτ � (M0
μ + t Kμ(t))(1 + ĒL(t) + EL(t))

and if α0 � 2, then
∫ t

0
‖∂αGω‖2H1(Ω±)

dτ � (M0
μ + t Kμ(t))(1 + ĒL(t) + EL(t))

‖∂αGω‖2L2(Ω±)
� Kμ(t)(1 + ĒL(t) + EL(t)).

Note that due to the fact that we only have ∂4t u ∈ L2((0, T ); L2(Ω±)), the estimate
forGω is not as good in the first case where we allow α0 = 3. Also, note that we use
crucially the fact that we replaced ρ by ρμ in the definition of the μ-approximate
velocity equation, which ensures that the term∇ψρμ inGω can be easily estimated.

Now we use the estimates (165) and (164) to conclude the result. 
�
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13.4. Estimate of the Velocity

Definition 44. We define the part of the energy EL associated with the velocity u
for t ∈ (0, T ) by

EL(u)(t) :=
∑

±
ess sup
τ∈(0,t)

‖u‖2L∞(Ω±) +
∑

±

∑

0� j�3

ess sup
τ∈(0,t)

‖∂ j
t ∇u‖2H3− j (Ω±)

+
∑

±

∑

0� j�3

∫ t

0
‖∂ j

t ∇u‖2H4− j (Ω±)
dτ +

∑

±

∫ t

0
‖∂4t u‖2L2(Ω±)

dτ

+
∑

0� j�3

ess sup
τ∈(0,t)

‖∂ j
t (u · n)‖2H4− j (R2)

+
∑

0� j�3

∫ t

0
‖∂ j

t (u · n)‖2H5− j (R2)
dτ.

Proposition 30. The velocity u satisfies the following energy estimate.

EL(u)(t) � 1

ε
M0

μ + 1

ε
Kμ(t)

(

t +
∫ t

0
EL(τ ) + ĒL(τ ) + EL(ω)(τ ) dτ

)

+ ε(M0
μ + t Kμ(t))(EL(t) + ĒL(t) + EL(ω)(t)) (173)

for t ∈ (0, T ), where we are free to choose ε > 0.

Proof. See the rest of this section for the proof 
�
We use the weak form of the equations to avoid the difficulty of not having

enough regularity on u. As in 12.3, we set

�

u = N−1u,

where the matrix N is defined in Definition 36. We define the energy associated
with

�

u as

EL(
�

u )(t) :=
∑

±
ess sup
τ∈(0,t)

‖�

u‖2L∞(Ω±) +
∑

±

∑

0� j�3

ess sup
τ∈(0,t)

‖∂ j
t ∇ �

u‖2H3− j (Ω±)

+
∑

±

∑

0� j�3

∫ t

0
‖∂ j

t ∇ �

u‖2H4− j (Ω±)
dτ +

∑

±

∫ t

0
‖∂4t �

u‖2L2(Ω±)
dτ

+
∑

0� j�3

ess sup
τ∈(0,t)

‖∂ j
t

�

u 3‖2H4− j (R2)
+

∑

0� j�3

∫ t

0
‖∂ j

t
�

u 3‖2H5− j (R2)
dτ.

Lemma 24. We claim that

EL(u)(t) � (M0
μ + t Kμ(t))(EL(

�

u )(t) + EL( f )(t)) (174)

and conversely

EL(
�

u )(t) � (M0
μ + t Kμ(t))(EL(u)(t) + EL( f )(t)). (175)
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Proof. This is straightforward using the Sobolev embedding theoremand the lifting
property in the definition of N . We recall that

�

u 3= (N−1u)3 = u ·n so the estimate
of the boundary terms is immediate. 
�

We recall that
�

u satisfies the weak equation (154). Let 0 � |α| � 3 with α3 = 0
be amulti-index.Wemay alsowrite ∂α = ∂

j
t ∇β whereβ3 = 0 and 0 � j+|β| � 3.

We apply ∂
j
t to the weak equation (154), then test it with (−1)|β|∇βw for w ∈ B1

smooth in the horizontal directions, then integrate by parts horizontally and use the
density of such w in B1 to obtain that ∂α �

u satisfies the following equation:

(∂t∂
α �

u , w)B0(t) + μ{∂α �

u , w}B1(t) +
∑

±
(A2(∂α �

u ,∇∂α �

u ), w)L2(Ω±)

=
∑

±
(G1,α, w)L2(Ω±) +

∑

±
(G2,α,∇w)L2(Ω±)

+ (G3,α, w3)L2(Γ ) + (G4,α,∇′w3)L2(Γ ) (176)

for all w ∈ B1 and almost every t ∈ (0, T ), where

G1,α := ∂αG1 −
∑

β+γ=α,β �=α

(∂γ A0∂β∂t
�

u +μ∂γ A1(∂β �

u , ∂∂β �

u )

+ ∂γ A2(∂β �

u ,∇∂β �

u )) (177)

G2,α := ∂αG2 − μ
∑

β+γ=α,β �=α

∂γ A1(∂β �

u ,∇∂β �

u ) (178)

G3,α := ∂αG3 (179)

G4,α := ∂αG4 (180)

and Ai for 0 � i � 2 are defined in Definition 42 and Gi for 1 � i � 4 are defined
in Definition 43.

Lemma 25. We claim that the constant C∞,0(t) and C∞,1(t), as defined in Defin-
ition 35, satisfy the following estimates:

C∞,0(t) � M0
μ + t Kμ(t) (181)

C∞,1(t) � Kμ(t). (182)

Proof. This is straightforward using the definition of C∞, j (t) and the Sobolev
embedding theorem. 
�
Lemma 26. Let 1 � |α| � 3. We claim that

∫ t

0
‖G1,α‖2L2(Ω±)

dτ � Kμ(t)(t +
∫ t

0
EL(τ ) + ĒL(τ ) + EL(ω)(τ ) dτ)

∫ t

0
‖∂tG2,α‖2L2(Ω±)

dτ � (M0
μ + t Kμ(t))(1 + ĒL(t) + EL(t) + EL(ω)(t))

∫ t

0
‖G2,α‖2H1(Ω±)

dτ � Kμ(t)(t +
∫ t

0
ĒL(τ ) + EL(τ ) + EL(ω)(τ ) dτ)
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1
∑

k=0

∫ t

0
‖∂kG3,α‖2L2(Γ )

dτ � t Kμ(t)

1
∑

k=0

∫ t

0
‖∂kG4,α‖2L2(Γ )

dτ � Kμ(t)
∫ t

0
ĒL(τ ) + EL(τ ) dτ.

Furthermore, for 2 � i � 4,

ess sup
τ∈(0,t)

‖Gi,α‖2L2(Ω±)
� M0

μ + 1

ε
Kμ(t)

(

t +
∫ t

0
ĒL(t) + EL(τ ) + EL(ω)(τ ) dτ

)

+ ε(M0
μ + t Kμ(t))(EL(t) + ĒL(t) + EL(ω)(t)).

Proof. This is a straightforward, if long and technical, computation using the
Sobolev embedding theorem and the definition of the energy EL(t) and EL(ω)(t).
Recall that our estimate of ∂4t ω is only L2 not L∞ in time and hence the estimate
for ∂tG2,α is not as good as the other estimates. 
�

Now we apply the energy estimate (149) to the equation for ∂α �

u , where
1 � |α| � 3 and α3 = 0 to obtain the following estimate:

∫ t

0
‖∂t∂α �

u‖2B0(τ )
dτ + ess sup

τ∈(0,t)
‖∂α �

u‖2B1(t) � C∞,1

ε
t‖∂μ,g, j

0 ∇β �

u 0‖2B0

+ C∞,1

ε

∫ t

0

∑

±
‖G1,α‖2L2(Ω±)

+
∑

±
‖G2,α‖2L2(Ω±)

+ ‖G3,α‖2L2(Γ )

+ ‖G4,α‖2L2(Γ )
dτ

+ C∞,0

(

‖∂μ,g, j
0 ∇β �

u 0‖2B1 + ess sup
τ∈(0,t)

(
∑

±
‖G2,α‖2L2(Ω±)

+ ‖G3,α‖2L2(Γ )

+‖G4,α‖2L2(Γ )

) )

+ ε

∫ t

0

∑

±
‖∂tG2,α‖2L2(Ω±)

+ ‖∂tG3,α‖2L2(Γ )
+ ‖∂tG4,α‖2L2(Γ )

dτ.

To estimate the right hand side we use the estimate 25 for C∞,0 and C∞,1 and the
estimate 26 for the Gi,α , thus we obtain:

∫ t

0
‖∂t∂α �

u‖2B0(τ )
dτ + ess sup

τ∈(0,t)
‖∂α �

u‖2B1(t)

� M0
μ + 1

ε
Kμ(t)

(

t +
∫ t

0
EL(τ ) + ĒL(τ ) + EL(ω)(τ ) dτ

)

+ ε(M0
μ + t Kμ(t))(EL(t) + ĒL(t) + EL(ω)(t)).
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Now to estimate the highest order space derivative, we apply the energy estimate
(153) to the equation for ∂α �

u= ∂
j
t ∇β , where 1 � |α| � 3 and α3 = 0. We obtain:

‖∇′∂α �

u‖2B0(t) +
∫ t

0
‖∇′∂α �

u‖2B1(τ )
dτ � C‖∂μ,g, j

0 ∇β �

u 0‖2B1

+ C∞,1

∫ t

0

∑

±
‖G1,α‖2L2(Ω±)

+
∑

±
‖G2,α‖2H1(Ω±)

dτ + ‖G3,α‖2L2(Γ )

+ ‖G4,α‖2H1(Γ )
dτ

+ C∞,1

ε

∫ t

0
‖∂α �

u‖2H1(Ω±)
dτ + ε

∫ t

0
‖∂t∂α �

u‖2L2(Ω±)
dτ.

Applying the estimates 25 and 26 to the right hand side, we obtain:

‖∇′∂α �

u‖2B0(t) +
∫ t

0
‖∇′∂α �

u‖2B1(τ )
dτ

� M0
μ + 1

ε
Kμ(t)(t +

∫ t

0
EL(τ ) + ĒL(τ ) + EL(ω)(τ ) dτ)

+ ε(M0
μ + t Kμ(t))EL(t).

It remains to estimate the highest order normal derivatives. However, this is
quite straightforward, if technical, because we may rearrange the rotated velocity
equation to obtain an expression for ∂23

�

u in terms of quantities with fewer normal
derivatives or existing estimates then use these estimates together with an induction
on α3 for 0 � α3 � 3 to obtain the estimate:

∑

0�|α|�3

∫ t

0
‖∂α �

u‖2H2(Ω±)
dτ � 1

ε
M0

μ + 1

ε
Kμ(t)(t +

∫ t

0
EL(τ ) + ĒL(τ )

+ EL(ω)(τ ) dτ)

+ ε(M0
μ + t Kμ(t))(EL(t) + ĒL(t) + EL(ω)(t)).

Combining all the above estimates, we have shown that

EL(
�

u )(t) � 1

ε
M0

μ + 1

ε
Kμ(t)(t +

∫ t

0
EL(τ ) + ĒL(τ ) + EL(ω)(τ ) dτ)

+ ε(M0
μ + t Kμ(t))(EL(t) + ĒL(t) + EL(ω)(t)).

Now using the estimate (174) and the estimate (159) for the front, we obtain

EL(u)(t) � 1

ε
M0

μ + 1

ε
Kμ(t)(t +

∫ t

0
EL(τ ) + ĒL(τ ) + EL(ω)(τ ) dτ)

+ ε(M0
μ + t Kμ(t))(EL(t) + ĒL(t) + EL(ω)(t)).

This completes the proof of the estimate of the velocity, (173).
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Proposition 31. The normal component of the velocity, u ·n, satisfies the following
additional energy estimate.

3
∑

j=0

∫ t

0
‖∂ j

t (u · n)‖2H5.5− j (Γ )
dτ �

M0
μ

ε
+ 1

ε
Kμ(t)

(

t +
∫ t

0
EL(τ ) + ĒL(τ )

+ EL(ω)(τ ) dτ

)

+ ε(M0
μ + t Kμ(t))(EL(t) + ĒL(t) + EL(ω)(t))

for t ∈ (0, T ).

Proof. Let 0 � j � 3. Applying ∂
j
t to the pressure interface condition (134) we

have

(1 − Δ′)∂ j
t (u · n) = ∂

j
t

([

ρc2∇ψ · u − 1

μ
p

]

− 1

μ
σ∇′ · n̂ + 1

μ
g2

)

.

We apply Lemma 11 with

z = ∂
j
t (u · n)

h = ∂
j
t

([

ρc2∇ψ · u − 1

μ
p

]

− 1

μ
σ∇′ · n̂ + 1

μ
g2

)

to conclude that

‖∂ j
t (u · n)‖2H5.5− j (Γ )

� C‖∂ j
t

([

ρc2∇ψ · u − 1

μ
p

]

− 1

μ
σ∇′ · n̂ + 1

μ
g2

)

‖2H3.5− j (Γ )
.

We conclude using the chain rule, Sobolev embedding and existing estimates. 
�

13.5. Conclusion of the Energy Estimate

Putting together what we have so far we have shown for t ∈ (0, T ) that

EL(t) + EL(ω)(t) � 1

ε
M0

μ + 1

ε
Kμ(t)

(

t +
∫ t

0
EL(τ ) + ĒL(τ ) + EL(ω)(τ ) dτ

)

+ ε(M0
μ + t Kμ(t))(EL(t) + ĒL(t) + EL(ω)(t)).

Moreover from (162), (168), and (169), we have

ρ � δ0 − t Kμ(t), ρμ � δ0μ − t Kμ(t), Jψ � κ0 − t Kμ(t).

Choosing ε = 1
5(M0

μ+t Kμ(t))
, we obtain

EL(t) + EL(ω)(t) � M0
μ + Kμ(t)

(

t +
∫ t

0
ĒL(τ ) + EL(τ ) + EL(ω)(τ ) dτ

)

+ 1

5
(ĒL(t) + EL(t) + EL(ω)(t))
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for t ∈ (0, T ) where we have redefined M0
μ and Kμ(t). Rearranging, we obtain:

EL(t) + EL(ω)(t) � M0
μ + Kμ(t)

(

t +
∫ t

0
ĒL(τ ) + EL(τ ) + EL(ω)(τ ) dτ

)

+ 1

4
ĒL(t).

This completes the proof of Proposition 11.

14. The Fixed Point Scheme

Here we intend to prove the existence of a solution to the μ-approximate equa-
tions for fixed μ using the contraction mapping theorem.

14.1. The Functional Framework

In this section we assume we are given initial data (U 0+,U 0−, f 0) for the μ-
approximate equations with E0

μ < ∞ which satisfies the compatibility condition
(45) up to order 3 and the compatibility condition (46) up to order 2 and

inf
Ω±

ρ0 =: δ0 > 0, inf
Ω±

ρ0
μ =: δ0μ > 0, inf

R3
Jψ0 =: κ0 > 0.

Definition 45. We define the set Y as follows:

Y = {(U+,U−, f ) : U± ∈ L∞((0, T ) × Ω±), f ∈ L∞((0, T ) × Γ ) with EL(T )

� R0, ∂
j
t (U+,U−, f )|t=0 = ∂

μ,g, j
0 (U 0+,U 0−, f 0) for 0� j � 3, [u · n]=0},

where R0 < ∞ is a constant which will be fixed later, sufficiently large depending
the initial data, T ∈ (0, 1] will be fixed later, sufficiently small depending on
the initial data, and EL(t) is the energy associated to (U+,U−, f ) as defined in
Definition 22. Note if sufficiently many weak derivatives do not exist to define
EL(t) then we adopt the convention EL(t) = ∞.

Definition 46. We define the Banach space Z as follows:

Z ={(U+,U−, f, w) : U± ∈ L1
loc((0, T ) × Ω±), f, w ∈ L1

loc((0, T ) × Γ )

with ‖(U+,U−, f, w)‖Z < ∞},
where

‖(U+,U−, f, w)‖Z := ‖(U+,U−, f, w)‖Z(T ),

and for each t ∈ (0, T ], we define
‖(U+,U−, f, w)‖2Z(t) =

∑

±

∑

0� j�1

ess sup
τ∈(0,t)

‖∂ j
t U‖2H2− j (Ω±)
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+
∑

±

∫ t

0
‖∂2t U‖2L2(Ω±)

dτ

+
∑

±

∑

0� j�1

∫ t

0
‖∂ j

t u‖2H3− j (Ω±)
dτ +

∑

0� j�1

ess sup
τ∈(0,t)

‖ f ‖2H3.5− j (R2)

+
∫ t

0
‖∂2t f ‖2H1(Γ )

dτ

+
∑

0� j�1

ess sup
τ∈(0,t)

‖∂ j
t w‖2H2− j (Γ )

+
∑

0� j�1

∫ t

0
‖∂ j

t w‖2H3.5− j (Γ )
dτ.

We define the metric dY on Y as follows:

dY ((U+,U−, f ), (Ũ+, Ũ−, f̃ )) := ‖(U+,U−, f, u · n) − (Ũ+, Ũ−, f̃ , ũ · ñ)‖Z .

Clearly Z is a Banach space with norm ‖·‖Z , and if (U+,U−, f ) ∈ Y then we
have (U+,U−, f, u · n) − (U 0+,U 0−, f 0, u0 · n0) ∈ Z .

Note that ‖·‖Z(t) is defined so that ‖(U+,U−, f, u · n)‖2Z(t) is effectively equal

to the linearised energy EL but two orders of derivatives lower and with L2-in-space
instead of L∞-in-space norms at zero order.

Proposition 32. Y is a complete metric space with respect to the metric dY .

Proof. This is straightforward using weak-∗ compactness and Sobolev compact
embedding on bounded domains. 
�

14.2. The Contraction Mapping

Proposition 33. Given a background state (Ū+, Ū−, f̄ ) ∈ Y , there exists a solution
(U+,U−, f ) ∈ Y of the linearised equations with background state (Ū+, Ū−, f̄ )
assumingwe have chosen T > 0 sufficiently small and R0 sufficiently large depend-
ing on the size of the initial data. In fact T and R0 should satisfy the following
inequalities:

R0 � Rμ

(

E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

T � Tμ

(

R0, E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

,

where Rμ is a smooth increasing function and Tμ is a smooth decreasing function.
Moreover, if ω is the corresponding solution to the linearised curl equation (130),
we may assume

EL(T ) + EL(ω)(T ) � R0.
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Proof. This is straightforward using the existence of a solution to the linearised
equations given by Proposition 12 and the maximal time limiting criteria therein,
together with the energy estimate and lower bound estimates for the linearised
equations given in Proposition 11. 
�
Proposition 34. For i = 1, 2, let (Ui+,Ui−, f i ) ∈ Y be solutions of the linearised
equations with background states (Ū i+, Ū i−, f̄ i ) ∈ Y , as described in Definition
32. Then

dY ((U 1+,U 1−, f 1), (U 2+,U 2−, f 2)) � λdY ((Ū 1+, Ū 1−, f̄ 1), (Ū 2+, Ū 2−, f̄ 2))

for some λ < 1 which is fixed independent of the solutions and background states,
provided we have chosen T > 0 sufficiently small and R0 sufficiently large depend-
ing on the size of the initial data. In fact T and R0 should satisfy the following
inequalities:

R0 � R̃μ

(

E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

T � T̃μ

(

R0, E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

,

where R̃μ is a smooth increasing function and T̃μ is a smooth decreasing function.

Proof. Note that the proof is very similar to that of the linearised energy esti-
mate proved in Section 13, replacing the energy EL with EΔ := dY ((U 1+,U 1−, f 1),
(U 2+,U 2−, f 2)) and taking the difference of the equations for the two solutions
after differentiating. Note we are working two orders of regularity lower than
the energy estimate so we do not need to be so careful about estimating coef-
ficients. We write terms of the form G(Ū 1, ψ̄1)∂α∂U 1 − G(Ū 2, ψ̄2)∂α∂U 2 as
G(Ū 1, ψ̄1)∂α∂(U 1 − U 2) + (G(Ū 1, ψ̄1) − G(Ū 2, ψ̄2))∂α∂U 2 and estimate the
first term as in the linearised energy estimate and the second term using the mean
value theorem.

Following this strategy, we obtain, after an application of Gronwall’s lemma,

EΔ(t) �
(

KL(t)
∫ t

0
ĒΔ(τ) dτ + 1

4
ĒΔ(t)

)

exp(tKL(t))

for t ∈ (0, T ), where we have modified the definition of KL(t) slightly to include
the energies E i

L(t) of both (U 1+,U 1−, f 1) and (U 2+,U 2−, f 2) and the energies Ē i
L(t)

of their background states and the energies EL(ωi )(t) of their associated curls.
Assuming R0 and T satisfy the inequalities given in Proposition 33, we have

KL(T ) � Fμ(R0, M0
μ)

for some smooth increasing function Fμ which may depend on μ. Thus choosing
T sufficiently small depending on R0 and M0

μ we may ensure

EΔ(T ) � 3

4
ĒΔ(T ),

which concludes the proof. 
�
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Proposition 35. Define the map Φ : Y → Y by (Ū+, Ū−, f̄ ) �→ (U+,U−, f )
where (U+,U−, f ) is the unique solution of the linearised equations with back-
ground state (Ū+, Ū−, f̄ ) as given by Proposition 12. Assume that R0 and T satisfy
the inequalities in Propositions 33 and 34. Assume also that the space Y is non-
empty. Then Φ has a fixed point.

Proof. By Proposition 12 we know that

EL(T ) < ∞
∂
j
t (U+,U−, f )|t=0 = ∂

μ,g, j
0 (U 0+,U 0−, f 0) for 0 � j � 3.

[u · n] = 0

By Proposition 33 we have

EL(T ) � R0,

and hence (U+,U−, f ) ∈ Y . Now Proposition 34 implies that the map Φ : Y →
Y is a contraction. Since Y is complete, we may apply the contraction mapping
theorem to conclude that Φ has a unique fixed point in Y . 
�

14.3. The Existence of a Solution to the μ-Approximate Equations

Lemma 27. Suppose (U+,U−, f ) is a fixed point of the linearised equations on
the time interval (0, T ), by which we mean (U+,U−, f ) together with (ω+, ω−)

is a solution of the linearised equations on the time interval (0, T ) as defined
in Definition 32, linearised about the state (U+,U−, f ), with initial value
(U+,U−, f )|t=0 = (U 0+,U 0−, f 0). Suppose also that

EL(T ) < ∞, ρ � δ0

4
, ρμ �

δ0μ

4
, Jψ � 1

4
κ0,

whereEL(t) is the linearised energyassociatedwith (U+,U−, f ). Then (U+,U−, f )
is a solution of the μ-approximate equations on the time interval (0, T ) with initial
data (U 0+,U 0−, f 0).

Moreover, there exists T 0
μ ∈ (0, T ] and C0

μ > 0 such that

Eμ(min{T 0
μ, T }) � C0

μ < ∞

ρ � δ0

2
in (0,min{T 0

μ, T }) × Ω±

ρμ �
δ0μ

2
in (0,min{T 0

μ, T }) × Ω±

Jψ � 1

2
κ0 in (0,min{T 0

μ, T }) × R
3.

The constant C0
μ > 0 is bounded above as follows:

C0
μ � Cμ(E0

μ,
1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)) > 0,
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where Cμ(·) is a smooth increasing function of its arguments, and may depend on
μ.

The time T 0
μ > 0 is bounded below as follows:

T 0
μ � Tμ

(

E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

> 0,

where Tμ(·) is a smooth decreasing function of its arguments, and may depend on
μ.

Proof. Note that the definition of the linearised equations implies that the pressure
and entropy equations (39) and (41) hold, along with the boundary conditions
(42)–(43), along with the following additional equations:

ρμ(∂t + uψ · ∇)ω + ∇ψρμ × (∂t + uψ · ∇)u + ρμ(εi jk∂
ψ
j ul∂

ψ
l uk) = ∇ψ × g1

(183)

ρμ(∂t + uψ · ∇)u + ∇ψ p = μ∇ψ(ρc2∇ψ · u) + g1 + μ∇ψ × (ρc2ω)

− μ∇ψ × (ρc2∇ψ × u) (184)

in (0, T ) × Ω± and

n × (∇ψ × u±) = n × ω± (185)

on (0, T )×Γ . Thus it remains to show that the velocity equation (40) holds, which
will follow immediately from the above if we can show

ω = ∇ψ × u.

To do this we take the curl of the Equation (184) and compare it to the equation
(183). Using Lemma 16 and the fact that ψ = ψ̄ and u = ū, we see that ∇ψ × u
satisfies the following equation:

ρμ(∂t + uψ · ∇)(∇ψ × u) = −∇ψρμ × (∂t + uψ · ∇)u − ρμ(εi jk∂
ψ
j ul∂

ψ
l uk)

+ ∇ψ × g1

+ μ∇ψ × (∇ψ × (ρc2ω)) − μ∇ψ

× (∇ψ × (ρc2∇ψ × u)).

Subtracting the curl equation (183) and writing ξ = ρc2∇ψ × u − ρc2ω, we have

ρμ(∂t + uψ · ∇)(
ξ

ρc2
) = −μ∇ψ × (∇ψ × ξ).

Multiplying by ξ and integrating by parts separately in Ω± we obtain
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1

2

d

dt

∫

Ω±

ρμ

ρc2
|ξ |2 dx ∓ 1

2

∫

Γ

ρμ

ρc2
(uψ)3 |ξ |2 dx

= 1

2

∫

Ω±
∂tρμ |ξ |2 dx + 1

2

∫

Ω±
∇ · (ρμu

ψ) |ξ |2 dx

− 1

2

∫

Ω±
ρμ∂t (

1

ρc2
) |ξ |2 dx − 1

2

∫

Ω±
ρμu

ψ · ∇(
1

ρc2
) |ξ |2 dx

± μ

∫

Γ

n × (∇ψ × ξ) · ξ dx ′ − μ

∫

Ω±

∣
∣∇ψ × ξ

∣
∣
2
dx

− μ

∫

Ω±
∂x3(

∇ψ

Jψ
) × (∇ψ × ξ) · ξ dx .

Note that using the basic vector identity (a×b) ·c = (c×a) ·b we have n× (∇ψ ×
ξ) · ξ = (n × ξ) · (∇ψ × ξ) = 0 using the boundary condition (185). Hence, using
this together with the fact that (uψ)3|Γ = 0, we have

d

dt

∫

Ω±
|ξ |2 dx � 1

δ0
(CU±, f

∫

Ω±
|ξ |2 dx),

where the constant CU±, f < ∞ depends on ‖U±‖W 1,∞((0,T )×Ω±)

and ‖ f ‖W 2,∞((0,T )×Γ ). We used Cauchy’s inequality to absorb the last term into
the second to last term. Note that by definition,

ξ±|t=0 = 0,

hence we may apply Gronwall’s lemma to conclude that ξ± = 0. This proves
that (U+,U−, f ) is a solution of the μ-approximate equations on the time interval
(0, T ).

Since (U+,U−, f )|t=0 = (U 0+,U 0−, f 0) and (U+,U−, f ) solves the μ-
approximate equations, it is now clear by definition of the initial time derivatives
that

∂
j
t (U+,U−, f )|t=0 = ∂

μ,g, j
0 (U 0+,U 0−, f 0) for 0 � j � 3.

Thus we may apply the linearised energy estimate given in Proposition 11 with
background state (U+,U−, f ) and rearrange to conclude that, for t ∈ (0, T ),

EL(t) + EL(ω)(t) � M0
μ + Kμ(t)(t +

∫ t

0
EL(τ ) + EL(ω)(τ ) dτ).

Now we relate EL(t) + EL(ω)(t) and Eμ(t) using Lemma 15 to obtain

Eμ(t) � M0
μ + Kμ(t)(t +

∫ t

0
Eμ(τ) dτ) � M0

μ,0 + t Fμ,1(M
0
μ,1, Eμ(t)).

Where Fμ,1 is a smooth increasing function and M0
μ,i has the same form as M0

μ.
Moreover, we have

ρ � δ0 − t Kμ,2(t), ρμ � δ0μ − t Kμ,3(t), Jψ � κ0 − t Kμ,4(t)
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on the time interval (0, T ) where Kμ,i have the same form as Kμ. Note that we can
write Kμ,i (t) � Fμ,i (M0

μ,i , Eμ(t)) for some smooth increasing functions Fμ,i .

We let T 0
μ = sup{T ′ ∈ (0, T )} such that the following hold for all t ∈ (0, T ′):

Eμ(t) � 2M0
μ,0, inf

Ω±
ρ � δ0

2
, inf

Ω±
ρμ �

δ0μ

2
, inf

R3
Jψ � 1

2
κ0,

and the above estimates allowus to immediately derive a lower boundof the required
form for T 0

μ . 
�
Lemma 28. The metric space Y is non-empty for sufficiently large R0 where R0

depends on the high order energy E0
max of the initial data (U 0+,U 0−, f 0), provided

we assume E0
max < ∞. More precisely, R0 should satisfy

R0 � Fμ(E0
max),

where Fμ(·) is a given smooth increasing function.

Proof. We define (U+,U−, f ) in terms of the initial data as follows:

p± =
3

∑

j=0

1

j ! t
j∂

μ,g, j
0 p0±, s± =

3
∑

j=0

1

j ! t
j∂

μ,g, j
0 s0±, f =

3
∑

j=0

1

j ! t
j∂

μ,g, j
0 f 0±.

Then clearly,

∂
j
t (p±, s±, f )|t=0 = ∂

μ,g, j
0 (p0±, s0±, f 0) for 0 � j � 3.

Note that having defined f we can now compute n, n̂ etc in terms of f . Now,
following the notation for the rotation matrix N defined in terms of f such that
(N−1w)3 = w · n for any vector w, as defined in Section 12.3, we set

�

u 0= (N 0)−1u0.

Then we define

u(t) = N (t)
3

∑

j=0

1

j ! t
j∂

μ,g, j
0

�

u 0
.

Note that the definition implies that for 0 � j � 3 we have

∂
j
t u|t=0 =

∑

k+l= j

∂kt (N (t)N−1(t))|t=0∂
μ,g,l
0 u0 = ∂

μ,g, j
0 u0

as required. Also,

[u · n] = [(N−1u)3] =
3

∑

j=0

1

j ! t
j∂

μ,g, j
0 [�

u 0
3] =

3
∑

j=0

1

j ! t
j∂

μ,g, j
0 [u0 · n0] = 0,

since the initial data satisfies the compatibility condition (45) up to order 3.
Since the initial data is smooth, we have EL(1) < ∞, where EL(t) is the lin-

earised energy associated with the above (U+,U−, f ), so we have (U+,U−, f ) ∈
Y provided R0 � EL(1), and noting that EL(1) � Fμ(E0

max) for some smooth
increasing function Fμ(·) completes the proof. 
�
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14.3.1. Conclusion of the Proof of the Existence of Solutions to the
µ-Approximate Equations

Proof (The proof of Theorem 3). By Lemma 28, we have that the space Y is
non-empty for sufficiently large R0 depending on the high-order energy E0

max of
the initial data. Propositions 33 and 34 show that the map Φ : Y → Y defined
by (Ū+, Ū−, f̄ ) �→ (U+,U−, f ) where (U+,U−, f ) is the unique solution of the
linearised equations with background state (Ū+, Ū−, f̄ ) as given by Proposition 12
is a well-defined contraction, provided that R0 and T satisfy the following bounds:

R0 � Rμ(E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1))

T � Tμ(R0, E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)),

where Rμ is a smooth increasing function and Tμ is a smooth decreasing function.
Thus we set R0 to be the maximum of Rμ(E0

μ, 1
δ0

, 1
δ0μ

, 1
κ0

, Eg(1)) and Fμ(E0
max) as

given in Lemma 28, then set

T = Tμ

(

R0, E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

.

We apply Proposition 35 to conclude thatΦ has a fixed point (U+,U−, f ) ∈ Y .
We then apply Lemma 27 to conclude that (U+,U−, f ) is a solution of the μ-
approximate equations on the time interval (0, T ). We also obtain a T 0

μ ∈ (0, T ]
and C0

μ > 0 such that

Eμ(min{T 0
μ, T }) � C0

μ < ∞

ρ � δ0

2
in (0,min{T 0

μ, T }) × Ω±

ρμ �
δ0μ

2
in (0,min{T 0

μ, T }) × Ω±

Jψ � 1

2
κ0 in (0,min{T 0

μ, T }) × R
3.

The constant C0
μ > 0 is bounded above as follows:

C0
μ � Cμ(E0

μ,
1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)) > 0,

where Cμ(·) is a smooth increasing function of its arguments, and may depend on
μ.

The time T 0
μ > 0 is bounded below as follows:

T 0
μ � Tμ

(

E0
μ,

1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)

)

> 0,



Short-Time Structural Stability 717

where Tμ(·) is a smooth decreasing function of its arguments, and may depend on
μ.

Redefining T 0
μ = min{T 0

μ, T }, so that the lower bound becomes

T 0
μ � Tμ(E0

max,
1

δ0
,
1

δ0μ
,
1

κ0 , Eg(1)) > 0,

where Tμ(·) is a smooth decreasing function of its arguments, we complete the
proof. 
�
14.3.2. Conclusion of the Proof of the Existence of Maximal-Time Solutions to
the µ-Approximate Equations

Proof (The proof of Theorem 4).We need to maximise the time interval of exis-
tence of a solution to the μ-approximate equations as given by Theorem 3. This is
almost standard, effectively by taking final data as initial data and applying The-
orem 3 again to show that we can extend the time interval of the solution if the
energy Eμ(t) remains bounded. However, there are two minor caveats. The first is
that we want to prove that Eμ(t) must blow up as t approaches the maximal time
instead of just Eμ(t). This is straightforward to deduce using the energy estimate
given in Proposition 11 together with the relation between EL(t) + EL(ω)(t) and
Eμ(t) given by Lemma 15, then applying Gronwall’s inequality. The second is
that is Theorem 3 requires the initial data to be smooth. However, if we examine
the proof we see that the only reason for this was to be able to construct a back-
ground state for the linearised equations, but once we have a solution on some time
interval, we may use it to construct a background state on a larger time interval
by Sobolev extension thus overcoming this difficulty. This completes the proof of
Theorem 4. 
�

15. Proof of Uniqueness and Stability

Here we aim to prove the statement of stability in the main theorem in the fixed
domains, Theorem 2, fromwhich the statement of uniqueness immediately follows.
Wewill use the fact that we have already proved the rest of Theorem 2. For i = 1, 2,
we let (U 0,i

+ ,U 0,i
− , f 0,i ) be initial data satisfying the hypotheses of Theorem 2, and

we let T 0,i > 0 be the associated existence times depending on this initial data
as given by Theorem 2. We set T 0 = min{T 0,1, T 0,2}. We let (U 1+,U 1−, f 1) and
(U 2+,U 2−, f 2) be two solutions of the equations in the fixed domains as defined

in Definition 11 on the time interval (0, T 0) with initial data (U 0,i
+ ,U 0,i

− , f 0,i )
respectively, with the properties

Ei (T 0) =: Ci < ∞, inf
t∈(0,T 0)

inf
x∈Ω±

ρi± =: δi > 0, inf
t∈(0,T 0)

inf
x∈R3

Jψ i =: κ i > 0

for i = 1, 2, where the superscript i for i = 1, 2 is used to denote quantities associ-
ated with the solutions (Ui+,Ui−, f i ), and the energy E(t) is defined in Definition
15. We assume that U 0,1 − U 0,2 ∈ L2(Ω±) and f 0,1 − f 0,2 ∈ L2(Γ ) so that
E0

Δ < ∞, where the initial difference energy E0
Δ is defined in Definition 16.
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Notation. In analogy with the proof of the energy estimate proved in Section 9,
we will write

K (t) = F

(

E1(t), E2(t),
1

δ1
,
1

δ2
,
1

κ1 ,
1

κ2

)

for t ∈ (0, T 0], where F is a smooth increasing function, and note that

K (t) � K (T 0) = F

(

C1,C2,
1

δ1
,
1

δ2
,
1

κ1 ,
1

κ2

)

< ∞.

We aim to show that

EΔ(t) � K (t)E0
Δ + 1

ε
3
2

K (t)
∫ t

0
EΔ(τ) dτ + ε

1
2 K (t)EΔ(t), (186)

where we are free to choose ε ∈ (0, 1] and EΔ(t) is defined in Definition 16.
The strategy of the proof is just to follow the proof of theμ-independent energy

estimate (given in Section 9) with μ = 0, where we take the difference of the
equations after differentiating (up to 2 times rather than 3 times as in themain energy
estimate). We write terms of the form G(U 1, ψ1)∂α∂U 1 − G(U 2, ψ2)∂α∂U 2 as
G(U 1, ψ1)∂α∂(U 1 − U 2) + (G(U 1, ψ1) − G(U 2, ψ2))∂α∂U 2 and estimate the
first term as in theμ-independent energy estimate. The second term is estimated by
applying the mean value theorem to G(U 1, ψ1) − G(U 2, ψ2) and using the fact
that this is a lower order difference term, and using the higher order energy bound
to bound the factor ∂α∂U 2. Thus in fact the proof is almost exactly the same as that
of the μ-independent energy estimate, hence we will not go through all the details
here.

Once we have followed the steps in Section 9 to obtain (186), we proceed as
follows. We have

EΔ(t) � K (t)E0
Δ + 1

ε
3
2

K (t)
∫ t

0
EΔ(τ) dτ + ε

1
2 K (t)EΔ(t)

� K (T 0)E0
Δ + 1

ε
3
2

K (T 0)

∫ t

0
EΔ(τ) dτ + ε

1
2 K (T 0)EΔ(t)

where we are free to choose ε ∈ (0, 1]. Choosing ε
1
2 = 1

2K (T 0)
and rearranging,

we obtain

EΔ(t) � K (T 0)E0
Δ + K (T 0)

∫ t

0
EΔ(τ) dτ,

where we have redefined the function K (t), but it is still of the same form and
K (T 0) < ∞. Applying Gronwall’s lemma we immediately obtain that

EΔ(t) � K (T 0)E0
Δ exp(K (T 0)t)

for t ∈ (0, T 0). This is the statement of stability.
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Note in particular that this implies that if (U 0,1
+ ,U 0,1

− , f 0,1) = (U 0,2
+ ,U 0,2

− ,

f 0,2), then

EΔ(t) = 0

for t ∈ (0, T 0) = (0, T 0,1) = (0, T 0,2). Thus

‖U 1 −U 2‖L2(Ω±) = 0

‖ f 1 − f 2‖L2(Γ ) = 0

for t ∈ (0, T 0), and henceU 1 = U 2 almost everywhere in (0, T 0)×Ω± and f 1 =
f 2 almost everywhere on (0, T 0) × Γ . This completes the proof of uniqueness.

16. Extensions

16.1. The Two-Dimensional Case

Suppose that the flow is independent of one of the horizontal directions, so that
we may consider the fluid to occupy some two-dimensional regions Ω±(t) ⊂ R

2

separated by a one-dimensional surfaceΓ (t). Then in fact exactly the same theorem
as Theorem 2 holds, where we replace the three-dimensional space variable with
a two-dimensional one by, say, dropping the x1 coordinate, then relabelling the
coordinates so that x1 becomes the horizontal direction and x2 the normal direction.
Our proof works in exactly the same way.

16.2. Body Force

We could easily adapt the proof to include a sufficiently smooth given body
force, h(t, x), added to the right hand side of the velocity equation (10). We could
even allow the force to be a function of the fluid variables, such as a gravitational
force, but with the constraint that it must decay since we are working in the whole
space. Terms of zero order can be treated as remainder terms in themain energy esti-
mate and then mollified as we mollified the density to produce the μ-approximate
equations.When linearisingwemay simply replace themwith the state about which
we linearise.

16.3. Horizontally Periodic Domain with Top and Bottom Walls

Instead of working on the unbounded domainsΩT± with interfaceΓ T as defined
in Definition 3, we could work on a horizontally periodic domain with top and
bottom walls, by which we mean we redefine

ΩT+ := {(t, x) ∈ (0, T ) × Ω : x3 > f (t, x)}
ΩT− := {(t, x) ∈ (0, T ) × Ω : x3 < f (t, x)}
Γ T := {(t, x) ∈ (0, T ) × Ω : x3 = f (t, x)}
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where the fixed domain Ω is defined as

Ω := {(t, x) ∈ (0, T ) × R
3 : x3 < D+, x3 > −D−,−L < x1, x2 < L}

for some fixed constants D+ > 0, D− > 0, L > 0. We impose periodic boundary
conditions in the horizontal directions, and we impose the solid wall boundary
condition

u3 = 0

on (0, T ) × {x3 = ±D±}. Note that this is exactly the statement that the fluid does
not flow through the walls at x3 = ±D± since u3 is the component of the velocity
normal to these walls.

We require that initially the surface Γ 0 does not touch the walls, which means
that for a short time by continuity it will still not touch the walls. We note that when
constructing the lift ψ of f , we want to ensure that ψ = 0 in a neighbourhood
of the walls so that the change of coordinates θ is the identity in a neighbourhood
of the walls. Thus we want to set ψ = χ̃ (x3) f where χ̃ is a smooth cut-off
function with sufficiently small support depending on D±. But then ∂x3ψ might
be quite large, so one way to ensure that θ remains a diffeomorphism would be
to set θ(t, x) = (t, x ′, Ax3 + ψ(t, x)) for A a sufficiently large positive constant,
to ensure that the Jacobian Jψ := A + ∂x3ψ is uniformly positive. This slight
change should not cause any difficulties in adapting the proof of Theorem 1 to the
case of a horizontally periodic domain with top and bottom walls. Note that the
boundary condition u3 = 0 on (0, T ) × {x3 = ±D±} ensures that the boundary
terms generated in the energy estimate due to the walls are in fact zero.

Thus we conclude that it would be straightforward to adapt the proof of Theo-
rem 1 to the case of a horizontally periodic domain with top and bottom walls, or
indeed a domain which is unbounded horizontally but bounded by walls above and
below.

16.4. Bounded Domain

The case of a bounded domain was considered by Cheng et al. [6] in the
incompressible setting. In this setup,R3 is replaced by a sufficiently smooth simply
connected domain Ω ⊂ R

3 and the interface between the two fluids Γ is a closed
surface which divides the interior of Ω into two pieces, Ω+ and Ω−, where, say,
Ω+ is the outer region.

The interior equations and the pressure interface condition remain the same,
and the interface Γ still moves with the fluid, which in a local chart would still be
the condition ∂t f = u · n. We assume that the outer boundary of Ω acts as a fixed
wall, so the boundary condition on ∂Ω is u · ν = 0 where ν is normal to ∂Ω . This
implies that any boundary terms generated in the energy estimate due to the outer
boundary ∂Ω are lower order terms provided Ω is a sufficiently smooth domain.

The analysis of this problem requires the introduction of coordinate charts and
a partition of unity to define derivatives on Γ , which adds significant technical
complications to the problem. However, since we have not imposed any smallness
assumption of the graph of the from f in the above work, it seems likely that there
is no fundamental obstruction in adapting the above work to a bounded domain.
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17. The One-Phase Problem With and Without Surface Tension

The one-phase problem with and without surface tension has been solved by
Coutand et al. [10], and earlier by Lindblad without surface tension in both the
incompressible [18] and compressible [17] cases, sowe do not devote a large section
to this problem. However, we sketch the details of the results we would obtain for
the one-phase problem using the above methods since the exact statements are
slightly different to those in these references and the methods used are somewhat
different.

17.1. Statement of the One-Phase Problem

When we say the one phase problem, we are referring to the problem obtained
from the vortex-sheet problemwhenwe replace one of the fluids, say the fluid in the
region ΩT+ , by vacuum (Fig. 3). The interior equations in ΩT− remain the same, the
interface still moves with the fluid and we replace p+ by 0 in the pressure interface
condition (13). Thus the system of equations can be written as follows, where we
drop the subscript − since it is now redundant, so ΩT refers to ΩT− , etc:

1

ρc2
(∂t + u · ∇)p + ∇ · u = 0 (187)

ρ(∂t + u · ∇)u + ∇ p = 0 (188)

(∂t + u · ∇)s = 0 (189)

in ΩT ,

∂t f = u · n (190)

p = σ∇′ · n̂ (191)

on Γ T .

Fig. 3. Perturbation of a flat liquid–vacuum boundary
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If σ > 0 we call this the one-phase problem with surface tension, and if σ = 0
we call it the one-phase problem without surface tension.

The compatibility conditions given in Definition 6 reduce to the following
compatibility condition.

Definition 47. We say that initial data (U 0, f 0) satisfy the compatibility condition
for the system (187)–(191) up to order k, for integer k � 0, if the following holds
for all x ′ ∈ R

2:

∂
j
0 (p0

∣
∣
Γ 0)(x

′) = σ∂
j
0 (∇′ · n̂0)(x ′) (192)

for 0 � j � k, where

p0
∣
∣
Γ 0(x

′) := p0(x ′, f 0(x ′)).

Note that in order to relate this to the above work, we will require that the
density is bounded below, so it is non-zero at the boundary, and hence physically
we would probably be modelling a compressible liquid rather than a gas. One could
also replace the vacuum region with a region of constant pressure p̄ > 0, in which
case the pressure interface condition would become p = σ∇′ · n̂+ p̄, which would
cause no difficulties in the proof since p̄ would disappear upon differentiation.

17.2. The One-Phase Problem With Surface Tension

Here we assume σ > 0. In this case it is straightforward to adapt the proof
of the main theorem, Theorem 1, to prove an analogous result for the one-phase
problem. The statement of the result for the one-phase problemwith surface tension
can be written as follows. Note that the energy is the same as defined in Definition
7 but without the Ω+ terms. We remind the reader that this problem was solved by
Coutand et al. [10] using Lagrangian coordinates.

Theorem 5. Let (U 0, f 0) be initial data with energy E0 < ∞. Assume that this
initial data satisfies the compatibility condition (192) up to order 2. Assume also
that the initial density satisfies

inf
x∈Ω0

ρ0(x) =: δ0 > 0. (193)

Then there exists a time T 0 > 0 and a solution (U, f ) of the system (187)–(191)
with σ > 0 on the time interval (0, T 0). Moreover,

E(T 0) � C0, ρ � δ0

2
in ΩT 0

.

The time T 0 > 0 is bounded below as follows:

T 0 � T

(

E0,
1

δ0

)

> 0,
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where T (·) is a smooth decreasing function which may depend on σ . Similarly, the
constant C0 > 0 is bounded above as follows:

C0 � C

(

E0,
1

δ0

)

< ∞,

where C(·) is a smooth increasing function which may depend on σ .
In addition, the solution (U, f ) is unique on the time interval (0, T 0) in the

sense that it is the only solution of the equations on the time interval (0, T 0) with
initial data (U 0, f 0) satisfying the following properties:

E(T 0) < ∞, inf
(t,x)∈ΩT 0

ρ > 0.

We avoid repeating all the details of the proof, but we note that there are some
significant simplifications particularly in the energy estimate. Indeed in proving the
energy estimate, everything is estimated in an exactly analogous way as in Section
9, except that a large simplification can be made when estimating the highest order
time derivative. The boundary term K β

13, which we had to estimate by going back
to the equations in the interior, is no longer present at all. In particular, this means
that we can use the time derivative ∂t instead of the material time derivative Du−

t in
this high order time derivative estimate, and we can skip all the estimates dealing
with the term K β

13. In fact it becomes possible to estimate the tangential and time
derivatives in the same way, provided that we estimate the term corresponding to
I α
2 in the same way as K β

12.

17.3. The One-Phase Problem Without Surface Tension

It is also possible under slightly modified assumptions to prove short-time exis-
tence and uniqueness for the one-phase problem without surface tension, that is
σ = 0. Indeed, all that is required is to prove an energy estimate for the one-phase
problemwith surface tension that is independent of σ (which is the same as proving
an energy estimate for the μ-approximate one-phase problem that is independent
of σ in the case μ = 0). One could then use weak-∗ compactness and the Sobolev
compact embedding theorem for solutions of the problem with surface tension to
pass to the limit σ = 0 and obtain solutions to the problem without surface ten-
sion. Note that obtaining a time interval of existence independent of σ given a
σ -independent energy estimate would be straightforward assuming that the time
interval of existence for the case σ > 0 can be maximised in such a way that the
σ -independent energy blows up t reaches the maximal time.

Note that in the case σ = 0 we no longer obtain an elliptic-type estimate for
the front f from the pressure interface condition (191). In fact, to obtain a good
estimate for f we need to make an additional assumption on the initial data. That
is, the Taylor sign condition should be satisfied as follows:

−∂x3 p
0|Γ 0 � λ0 > 0
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for some λ0 > 0. Note this implies by continuity that the Taylor sign condition
holds for a short time T > 0, that is:

−∂x3 p|Γ T � λ0

2
> 0.

Note that in the case of an unbounded domain, the requirement−∂x3 p
0|Γ 0 � λ0 >

0 conflicts with ∇ p0 ∈ L2(Ω0). It may be possible to allow for this by adding
a gravitational body force and subtracting a background pressure, but even then
it seems that we would need to introduce a bottom wall to prevent the density
from tending to infinity. Hence in this section for simplicity we will restrict to the
case of a horizontally periodic domain with bottom wall, but we expect the same
result to hold for a general sufficiently smooth bounded domain, or a horizontally
unbounded domain with bottomwall with gravitational body force after subtracting
an appropriate background pressure. We define

ΩT := {(t, x) ∈ (0, T ) × Ω : x3 < f (t, x)}
Γ T := {(t, x) ∈ (0, T ) × Ω : x3 = f (t, x)},

where the fixed domain Ω is defined as

Ω := {(t, x) ∈ (0, T ) × R
3 : x3 > −D,−L < x1, x2 < L}

for some fixed constants D > 0, L > 0. We impose periodic boundary conditions
in the horizontal directions, and we impose the solid wall boundary condition

u3 = 0 (194)

on (0, T ) × {x3 = −D}.
The loss of the estimate for the front f from the pressure interface condition

(191) means that we should modify our energy so that U and f are estimated to
the same order. If we try and do this with an energy with only 3 derivatives, then
the remainder terms become impossible to estimate, hence we should increase the
order of the derivatives in our energy by one. If we include the terms in our energy
that we would have in the case σ > 0, but this time multiplied by the appropriate
factor of σ so that we can obtain a σ -independent estimate for this energy, we obtain
the following definition.

Definition 48. Define the σ -independent energy Eσ : (0, T ] → [0,∞] by
Eσ (t) = ess sup

τ∈(0,t)
‖U‖2L∞(Ω(τ))+

∑

1�|α|�4

ess sup
τ∈(0,t)

‖∂αU‖2L2(Ω(τ))
+ess sup

τ∈(0,t)
‖ f ‖2L∞(R2)

+
∑

1�|α|�4

ess sup
τ∈(0,t)

‖∂α f ‖2L2(R2)
+ σ

∑

1�|α|�4

ess sup
τ∈(0,t)

‖∂α f ‖2H1(R2)

+ σ 2
3

∑

j=0

ess sup
τ∈(0,t)

‖∇′∂ j
t f ‖2H4.5− j (R2)

.

We allow the case σ = 0, in which case the energy is written as E0(t).
The initial energy E0

σ of the initial data is defined in the obvious way, replacing
time derivatives in the above energy by initial time derivatives.
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The statement of the result for the one-phase problem without surface tension
in a horizontally periodic domain with bottom wall can be written as follows. We
remind the reader that this problem was originally solved by Lindblad [17].

Theorem 6. Let (U 0, f 0) be initial data with energy E0
0 < ∞. Assume that this

initial data satisfies the compatibility condition (192) up to order 3 with σ = 0,
plus the compatibility condition associated with the bottom wall,

∂
j
0 u

0
3|x3=−D = 0 for 0 � j � 3. (195)

Assume also that the initial density satisfies

inf
x∈Ω0

ρ0(x) =: δ0 > 0 (196)

and that the Taylor sign condition

− inf
x∈Γ 0

∂x3 p
0|Γ 0 =: λ0 > 0 (197)

is satisfied, and that the initial surface and bottom wall satisfy:

dist(Γ 0, {x3 = −D}) =: η0 > 0. (198)

Then there exists a time T 0 > 0 and a solution (U, f ) of the system (187)–(191)
with σ = 0 plus (194) on the time interval (0, T 0). Moreover,

E0(T
0) � C0, ρ � δ0

2
in ΩT 0

,

− ∂x3 p � λ0

2
on Γ T 0

, inf
t∈(0,T 0)

dist(Γ (t), {x3 = −D}) � η0

2
.

The time T 0 > 0 is bounded below as follows:

T 0 � T

(

E0
0 ,

1

δ0
,
1

λ0
,
1

η0

)

> 0.

where T (·) is a smooth decreasing function. Similarly, the constant C0 > 0 is
bounded above as follows:

C0 � C

(

E0
0 ,

1

δ0
,
1

λ0
,
1

η0

)

< ∞,

where C(·) is a smooth increasing function.
In addition, the solution (U, f ) is unique on the time interval (0, T 0) in the

sense that it is the only solution of the equations on the time interval (0, T 0) with
initial data (U 0, f 0) satisfying the following properties:

E(T 0) < ∞, inf
(t,x)∈ΩT 0

ρ > 0,

− inf
(t,x)∈Γ T 0

∂x3 p > 0, inf
t∈(0,T 0)

dist(Γ (t), {x3 = −D}) > 0.
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We sketch some details of how to obtain the σ -independent energy estimate.
Firstly, we should use the corrected unknowns as defined in (72) throughout the
energy estimate in order to remove the highest order terms inψ from the differenti-
ated equations, as we did for the time derivative estimate in Section 9.10. In fact the
time derivatives are now estimated in the same way as the tangential derivatives,
provided we estimate the term corresponding to I α

2 in the same way as K β
12. The

boundary term that we obtain during the time and tangential estimates using the
corrected unknowns is

−K α =
∫ t

0

∫

Γ

n · uα pα dx ′ dτ =: K α
1 − K α

2 − K α
3 + K α

4

where

K α
1 =

∫ t

0

∫

Γ

n · ∂αu∂α p dx ′ dτ

K α
2 =

∫ t

0

∫

Γ

n · ∂αu∂α f ∂3 p dx
′ dτ

K α
3 =

∫ t

0

∫

Γ

n · ∂α p∂α f ∂3u dx
′ dτ

K α
4 =

∫ t

0

∫

Γ

n · ∂α f ∂3 p∂
α f ∂3u dx

′ dτ.

Note that K α
4 can be estimated directly by t K (t) using notation analogous to that in

Section 9. The term K α
3 can also be estimated by t K (t) after using (191) to replace

∂α p by σ∂α∇′ · n̂ and integrating by parts in space. The term K α
1 can be estimated

as before, again by using (191) to replace ∂α p by σ∂α∇′ · n̂.
Now let us consider K α

2 . Using the equation for the front (190), we obtain

K α
2 =

∫ t

0

∫

Γ

∂α(u · n)∂α f ∂3 p dx
′ dτ −

∫ t

0

∫

Γ

u · ∂αn∂α f ∂3 p dx
′ dτ + R

=
∫ t

0

∫

Γ

∂α∂t f ∂
α f ∂3 p dx

′ dτ +
∫ t

0

∫

Γ

u · ∇′∂α f ∂α f ∂3 p dx
′ dτ + R,

where we are using R to denote a generic remainder term satisfying |R| � t K (t)
and we are not being very precise with the remainder terms. We use the product
rule and apply the divergence theorem to the second term to obtain

−K α
2 = −1

2

∫

Γ

∣
∣∂α f

∣
∣2 ∂3 p dx

′
∣
∣
∣
∣

t

0
− 1

2

∫ t

0

∫

Γ

∇′ · (u
∣
∣∂α f

∣
∣2 ∂3 p) dx

′ dτ + R

� −1

2

∫

Γ

∣
∣∂α f

∣
∣
2
∂3 p dx

′ − M0 − t K (t).

Thus the Taylor sign condition −∂3 p|Γ � λ0

2 ensures we have an estimate for
‖∂α f ‖2

L2(Γ )
.

The rest of the energy estimate is much the same as in Section 9, except we
use the corrected unknowns throughout. The estimate of the unknowns given an
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estimate for the corrected unknowns is simple given that we have 4 derivatives in
our energy, and is obtained as follows using the Sobolev embedding theorem:

‖∂αU‖2L2(Ω)
� C‖Uα‖2L2(Ω)

+ ‖∂αψ‖2L2(Ω)

∥
∥
∥
∥

∂x3U

Jψ

∥
∥
∥
∥

2

L∞(Ω)

� C‖Uα‖2L2(Ω)
+C

∥
∥
∥
∥
∂α f

∥
∥
∥
∥

2

L2(Γ )

(

M0+
∫ t

0

∥
∥
∥
∥
∂t

(
∂x3U

Jψ

) ∥
∥
∥
∥

2

H2(Ω)

dτ

)

� C‖Uα‖2L2(Ω)
+ ‖∂α f ‖2L2(Γ )

(M0 + t K (t)).

This completes our sketch of the proof of Theorem 6.

18. Appendix

18.1. A Hodge Decomposition Based Estimate

The following estimate based on Hodge decomposition allows us to separate
an estimate for first order derivatives of a vector field into an estimate of the curl,
divergence, and normal component on the boundary.

Note that in this section, f ∈ C([0, T ] × W 2,∞(R2)), ψ = La f for some
a � 0 as defined in Definition 9, the domains Ω± and Γ are defined in Definition
8, n = (−∇′ f, 1), Jψ and the notation ∇ψ are defined in Definition 10, and
Jψ � κ > 0 for some constant κ > 0.

First we write the Hodge decomposition in our setting.

Lemma 29. Fix t ∈ [0, T ]. Let w ∈ C2(Ω±; R
3). Then

Δψw = ∇ψ(∇ψ · w) − ∇ψ × (∇ψ × w) (199)

where

(Δψw)i := ∇ψ · (∇ψwi ).

Proof. This is a simple consequence of the formula (35), which states

∇a = (∇ψ(a ◦ θ)) ◦ θ−1

where the diffeomorphisms θ± : (0, T ) × Ω± → ΩT± are defined in terms of f in
Lemma 1, plus the well-known vector identity

Δz = ∇(∇ · z) − ∇ × (∇ × z).


�
Proposition 36. Fix t ∈ [0, T ]. Let w± ∈ L2(Ω±; R

3) with ∇ψ · w ∈ L2(Ω±),
∇ψ × w ∈ L2(Ω±; R

3) and w± · n ∈ H0.5(Γ ). Then w± ∈ H1(Ω±) with

‖w‖H1(Ω±) � C(1 + ‖∇′ f ‖3W 1,∞(Γ )
)

× (‖w‖L2(Ω±) + ‖∇ψ · w‖L2(Ω±) + ‖∇ψ × w‖L2(Ω±)

+‖w± · n‖H0.5(Γ )

)

.
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Proof. Note we may assume w ∈ C∞
c (Ω±) else we may approximate w by a

sequence of C∞
c (Ω±) functions which converges to w pointwise, and for which

the norms on the right hand side are bounded by those of w up to a constant, from
which we obtain that w ∈ H1(Ω±) with the above estimate.

We dot the formula (199) with w±, integrate over Ω± and use integration

by parts. This gives us a term involving
∑3

j=1

∫

Ω±

∣
∣
∣∂

ψ
j w

∣
∣
∣

2
, a term involving

∫

Ω±
∣
∣∇ψ × w

∣
∣
2
dx , a term involving

∫

Ω±
∣
∣∇ψ · w

∣
∣
2
dx and some boundary terms.

Using some vector identities, H0.5−H−0.5 estimates and the Sobolev trace lemma
allows us to estimate the boundary term as required. 
�

18.2. Products and Compositions in Sobolev Spaces

The following lemma is very useful for proving chain and product rules in
Sobolev spaces. This is important for obtaining high-order energy estimates.

Lemma 30. Let p ∈ [1,∞], Ω ⊂ R
d with d � 1 be a domain where the standard

Sobolev embedding holds and let m > d
p be an integer. Let 0 � mi � m be

integers for 1 � i � n with
∑n

i=1 mi � (n − 1)m and let ui ∈ Wmi ,p(Ω). Then
∏n

i=1 ui ∈ L p(Ω) and

∥
∥
∥
∥

n
∏

i=1

ui

∥
∥
∥
∥
L p(Ω)

� C
n

∏

i=1

‖ui‖Wmi ,p(Ω).

Proof. The proof is straightforward using Holder’s inequality and the Sobolev
embedding theorem. 
�
Lemma 31. Let s ∈ [0, 1] and let r > d

2 where d � 1 is an integer. Let a ∈
Hs+r (Rd) and u ∈ Hs(Rd). Then au ∈ Hs(Rd) and

〈D〉s (au) = a 〈D〉s u + R(a, u)

where the remainder R(a, u) satisfies

‖R(a, u)‖L2(Rd ) � C‖a‖Hs+r (Rd )‖u‖L2(Rd )

for some C > 0.

Proof. First of all, assume a, u ∈ C∞
c (Rd). We define R(a, u) by

〈D〉s (au) − a 〈D〉s u = R(a, u).

Taking Fourier transforms, and using the fact that products become convolutions,
we have

〈ξ 〉s (â ∗ û)(ξ) − (â ∗ (〈η〉s û))(ξ) = R̂(ξ)
∫

Rd
â(ξ − η)û(η)(〈ξ 〉s − 〈η〉s)dη = R̂(ξ).
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Hence,
∣
∣
∣R̂(ξ)

∣
∣
∣ �

∫

Rd

∣
∣â(ξ − η)

∣
∣
∣
∣û(η)

∣
∣
∣
∣〈ξ 〉s − 〈η〉s∣∣ dη.

Now we use the inequality
∣
∣〈ξ 〉s − 〈η〉s∣∣ � C 〈ξ − η〉s ,

which holds for some C > 0 provided that s ∈ [0, 1]. We obtain
∣
∣
∣R̂(ξ)

∣
∣
∣ � C

∫

Rd

∣
∣â(ξ − η)

∣
∣
∣
∣û(η)

∣
∣ 〈ξ − η〉s dη

= C(〈η〉s ∣
∣â

∣
∣) ∗ ∣

∣û
∣
∣ .

Applying Young’s inequality for convolutions, we have

‖R̂(ξ)‖L2(Rd ) � C‖〈ξ 〉s â‖L1(Rd )‖û‖L2(Rd )

= C‖〈ξ 〉s+r â 〈ξ 〉−r‖L1(Rd )‖u‖L2(Rd )

� C‖〈ξ 〉s+r â‖L2(Rd )‖〈ξ 〉−r‖L2(Rd )‖u‖L2(Rd )

� C‖a‖Hs+r (Rd )‖u‖L2(Rd ),

where we have used Holder’s inequality and the fact that 〈ξ 〉−r ∈ L2(Rd) for
r > d

2 . Hence,

‖R(a, u)‖L2(Rd ) � C‖a‖Hs+r (Rd )‖u‖L2(Rd ),

as claimed. If a and u are not smooth then we use approximation by mollification.

�
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