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Abstract

Since their formulation almost 100 years ago, the von Kármán (vK) plate
equations have been frequently used both by engineers and by analysts to study
thin elastic bodies, in particular their stability behaviour under applied loads. At
the same time the derivation of these equations met some harsh criticism and their
precise mathematical status has been unclear until very recently. Following up on a
recent variational derivation of the vK theory by Friesecke, James and Müller from
three-dimensional nonlinear elasticity we study the predictions and the validity of
the vK equation in the presence of in-plane compressive forces. The first main result
is a stability alternative: either the load leads to instability already in the nonlinear
bending theory of plates (Kirchhoff–Love theory), or it leads to an instability in
a geometrically linear KL theory (‘linearized instability’), or vK theory is valid.
The second main result states that under suitable conditions the critical loads for
nonlinear stability and linearized instability coincide. The third main result asserts
this critical load also agrees with the load beyond which the infimum of the vK
functional is −∞. The main ingredients are a sharp rigidity estimate for maps with
low elastic energy and a study of the properties of isometric immersions from a set
in R

2 to R
3 and their geometrically linear counterparts.
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1. Introduction

Since the work of Boobnoff1 in 1902 [2,3], Föppl in 1907 [9, pp. 132–144] and
von Kármán in 1910 [20, pp. 348–352] the von Kármán plate equations have been
widely used to study the behaviour of thin elastic bodies, in particular their stability
behaviour. Despite their popularity by engineers and nonlinear analysts alike, the
vK equations have also faced very harsh criticism. Truesdell [38, pp. 601–602]
has strongly criticized their usual derivation (the main points are summarized in
the introduction of [4]) and Villaggio [39, p. 4] cites the vK equations as an
example of a ‘bad theory’ in his textbook on structural mechanics. In his three-
volume essay on nonlinear elasticity, plate and shell theory, Ciarlet writes [5,
p. 367]: ‘The two-dimensional von Kármán equations for nonlinearly elastic plates,
originally proposed by T. von Kármán in 1910, play an almost mythical role in
applied mathematics’.

1 I.G. Boobnoff (Ivan Grigor�eviq Bubnov, also transcribed as I.G. Bubnov or
I.G. Bubnow) realized the importance of considering both bending and stretching terms for
the design of ships’ plating and constructed approximate solutions by replacing the in-plane
stresses in the equation later written down by von Kármán by an averaged hydrostatic tension
term. We thank F. Duderstadt for bringing Boobnoff’s work to our attention, see [6, pp. 103–
104] for further information.
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The situation has become clearer recently through the use of variational methods.
In particular it has been shown in [13] that vK functional (whose Euler–Lagrange
equations are the vK equations) arises as a �-limit of nonlinear three-dimensional
elasticity if the energy per unit volume scales like thickness h to the fourth power.
In that paper boundary conditions are not discussed in detail to keep the exposition
simple, and only normal loads are considered. To understand to what extent the vK
equations can capture instability phenomena such as buckling it is, however, crucial
to include boundary conditions and in-plane loads. This is done the in current paper.

Our first main result is the following stability alternative (see Theorem 4 below
for a precise statement):

• Either the load is strong enough to cause a nontrivial deformation (of order one)
in the nonlinear bending theory of plates, first proposed by Kirchhoff [22]
(‘nonlinear instability’),

• or the load leads to an instability in a geometrically linear version of Kirchhoff’s
theory (‘linearized instability’),

• or vK theory applies (and the deformations are of order h2 in plane and of order
h out-of-plane).

The different regimes can be related to different scalings of the energy eh per unit
volume as a function of the thickness: nonlinear instability corresponds to eh ∼ h2,
linearized instability to h4 � eh � h2, and the vK regime is characterized by
eh ∼ h4.

Our second result shows that failure of linear and nonlinear stability occurs at
the same critical load, at least if the region where the body is clamped is connected
(see Theorems 6 and 7 below).

Our third result asserts that linearized stability is closely related to the existence
of minimizers of the vK energy. For homogeneous boundary conditions (that is,
zero out-of-plane displacements are permissible) we show that the infimum of the
vK energy is −∞ if and only if the load exceeds the critical load for linearized
stability (see Theorem 27 below).

To summarize we show (under the conditions stated) that the vK functional
captures well the asymptotic behaviour of three-dimensional minimizers until a
critical load is reached. This critical load can be characterized by three equivalent
conditions

linearized instability ⇔ nonlinear instability ⇔ inf J vK = −∞ (1)

Typically there is a lower threshold for which the trivial solution of the vK equa-
tions is no longer minimizing (‘vK buckling’). In certain situations (for example,
for zero Poisson’s ratio) it may happen that the trivial vK solutions is minimizing
up to the complete breakdown of vK theory in the sense of (1). In this case vK
theory nonetheless detects the onset of a nonlinear instability through the fact that
the infimum of the vK functional is −∞ for loads above the critical one.

To illustrate these results we consider the example of a rectangular plate clamped
at one end and uniformly loaded at the opposite end. Other interesting examples
arise when both linearized and nonlinear stability always hold (this is, for example,
the case for a plate which is clamped throughout, but admits tangential motion of
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the boundary). In this case the vK equations always apply (for in-plane forces of
order h2). If one works with dead loads, some care, however, is needed to formulate
the three-dimensional problem and the Kirchhoff problem correctly, so as to avoid
‘unphysical’ solutions, such as a 180 degree rotation of a circular plate in uniform
compression. These issues will be discussed in more detail elsewhere.

Very roughly speaking, boundary conditions for which nonlinear and linearized
stability always hold lead to small deflections even after the critical first buckling
load, while plates subject to boundary conditions for which these stability condi-
tions fail show a much softer ‘beam-like’ buckling response with large deflections
after the failure of the stability conditions. We are grateful to E. Ramm for point-
ing out to us that taking into account a ‘beam-like’ behaviour (as exhibited by our
example in Section 7) is important for engineering design, for example, for certain
bridge constructions.

2. Main results

We now begin with a more formal description of our results.

2.1. The energy

We start from the elastic energy

Eh(w) =
∫
�h

W (∇w(z))dz (2)

of a deformation

w : �h = S ×
(

−h

2
,

h

2

)
→ R

3.

It is convenient to work in a fixed domain � = S × (− 1
2 ,

1
2 ), change variables

x = (z1, z2,
z3
h ) and rescale deformations according to y(x) = w(z(x)) so that y :

� → R
3. We abbreviate x ′ = (x1, x2) and use the notation ∇′y = y,1⊗e1+y,2⊗e2

for the in-plane gradient so that

∇w =
(

∇′y, 1

h
y,3

)
=: ∇h y

and

1

h
E(w) = I h(y) :=

∫
�

W (∇h y) dx . (3)

We assume that the stored energy W is frame indifferent and has a non-
degenerate minimum at the group SO(3) of rotations. More precisely, we suppose
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that W is Borel measurable with values in [0,∞] and satisfies

W (QF) = W (F) ∀Q ∈ SO(3), (4)

W = 0 on SO(3), (5)

W (F) � c dist2(F, SO(3)), c > 0, (6)

W is C2 in a neighbourhood of SO(3). (7)

Since the relevant deformation gradients will be close to SO(3) (at least in an
L2 sense), we also consider the quadratic form

Q3(F) = ∂2W

∂F2 (I d)(F, F), (8)

which is twice the linearized energy, and Q2 : R
2×2 → R,

Q2(G) = min
a∈R3

Q3(G + a ⊗ e3 + e3 ⊗ a) (9)

obtained by minimizing over stretches in the x3 directions. In view of (5) and (6)
both forms are positive semidefinite and hence convex. For the special case of
isotropic elasticity we have

Q3(F) = 2µ

∣∣∣∣ F + FT

2

∣∣∣∣
2

+ λ(tr F)2,

Q2(G) = 2µ

∣∣∣∣G + GT

2

∣∣∣∣
2

+ 2µλ

2µ+ λ
(tr G)2. (10)

We study the behaviour of (almost) minimizers of the functionals

J h(y) =
∫
�

W (∇h y)− f (h)(x ′)y3 dx−
∫
∂S×(−1/2,1/2)

g(h)(x ′) · (y′−x ′)dx ′.

(11)

This corresponds to normal body forces f (h) and tangential boundary forces g(h) =
(g
(h)
1 , g

(h)
2 ). More general forces can also be considered. We have focused on the

above choice for its simplicity and since it already captures the typical instability
phenomena.

2.2. The scaling

If eh := I h(y(h)) = ∫
W (∇h y(h)) is bounded by Ch2 then a subsequence of

y(h) converges strongly in the Sobolev space W 1,2 to ȳ (see [12, Theorem 4.1]).
The limit map ȳ is independent of x3 (and may be viewed as the deformation of
the mid-plane of the plate) and, as a map from S to R

3, is an isometric immersion.
If eh � h2 then the limit map is even a rigid motion. In view of the boundary
conditions which we will introduce below, we obtain ȳ(x ′, x3) = (x ′, 0). The vK
theory corresponds to the scaling eh ∼ h4 and we introduce the scaled in-plane and
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out-of-plane displacements u(h), v(h) which measure the deviation of y(h) from the
trivial map x �→ (x ′, 0).

u(h)(x ′) := 1

h2

∫
I

(
y(h)1

y(h)2

)
(x ′, x3)−

(
x1

x2

)
dx3, v(h)(x ′) := 1

h

∫
I

y(h)3 dx3, (12)

where

I = (−1/2, 1/2). (13)

We shall see later in Lemma 13 that under the assumption eh � Ch4 and suitable
boundary conditions we have u(h) ⇀ u and v(h) → v in W 1,2, with v ∈ W 2,2.

For general u ∈ W 1,2(S,R2) and v ∈ W 2,2(S) we introduce the von Kármán
functional

I vK(u, v) :=
∫

S

1

2
Q2

(
sym ∇′u + 1

2
∇′v ⊗ ∇′v

)
+ 1

24
Q2((∇′)2v) dx ′, (14)

where we denote the symmetric part of a matrix F by

sym F = F + FT

2
.

To include applied forces we also consider the functional

J vK(u, v) = I vK(u, v)−
∫

S
f vdx ′ −

∫
∂S

g · u dH1. (15)

2.3. The boundary conditions

We suppose that S is a bounded Lipschitz domain in R
2 and we suppose that

� ⊂ ∂S is a finite union of closed, disjoint, nontrivial intervals in ∂S. (16)

Here, by an interval in ∂S we mean a maximal connected set in ∂S. This condition
is only needed for the construction of smooth approximations which preserve the
boundary conditions on �. Note that in particular H1(�) > 0. We fix

û ∈ W 1,∞(S; R
2), v̂ ∈ W 2,∞(S). (17)

For the three-dimensional problem we describe clamped boundary conditions by
considering the admissible set

Ah
� =

{
y(h) ∈ W 1,2(�; R

3) : y(h)(x ′, x3) =
(

x ′

hx3

)
+
(

h2û(x ′)
hv̂(x ′)

)
−x3

(
h2∇′v̂

0

)
,

for x ′ ∈ �, x3 ∈ I

}
, (18)

where as before I = (−1/2, 1/2). For the limit problem we consider the admissible
pairs

A� =
{
(u, v) ∈ W 1,2(S; R

2)×W 2,2(S) : u = û, v = v̂,∇′v = ∇′v̂ on �
}
.

(19)
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2.4. Normal forces

We first consider the case of purely normal loading.

Theorem 1. Suppose g(h) = g = 0 and that the normal forces satisfy

h−3 f (h) ⇀ f, in L2(S). (20)

Let y(h) ∈ Ah
� be a minimizing sequence for J h in the sense that

h−4

(
J h(y(h))− inf

Ah
�

J h

)
→ 0. (21)

Then

(u(h), v(h)) → (u, v) in W 1,2(S,R3) and (u, v) ∈ A�. (22)

Moreover (u, v) minimizes J vK in A� .

Remark 2. The conclusion that (u, v) ∈ A� also holds if y(h) only satisfies the
boundary conditions approximately. It suffices that the difference Y (h) = y(h) −
(x ′, hx3) satisfies

h−2
∫

I

(
Y (h)1

Y (h)2

)
(·, x3) dx3 ⇀

(
û1

û2

)
, (23)

h−1
∫

I
Y (h)3 (·, x3) dx3 ⇀ v̂, (24)

h−2
∫

I
x3Y (h)(·, x3) dx3 ⇀ − 1

12

(∇′v̂
0

)
(25)

in L2(�).

Remark 3. The assertion also holds for more general forces f (h), f which may
depend on x3 and one can include additional forces f (h)± on the top and bottom
surfaces S × {±1/2}. Since the proof below still applies we focus on the simplest
case.

2.5. Normal and in-plane forces—the stability alternative

The natural scaling for the in-plane forces is g(h) ∼ h2. In the vK scaling the
in-plane displacement scales as h2u and therefore the work done by the in-plane
forces is of order h4, which is consistent with the vK regime.

In-plane forces of order h2 can, however, also lead to a very different regime,
namely that of nonlinear bending theory (Kirchhoff–Love theory). This regime
corresponds to a scaling of the elastic energy eh = ∫

W (∇h y(h)) ∼ h2 and a dis-
placement of order 1. Now the work done by the in-plane forces is of order h2

which is again comparable to eh .
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Also a third regime may arise, which corresponds to a geometrically linear
version of the Kirchhoff–Love theory (in the sense of passing from (27) below to
(28) and from J Ki (see (26) below) to J vK, with f = 0). This regime corresponds
to an energy scaling h4 � eh � h2.

To give a precise statement of this alternative we introduce the Kirchhoff func-
tional

J Ki = 1

24

∫
S

Q2(A) dx ′ −
∫
∂S

g · (y′ − x ′) dH1, (26)

where the second fundamental form A is given by Aγ δ = −y,,γ δ ·n with
n = y,1 ∧ y,2 and where y belongs to the admissible class

Aiso
� =

{
y ∈ W 2,2(S,R3)

: (∇′y)T ∇′y = I d in S, y =
(

id

0

)
,∇′y =

(
I d

0

)
on �

}
. (27)

We also consider the geometrically linear version of this class, that is,

Aiso,lin
� =

{
(u, v) ∈ W 1,2(S; R

2)× W 2,2(S) : 2 sym ∇u

+∇v ⊗ ∇v = 0 in S, u = v = ∇′v = 0 on �
}
. (28)

Theorem 4. Let S be a bounded, simply connected domain with Lipschitz boundary
and let � ⊂ ∂S be as in (16). Suppose that

h−3 f (h) ⇀ f in L2(S), h−2g(h) → g in L2(∂S; R
2). (29)

Let y(h) ∈ Ah
� be a minimizing sequence for J h in the sense that

h−4

(
J h(y(h))− inf

Ah
�

J h

)
→ 0. (30)

Suppose that

(i) The Kirchhoff functional has no nontrivial minimizers, that is, J Ki(y) � 0 for
all y ∈ Aiso

� and equality only holds for y(x ′) = (x ′, 0).
(ii) The constrained von Kármán functional (with f = 0) has no nontrivial mini-

mizers, that is, J vK(u, v) � 0 for all (u, v) ∈ Aiso,lin
� and J vK(u, v) = 0 for

(u, v) ∈ Aiso,lin
� only if (u, v) = 0.

Then the scaled displacements satisfy

(u(h), v(h)) → (u, v) in W 1,2(S,R3), (u, v) ∈ A� (31)

and (u, v) minimizes J vK in A� .

In the example in Section 7 we will consider a boundary condition on one of
the in-plane components only. In this case the stability alternative holds too.
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Corollary 5. Let S = (0, L)× (0, 1), � = {0} × (0, 1), � = S × (− 1
2 ,

1
2 ). Set

Bh
� =

{
y(h) ∈ W 1,2(�; R

3) : y(h)1 (x) = 0, y(h)3 (x) = hx3 on � × (−1/2, 1/2),

∫
�

x2 y(h)2 (x) dx2 � 0,
∫
�

y(h)2 dx2 = 0

}
,

B� :=
{
(u, v) ∈ W 1,2(S,R2)×W 2,2(S) : u1 =v=∇′v=0 on �,

∫
�

u2 dx2 = 0

}
.

Then Theorem 4 remains valid if Ah
� and A� are replaced with Bh

� and B� , respec-
tively.

Note that in particular the definitions of Aiso
� and Aiso,lin

� are the same in
Theorem 4 and Corollary 5 and involve boundary conditions for all components
of y and of u, respectively (see the proof of Corollary 5 for the details; roughly
speaking, control of y1 and y3 on � implies control of y2, up to a possible 180
degree in-plane rotation). The inequality constraint in the definition of Bh

� is only
introduced to rule out 180 degree in-plane rotations. It is automatically satisfied if
y(h) is L2 close to the trivial map x �→ (x ′, 0). In view of Corollary 14 each low
energy deformation (with y(h)1 = x1 and y(h)3 = hx3) is either close to the trivial
map or to the map x �→ (−x ′, 0). The equality constraint in Bh

� just removes the
freedom of an arbitrary translation in e2 direction.

2.6. Nonlinear stability versus linearized stability

In Section 6 we analyse the relationship between condition (i) (nonlinear sta-
bility) and condition (ii) (stability in the geometrically linear setting) in Theorem 4.
For brevity we refer to condition (ii) as linearized stability, even though the under-
lying problem is nonlinear due to the constraint det(∇′)2v = 0 (which arises from
the condition 2 sym ∇′u + ∇′v ⊗ ∇′v = 0, see Proposition 36 below). We show
that the two stability notions are essentially equivalent if �, the part of ∂S where
the plate is clamped, is a single, nontrivial, interval. To emphasize the dependence
on g we temporarily write J Ki

g for the functional in (26) and J vK
g for the functional

in (15) (with f = 0).

Theorem 6. (Nonlinear stability implies geometrically linear stability) Let S be a
bounded, simply connected Lipschitz domain and suppose that� is a compact, non-
trivial interval. Suppose further that J Ki

g (y) � 0 for all y ∈ Aiso
� . Then J vK

g (u, v) �
0 for all (u, v) ∈ Aiso,lin

� . If ε ∈ (0, 1) then J vK
(1−ε)g > 0 on Aiso,lin

� \{(0, 0)}.
Theorem 7. (Linearized stability implies nonlinear stability) Let S be a bounded,
simply connected Lipschitz domain and suppose that� ⊂ ∂S is a closed, nontrivial
interval. Suppose that the quadratic form Q2 is isotropic, that is, Q2(A) = α|A|2 +
β(trA)2. Suppose that J vK � 0 on Aiso,lin

� and if J vK(u, v) = 0 then (u, v) = 0.
Then J Ki � 0 on Aiso

� and J Ki(y) = 0 for y ∈ Aiso
� only if y(x ′) = (x ′, 0).
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2.7. Main ingredients of the proof

As in our earlier work one key ingredient is a quantitative rigidity estimate (or
nonlinear Korn inequality) of the form

min
R∈SO(3)

||∇v − R||L2 � C || dist(∇v, SO(3))||L2 .

This allows us to control the distance of a deformation from a rigid motion in terms
of the elastic energy, see Theorems 8 and 9 below. For an elastic energy (per unit
volume) of order h4, one thus obtains bounds on the scaled displacements u(h) and
v(h) as in [13], see Lemma 11. One new technical point is the use of the boundary
conditions (18) to eliminate the freedom of a rigid motion, see Lemma 13. From
this scaling one obtains a characterization of the limiting strain and a lower bound
of the scaled nonlinear elastic energy by the vK functional, in the limit h → 0, see
Lemma 16 and Corollary 17. Together with a more or less standard comparison
function (see (100)) and some careful approximation arguments this establishes the
convergence results for purely normal forces.

The stability alternative is obtained similarly, but in this case one also has to
study different rescalings of the displacements, corresponding to energies eh with
ch4 � eh � Ch2.

For the study of the relationship between linear and nonlinear stability we
need another key ingredient: a careful analysis of the of isometric immersions
y : S ⊂ R

2 → R
3 and their geometrically linear counterparts (defined by the

condition ∇′u + (∇′u)T + ∇′v ⊗ ∇′v = 0). In particular we need precise crite-
ria when such an isometric immersion can be reconstructed from its out-of-plane
component and we study the sharp regularity properties of W 2,2 immersions (this
class corresponds to finite bending energy). We use the fact that the usual properties
of smooth developable surfaces still holds in the W 2,2 setting (a proof under even
more general hypotheses was given by Pogorelov [34, Chapter II], [35, Chapter
IX].) A shorter proof in the W 2,2 setting was recently given by Pakzad [31], using
ideas of Kirchheim [21]. All these results are discussed in detail in Section 9.

2.8. Related work

The rigorous derivation of plate theories from three-dimensional nonlinear elas-
ticity begins with the work of Le Dret and Raoult on membrane theory (which
corresponds to the scaling eh ∼ 1) in the early 1990s [24–26] following work by
Acerbi et al. for strings [1]. The rigorous justification of geometrically nonlinear
bending theory, which was first proposed by Kirchhoff [22] and corresponds to
eh ∼ h2, was obtained only recently [11,12,32,33]. For the full picture of rigorous
variational scaling limits (including the vK limit) and various open questions related
to scalings eh ∼ hβ with 1 � β < 2 see [13], in particular Table 1. An independent
justification of the vK equations (for small, smooth data and periodic boundary
conditions) has recently been obtained by Monneau [28], through a clever appli-
cation of the implicit function theorem. Earlier Ciarlet [4] had obtained the vK
equations through a formal asymptotic expansion. We do not discuss here the huge
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literature on derivation of lower-dimensional theories starting from geometrically
linear three-dimensional elasticity (rigorous results go back at least to [29]; see [5]
for an extensive literature review), since buckling and other instabilities strongly
hinge on the geometrically nonlinear structure of elasticity. Very recently we learned
about the very interesting work of Grabovsky and Truskinovsky [15]. They ana-
lyse the onset of buckling in terms of the second variation of the full elastic bodies.
In contrast to us, they do not restrict attention to cylindrical bodies. Instead they
allow arbitrary geometries and take the constant in Korn’s inequality as a measure
of slenderness (in our setting this constant scales like h2). This allows them to
derive universal asymptotic relations for the failure of strict positivity of the second
variation, independent of a special geometry and the material law (the discussion
is carried out in detail in a two-dimensional to one-dimensional setting, but their
approach is largely dimension independent).

2.9. Outline

In Sections 3 and 4.1 we review the rigidity estimates and the estimates for
the scaled displacements derived from it. In the rest of Section 4 we adapt these
estimates to the situation with boundary conditions and show how they lead to a
lower bound of the scaled three-dimensional energy by the vK functional.

In Section 5 we derive the convergence result for purely normal forces and the
stability alternative for normal and in-plane forces. In Section 6 we establish the
relations between nonlinear and linearized stability. As an illustration we discuss
in detail the buckling of a rectangular plate in Section 7. In Section 8 we discuss
a general relation between the linearized stability condition and the existence of
minimizers for the vK functional. Finally in Section 9 we review some properties
of isometric immersions in W 2,2.

3. Geometric rigidity

Theorem 8. (Quantitative rigidity estimates) Let U be a bounded Lipschitz domain
in R

n, n � 2. There exists a constant C(U ) with the following property. For each
v ∈ W 1,2(U,Rn) there is an associated rotation R ∈ SO(n) such that,

‖∇v − R‖L2(U ) � C(U ) ‖ dist(∇v,SO(n))‖L2(U ). (32)

The constant C(U ) can be chosen uniformly for a family of domains which are
bilipschitz equivalent with controlled Lipschitz constants. The constant C(U ) is
invariant under dilations.

For a proof and a discussion of the relation to results of John [18,19] and
Reshetnyak [36] see [12]. Other extensions of John’s result were obtained by
Kopylov [23] and Egorov [7]. Kopylov has considered similar stability problems
for almost solutions of a variety of partial differential equations.

In a thin domain �h = S × (−h/2, h/2) the constant C(�h) degenerates like
h−2 (see (35) below). We can obtain a good approximation (at least in the interior)
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for ∇ y by a piecewise constant map R(h) (with values in SO(3)) by covering �h

with cubes of size h. Application of Theorem 8 to two neighbouring cubes in addi-
tion yields a difference quotient estimate. Thus after mollification on a scale h we
can obtain another approximation R̃(h) (which in general no longer takes values
exactly in SO(3)) whose gradient can be controlled in terms of the energy. This
second approximation will prove useful to establish compactness and also higher
regularity of the limits as h → 0. The following result summarizes the estimates
(up to the boundary) one can obtain in this way. As before we rescale to a fixed
domain � and use the scaled gradient ∇h = (∇′, h−1∂3).

Theorem 9. (Approximation by rotations in thin domains) Suppose that S ⊂ R
2

is a Lipschitz domain and � = S × (− 1
2 ,

1
2 ). Let y ∈ W 1,2(�; R

3) and

E :=
∫
�

dist2(∇h y, SO(3))dx .

Then there exist maps R : S → SO(3) and R̃ : S → R
3×3, with |R̃| � C,

R̃ ∈ W 1,2(S,R3×3) such that

||∇h y − R||2L2(�)
� C E, ||R − R̃||2L2(S) � C E, (33)

||∇ R̃||2L2(S) � C

h2 E, ||R − R̃||2L∞(S) � C

h2 E . (34)

Moreover there exists a constant rotation Q̄ ∈ SO(3) such that

||∇h y − Q̄||2L2(�)
� C

h2 E . (35)

Here all constants depend only on S.

Proof. See [13].

For future reference we recall that Korn’s inequality holds for Lipschitz domains
(we will only need it for S ⊂ R

2 and p = 2).

Proposition 10. (Korn’s inequality, [14]) Suppose that � ⊂ R
n is a bounded

Lipschitz domain and let 1 < p < ∞. Consider the space

E p(�) := {u ∈ L p(�; R
n) : sym ∇u ∈ L p(�; R

n×n)
}

Then E p(�) = W 1,p(�; R
n) and

||u||p
1,p :=

∫
�

|u|p + |∇u|p dx � C p(�)

∫
�

|u|p + | sym ∇u|p dx, (36)

min
{
||u − Ax − b||p

1,p : A + AT = 0, A ∈ Rn×n, b ∈ R
n
}

� C p(�)

∫
�

| sym ∇u|p. (37)

If � ⊂ ∂� has positive Hn−1 measure then

||u||p
1,p � C p(�, �)

∫
�

| sym ∇u|p, for all u with u|� = 0. (38)
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Proof. This follows from [14], Theorem 1 by the usual compactness argument;
see, for example, [13] for the details.

4. Scaling of in-plane and out-of-plane components and limiting strain

4.1. Results without boundary conditions

It follows from Theorem 9 that for energies Eh small compared to h2 the
deformation y(h) is close to the trivial map (x ′, x3) �→ (x ′, hx3), up to a rigid
motion. The following lemma provides detailed estimates for the difference between
y(h) and the trivial deformation. In view of future applications it is convenient to
consider a general sequence Eh . To avoid case distinctions we only consider the
case Eh � h4 since this is sufficient in the following.

Lemma 11. (Convergence of scaled out-of-plane and in-plane deformations)
Suppose that

I h(y(h)) � C Eh, lim
h→0

h−2 Eh = 0, Eh � h4. (39)

Then there exists a subsequence of y(h), maps R̃(h) : S → SO(3) and constants
R̄(h) ∈ SO(3), c(h) ∈ R

3 such that ỹ(h) := (R̄(h))T (y(h) − c(h)), the in-plane and
out-of-plane displacements

Ũ (h)(x ′) :=
∫

I

(
ỹ(h)1

ỹ(h)2

)
(x ′, x3)−

(
x1

x2

)
dx3, Ṽ (h)(x ′) :=

∫
I

ỹ(h)3 dx3

and the first moment

ζ̃ (h)(x ′) =
∫

I
x3

[
ỹ(h)(x ′, x3)−

(
x ′

hx3

)]
dx3 (40)

satisfy

||∇h ỹ(h) − R̃(h)||L2(�) � C
√

Eh, (41)

ṽ(h) := h√
Eh

Ṽ (h) → ṽ in W 1,2(S), ṽ ∈ W 2,2(S), (42)

ũ(h) := h2

Eh
Ũ (h) ⇀ ũ in W 1,2(S; R

2), (43)

1√
Eh
ζ̃ (h) ⇀ − 1

12

(∇′ṽ
0

)
in W 1,2(S; R

3). (44)

Proof. See [13].

Remark 12. The analogous assertion for ζ̃ (h) holds if Eh = h2. Then ∇h ỹ(h) → R̃
in L2 and h−1ζ̃ (h) ⇀ (1/12)(R̃ − I d)e3 in W 1,2; see [13].
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4.2. Clamped boundary conditions

Later we will study maps y(h) which satisfy the boundary conditions

y(h)(x ′, x3) =
(

x ′

hx3

)
+
(

h2û(x ′)
hv̂(x ′)

)
− x3

(
h2∇′v̂

0

)
for x ′ ∈ �, x3 ∈

(
−1

2
,

1

2

)
.

(45)

Here� ⊂ ∂S is a finite union of closed, disjoint, nontrivial intervals in ∂S (so that in
particular H1(�) > 0) and û ∈ W 1,∞(S; R

2) and v̂ ∈ W 2,∞(S). These boundary
conditions break the rotational invariance and we will show that the scaling and
convergence results in Lemma 11 hold already for y(h) (rather than ỹ(h)), that is,
we may take R̄(h) = I d and c(h) = 0, if we impose (45). In fact this assertion holds
even if (45) is only satisfied approximately, that is, if suitably scaled quantities are
bounded in L2(�).

We define the in-plane and out-of-plane displacements by

U (h)(x ′) :=
∫

I

(
y(h)1

y(h)2

)
(x ′, x3)−

(
x1

x2

)
dx3, V (h)(x ′) :=

∫
I

y(h)3 dx3. (46)

and consider their scaled versions

u(h) = h2

Eh
U (h), v(h) = h√

Eh
V (h). (47)

We also define the first moment by

ζ (h)(x ′) =
∫

I
x3

[
y(h)(x ′, x3)−

(
x ′

hx3

)]
dx3 (48)

Lemma 13. Suppose that

I h(y(h)) � C Eh, lim
h→0

h−2 Eh = 0, Eh � h4 (49)

and that

the traces u(h), v(h), and ζ (h)/
√

Eh are bounded in L2(�). (50)

Then the assertions of Lemma 11 hold with ỹ(h), ũ(h), ṽ(h), R̃(h) replaced by y(h),
u(h), v(h), R(h), where R(h) = R̄(h) R̃(h). In other words, in Lemma 11 we may take
R̄(h) = I d and c(h) = 0. Specifically we have ||∇h y(h) − R(h)||L2 � C

√
Eh and

for a subsequence

v(h) → v in W 1,2(S), u(h) ⇀ u in W 1,2(S; R
2), (51)

1√
Eh
ζ (h) ⇀ − 1

12

(∇′v
0

)
in W 1,2(S; R

3), (52)

with v ∈ W 2,2(S).
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Proof. The main point is to show that the boundary conditions imply that R̄(h)

must be close to the identity. We claim that

R̄(h) = I d +
√

Eh

h
(e3 ⊗ ā(h) − ā(h) ⊗ e3)+ O

(
Eh

h2

)
, |ā(h)| � C. (53)

Using the relation y(h) = R̄(h) ỹ(h) + c(h) we see that

(
h−2 Ehu(h)

h−1
√

Ehv(h)

)
= (R̄(h) − I d)

(
x ′

0

)
+ R̄(h)

(
h−2 Ehũ(h)

h−1
√

Eh ṽ(h)

)
+ c(h), (54)

ζ (h) = (R̄(h) − I d)
1

12
he3 + R̄(h)ζ̃ (h). (55)

From (44), (55),the embedding W 1,2(S) ↪→ L2(�) and the assumed bound on ζ (h)

in L2(�) we see that

|(R̄(h) − I d)e3| � Ch−1
√

Eh . (56)

Since R(h) ∈ SO(3) this implies that

|([R̄(h)]T − I d)e3| � Ch−1
√

Eh . (57)

Let Q̄(h) denote the 2 × 2 submatrix of R̄(h) with entries R̄(h)γ δ , γ, δ ∈ {1, 2}.
Then (56) and (57) imply that there exists Q̂(h) ∈ SO(2) with

|Q̄(h) − Q̂(h)| � Ch−2 Eh . (58)

Now consider the in-plane component of (54). Using (56), (58), the assump-
tion on u(h) and the bounds (42) and (43) on ũ(h) and ṽ(h) in combination with the
embedding W 1,2(S) ↪→ L2(�) we obtain

||(Q̂(h) − I d)x ′ +
(

c(h)1

c(h)2

)
||L2(�) � Ch−2 Eh . (59)

After a possible translation of S and a corresponding adjustment of the constants
c(h)γ , γ ∈ {1, 2} we may assume that

∫
�

x ′dH1 = 0. Now every matrix Q ∈ SO(2)
satisfies

2|(Q − I d)x ′|2 = |Q − I d|2|x ′|2. (60)

Since ∫
�

|x ′|2 dH1 > 0 (61)

by expanding the left-hand side of (59) we deduce that

|Q̂(h) − I d|2 � Ch−2 Eh, (62)
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and subsequently

|c(h)γ | � Ch−2 Eh, for γ ∈ {1, 2}. (63)

Combining (56), (57) and (62) we see that |R̄(h) − I d| � Ch−1
√

Eh . Thus

2 sym(R̄(h) − I d) = −((R̄(h))T − I d)(R̄(h) − I d) (64)

is of order h−2 Eh . Together with (58) and (62) this establishes the desired rep-
resentation (53). From the out-of-plane component of (54) we see that |c(h)3 | �
Ch−1

√
Eh .

Together with (54) we now easily deduce (for a subsequence) (51). From the
out-of-plane component of (54) the representation (53) we see that v = ā ·x ′+ṽ+c̄.
Thus v ∈ W 2,2 and ∇′v = ā + ∇′ṽ. Together with (44) , (53) and (55) and this
proves (52). ��

A similar result holds if we control only one component of u. This will be useful
when we discuss the example of buckling of a rectangular plate below.

Corollary 14. Suppose that

I h(y(h)) � C Eh, lim
h→0

h−2 Eh = 0, Eh � h4 (65)

and that

the traces u(h)1 , v(h), and ζ (h)/
√

Eh are bounded in L2(�). (66)

(i) If � is not contained in a straight line, then the assertions of Lemma 11 hold
with ỹ(h), ũ(h), ṽ(h), R̃(h) replaced by y(h), u(h), v(h), R(h), where R(h) =
R̄(h) R̃(h). In other words, in Lemma 11 we may take R̄(h) = I d and c(h) = 0
and (51) and (52) hold.

(ii) If � is contained in a line with direction τ = (cosα
sin α

)
and 0 < α < π then the

assertion of Lemma 11 hold with

R̄(h) = I d or with R̄(h) =
⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ , θ = 2π − 2α. (67)

Proof. The argument up to and including (58) is unchanged. Taking the first com-
ponent of (54) and using the boundedness of u(h)1 in L2(�) we deduce that

||e1 · (Q̂(h) − I d)x ′ + c(h)1 ||L2(�) � h−2 Eh . (68)

Again we may suppose without loss of generality that
∫
�

x ′ = 0. Then expansion

of the previous expression yields |c(h)1 | � h−2 Eh and

∣∣∣∣a ⊗ a :
∫
�

x ′ ⊗ x ′ dH1
∣∣∣∣
1/2

� Ch−2 Eh, where a = ((Q̂h)T − I d)e1. (69)



Stability of Slender Bodies under Compression and Validity 271

If � is not contained in a straight line then
∫
�

x ′ ⊗ x ′ is a matrix of full rank and

we get |a| � Ch−2 Eh . As in (60) we deduce that |Q̂(h) − I d| � Ch−2 Eh and the
proof can be finished as before.

Now suppose that � is contained in a line with direction τ = (cosα
sin α

)
and write

Q̂(h) =
(

cos θ(h) − sin θ(h)

sin θ(h) cos θ(h)

)
.

Then the estimate (69) yields∣∣∣∣∣
(

cosα

sin α

)
·
((

cos θ(h)

− sin θ(h)

)
− e1

)∣∣∣∣∣ � Ch−2 Eh

and this implies that | cos(α+ θ(h))− cosα| � Ch−2 Eh . Since α is different from
0 and π we deduce that either θ(h) = O(h−2 Eh) or θ(h) = 2π − 2α+ O(h−2 Eh).
This finishes the proof of Corollary 14. ��

4.3. Clamped boundary conditions for the out-of-plane component

We now consider the situation where instead of the full boundary data as in
(45) we only have control of the out-of-plane component v and its derivative ∇′v.
In this case we still have the freedom of an in-plane rotation and translation and the
following result shows that and the scaling and convergence results in Lemma 11
hold up to this restricted invariance.

Lemma 15. Suppose that

I h(y(h)) � C Eh, lim
h→0

h−2 Eh = 0, Eh � h4 (70)

and that

the traces v(h) and ζ (h)/
√

Eh are bounded in L2(�). (71)

Then in Lemma 11 we may choose R̄(h) as an in-plane rotation and c(h) and an
in-plane translation, that is,

R̄(h) =
(

Q̂(h) 0
0 1

)
, c(h)3 = 0. (72)

Proof. The proof is very similar to the one for full boundary conditions. We still
have (54) and (55). From (55) we obtain, as in the proof of Lemma 13, the estimates
(56)–(58). Using the out-of-plane component of (54) in connection with (57) and
the weak convergence of ũ(h) and ṽ(h) we obtain

|c(h)3 | � Ch−1
√

Eh . (73)

We now set

ŷ(h) :=
(

Q̂(h) 0
0 1

)T
[

y(h) −
(

c(h)

0

)]
, c(h) =

(
c(h)1

c(h)2

)
,
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where Q̂(h) ∈ SO(2) is the matrix in (58). Then

ŷ(h) = S̄(h) ỹ(h) +
(

0

c(h)3

)
, (74)

where

S̄(h) :=
(

Q̂(h) 0
0 1

)T

R̄(h).

We also set

R̂(h) := S̄(h) R̃(h) (75)

We define û(h), v̂(h) and ζ̂ (h) in the usual way on the basis of ŷ(h). To prove
Lemma 15 we show that the assertions of Lemma 11 hold with ỹ(h), ũ(h), ṽ(h),
etc. replaced by ŷ(h), û(h), v̂(h), etc.

We see from (56)–(58) that

|(S̄(h) − I d)γ δ| � Ch−2 Eh, for γ, δ ∈ {1, 2}, (76)

|(S̄(h) − I d)3 j | + |(S̄(h) − I d) j3| � Ch−1
√

Eh, for j ∈ {1, 2, 3}. (77)

Now for every S ∈ SO(3) we have 2 sym(S − I d) = −(S − I d)T (S − I d) and
this shows that

S̄(h) = I d+
√

Eh

h
(e3 ⊗ a(h)−a(h) ⊗ e3)+O

(
Eh

h2

)
, a(h) ∈ R

2, |a(h)|�C.

(78)

Since S̄(h) ∈ SO(3) we immediately deduce from (74) and (75) that |∇h ŷ(h)−
R̂(h)| = |∇h ỹ(h) − R̃(h)|. Thus (41) holds for ŷ(h) and R̂(h). Moreover

(
h−2 Ehû(h)

h−1
√

Ehv(h)

)
= (S̄(h) − I d)

(
x ′

0

)
+ S̄(h)

(
h−2 Ehũ(h)

h−1
√

Eh ṽ(h)

)
+
(

0

c(h)3

)
, (79)

ζ̂ (h) = (S̄(h) − I d)
1

12
he3 + S̄(h)ζ̃ (h). (80)

From the bounds (78) for S̄(h) and (73) for c(h)3 and the convergence results (43)
and (42) for ũ(h) and ṽ(h) we immediately deduce the corresponding convergence
results for û(h) and v̂(h) (for a subsequence). As before we see from (78) that
v̂ ∈ W 2,2 and ∇′v̂ = ā + ∇′ṽ. This shows that ζ̂ (h) converges to the right limit.

��
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4.4. Identification of the limiting strain

We know that ∇h y(h) can be well approximated by rotations R(h)(x ′). Since
W is invariant under rotations, the energy of y(h) is essentially controlled by the
deviation of (R(h))T ∇h y(h) from the identity. In view of (41) the quantities G(h) :=
(1/

√
Eh)[(R(h))T ∇h y(h) − I d] converge weakly in L2 (for a subsequence) to G.

The following lemma shows that the relevant part of G (that is, the symmetric
part of the in-plane components) can be identified in terms of u and v, the limits
of the scaled in-plane and out-of-plane displacements. In particular, we show that
the relevant components of G are affine in the thickness variable x3, a fact which
is often assumed a priori. The representation of G immediately yields the lower
bound in the definition of � convergence (see the corollary immediately following
the lemma).

Lemma 16. (Identification of scaled limiting strain) Consider y(h) : � → R
3 and

R(h) : S → SO(3) and define u(h), v(h) as in (46), (47). Suppose that

I h(y(h)) � C Eh, lim
h→0

h−2 Eh = 0, Eh � h4,

||∇h y(h) − R(h)||L2(�) � C
√

Eh, (81)

u(h) ⇀ u in W 1,2(S; R
2), v(h) → v in W 1,2(S; R

2), v ∈ W 2,2(S). (82)

Then

h√
Eh
(R(h) − I d) → A = e3 ⊗ ∇′v − ∇′v ⊗ e3 in L2(S; R

3×3). (83)

Moreover

G(h) := (R(h))T ∇h y(h) − I d√
Eh

⇀ G in L2(�; R
3×3) (84)

and the 2 × 2 submatrix G ′′ given by G ′′
αβ = Gαβ for 1 � α, β � 2 satisfies

G ′′(x ′, x3) = G0(x
′)+ x3G1(x

′), G1 = −(∇′)2v. (85)

We have

2 sym ∇′u + ∇′v ⊗ ∇′v = 0, if h−4 Eh → ∞, (86)

sym G0 = sym ∇′u + 1

2
∇′v ⊗ ∇′v, if h−4 Eh → 1. (87)

Proof. See [13]. ��
Corollary 17. Let Eh, y(h), R(h), u(h), v(h) be as in the lemma above.

(i) If limh→0 h−4 Eh = ∞ then

lim inf
h→0

1

Eh
I h(y(h)) �

∫
S

1

24
Q2((∇′)2v) dx ′. (88)
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(ii) If limh→0 h−4 Eh = 1 then

lim inf
h→0

1

Eh
I h(y(h)) �

∫
S

1

2
Q2(sym ∇′u + 1

2
∇′v ⊗ ∇′v])

+ 1

24

∫
S

Q2((∇′)2v) dx ′. (89)

Proof. See [13]. ��
Remark 18. Lemma 16 and Corollary 17 can be applied to the quadruple (y(h),
R(h), u(h), v(h)) in Lemma 13 as well as to the quadruple (ỹ(h), R̃(h), ũ(h), ṽ(h)) in
Lemma 11.

5. Derivation and range of validity of the vK theory

In this section we prove Theorems 1 (convergence for purely normal forces)
and 4 (stability alternative for in-plane plus normal forces).

5.1. Normal forces

Proof of Theorem 1. The argument is similar to the case without boundary condi-
tions treated in [13]. The main point is that the boundary conditions allow us to
eliminate the h-dependent rigid motions.
Step 1 (a priori bounds for J h(y(h)) and I h(y(h))). Using the test function

y̌(x ′, x3) =
(

x ′

hx3

)
+
(

h2û(x ′)
hv̂(x ′)

)
− x3

(
h2∇′v̂

0

)

we see that infAh
�

J h � Ch4. We claim that

eh := I h(y(h)) � Ch4. (90)

It follows from (35) that there exists an affine function

l(h)(x) = Q̄(h)x + c(h), Q̄(h) ∈ SO(3), c(h) ∈ R
3

such that

||y(h) − l(h)||W 1,2(�) � Ch−1
√

eh . (91)

Using the embedding W 1,2(S) ↪→ L2(�) we deduce that
∥∥∥∥
∫

I
y(h)3 (·, x3) dx3 −

∫
I

l(h)3 (·, x3) dx3

∥∥∥∥
L2(�)

� Ch−1
√

eh

∥∥∥∥
∫

I
x3 y(h)γ (·, x3) dx3 −

∫
I

x3l(h)γ (·, x3) dx3

∥∥∥∥
L2(�)

� Ch−1
√

eh, γ ∈ {1, 2}.
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Taking into account the boundary conditions for y(h) and the relation Q2
13 + Q2

23 =
Q2

31 + Q2
32 , which is valid for every Q ∈ SO(3), we easily deduce that |c(h)3 | +

|Q̄(h)
31 | + |Q̄(h)

32 | � Ch−1
√

eh + Ch and thus

∥∥∥y(h)3

∥∥∥
W 1,2(�)

� Ch−1
√

eh + Ch. (92)

Hence

eh = J h(y(h))+
∫
�

f (h)3 y(h)3 � Ch2
√

eh + Ch4

and this proves the claim (90).
Step 2 (convergence of u(h) and v(h)). In view of Step 1 we can apply Lemma 13
with Eh = h4. This yields

u(h) ⇀ u, v(h) → v,
1

h2 ζ
(h) ⇀ − 1

12

(∇′v
0

)
(93)

in W 1,2. The compact embedding W 1,2(S) ↪→ L2(�) in connection with the bound-
ary conditions in (18) implies that (u, v) ∈ A� .
Step 3 (lower bound for J h(y(h))). We claim that

lim inf
h→0

h−4 J h(y(h)) � J vK(u, v), (94)

where (u, v) is the limit of (u(h), v(h)). Indeed by Lemma 16 and Corollary 17 with
Eh = h4 we have

lim inf
h→0

h−4 I h(y(h)) � I vK(u, v). (95)

Moreover

h−4
∫
�

f (h)3 y(h)3 dx =
∫

S
h−3 f (h)3 v(h) dx ′ →

∫
S

f3v dx ′. (96)

Thus (94) holds.
Step 4 (upper bound, convergence of energy and minimizing property of (u, v)).

Let (ǔ, v̌) ∈ A� . We claim that there exist y̌(h) ∈ Ah
� such that

1

h2

∫
I

(
y̌(h)1

y̌(h)2

)
−
(

x1

x2

)
dx3 → ǔ in W 1,2(S; R

2),

1

h

∫
I

y̌(h)3 dx3 → v̌ in W 1,2(S).

and

h−4 J h(y̌(h)) → J vK(ǔ, v̌). (97)
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Once this is shown the argument is easily finished. Indeed we have by the almost
minimizing property of y(h) and Step 3

J vK(u, v) � lim inf
h→0

h−4 J h(y(h))

� lim sup
h→0

h−4 J h(y(h)) � lim sup
h→0

h−4 J h(y̌(h))

= J vK(ǔ, v̌).

Thus (u, v) minimizes J vK in A� . Taking (ǔ, v̌) = (u, v) in the above chain of
inequalities we obtain

lim
h→0

h−4 J h(y(h)) = J vK(u, v). (98)

Using this convergence in energy we can improve weak convergence of u(h) to
strong convergence, that is,

u(h) → u in W 1,2(S; R
2), (99)

see Section 7 in [13] for the proof.
This finishes the proof or Theorem 1, up to the verification of (97). To sim-

plify the notation we write u, v, y(h) instead of ǔ, v̌, y̌(h). The construction of y(h) is
essentially the same as in [13], we only have to take care of the boundary conditions.

We assume first that u and v are smooth and as in [13] we consider the ansatz

ŷ(h)(x ′, x3) =
(

x ′

hx3

)
+
(

h2u

hv

)
− h2x3

⎛
⎝v,1v,2

0

⎞
⎠+ h3x3d(0) + h3

2
x2

3 d(1), (100)

This ansatz only satisfies the boundary conditions up to higher order terms but we
will resolve that difficulty later. We have

∇h ŷ(h) = I d +
(

h2∇′u −h(∇′v)T
h∇′v 0

)
− h2x3

(
(∇′)2v 0

0 0

)

+ h2d(0) ⊗ e3 + h2x3d(1) ⊗ e3 + O(h3) (101)

Using the identities (I + A)T (I + A) = I + 2 sym A + AT A and (e3 ⊗ a′ − a′ ×
e3)

T (e3 ⊗ a′ − a′ × e3) = a′ ⊗ a′ + |a′|2e3 ⊗ e3 for a′ ∈ R
2 we obtain for the

nonlinear strain

(∇h ŷ(h))T ∇h ŷ(h) = I d + 2h2(sym ∇′u − x3(∇′)2v)
+h2(∇′v ⊗ ∇′v + |∇′v|2e3 ⊗ e3)

+ 2h2 sym[(d(0) + x3d(1))⊗ e3] + O(h3). (102)

Taking the square root and using the frame indifference (4) of W and Taylor expan-
sion we get

h−4W (∇h ŷ(h)) = h−4W ([(∇h ŷ(h))T ∇h ŷ(h)]1/2) → 1

2
Q3(A + x3 B), (103)



Stability of Slender Bodies under Compression and Validity 277

where

A = sym ∇′u + 1
2∇′v ⊗ ∇′v + 1

2 |∇′v|2e3 ⊗ e3 + sym d(0) ⊗ e3,

B = −(∇′)2v + sym d(1) ⊗ e3.

For a symmetric 2 × 2 matrix A′′ let c = LA′′ ∈ R
3 denote the vector which

realizes the minimum in the definition of Q2, that is,

Q2(A
′′) = Q3(A

′′ + c ⊗ e3 + e3 ⊗ c).

Since Q3 is positive definite on symmetric matrices, c is uniquely determined and
the map L is linear. We now take

d(0) = − 1
2 |∇′v|2e3 + L(sym ∇′u + ∇′v ⊗ ∇′v) (104)

d(1) = −2L((∇′)2v). (105)

Then the right-hand side of (103) reduces to

1

2
Q3(A + x3 B) = 1

2
Q2(G0 + x3G1) (106)

with

G0(x
′) = sym ∇′u + 1

2
∇′v ⊗ ∇′v, G1(x

′) = −(∇′)2v.

Now we drop the extra smoothness assumptions on u and v and we modify
the ansatz (100) so that the boundary conditions for y(h) are satisfied exactly. To
achieve this we choose maps ū(h) ∈ W 1,∞(S; R

2), v̄(h) ∈ W 2,∞(S) such that
(ū(h), v̄(h)) ∈ A� and

ū(h) → u in W 1,2(S; R
2), v̄(h) → v in W 2,2(S) (107)

with

hε||ū(h)||W 1,∞ + hε||v̄(h)||W 2,∞ � C (108)

for some small power ε > 0. To see that such maps exist one can, for example,
apply the truncation result Proposition A.2 in [12] (which is essentially due to Liu
[27] and Ziemer [41]) to u − û and v − v̂ and then add û and v̂ respectively.

Next we consider approximations d( j,h) ∈ C∞
0 (S) such that as h → 0

d( j,h) → d( j) in L2(S), hε||d( j,h)||W 1,∞ � C. (109)

Now we make the same ansatz as in (100), that is,

y(h)(x ′, x3) =
(

x ′

hx3

)
+
(

h2ū(h)

hv̄(h)

)
−h2x3

(∇′v̄(h)

0

)
+h3x3d(0,h) + h3

2
x2

3 d(1,h),

(110)
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and we can compute (∇h y(h))T ∇h y(h) as above. Using Proposition 19 below and
the definition of d(0) and d(1) we get

h−4W (∇h y(h)) → 1

2
Q2(G0(x

′)+ x3G1(x
′)) in L1(�). (111)

where G0 and G1 are as above. This yields (97) and finishes the proof of Theorem 1.
��

In the argument above we have used the following convergence result.

Proposition 19. Suppose that

G(h) → G in L2(�), h2G(h) → 0 in L∞. (112)

Then

h−4W ((I d + 2h2G(h))1/2) → 1

2
Q3(G) in L1(�). (113)

Proof. For a subsequence we have G(h) → 0 almost everywhere. Hence, for this
subsequence,

h−4W ((I d + 2h2G(h))1/2) → 1

2
Q3(G) a.e. (114)

In view of the L∞ convergence we also have

h−4W ((I d + 2h2G(h))1/2) � Ch−4|h2G(h)|2 � |G(h)|2. (115)

Since the right-hand side converges in L1(�) the generalized dominated conver-
gence theorem implies that (77) holds along the subsequence considered. Since the
limit is unique we have convergence of the full sequence. ��

5.2. Normal and in-plane forces; stability alternative

Proof of Theorem 4. As in the proof of Theorem 1 we can use the test function

y̌(x ′, x3) =
(

x ′

hx3

)
+
(

h2û(x ′)
hv̂(x ′)

)
− x3

(
h2∇′v̂

0

)

to deduce that infAh
�

� Ch4. Thus for a minimizing sequence y(h) we have

J h(y(h)) � Ch4. Let

eh = I h(y(h)).

Using the estimate W (F) � c|F |2−C with c > 0 and Poincaré’s inequality deduce
first that ||∇h y(h)||L2 � C and this yields the estimate eh � Ch2.

Case 1. Suppose that lim suph→0 h−4eh < ∞. In this case the argument is com-
pletely analogous to the proof of Theorem 1.
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Case 2. Suppose that lim suph→0 h−2eh > 0. There exists a subsequence (not
relabeled) such that

lim
h→0

h−2 I h(y(h)) = lim
h→0

h−2eh = e > 0. (116)

It follows from estimates (33) and (34) in Theorem 9 that

y(h) → ȳ in W 1,2(�; R
3), ∇h y(h) → R in L2(�; R

3×3) (117)

and ȳ ∈ W 2,2, while R ∈ W 1,2, ȳ and R are independent of x3. Since W van-
ishes only on SO(3) by (6) we see that R takes values in SO(3) and hence ȳ is an
isometric immersion. Moreover, by part (i) of Theorem 6.1 in [12]

e � I Ki(ȳ). (118)

We claim that ȳ ∈ Aiso
� , that is, ȳ and ∇′ ȳ satisfy the right boundary conditions.

From (117) it follows that y(h) converges in L2(�) and together with the boundary
conditions (18) for y(h) we see that ȳ(x ′) = (x ′, 0) on �. To derive the boundary
condition for ∇′ ȳ we consider the first moment

ζ (h) =
∫

I
x3

[
y(h)(x ′, x3)−

(
x ′

x3

)]
dx3.

By Remark 12

1

h
ζ (h) ⇀

1

12
(R − I d)e3 in W 1,2(S; R

3).

Thus h−1ζ (h) converges in L2(�). Again using (18) we see that |ζ (h)| � Ch2 on
�. Hence

(R − I d)e3 = 0 H1 a.e. on �. (119)

Thus

R =
(

R′ 0
0 1

)
and R′ = ∇′ ȳ′ ∈ SO(2) H1 a.e. on �. (120)

Let τ be a tangent vector to � (which exists H1 almost everywhere on �). Since
ȳ′ = id on � we have

∇′ ȳ′τ = τ H1 a.e. on �.

Hence ∇′ ȳ′ = id for H1 almost everywhere point in� and this proves that ȳ ∈ Aiso
� .

From (117), (118) and the hypothesis (i) we deduce that

lim inf
h→0

h−2 J h(y(h)) = e −
∫
∂S

g · (ȳ′ − x ′) � J Ki(ȳ) � 0. (121)

To bound the left-hand side from above we use again the test function

y̌(h)(x ′, x3) =
(

x ′

hx3

)
+
(

h2û(x ′)
hv̂(x ′)

)
− x3

(
h2∇′v̂

0

)
,
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which belongs to Ah
� and satisfies W (∇h y̌(h)) � Ch4. Hence the almost minimizing

property of y(h) implies that

0 � lim sup
h→0

h−2 J h(y(h)). (122)

Thus all the inequalities in (121) and (122) must be equalities and in particular
J Ki(ȳ) = 0 and

I Ki(ȳ) = e > 0.

Hence ȳ(x ′) �= (x ′, 0) and this contradicts hypothesis (i).

Case 3. Suppose that lim suph→0 h−2eh = 0 and lim suph→0 h−4eh = ∞. The
argument is very similar to that given in Case 2. Set

Eh = eh

and apply Lemma 13. This yields

u(h) := h2

Eh
U (h)⇀u, in W 1,2(S; R

2), v(h) := h√
Eh

V (h)→v in W 1,2(S),

1√
Eh
ζ (h) ⇀

1

12
Ae3 = − 1

12

(∇′v
0

)
in W 1,2(S; R

3).

In particular u(h), v(h) and ζ (h) converge in L2(�) and in view of the boundary
conditions (18) and the assumption on Eh we deduce that u = v = ∇′v = 0 on �.
Now Lemma 16 implies that 2 sym ∇′u +∇′v⊗∇′v = 0 and thus (u, v) ∈ Aiso,lin

� .
Corollary 17 yields

1 = lim inf
h→0

1

Eh
I h(y(h)) � I vK(u, v).

Moreover

1

Eh

∫
∂S

g(h) · (y(h)′ − x ′) dH1 →
∫
∂S×I

g · u dH1

and

1

Eh

∣∣∣∣
∫
�

f (h)y(h)3 dx

∣∣∣∣ � h3

Eh

√
Eh

h
||v(h)||L2(S) → 0.

Hence

lim inf
h→0

1

Eh
J h(y(h)) � J vk(u, v) � 0,

where the last inequality follows from hypothesis (ii) (and where we take f = 0 in
J vK). Using the same test function y̌(h) as in Case 2 we see that the left-hand side
of the above inequality is bounded from above by zero. Now we conclude easily as
in Case 2. ��
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Proof of Corollary 5. This is very similar. For the upper bound one can use the
trivial map x �→ (x ′, hx3) as a test function and we get again I h(y(h)) � Ch2.
Now Case 1 can be treated as before. In Case 2 we get again y(h) → ȳ in W 1,2,
ȳ ∈ W 2,2 and ∇h y → R in L2, with R ∈ W 1,2. Studying ζ (h) as before we
deduce that R33 = 1 on � = {0} × (0, 1). Moreover the boundary conditions
in Bh

� imply that ȳ1 = ȳ3 = 0 on �. Thus R12 = ȳ1,2 = 0 on �. This shows
that ȳ2,2 = R22 = ±1 on �. Since ∇′y belongs to H1/2(�) it cannot have jump
discontinuities. Hence ȳ(0, x2) = x2 or ȳ(0, x2) = −x2 for all x2 ∈ (0, 1). The
second possibility is ruled out by the inequality constraint in Bh

� . Thus we finally
get R = I d and ȳ,1 = e1, ȳ,2 = e2 on �. Moreover ȳ1 = 0 and ȳ2 = x2 + c2 on
�. In view of the equality constraint in Bh

� we get c2 = 0. Thus y ∈ Aiso
� . Now the

argument in Case 2 proceeds as before.
In Case 3 we use Corollary 14. The possibility of a 180 degree in-plane rotation

in case (ii) (in our situation we have α = π
2 , θ = π ) of that Corollary is ruled out

by the inequality constraint in Bh
� . Thus the argument can be concluded as before.

��

6. Nonlinear stability versus linearized stability

In this section we show that condition (i) (nonlinear stability) and condition (ii)
(stability in the geometrically linear setting) in Theorem 4 are essentially equiva-
lent if the portion � of the boundary of S, where the plate is clamped consists of
a single interval. For brevity we refer to condition (ii) as linearized stability, even
though the underlying problem is nonlinear due to the constraint det(∇′)2v = 0.
As above we temporarily write J Ki

g for the Kirchhoff functional in (26) and J vK
g for

the von Kármán functional in (15) (with f = 0). Recall that the sets of admissible
functions Aiso

� and Aiso,lin
� are defined in (27) and (28), respectively.

Theorem 20. (Nonlinear stability implies geometrically linear stability) Let S be a
bounded, simply connected Lipschitz domain and suppose that� is a compact, non-
trivial interval. Suppose further that J Ki

g (y) � 0 for all y ∈ Aiso
� . Then J vK

g (u, v) �
0 for all (u, v) ∈ Aiso,lin

� . If ε ∈ (0, 1) then J vK
(1−ε)g > 0 on Aiso,lin

� \{(0, 0)}.
Proof. This essentially follows from the fact that linearized isometric immersions
are the tangent space of isometric immersions at the identity. Some care is needed
with the regularity of the relevant maps, so we give the argument in detail.

We first show that J vK
g � 0 on Aiso,lin

� . Note that in view of Proposition 36 we

have det(∇′)2v = 0. Suppose there exists (u, v) ∈ Aiso,lin
� with J vK

g (u, v) < 0.
Suppose for a moment that in addition v ∈ W 1,∞. Let δ > 0 be a small number
and apply Theorem 33 with V = δv. Thus we obtain an isometric immersion

yδ : S → R
3, yδ =

(
�δ

δv

)

and we have the estimate

||(∇′)2�||L2 � C ||∇′V ||L∞||(∇′)2V ||L2 � Cδ2. (123)
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By assumption ∇′v = 0 on � and in view of the explicit form of ∇′� (see (212)
and (213)) and Lemma 45 we see that ∇′�δ is a constant in SO(2) on �. Hence
by applying a rigid motion we may assume that ∇′�δ = I d and �δ = id on �.
Note that application of a rigid motion does not affect the estimate (123). Using
this estimate in connection with the Poincaré inequality we deduce that (for a sub-
sequence)

�δ − id

δ2 ⇀ ū in W 2,2(S; R
2). (124)

Together with the fact that yδ is an isometric immersion this implies that 2 sym ∇′ū+
∇′v⊗ ∇′v = 0. Moreover ū = 0 on �, since�δ = id on �. Hence by the unique-
ness result in Proposition 36 we have ū = u. Therefore

1

δ2

∫
∂S

g · (y′
δ − x ′)dH1 →

∫
∂S

g · u dH1.

We finally claim that δ−1 Aδ → −(∇′)2v in L2, where Aδ is the second fundamental
form of yδ . Together with the above convergence result this will show that

1

δ2 J Ki
g (yδ) → J vK

g (u, v) < 0 (125)

and this finishes the proof under the additional assumption v ∈ W 1,∞. To obtain
the convergence of Aδ note that

1

δ
(Aδ)αβ = −1

δ
(yδ),αβ · nδ.

Now

1

δ
(yδ),αβ →

(
0

v,αβ

)
in L2(S; R

3)

and nδ → e3 boundedly almost everywhere. This yields the desired convergence
of δ−1 Aδ .

Now we remove the additional assumption v ∈ W 1,∞. Indeed for a gen-
eral pair (u, v) ∈ Aiso,lin

� there exist, in view of Theorem 43 approximations
vk ∈ W 2,2 ∩ W 1,∞ with vk → v in W 2,2, det(∇′)2vk = 0 and vk = ∇′vk = 0 on
�. Hence by Proposition 36 there exists a unique uk such that (uk, vk) ∈ Aiso,lin

� .
Moreover uk ⇀ u in W 1,p for all p < ∞, in view of the convergence of vk , the
equation for uk and Korn’s inequality (38). Thus J vK

g (uk, vk) → J vk
g (u, v) and in

particular J vK
g (uk, vk) < 0 for some k. By the argument given above there exist

yk,δ ∈ Aiso
� such that J Ki

g (yk,δ) < 0.

Now let ε ∈ (0, 1) and suppose that there exist (u, v) ∈ Aiso,lin
� with

J vK
(1−ε)g(u, v) = I vK(u, v)− (1 − ε)

∫
∂S

g · u dH1 � 0.
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If
∫
∂S g · u � 0 then I vK(u, v) � 0 and using the boundary conditions for v and u

we easily deduce that u = v = 0 (see Proposition 36). If
∫
∂S g · u > 0 then

J vK
g (u, v) = J vK

(1−ε)g(u, v)− ε

∫
∂S

g · u dH1 < 0

and this contradicts what we have already shown. ��
Now we come to the converse implication: linearized stability implies stability.

Theorem 21. (Linearized stability implies nonlinear stability) Let S be a bounded,
simply connected Lipschitz domain and suppose that� ⊂ ∂S is a closed, nontrivial
interval. Suppose that the quadratic form Q2 is isotropic, that is, Q2(A) = α|A|2 +
β(trA)2. Suppose that J vK � 0 on Aiso,lin

� and if J vK(u, v) = 0 then (u, v) = 0.
Then J Ki � 0 on Aiso

� and J Ki(y) = 0 for y ∈ Aiso
� only if y(x ′) = (x ′, 0).

We first observe that there exists a symmetric stress field σ : S → R
2×2
sym which

is compatible with the boundary loads g in the sense that

div σ = 0 in S, −σν = g on ∂S\�. (126)

To see this we consider maps w : S → R
2 and the functional

1

2

∫
S
| sym ∇′w|2 dx ′ −

∫
∂S

g · w dH1

In view of Korn’s inequality this functional has a unique minimizer w̄ in the class
of W 1,2 maps which satisfyw = 0 on �. Set σ = − sym ∇′w̄. Taking into account
the symmetry of σ we see that the Euler–Lagrange equation for w̄ is∫

S
σ : ∇′ϕ dx ′ +

∫
∂S

g · ϕ dH1 = 0, for all ϕ ∈ W 1,2(S,R2) with ϕ|� = 0.

(127)

This is exactly the weak form of (126), and it is this weak form which we will be
using in the following.

Next we show that linearized stability can be characterized in terms of the
out-of-plane deformation v alone. Note that in view of (5), (6), (8) and (9) the
quadratic form Q2 is positive definite on symmetric matrices.

Lemma 22. Let S, �, Q2, g and σ be as in Theorem 21. Consider the condensed
functional

J cond(v) :=
∫

S

1

24
Q2((∇′)2v)− 1

2
σ : ∇′v ⊗ ∇′v dx ′ (128)

and the admissible set

Acond
� :=

{
v ∈ W 2,2(S) : det(∇′)2v = 0, v = ∇′v = 0 on �

}
. (129)

Then

J vK � 0 on Aiso,lin
� (130)
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if and only if

J cond � 0 on Acond
� . (131)

Moreover equality holds in (130) only for (u, v) = (0, 0) if and only if equality
holds in (131) only for v = 0.

Proof. If (u, v) ∈ Aiso,lin
� then

2 sym ∇′u + ∇′v ⊗ ∇′v = 0 (132)

and by Proposition 36 we have det(∇′)2v = 0. Hence v ∈ Acond
� . Moreover,

applying (127) with ϕ = u and using the symmetry of σ we get

−
∫
∂S

g · u dH1 =
∫

S
σ : ∇′u dx ′ = −1

2

∫
S
σ : ∇′v ⊗ ∇′v dx ′. (133)

Hence J vK(u, v) = J cond(v).
Now suppose that v ∈ Acond

� . By Proposition 36 there exists a u such that (132)
holds. Moreover by the explicit formula (216) for u and Lemma 45 we see that ∇′u
is constant on �. In view of (132) ∇′u is also skew-symmetric on �. Hence after
substraction of an affine function (with skew-symmetric gradient) we may assume
that u = 0 on � (note that this modification does not affect the validity of (132)).
Thus (u, v) ∈ Aiso,lin

� and we find again J vK(u, v) = J cond(v). ��
Proof of Theorem 21. First note that

Q2(A) = Q2((∇′)2 y1)+ Q2((∇′)2 y2)+ Q2((∇′)2 y3). (134)

Indeed we have−y,i j = Ai j n by (204) and thus |A|2 =∑3
k=1 |A|2n2

k =∑i, j,k y2
k,i j

and (tr A)2 =∑k(tr A)2n2
k =∑k(�yk)

2. Now set

ũ =
(

y1

y2

)
−
(

x1

x2

)
, v = y3.

Since y ∈ Aiso
� we have

− 2 sym ∇′ũ = ∇′ũ1 ⊗ ∇′ũ1 + ∇′ũ2 ⊗ ∇′ũ2 + ∇′v ⊗ ∇′v. (135)

By (204) and (206) we have det(∇′)2 yi = 0 for i = 1, 2, 3. Together with the
boundary conditions in the definition of Aiso

� we see that the maps ũ1, ũ2 and v all
belong to Acond

� . Arguing as in (133) we deduce from (135)

−
∫
∂S

g · u dH1 =
∫

S
σ : ∇′u dx ′

= −1

2

2∑
i=1

∫
S
σ : ∇′ũi ⊗ ∇′ũi dx ′ − 1

2

∫
S
σ : ∇′v ⊗ ∇′v dx ′

Together with (134) we get

J Ki(y) = J cond(ũ1)+ J cond(ũ2)+ J cond(v). (136)

Thus Theorem 21 follows from Lemma 22. ��
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7. An example: a rectangular plate under compression

As an example we consider the stability of a rectangular plate which is clamped
on one side and subject to a compressive force h2 p on the opposite side, with the
remaining sides being traction-free. With our previous notation this corresponds to
the choices

S = (0, L)× (0, l), � = {0} × (0, l), (137)

g = −σν on ∂S, σ =
(

p 0
0 0

)
, p > 0. (138)

We assume again that the elastic moduli are isotropic, that is,

Q3(F) = ∂2W

∂F2 (I d)(F, F) = 2µ| sym F |2 + λ(tr F)2, for F ∈ R
3×3 (139)

Q2(G) = min
a∈R3

Q3(G + a ⊗ e3 + e3 ⊗ a)

= α| sym G|2 + β(tr G)2, for G ∈ R
2×2, (140)

where α = 2µ, β = 2µλ
2µ+λ , see (10). We always assume that Q2 is positive definite

on symmetric matrices, that is,

α > 0, α + 2β > 0. (141)

This is equivalent to the usual conditions µ > 0, 2µ+ 3λ > 0. As before we set

I = (−1/2, 1/2), � = S × I. (142)

The three-dimensional problem consists in minimizing

J h(y) =
∫
�

W (∇h y) dx −
∫
∂S×I

h2g · (y′ − x ′) dH2

=
∫
�

W (∇h y) dx +
∫

x1=L
h2 p(y1 − x1) dx2dx3

=
∫
�

W (∇h y)+ h2 p(y1,1 − 1) dx,

in the admissible set

Bh
� =

{
y(h) ∈ W 1,2(�; R

3) : y(h)1 (x) = 0, y(h)3 (x) = hx3 on �,

∫
�

x2 y(h)2 (x) dx2 � 0,
∫
�

y(h)2 dx2 = 0

}
. (143)

We do not prescribe a hard boundary condition for y(h)2 . Thus the plate can expand in
x2 direction in response to a compressive stress in x1 direction. The two additional
constraints rule out degenerate behaviour under the dead loading we consider. The
inequality condition rules a 180 degree in-plane rotation, which would convert the
compressive load into a tensile one The equality constraint simply removes
the freedom of a translation in the x2 direction (which would not effect the energy).
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7.1. Euler–Bernoulli theory

We first investigate the functional J h on a rather restrictive class of deformations
of Euler–Bernoulli type. These depend only trivially on x2 and correspond to a
bending of the strip (0, L)× I in the (x1, x3) plane with the midline x3 = 0 being
mapped isometrically. More precisely we consider deformations of the form

y(x1, x2, x3) =
⎛
⎝ 0

x2
0

⎞
⎠+

∫ x1

0

⎛
⎝ cos θ(s)

0
sin θ(s)

⎞
⎠ ds + hx3b(x1)+ 1

2
h2x2

3 d(x1),

where

b(x1) =
⎛
⎝− sin θ(x1)

0
cos θ(x1)

⎞
⎠ . (144)

Then

∇h y = Rθ
[

I d − hx3θ
′e1 ⊗ e1 + hx3 RT

θ d ⊗ e3

]
+ O(h2),

where

Rθ =
⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠ .

Taylor expansion and an optimal choice of d (which affects the passage from Q3
to Q2) yield

W (∇h y) = h2x2
3

2
Q2(e1 ⊗ e1)(θ

′)2 + O(h3).

Hence

J h(y) = h2 E(θ)+ O(h3),

where E is the energy functional of an Euler beam subject to a load p, given by

E(θ) =
∫ L

0

1

24
(α + β)(θ ′)2 + p(cos θ − 1). (145)

The boundary condition on y holds if an only if

θ(0) = 0. (146)

Since cos θ−1 � − 1
2θ

2 the functional E can be bounded from below by a quadratic
functional for which the critical value of p can be easily determined. Set

pcr = 1

12

π2

4L2 (α + β). (147)



Stability of Slender Bodies under Compression and Validity 287

Then

(i) For p � pcr we have E(θ) � 0, and E(θ) = 0 implies θ = 0.
(ii) For p > pcr we have min E < 0.

For p > pcr and close to pcr the minimizer of E is approximately given by the
eigenfunction of the linearized problem, that is,

θ = A sin(πx1/2L), (148)

with A ∼ √
(p − pcr)/p.

Thus for p > pcr we have inf J h � −Ch2 and we are in the Kirchhoff scaling
regime corresponding to a nonlinear instability. For p < pcr we have stability in
the restricted class of Euler–Bernoulli deformation. We now investigate whether
this still holds in the general class of deformations.

7.2. Geometrically linear stability

Here we study the functional

J vK(u, v) = 1

24

∫
S

Q2((∇′)2v) dx ′ +
∫ l

0
pu1(L , x2) dx2, (149)

subject to the boundary conditions

u = v = ∂1v = 0 on � = {0} × (0, l) (150)

and the linearized isometry constraint

2 sym ∇′u + ∇′v ⊗ ∇′v = 0 in S. (151)

We are interested in the largest value of p for which J vK is still non-negative.
Using (150) and (151) we can rewrite the loading term in terms of v

∫ l

0
u1(L , x2) dx2 =

∫
S

u1,1 dx ′ = −1

2

∫
S
v2
,1 dx ′.

Thus

J vK(u, v) = Q(v) :=
∫

S

1

24
Q2((∇′)2v)− 1

2
pv2
,1 dx ′

Moreover (151) implies that

det(∇′)2v = 0

(see Proposition 36). For symmetric 2 × 2 matrices we have the relation

(tr A)2 = |A|2 + 2 det A

Hence we have the further simplification

J vK(u, v) = Q(v) = F(v) :=
∫

S

α + β

24
|(∇′)2v|2 − 1

2
pv2
,1 dx ′
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and

F(v) � G(v) :=
∫ l

0

∫ L

0

α + β

24
|v,11|2 − 1

2
pv2
,1 dx1 dx2.

The inner integral is exactly the linearization of the Euler–Bernoulli functional dis-
cussed above (with the identification θ = v,1). Thus the inner integral, and hence
J vK is positive definite if p < pcr. Hence linearized stability holds for p < pcr.
Tracing back the inequalities we see at p = pcr the nontrivial solution is a multiple
of

v̄(x) = cos
(πx1

2L

)
− 1 (152)

and in particular is independent of x2.

7.3. Nonlinear stability

The assumptions of Theorem 21 are satisfied. Hence nonlinear stability holds
for p < pcr. It follows from the discussion of the Euler–Bernoulli deformations
that nonlinear stability cannot hold for p > pcr. Alternatively one can plug in test
functions of the form y(x1, x2) = x2e2 + ∫ x1

0 cos θe1 + ∫ x1
0 sin θe3 into J Ki and

recover E(θ).

7.4. First summary

For

p < pcr = 1

12

π2

4L2 (α + β) = π2

24L2µ
2µ+ 2λ

2µ+ λ
.

conditions (i) and (ii) of Theorem 4 are satisfied. Hence in view of Corollary 5 we are
in the vK scaling regime, the in-plane displacements are of order h2, the out-of-plane
displacement is of order h, the rescaled displacements satisfy (u(h), v(h)) → (u, v)
in W 1,2 and (u, v) minimizers J vK in A� .

If

p > pcr

then inf J h � −Ch2 and we are in the Kirchhoff scaling regime, with both in-plane
and out-of-plane deformation being of order 1.

7.5. Behaviour below pcr, vK buckling

We now investigate in more detail the behaviour for 0 < p < pcr. In this
regime vK theory applies, the in-plane and out-of-plane displacements are of order



Stability of Slender Bodies under Compression and Validity 289

h2 and h, respectively, and their limiting behaviour is governed by minimizers of
the functional

J vK(u, v) = 1

2

∫
S

Q2

(
sym ∇′u + ∇′v ⊗ ∇′v

2

)
dx ′

+ 1

24

∫
S

Q2((∇′)2v) dx ′ +
∫

S
pu1,1 dx ′.

By Corollary 5 the admissible pairs (u, v) are given by

B� :=
{
(u, v) ∈ W 1,2(S,R2)×W 2,2(S) : u1 =v=∇′v=0 on �,

∫
�

u2 dx2 =0

}
.

(153)

The Euler–Lagrange equations for J vK always admit a (trivial) solution of the
form (ū, 0). We ask for which values of p this solution is globally minimizing.
The first result is contained in Proposition 23 and states that the trivial solution is
minimizing exactly for 0 � p � qcr, with qcr < pcr (if β �= 0), that is, there is
a bifurcation in the vK equations before the (global) bifurcation at pcr discussed
above.

To derive this assertion note first that ū is determined by a linear elasticity equa-
tion. In fact, for the boundary conditions (153) the displacement ū can be found by
pointwise minimization of the integrand and we obtain

ū(x) = Fx,

where F satisfies

αF + β(tr F)I d = −
(

p 0
0 0

)
. (154)

Set u = ū + ũ. Then

1

2
Q2

(
sym ∇′u + ∇′v ⊗ ∇′v

2

)
+ pu1,1

= 1

2
Q2

(
sym ∇′ũ + ∇′v ⊗ ∇′v

2

)
+ B2

(
sym ∇′ũ + ∇′v ⊗ ∇′v

2
, F

)

+ 1

2
Q2(F)+ pF11 + pũ1,1, (155)

where B2 is the symmetric bilinear form associated to Q2, that is,

B2(A, B) = αA : B + β(tr A)(tr B) = A : (αB + β(tr B)I d).

Hence by (154) we have

B2

(
sym ∇′ũ + ∇′v ⊗ ∇′v

2
, F

)
= −p

(
ũ1,1 + v2

,1

2

)
.
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Setting C = 1
2 Q2(F)+ pF11 we can thus write the right-hand side of (155) as

1

2
Q2

(
sym ∇′ũ + ∇′v ⊗ ∇′v

2

)
− pv2

,1 + C.

Thus we can eliminate ū and consider the new functional

J̃ vK(ũ, v) := J vK(ū + ũ, v)− |S|C
= 1

2

∫
S

Q2

(
sym ∇′ũ + ∇′v ⊗ ∇′v

2

)
dx ′

×
∫

S

1

24
Q2((∇′)2v)− 1

2
pv2
,1 dx ′. (156)

The corresponding Euler–Lagrange equation always has the trivial solution ũ = 0,
v = 0 and we ask for which p this solution is a global minimizer, i.e for which p
we have inf J̃ vK � 0. To decide this it suffices to consider the quadratic functional

Q(v) = Q p(v) :=
∫

S

1

24
Q2((∇′)2v)− 1

2
pv2
,1 dx ′. (157)

Indeed, clearly J̃ vK � Q. On the other hand if Q(v̄) < 0 then J vK(0, εv̄) < 0 for
sufficiently small ε, since then the quadratic functional Q dominates the quadratic
first term. Now Q is exactly the functional already studied in Subsection 7.2. The
difference is that we no longer impose the constraint det(∇′)2v = 0.

Proposition 23. There exist qcr ∈ (0, pcr] such that

Q(v) � 0 for p � qcr,

inf Q = −∞ for p > qcr.

For β �= 0 we have

qcr < pcr.

Moreover, in this case, any nontrivial function v which achieves Q(v) = 0 for
p = qcr cannot be a function of x1 alone.

Proof. The existence of such a qcr > 0 follows from the Poincaré inequality and a
simple continuity argument. Clearly qcr � pcr. Now suppose that β �= 0 and that
qcr = pcr. Take p = qcr We know that the one-dimensional function

v̄ = cos
(πx1

2L

)
− 1

achieves Q(v̄) = 0. Thus it in particular minimizes Q. We will conclude by show-
ing that a function of x1 alone cannot satisfy the natural boundary conditions for
Q and hence cannot be a minimizer. Indeed, the minimizing property of v̄ yields
∫

S

1

12
α((∇′)2v̄ : (∇′)2ϕ)+ 1

12
β(tr(∇′)2v̄)(tr(∇′)2ϕ)− pcr v̄,1ϕ,1 dx ′ = 0,
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for all ϕ with ϕ = ϕ,1 = 0 at x1 = 0. Take ϕ of the form ψ(x1)η(x2). Then
∫

S

1

12
αv̄,11ψ

′′η + 1

12
βv̄,11(ψ

′′η + ψη′′)− pcr v̄,1ψ,1η dx ′ = 0. (158)

Taking η = 1 we find the weak form of the equation for v̄ = v̄(x1). Substituting
this back into (158) we get

0 =
∫

S

1

12
βv̄,11(x1)ψ(x1)η

′′(x2) dx1 dx2

=
(∫ L

0

1

12
βv̄,11ψ(x1) dx1

)
(η′(l)− η′(0)).

Since η is arbitrary, β > 0 and ψ is arbitrary (subject only to ψ(0) = ψ ′(0) = 0)
we conclude that v̄,11 ≡ 0, which together with the boundary condition yields
v̄ ≡ 0. This contradiction implies that we must have qcr < pcr. The same argument
shows that a nontrivial minimizer for p = qcr cannot be a function of x1 only. ��

7.6. Behaviour of J vK near pcr

We now investigate in more detail the behaviour of the vK functional for p < pcr
and p close to pcr. We sometimes write the functional as J vK

p to emphasize the
dependence on p. We will show that (for β �= 0) the infimum of J vK converges to
−∞ as p approaches pcr from below. To do so we will use a test function which
differs from the one-dimensional ansatz (which leads to the bifurcation at pcr) by
a two-dimensional perturbation which is concentrated in a boundary layer near
x2 = 0 (we could also include a symmetric boundary layer at x2 = 1, but the
calculation is slightly shorter for a single boundary layer). Optimizing parameters
we obtain an upper bound for inf J vK which is proportional to −(p − pcr)

3. Using
an interpolation inequality we show that there is a lower bound with the same expo-
nent. We also identify the scaling of the minimizers vp as p → pcr. The rest of this
subsection may be skipped at first reading.

Theorem 24. Suppose that β �= 0. Then

(i) inf J vK
p is attained for all p < pcr.

(ii) We have lim p→pcr,p<pcr inf J vK
p = −∞. More precisely, there exist constants

c > 0, C > 0 such that

− C(pcr − p)−3 � min J vK
p � −c(pcr − p)−3 + C. (159)

(iii) If (u p, vp) is a minimizer J vK
p then, for p < pcr sufficiently close to p

c(pcr − p)−2 � ||vp||L2 � ||vp||W 2,2 � C(pcr − p)−2. (160)

Moreover ifwp denotes the projection of vp onto the subspace perpendicular
to the one-dimensional minimizer v̄ given by (152) then

c(pcr − p)−3/2 � ||wp||W 2,2 � C(pcr − p)−3/2. (161)
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Proof. The first assertion follows from a general relation between linearized
stability and attainment for J vK (see Theorem 27 below). The main point is to
establish (159). For this it suffices to consider the reduced functional J̃ vK defined
in (156). From the argument for this the estimates (160) and (161) will follow easily.
Step 1. Upper bound for inf J̃ vK

p .
Recall from (156) that

J̃ vK(ũ, v) = 1

2

∫
S

Q2

(
sym ∇′ũ+∇′v ⊗ ∇′v

2

)
dx ′ +

∫
S

1

24
Q2((∇′)2v)−1

2
pv2
,1.

(162)

We first focus on the quadratic term in v and write a general function v (satisfying
the boundary conditions v = v,1 =) as

v = Av̄ + w = v̂ + w, where
∫

S
v̄w dx ′ = 0

and where

v̄(x ′) = cos
(πx1

2L

)
− 1

is the one-dimensional minimizer of Q pcr , subject to the constraint det(∇′)2v = 0.
We first note that v̄ and v̂ minimize the functional

Q̃ pcr (v) :=
∫

S

1

24
(α + β)|(∇′)2v|2 − 1

2
pcrv

2
,1 dx ′

among all vwith v = v,1 = 0 on x1 = 0 (not just among those with det(∇′)2v = 0).
To see this it suffices to bound the term involving the second derivatives from
below by v2

,11. Hence Q̃ pcr (v̂ + w) = Q̃ pcr (w). In view of the relation (tr A)2 =
|A|2 + 2 det A for symmetric 2 × 2 matrices we thus get for the functional Q pcr ,
defined in (157),

Q pcr (v̂ + w) = Q̃ pcr (w)+
∫

S

β

12
det((∇′)2(v̂ + w)) dx ′

= Q̃ pcr (w)+ β

12

∫
S

cof(∇′)2v̂ : (∇′)2w + det((∇′)2w) dx ′ (163)

= Q pcr (w)+ A
β

12

∫
S
v̄,11w,22. (164)

To estimate the stretching energy, that is, the first term on the right-hand side
of (162) we start from the expansion

∇′(v̂ + w)⊗ ∇′(v̂ + w) = ∇′v̂ ⊗ ∇′v̂ + 2 sym(∇′w ⊗ ∇′v̂)+ ∇′w ⊗ ∇′w.

We know that there exists û such that sym ∇′û + 1
2∇′v̂ ⊗ ∇′v̂ = 0 (indeed we

can take 2û1 = ∫ x1
0 −v̂2

,1, û2 = 0). We seek u (satisfying the boundary condition
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u1 = 0 at x1 = 0) such that sym ∇′u + sym ∇′w ⊗ ∇′v̂ is small. To achieve this
we now consider a special ansatz for w:

w(x ′) = ψ(x1)η(x2), with ψ, η ∈ C∞, ψ(0) = 0,
∫ l

0
η dx2 = 0.

This yields

sym(∇′w ⊗ ∇′v̂) = A

(
ψ ′ηv̄′ ψη′v̄

2
ψη′v̄

2 0

)
.

Setting

u1 = −A(ψv̄)(x1)η(x2), u2 = 0 (165)

we see that

| sym ∇′u + sym(∇′w ⊗ ∇′v̂)|
= |A| | − (ψv̄)′(x1)η(x2)+ (ψ ′v̄′)(x1)η(x2)| � C |A| |η(x2)|. (166)

Here and in the following we do not indicate the dependence of the various constants
on ψ . Thus

∫
S

Q2

(
sym ∇′(û + u)+ ∇′v ⊗ ∇′v

2

)
� C A2||η||2L2 + C || |∇′w|2||2L2

� C A2||η||2L2 + C ||η||4W 1,4 . (167)

This and (164) yield

J̃ vK
pcr
(û + u, v) � C A2||η||2L2 + C ||η||4W 1,4

+A
β

12

(∫ L

0
v̄,11ψ dx1

)
(η′(l)− η′(0))+ C ||η||2W 2,2 (168)

Now assume that η is concentrated in a thin boundary layer, that is,

η(x2) = Bδρ(x2/δ),

where ρ ∈ C∞([0,∞)), ρ[1,∞] = 0, ρ′(0) = 1,
∫
ρ = 0 and take δ � min(1, l/2).

Then η′(0)− η′(l) = η′(0) = B and

||η||L2 � C Bδ3/2, ||η||W 1,4 � C Bδ1/4, ||η||W 2,2 � C Bδ−1/2. (169)

Set

ε = (pcr − p), c0 = β

12

∫ L

0
v̄,11ψ dx1

and choose ψ such that c0 > 0.
Now J̃ vK

p (·, v) = J̃ vK
pcr
(·, v)+ ε

∫
S v

2
,1, and (168) implies that

J̃ vK
p (û + u, v) � C A2 B2δ3 + C B4δ − c0 AB + C B2δ−1 + Cε(A2 + δB2).
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Let B = c1 Aδ, where c1 is a small constant. Then δB2 � A2 and thus

J vK
p (ū + u, v) � C A4δ5 − c0c1 A2δ + Cc2

1 A2δ + CεA2.

Finally take c1 = c0/(2C) and δ = 4Cε/(c0c1). Then the right-hand side reduces
to C A4ε5 − cA2ε. The choice A2 = (c/2C)ε−4 finally yields

min J̃ vK
p � −c′ε−3.

This finishes the proof of the upper bound. Note that we implicitly used that ε
is small since otherwise the above choice for δ may not be compatible with the
restriction δ � min(l/2, 1) we imposed in the definition of η.
Step 2. Lower bound for min J̃ vK

p .
To establish a lower bound we start from (163)

Q pcr (v̂ + w) = Q̃ pcr (w)+ β

12

∫
S

cof(∇′)2v̂ : (∇′)2w + det(∇′)2w dx ′. (170)

To estimate the last term we use the stretching energy. Let û be a minimizer (subject
to û1 = 0 at x1 = 0) of

∫
S

Q2

(
sym ∇′u + ∇′(v̂ + w)⊗ ∇′(v̂ + w)

2

)
dx ′

and set

f = sym ∇′û + ∇′(v̂ + w)⊗ ∇′(v̂ + w)

2
.

Using the compatibility condition e11,22 + e22,11 − 2e12,12 for the symmetrized
gradient e = sym û we get

f11,22 + f22,11 − 2 f12,12 = − det(∇′)2(v̂ + w)

= − cof(∇′)2v : (∇′)2w − det(∇′)2w. (171)

The vK energy gives control of the L2 norm of f and hence the H−2 norm of the
right-hand side. The basic idea is now to use an interpolation inequality like

∫
S
g dx1 � C ||g||1/4

H−2 ||g||3/4
L2 .

A priori it is not clear, however, that we do have good control of the L2 norm of
(171) (which would, at least at first glance, require control of ||w||W 2,2 ). Hence we
first recall the argument leading to the interpolation estimate. This will allow us to
exploit the special structure arising from the combination of the first and last term
on the right-hand side of (170), see Proposition 25 below.

For δ > 0 we choose a cut-off functions ϕδ ∈ C∞
0 (S) which satisfy

ϕδ(x) = 1 if dist(x, ∂S) � 2δ,

ϕδ(x) = 0 if dist(x, ∂S) � δ, |(∇′)2ϕδ| � Cδ−2.
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Using (170) and (171) and the relation 2 det A = (tr A)2 −|A|2 for symmetric 2×2
matrices we get

Q pcr (v̂+w)
= Q̃ pcr (w)−

β

12

∫
S

f11ϕδ,11+ f22ϕδ,11− f12ϕδ,12 dx ′

+ β

12

∫
S
(1−ϕδ) cof(∇′)2v̂ : (∇′)2w dx ′+ β

12

∫
S
(1−ϕδ) det(∇′)2w dx ′

� I δ(w)−C |β| ||ϕδ||W 2,2 || f ||L2−C |β| ||(1−ϕδ)(∇′)2v||L2 ||(∇′)2w||L2

(172)

� I δ(w)−C |β|δ−3/2|| f ||L2−C |β|δ1/2||(∇′)2v̂||L∞||(∇′)2w||L2 , (173)

where

I δ(w) :=
∫

S
ϕδ
α + β

24
|(∇′)2w|2+(1−ϕδ)

[
α

24
|(∇′)2w)|2 + β

24
(tr(∇′)2w)2

]
dx ′

−
∫

S

1

2
pcrw

2
,1 dx ′.

As δ → 0 this functional approaches Q pcr , which is positive definite on the sub-
space orthogonal to v̄. In fact we have a uniform lower bound on I δ on that subspace
for sufficiently small δ.

Proposition 25. There exist c > 0 and δ0 > 0 such that for all δ ∈ (0, δ0)

I δ(w) � c||w||2W 2,2 , whenever
∫

S
wv̄ dx ′ = 0 (174)

and w = w,1 = 0 on x1 = 0.

Proof. Suppose otherwise. Since I δ is quadratic in w there then exist δ j → 0 and
w j such that

||w j ||W 2,2 = 1, w j ⇀ w in W 2,2,

∫
S
w j v̄ dx ′ = 0, (175)

lim
j→∞ I δ j (w j ) � 0.

Fix δ > 0 and let Sδ = {x ∈ S : dist(x, ∂S) � 2δ}. Since Q2(A) � 0 we have for
δ j � δ

I δ j (w j ) �
∫

Sδ

α + β

24
|(∇′)2w j |2 dx ′ −

∫
S

pcrw
2
j,1 dx ′.

Thus by standard lower semicontinuity results and the compact embedding of W 2,2

into W 1,2

lim inf
j→∞ I δ j (w j ) � lim inf

j→∞

∫
Sδ

α + β

24
|(∇′)2w j |2 dx ′ −

∫
S

pcrw
2
j,1 dx ′

�
∫

Sδ

α + β

24
|(∇′)2w|2 dx ′ −

∫
S

pcrw
2
,1 dx ′.
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Hence
∫

Sδ

α + β

24
|(∇′)2w|2 dx ′ −

∫
S

pcrw
2
,1 dx ′ � 0.

Since δ > 0 was arbitrary, the same estimate holds with Sδ replaced with S. Hence
wmust be a multiple of v̄. On the other handw is also perpendicular to v̄ in view of
(175). Thusw = 0. By the compact Sobolev embedding we havew j → 0 in W 1,2.
Since the quadratic forms (α + β)|A|2 and α|A|2 + β(tr A)2 are positive definite
on symmetric matrices we see that

lim sup
j→∞

||(∇′)2w j ||2L2 � C lim sup
j→∞

I δ(w j ) � 0.

Thusw j → 0 in W 2,2. This contradicts the assumption that ||w j ||W 2,2 = 1 and the
proof of the proposition is finished. ��

From Proposition 25 and (172) we deduce that

Q pcr (v̂ + w) � c||w||2W 2,2 − Cδ−3/2|| f ||L2 − Cδ1/2||(∇′)2v̂||L∞||(∇′)2w||L2

� c

2
||w||2W 2,2 − C

κ
δ−3 − κ|| f ||2L2 − Cδ||(∇′)2v̂||2L∞ ,

for all κ > 0. Now choose κ such that we have the pointwise bound Q2(A) �
4κ|A|2 for symmetric matrices A. Then, using again the abbreviation ε = pcr − p,

J̃ vK
p (u, v̂ + w) � 1

2

∫
S

Q2( f ) dx ′ + Q pcr (v̂ + w)+ ε

∫
S
((v̂ + w)2,1 dx ′

� 2κ|| f ||2L2 + Q pcr (v̂ + w)+ ε

2
||v̂,1||2L2 − 2ε||w,1||2L2 .

Note that all norms of v̂ are equivalent since v̂ is a multiple of a fixed smooth
function. Taking δ = ε/C ′ we thus get

min J̃ vK
p (u, v̂ + w) � κ|| f ||2L2 + c

4
||w||2W 2,2 − C

κ
ε−3 + ε

4
||v̂,1||2. (176)

Thus

min J̃ vK
p � −Cε−3.

which proves assertion (ii).
Step 3. Estimates for the minimizers of J̃ vK.
From (176) and the equivalence of different norm of v̂ we immediately deduce that
a minimizer (u p, vp) with vp = v̂p + wp (where

∫
S wpv̄ = 0) satisfies

||wp||W 2,2 � Cε−3/2, ||v̂p||W 2,∞ � Cε−2,

|| det(∇′)2vp||H−2 � C || f p||L2 � Cε−3/2.
(177)
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To prove the converse estimates we use (172). In connection with Proposition 25
and the upper bound for J vK

p we get, for sufficiently small ε,

− cε−3 � J vK
p (u p, v̂p + wp)

� −Cδ−3/2|| f p||L2 − Cδ1/2||(∇′)2v̂p||L∞ ||(∇′)2wp||L2 . (178)

Now if ||(∇′)2v̂p||∞ ||(∇′)2wp||2 � C || f p||2 then (177) yields a contradiction (for
sufficiently small ε) since || f p||2 � Cε−3/2. Thus || f p||2 � ||(∇′)2v̂p||∞ ||(∇′)2
wp||2. Taking

δ = || f p||1/2L2 ||(∇′)2v̂p||−1/2
L∞ ||(∇′)2wp||−1/2

L2 � 1

we obtain

ε−3 � C || f p||1/4L2 ||(∇′)2v̂p||3/4L∞ ||(∇′)2wp||3/4L2 ,

and comparison with (177) gives the desired lower bounds. ��

7.7. Summary

We have found that for nonzero Poisson’s ratio (that is, for β �= 0) there are
two critical loads 0 < qcr < pcr leading to three different regimes.

• For p � qcr vK theory is valid and the corresponding minimizer is trivial.
• For qcr � p < pcr vK theory is valid and a bifurcation occurs in vK. The

minimum of the vK functional corresponds to a nontrivial out-of-plane dis-
placement (which is not one-dimensional). In terms of the original problem this
corresponds to an out-of-plane displacement of order h. As p approaches pcr
from below the infimum of the vK functional goes to −∞ and the norm of the
corresponding minimizers explodes. The test functions we have used to show
that min J vK

p → −∞ suggest (but do not prove) the following more detailed
scenario. For p slightly above qcr the minimizer involves bending in the x1 and
in the x2 direction of comparable order. In this regime amplitudes are small,
the fourth order stretching term is almost negligible and the quadratic form
Q2((∇′)2v) prefers bending in both directions. As p approaches pcr ampli-
tudes become big, the stretching term becomes dominant and we almost have to
satisfy the constraint det((∇′)2v) = 0. This favours one-dimensional displace-
ments, and the bending in the x2 direction is confined to thinner and thinner
boundary layer near x2 = 0 and x2 = l. The test functions used suggest that
the thickness δ of this boundary layer is of order p − pcr.

• For p > pcr vK theory is no longer valid (and the infimum of the vK functional
is −∞). Instead we are in the Kirchhoff regime where in-plane and out-of-plane
displacements are of order 1. At the critical load the bifurcating eigenfunction
corresponds to a one-dimensional deformation.

For zero Poisson’s ratio (that is, β = 0) we have a different behaviour. For all
p < pcr the vK theory is valid and the minimizers of J vK

p are trivial (that is, v = 0
and u satisfies a linear equation and is proportional to p). Moreover min J vK

p is
uniformly bounded from below.
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8. The relation between attainment for JvK and linearized stability

Here we show that the infimum of J vK is always attained as long as the linearized
stability condition holds, at least for homogeneous boundary data. We consider a
slightly more general setting (which includes all the boundary conditions discussed
above) since this poses no additional difficulty and highlights the main ideas. We
consider an admissible set

A = (u0, v0)+ X, X = X1 × X2, (179)

where

X1 is a closed subspace of W 1,2(S; R
2)

X2 is a closed subspace of W 2,2(S) which contains no nontrivial
affine functions.

⎫⎬
⎭ (180)

We also consider the set of linearized isometries in X

X iso,lin := {(u, v) ∈ X1 × X2 : 2 sym ∇′u + ∇′v ⊗ ∇′v = 0
}

(181)

and the set of infinitesimal in-plane rigid motions

X skew
1 :=

{
u ∈ X1 : u(x ′) = W x ′ + c, W T = −W, c ∈ R

2
}
. (182)

Suppose that

F is a bounded linear functional on W 2,2(S),
G is a bounded linear functional on W 1,2(S; R

2).

}
(183)

Typical choices for F and G are the work of the out-of-plane and in-plane forces
given by

F(v) =
∫

S
f v dx ′

G(u) =
∫
∂S

g · u dH1 +
∫

S
h · u dx ′.

We study the functional

J vK
F,G := 1

2

∫
S

Q2

(
sym ∇′u + ∇′v ⊗ ∇′v

2

)
dx ′

+ 1

24

∫
S

Q2((∇′)2v) dx ′ − F(v)− G(u). (184)

Definition 26. We say that stability condition (S1) holds if

J vK
0,G(u, v) � 0 for all (u, v) ∈ X iso,lin

and equality holds only if v = 0.

Note that (u, v) ∈ X iso,lin and v = 0 imply that u ∈ X skew
1 . The stability

condition (S1) implies that

G(u) = 0, ∀u ∈ X skew
1 , (185)

since J vK
0,G(u, 0) = −G(u) on the linear space X skew

1 .
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8.1. Homogeneous out-of-plane boundary conditions

We first consider the case that v = 0 is admissible.

Theorem 27. Assume that S is a bounded Lipschitz domain and that X, F and G
satisfy (180) and (183). Suppose further that u0 ∈ W 1,2(S; R

2) and v0 = 0.

(i) If the stability condition (S1) holds for J vK
0,G then J vK

F,G attains its minimum on
A for all F.

(ii) If the stability condition (S1) fails then for all ε > 0 and all F

inf J vK
F,(1+ε)G = −∞.

Proof. To prove (i) let (u0 + u j , v j ) be a minimizing sequence, that is,

J vK
F,G(u0 + u j , v j ) → inf

A
J vK

F,G,

where the infimum may be −∞. Let ū j ∈ X skew
1 be the best approximation (in L2)

of u j in X skew
1 and set

ũ j = u j − ū j .

Then by (185)

J vK
F,G(u0 + u j , v j ) = J vK

F,G(u0 + ũ j , v j ).

Case 1 ||ũ j ||W 1,2 + ||v j ||2W 2,2 � C .

Then a subsequence satisfies ũ j ⇀ ũ in W 1,2, v j ⇀ v in W 2,2 and hence v j → v

in W 1,4 and a standard lower semicontinuity arguments yields J vK
F,G(u0 + ũ, v) =

infA J vK
F,G .

Case 2 λ2
j := ||ũ j ||W 1,2 + ||v j ||2W 2,2 → ∞.

Set

U j = λ−2
j ũ j , Vj = λ−1

j v j .

Then

||U j ||W 1,2 + ||Vj ||2W 2,2 = 1 (186)

and U j is L2 perpendicular to X skew
1 . There exists a subsequence such that

U j ⇀ U in W 1,2, Vj ⇀ V in W 2,2, Vj → V in W 1,4. (187)

Now

J vK
F,G(u0 + ũ j , v j ) = 1

2
λ4

j

∫
S

Q2

(
sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2

)
dx ′

+ λ2
j

∫
S

B2

(
sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2
, sym ∇′u0

)
dx ′

+ 1

2

∫
S

Q2(sym ∇′u0)+ 1

24
λ2

j

∫
S

Q2((∇′)2Vj ) dx ′

− λ2
j G(U j )− G(u0)− λ j F(Vj ), (188)
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where B2 is the symmetric bilinear form associated with Q2, that is,

4B2(a, b) = Q2(a + b)− Q2(a − b).

We claim that, for all δ > 0,

1

4
λ4

j

∫
S

Q2

(
sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2

)
dx ′

+ 1

24
(1 − δ)λ2

j

∫
S

Q2((∇′)2Vj ) dx ′ − λ2
j G(U j ) � C j . (189)

To see this we first note that, without loss of generality, we may assume that

J vK
F,G(u0 + ũ j , v j ) � J vK

F,G(u0, 0)+ 1 � C. (190)

By assumption, X2 contains no nontrivial affine functions. This implies that

‖v||W 2,2 � C ||(∇′)2v||L2 ∀v ∈ X2. (191)

Hence

|λ j F(Vj )| �
δλ2

j

24

∫
S

Q2((∇′)2Vj ) dx ′ + C

δ
. (192)

Since Q2 is positive semidefinite the Cauchy–Schwarz inequality yields

λ2
j

∣∣∣∣B2

(
sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2
, sym ∇′u0

)∣∣∣∣
� 1

4
λ4

j Q2

(
sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2

)
+ Q2(sym ∇′u0). (193)

Combining (190), (192), (193) and (188) we arrive at (189). Dividing (189) by λ4
j

we see that ∥∥∥∥sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2

∥∥∥∥
L2

� C

λ j
→ 0. (194)

Together with (187) this shows that

sym ∇′U + ∇′V ⊗ ∇′V
2

= 0,

that is, (U, V ) ∈ X iso,lin.
Dividing (189) by λ2

j and taking into account the positivity of the first term and
weak lower semicontinuity of convex integrals we see that

1

24
(1 − δ)

∫
S

Q2((∇′)2V ) dx ′ − G(U ) � 0.

This holds for all δ > 0 and hence also for δ = 0, that is,

J vK
0,G(U, V ) � 0 and (U, V ) ∈ X iso,lin.
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Thus the stability condition (S1) yields J vK
0,G(U, V ) = 0 and V = 0. This implies

that U ∈ X skew
1 . By construction U is also L2 perpendicular to X skew

1 . Hence U = 0.
Thus G(U j ) → 0 and going back to (189) and dividing by λ2

j we obtain

lim sup
j→∞

∫
S

Q2((∇′)2Vj ) dx ′ � 0,

that is, (∇′)2Vj → 0 in L2 and by (191)

Vj → 0 in W 2,2. (195)

Together with (194) this yields sym ∇′U j → 0 in L2. Since U j is perpendicular to
X skew

1 we can use Korn’s inequality to deduce that

U j → 0 in W 1,2.

Combining this with (195) we obtain a contradiction with (186). Thus Case 2 cannot
occur and the proof of (i) is finished.

To establish assertion (ii) of the theorem assume now that the stability con-
dition fails. Then there exist (ū, v̄) ∈ X iso,lin such that either J vK(ū, v̄) < 0
or J vK(ū, v̄) = 0 and v̄ �= 0 and thus ||(∇′)2v̄||L2 > 0. Thus G(ū) > 0 and
J vK

0,(1+ε)G(ū, v̄) < 0, for all ε > 0. It therefore suffices to show that the assumption

J vK
0,G(ū, v̄) < 0 implies that infA J vK

F,G = −∞.
Since 2 sym ∇′ū + ∇′v̄ ⊗ ∇′v̄ = 0 an expansion as in (188) yields

J vK
F,G(u0 + λ2ū, λv̄) = 1

2

∫
S

Q2(sym ∇′u0) dx ′ + 1

24
λ2
∫

S
Q2((∇′)2v̄) dx ′

− λ2G(ū)− G(u0)− λF(v̄).

Thus

lim
λ→∞

1

λ2 J vK
F,G(u0 + λ2ū, λv̄) = 1

24

∫
S

Q2((∇′)2v̄) dx ′ − G(ū) = J vK
0,G(ū, v̄) < 0.

This finishes the proof of Theorem 27. ��

8.2. Non-homogeneous out-of-plane boundary conditions

We now consider the situation that v0 �∈ X2, that is, (u0, 0) is not admissible.
This corresponds (in the geometrically linear setting of vK theory) with choosing
a nontrivial reference configuration, for example, a cylindrically bent state rather
than a flat state. Thus the behaviour can be very different from that of a flat plate.
We first formulate the following weaker stability condition.

Definition 28. We say that J vK
0,G satisfies the stability condition (S2) if

J vK
0,G(u, v)+ ∫S

1
2 Q2(sym(∇′û + ∇′v ⊗ ∇′v̂)) dx ′ � 0

∀(u, v) ∈ X iso,lin, û ∈ X1, v̂ ∈ v0 + X2.

}
(196)
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Theorem 29. Suppose that S is a Lipschitz domain, (180) and (183) hold and
u0 ∈ W 1,2(S; R

2) and v0 ∈ W 2,2(S).

(i) If the stability condition (S1) holds then J vK
F,G attains its minimum on A, for

all F.
(ii) If the stability condition (S2) fails then inf J vK

F,(1+ε)G = −∞, for all ε > 0
and all F.

Remark 30. From the proof one can extract an abstract stability condition which
can be used simultaneously for assertions (i) and (ii). This condition requires that

J vK
0,G(U, V )+ 1

2
Q2(sym(M + ∇′v0 ⊗ ∇′V )) dx ′ � 0, (197)

for all (U, V ) ∈ X iso,lin and all L2 fields M which arise as weak L2 limits of fields
M j as in (199) with (U j , Vj ) ⇀ (U, V ) and λ j → ∞. We currently do not know
how to characterize the class of such fields M more explicitly. Some examples are
constructed in the proof of assertion (ii).

Proof. To prove assertion (i) we proceed as in the proof of Theorem 27 and we find
(U j , Vj ) satisfying (186) and (187), with U j perpendicular to X skew

1 . The expansion
of the energy now yields

J vK(u0 + λ2
jU j , v0 + λ j V j )

= 1

2
λ4

j

∫
S

Q2

(
sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2

)
dx ′

+ λ3
j

∫
S

B2(sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2
, sym(∇′v0 ⊗ ∇′Vj ) dx ′

+ λ2
j

∫
S

B2

(
sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2
, sym u0 + ∇′v0 ⊗ ∇′v0

2

)
dx ′

+ 1

2
λ2

j

∫
S

Q2(sym(∇′v0 ⊗ ∇′Vj )) dx ′

+ 1

24
λ2

j

∫
S

Q2((∇′)2Vj ) dx ′ − λ2
j G(U j )+ O(λ j ) (198)

Using the Cauchy–Schwarz inequality for B2 as before we can estimate the term
involving λ3

j by a term which can be absorbed into the λ4
j term and a term of order

λ2
j . Thus division by λ j yields as before

∥∥∥∥sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2

∥∥∥∥
L2

� C

λ j

and for a subsequence we have

M j := λ j

(
sym ∇′U j + ∇′Vj ⊗ ∇′Vj

2

)
⇀ M in L2. (199)
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Thus (198) implies that

1

2
λ2

j

∫
S

Q2(M j + sym(∇′v0 ⊗ ∇′Vj )) dx ′

+ 1

24
λ2

j

∫
S

Q2((∇′)2Vj )− λ2
j G(U j ) � O(λ j ).

Therefore

lim sup
j→∞

1

2

∫
S

Q2(M j+ sym(∇′v0 ⊗ ∇′Vj )) dx ′+ 1

24

∫
S

Q2(∇′)2Vj )−G(U j ) � 0.

(200)

From this we deduce again that J vK
0,G(U, V ) � 0 and we can finish the argument as

in the proof of Theorem 27.
To prove assertion (ii) it again suffices to assume that there exist (ū, v̄) ∈ X iso,lin,

û ∈ X1 and v̂ ∈ v0 + X2 such that

J vK
0,G(ū, v̄)+ 1

2

∫
S

Q2(sym(∇′û + ∇′v̄ ⊗ v̂) < 0. (201)

We then need to show infA J vK
F,G = −∞. Consider the test functions

uλ = λ2ū + λû, vλ = λv̄ + v̂.

Then

2 sym ∇′uλ + ∇′vλ ⊗ ∇′vλ = 2λ sym(∇′û + ∇′v̄ ⊗ ∇′v̂)+ ∇′v̂ ⊗ ∇′v̂.

Thus

lim
λ→∞

1

λ2 J vK
F,G(uλ, vλ)

= 1

2

∫
S

Q2(sym(∇′û + ∇′v̄ ⊗ ∇′v̂) dx ′ + 1

24
Q2((∇′)2v̄) dx ′ − G(ū)

< 0,

by (201). ��

9. Some facts about isometries and infinitesimal isometries

9.1. Construction of isometries

In this section we recall some general properties of isometries. This is a short-
ened version of the presentation in [13,30], where detailed proofs can be found.
We always deal with maps or functions defined on a bounded Lipschitz domain
S ⊂ R

2. To simplify the notation we write ∇ instead of ∇′ for the two-dimensional
gradient. Given a map V ∈ W 2,2(S) we seek to construct an isometric immersion

y : S → R
3, of the form y =

(
�

V

)
.
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We thus need to solve the equation

(∇ y)T ∇ y = (∇�)T ∇�+ ∇V ⊗ ∇V = I d.

One key result is that (for simply connected domains) the condition
det ∇2V = 0 is necessary and sufficient for this, see Theorem 33 below. The same
condition is sufficient and necessary to obtain a ’linearized’ isometric immersion,
that is, a solution of

∇W + (∇W )T + ∇V ⊗ ∇V = 0, (202)

where W : S → R
2, see Proposition 36 below.

To put these results in perspective we first review some general properties of
isometric immersions for the convenience of the reader. These properties are classi-
cal for smooth maps, but we will need them for W 2,2 maps. For a general W 2,2 map
y : S → R

3 we define the induced metric by gi j = y,i · y, j and we set n = y,1 ∧ y,2
and

Ai j = −y,i j · n. (203)

If y is an isometric immersion, that is, if gi j = δi j , then n is the normal to the image
of y and A is the second fundamental form.

Proposition 31. Suppose that S is a bounded Lipschitz domain and y ∈W 2,2(S; R
3)

is an isometric immersion. Then

y,i j = −Ai j n, (204)

Ai1,2 = Ai2,1, for i = 1, 2, (205)

in the sense of distributions. Moreover

det A = 0. (206)

Remark 32. If y is smooth then one can deduce from (206) that locally the image of
∇ y is either a constant or a smooth curve. In the latter case one can further conclude
that ∇ y is constant on lines defined by the kernel of A. It turns out that the latter
conclusion is still true for y ∈ W 2,2 (see Theorem 41 below). The proof, however,
requires a finer analysis [21,31,34,35]. The following arguments do not require
this geometric property, except for the fine regularity estimates in Section 9.3.

Now we come the announced result on the construction of isometric immersion
from linearized isometric immersions.

Theorem 33. [13] Let S be a bounded, simply connected domain with Lipschitz
boundary. Suppose that V ∈ W 2,2(S) and ||∇V ||L∞ < 1. Then there exists
� ∈ W 1,2(S) with det� > 0 and

(∇�)T ∇� = I d − ∇V ⊗ ∇V (207)
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if and only of

det ∇2V = 0. (208)

Moreover � is unique up to a rigid motion. If (208) holds and ||∇V ||L∞ � 1/2
then � can be chosen such that U := �− id satisfies

||∇2U ||L2 � C ||∇V ||L∞||∇2V ||L2 , (209)

||U ||W 2,2 � C ||∇V ||L∞||∇2V ||L2 + C ||∇V ||2L2 . (210)

Remark 34. We will see in Proposition 37 that for V ∈ W 2,2 the condition (208)
actually implies that V ∈ C1(S). If S is of class C1,α then ∇V is continuous up to
the boundary, see Theorem 39 below.

Remark 35. The precise equations for ∇� are as follows. Let a = ∇V,
g = I d − a ⊗ a and let

F = g1/2 = I d − λa ⊗ a, where λ = 1 −√1 − |a|2
|a|2 . (211)

Then

∇� =
(

cos θ − sin θ
sin θ cos θ

)
F, (212)

where the derivatives of θ are given by

θ, j = λ

1 − λ|a|2 a, j ∧ a. (213)

We also recall the classical counterpart of the theorem above for infinitesimal
isometries, see, for example, [13].

Proposition 36. Suppose that S is a simply connected, bounded Lipschitz domain.
Let V ∈ W 2,2(S). Then the equation

2 sym ∇W + ∇V ⊗ ∇V = 0 (214)

admits a solution W ∈ W 1,2(S; R
2) if and only if

det ∇2V = 0. (215)

If (215) holds then W ∈ W 2,2(S; R
2) and

Wi, jk = −V,i V, jk . (216)

In particular det ∇2Wi = 0, for i = 1, 2. Moreover W is uniquely determined up
to an affine map with skew-symmetric gradient. In particular one can choose W
such that

||∇2W ||L2 � C ||∇V ||L∞||∇2V ||L2 , (217)

||W ||W 2,2 � C ||∇V ||L∞||∇2V ||L2 + C ||∇V ||2L2 . (218)
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9.2. Simple regularity estimates

In general, functions in W 2,2(S) just fail to be in C1. The situation is, however,
better for isometric immersions. We begin with a scalar result.

Proposition 37. Suppose that V ∈ W 2,2(S) and det ∇2V = 0. Then V ∈ C1(S).
If Bρ(x) ⊂ BR(x) ⊂ S we have more precisely

oscBρ ∇V � C

(
ln

R

ρ

)−1/2

||∇2V ||L2(BR)
, (219)

where oscBρ f := diam f (Bρ).

Proof. Following Kirchheim [21] we consider the map fδ(x) = ∇V +δ(−x2, x1).
Then det ∇ fδ = δ2 > 0 and the assertion follows from the regularity results of
Vodyapunov and Goldstein [40] (see also [10,17,37]) in the limit δ → 0. ��

Now each component of an isometric immersion satisfies det ∇2 yi = 0 (see
Proposition 31). Hence we obtain the following corollary.

Corollary 38. Let S, V , � and U be as in Theorem 33. Then V , � and U are C1

in S. Moreover, for any compactly contained subset S′ we have

||∇U ||L∞(S′) � C(S′)||∇V ||L∞(S)||∇2V ||L2(S). (220)

9.3. Refined regularity estimates

We begin with a version of Proposition 37 which holds up to the boundary.

Theorem 39. Suppose that S is a C1,α domain (for some α > 0) and that
V ∈ W 2,2(S) with det ∇2V = 0. Then V ∈ C1(S̄) and for sufficiently small
ρ, R with 0 < ρ < R we have

oscBρ∩S ∇V � C

(
ln

R

ρ

)−1/2

||∇2V ||L2(BR∩S), (221)

In particular

||∇V ||L∞(S) � 1

|S|
∣∣∣∣
∫

S
∇V dx

∣∣∣∣+ C ||∇2V ||L2(S). (222)

Remark 40. The result does not hold for Lipschitz domains. Consider for exam-
ple the truncated cone {(x1, x2) : x1 ∈ (0, 1), |x2| < x1} and v(x) = v(x1) with
v′(0) = ∞ and

∫ 1
0 t |v′′(t)|2 < ∞. One may take , for example, v′(t) = | ln t |α ,

0 < α < 1/2. A slight modification shows that even C1 domains are not sufficient.
One needs a certain logarithmic modulus of continuity of the normal.

Proof. See [30]. ��
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In the setting of Theorem 33 we thus obtain for C1,α domains the estimates

||∇V ||L∞(S) � C ||V ||W 2,2(S) (223)

||∇U ||L∞(S) + ||∇2U ||L2(S) � C ||V ||2W 2,2(S). (224)

The proof of Theorem 39 uses the fact that the gradient of an isometric immer-
sion is either locally constant or constant along a line segment which touches ∂S at
both ends. This is classical for smooth maps. For C2 maps this follows from more
general results of Hartman and Nirenberg [16]. Under very weak assumptions
this characterization was obtained by Pogorelov [34, Chapter II], [35, Chapter
IX]. A shorter proof for W 2,2 maps was recently given by Pakzad [31], using
ideas of Kirchheim [21]. We state Pakzad’s version for scalar functions.

Theorem 41. Let S be a bounded Lipschitz domain. Suppose that V ∈ W 2,2(S)
with det ∇2V = 0. Consider the open set

S1 = {x ∈ S : ∇V is constant in a neighbourhood of x}. (225)

Then through every point x ∈ S\S1 there exists a line segment which intersects ∂S
at both ends and on which ∇V is constant.

The same characterization holds for an isometric immersion in W 2,2(S; R
3).

Remark 42. Note that W 1,2 functions on a two-dimensional domain have traces
on line segments. Thus constancy along a line segment is a well-defined property.
The statement for isometric immersions follows from that for scalar functions as
follows. By Proposition 31 the second fundamental form A is curl-free and thus can
be locally written as A = ∇ f . Since A is symmetric we also have locally f = ∇V .
Hence det ∇2V = det A = 0. Thus if f is not locally constant, it is constant on
a line segment. Now (204) and Lemma 45 imply that for each component yi the
gradient ∇ yi is constant on that segment.

The above characterization can also be used to approximate W 2,2 functions with
det ∇2V = 0 by functions in W 2,2 ∩ W 1,∞ satisfying the same constraint even for
general Lipschitz domains (cf. Remark 40). The idea is that each component of the
set {|∇V | < r} is bounded by line segments on which ∇V is constant and by pieces
of ∂S. If r is sufficiently big then by local regularity there is one large component
U of {|∇V | < r} and we obtain a good approximation by replacing V by a constant
in the regions between ∂U and ∂S. The precise statement is as follows.

Theorem 43. Suppose that S is a bounded Lipschitz domain. Let V ∈ W 2,2(S)
with det ∇2V = 0. Then there exists a sequence rk → ∞, open sets Sk ⊂ S and
Vk ∈ W 2,2(S) such that

Vk = V in Sk, ∇2Vk = 0 in S\Sk, (226)

|∇Vk | � k in S, |∇Vk | = k in S\Sk, (227)

lim
k→∞ |S\Sk | = 0. (228)

In particular ||∇2Vk ||L2(S) � ||∇2V ||L2(S), Vk → V in W 2,2(S) and det ∇2Vk =0.
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Proof. See [30]. ��
Remark 44. If � ⊂ ∂S is connected (that is, an interval) and ∇V = 0 on � (in the
sense of trace) then we can achieve that Vk = V and ∇Vk = ∇V = 0 on �. In fact
this equality holds in a small open set in S whose boundary contains �.

Above we have used the fact that if ∇u and ∇v are parallel in an L2 sense in S
and if v is constant on a line so is u. The following lemma gives a precise statement.

Lemma 45. Let � = {(x1, x2) : x2 = h(x1), x1 ∈ (0, a)} be a Lipschitz graph and
let

U = {(x1, x2) : h(x1) < x2 < h(x1)+ b, x1 ∈ (0, a)} (229)

be a strip above �. Suppose that u ∈ W 1,1(U ) and bk, vk ∈ W 1,2(U ) and

∇u =
K∑

k=1

bk∇vk . (230)

If the functions vk are constant on � (in the sense of trace) then u is constant on �.

Proof. See [13]. ��
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