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Abstract
Physiologically based kinetic (PBK) modelling offers a mechanistic basis for predicting the pharmaco-/toxicokinetics of 
compounds and thereby provides critical information for integrating toxicity and exposure data to replace animal testing 
with in vitro or in silico methods. However, traditional PBK modelling depends on animal and human data, which limits 
its usefulness for non-animal methods. To address this limitation, high-throughput PBK modelling aims to rely exclusively 
on in vitro and in silico data for model generation. Here, we evaluate a variety of in silico tools and different strategies to 
parameterise PBK models with input values from various sources in a high-throughput manner. We gather 2000 + publicly 
available human in vivo concentration–time profiles of 200 + compounds (IV and oral administration), as well as in silico, 
in vitro and in vivo determined compound-specific parameters required for the PBK modelling of these compounds. Then, we 
systematically evaluate all possible PBK model parametrisation strategies in PK-Sim and quantify their prediction accuracy 
against the collected in vivo concentration–time profiles. Our results show that even simple, generic high-throughput PBK 
modelling can provide accurate predictions of the pharmacokinetics of most compounds (87% of Cmax and 84% of AUC 
within tenfold). Nevertheless, we also observe major differences in prediction accuracies between the different parameterisa-
tion strategies, as well as between different compounds. Finally, we outline a strategy for high-throughput PBK modelling 
that relies exclusively on freely available tools. Our findings contribute to a more robust understanding of the reliability of 
high-throughput PBK modelling, which is essential to establish the confidence necessary for its utilisation in Next-Generation 
Risk Assessment.

Keywords Physiologically based kinetic (PBK) modelling · New approach methodologies (NAMs) · Next-generation risk 
assessment (NGRA) · High-throughput PBK modelling · Pharmacokinetics
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Tmax  Time to maximum concentration
PK  Pharmacokinetics
TK  Toxicokinetics
PBK  Physiologically based kinetic
PBPK  Physiologically based pharmacokinetic
PBTK  Physiologically based toxicokinetic
PO  Peroral

Introduction

Pharmacokinetics (PK) and toxicokinetics (TK), the study 
of the distribution of drugs or chemicals within the body 
over time, are fundamental for understanding the desired 
or undesired effects of compounds on human health. Physi-
ologically based pharmacokinetic (PBPK) or physiologically 
based toxicokinetic (PBTK) models, hereafter summarised 
as physiologically based kinetic (PBK) models, are a well-
established computational method for simulating the PK of 
drugs, or TK of chemicals (Jones and Rowland-Yeo 2013). 
PBK models incorporate anatomical and physiological 
knowledge about the body, such as tissue compositions and 
blood flow rates, as well as compound-specific properties 
like the lipophilicity or solubility of compounds, to simu-
late the absorption, distribution, metabolism, and excretion 
(ADME) processes that determine compound concentrations 
in the body. This makes PBK models powerful tools that 
enable a mechanism-based prediction of compounds’ con-
centration–time profiles in plasma and body tissues, even 
those otherwise inaccessible for direct sampling.

In the pharmaceutical industry, PBK models play a cru-
cial role in drug discovery and development, cross-species 
extrapolation, the guiding of dosing regimens, extrapola-
tion to special populations, and the prediction of potential 
drug–drug interactions (Thiel et al. 2015; Krstevska et al. 
2022). Their use reduces drug failure rates and optimises 
trial protocols (Edginton et al. 2008; Lin et al. 2022). Fur-
ther, PBK models are now also used outside the pharma-
ceutical field from which they originated. In toxicology, 
PBK models have become more widely adopted and aid in 
interpreting human biomonitoring data (Clewell et al. 2008), 
in the extrapolation from in vitro to in vivo data (Bouvier 
d'Yvoire et al. 2007; Blaauboer 2010; Yoon et al. 2012) and 
in chemical safety assessment (Paini et al. 2019, 2021). 
While pharmacology and toxicology have distinct objec-
tives, both aim to understand the concentrations of com-
pounds in the body, making PBK models a valuable tool in 
both fields.

Traditionally, generating PBK models is an iterative, 
time- and labour-intensive process. It is performed on a com-
pound-by-compound basis and requires animal and human 
data for model parameterisation and validation. This makes 
the use of PBK models low-throughput and limits their 

usefulness for chemical risk assessment. Further, there is 
now a general desire in both the pharmaceutical and toxico-
logical field to reduce the use of animal data to comply with 
the 3R principles (Törnqvist et al. 2014; Stokes 2015). For 
these reasons, there has been increasing interest to explore 
PBK modelling exclusively based on in vitro and in silico 
methods, as these methods have a greater potential to be 
applied in high-throughput and promise to reduce depend-
ence on animal data. This new approach to PBK model-
ling is sometimes called high-throughput PBK (HT-PBK) 
modelling (Pearce et al. 2017; Breen et al. 2021; Naga et al. 
2022; Khalidi et al. 2022) or Next-Generation PBK model-
ling (Paini et al. 2019; Punt et al. 2022a), either emphasising 
its rapid nature or that it does not rely on animal data.

The shift towards basing PBK modelling on in silico 
methods is further supported by recent advances in the 
fields of machine learning (ML) and artificial intelligence 
(AI) (Bender and Cortés-Ciriano 2021). ML and AI tech-
nologies are now increasingly being explored to provide 
rapid PK predictions without the need for new animal data. 
Sometimes, this is pursued using AI/ML methods to directly 
predict summary PK/TK parameters, like maximum con-
centration (Cmax) or area under the curve (AUC) values 
(Miljković et al. 2021; Fagerholm et al. 2021; Li et al. 2023). 
Other times, it is done by predicting mechanistically rel-
evant compound properties, like the lipophilicity, solubil-
ity or clearance of compounds, which can then be used as 
inputs for making PK predictions using mechanistic models 
(Danishuddin et al. 2022; Pillai et al. 2022; Fagerholm et al. 
2023; Mavroudis et al. 2023; Führer et al. 2024).

Until now, many in silico-based PK prediction efforts 
have focused on predicting rodent data (Schneckener et al. 
2019; Kamiya et al. 2021; Naga et al. 2022; Punt et al. 
2022b; Obrezanova et  al. 2022; Mavroudis et  al. 2023; 
Handa et al. 2023), presumably due to its greater availabil-
ity than human data. While valuable, the ultimate goal in 
pharmacology and toxicology is to yield human-relevant 
conclusions. In those instances where such approaches were 
developed for predicting human data, evaluations were usu-
ally performed against relatively small datasets, typically 
not exceeding a few dozen compounds (Punt et al. 2022a; Li 
et al. 2023; Fagerholm et al. 2023). Moreover, PK prediction 
validations frequently relied on summary PK parameters, 
like Cmax or AUC values (Miljković et al. 2021). While 
they can provide useful insights, summary parameters also 
obscure prediction inaccuracies and do not fully reflect all 
intricacies of PBK model quality. This is why PBK models 
are traditionally evaluated against full concentration–time 
profiles instead. Furthermore, a number of in silico tools 
capable of predicting compound properties required for PBK 
modelling are available already (Benfenati et al. 2013; Man-
souri et al. 2018; Xiong et al. 2021). However, to date, there 
has been no systematic evaluation of the usefulness of these 
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existing tools, or their various combinations, for HT-PBK 
modelling.

The aim of this work was to evaluate strategies for the 
high-throughput generation of human PBK models with 
input parameters from already available in silico-based prop-
erty prediction tools. To this end, we compiled a large data-
set of human in vivo concentration–time profiles after intra-
venous (IV) and oral (PO) administration (210 compounds, 
2235 concentration–time profiles). Then, we systematically 
evaluated the predictive performances of PBK models when 
parameterised with the different in silico tools, and further 
compared their results to in vitro and in vivo benchmark 
references. This allowed us to identify which of the in silico 
tools provide the best input parameters for PBK modelling, 
as well as to validate the overall accuracy of such HT-PBK 
models for predicting IV and PO PK profiles in humans.

Materials and methods

Retrieval of pharmacokinetic data

An extensive description of the PK data retrieval process 
can be found in the Supplementary Information (SI-1). In 
short, we downloaded all concentration–time data from the 
CvT-DB (Sayre et al. 2020), OSP Observed Data Reposi-
tory (Lippert et al. 2019), and PK-DB (Grzegorzewski et al. 
2021) databases. We selected data measured in healthy 
adult humans after single IV or PO administration, exclud-
ing studies potentially dedicated to special patient cohorts 
like paediatric, geriatric, or diseased populations. Further, 
studies were excluded when concomitant treatments that 
might influence compounds’ PK had occurred, as in drug-
drug interaction studies or with special treatments such as 
grapefruit administration. Next, we manually extended this 
dataset by adding available literature data for compounds of 
relevance to the EU-funded ONTOX project (Vinken et al. 
2021). We searched the literature for corresponding PK 
studies, for example using PKPDAI (Gonzalez Hernandez 
et al. 2021), and also did the same for compounds for which 
we had only obtained a single concentration–time profile 
before. From the retrieved literature, we manually extracted 
concentration–time profiles using WebPlotDigitizer version 
4.6 (https:// autom eris. io/ WebPl otDig itizer; Rohatgi 2022). 
Eventually, we had compiled a large dataset with multiple 
concentration–time profiles after IV and PO administration 
for most compounds. To ensure the consistency of the PK 
data, we visually checked dose-normalised plots of each 
compound and route and ensured that none of the PK study 
data were in extreme disagreement with each other. In the 
case of severe outliers, we manually investigated the causes 
of these differences, which in most cases were digitisation 
errors. We then either corrected such errors or, when it was 

unexplainable why individual studies were in disagreement 
with the other studies, we excluded those outliers from the 
dataset.

Retrieval of compound property data

To evaluate different PBK model parameterisation strategies, 
we retrieved or predicted the required input properties of all 
compounds of which we had obtained PK data. The mini-
mal input properties required for model parameterisation in 
PK-Sim are a compound’s lipophilicity, pKa values, plasma 
or hepatic intrinsic clearance and its fraction unbound (Fu) 
(Kuepfer et al. 2016). Additionally, the simulation of oral 
administration also requires values for the solubility and 
intestinal permeability.

We generated lipophilicity predictions using six dif-
ferent in silico tools: LogP values by OCHEM (https:// 
ochem. eu/ home/ show. do) and VEGA ALOGP (Ghose 
and Crippen 1987; Benfenati et al. 2013), LogD values by 
ADMETLab 2.0 (Xiong et al. 2021) and ADMETPredic-
tor version 11.0.0.3 (henceforth called “SimPlus”; https:// 
www. simul ations- plus. com/ softw are/ admet predi ctor), and 
predictions from Bayer’s in-house models of LogD and 
LogMA (Göller et al. 2020). We further converted LogP 
or LogD values to LogMA-type values using regression 
relationships taken from Yun and Edginton (2013), Endo 
et al. (2011), and Loidl-Stahlhofen et al. (2001). pKa values 
were predicted using ChemAxon (Lee and Crippen 2009) 
and ADMETPredictor, aqueous solubility values using four 
in silico tools named ProtoPRED (https:// proto pred. proto 
qsar. com/), OPERA (Mansouri et al. 2018), ADMETPredic-
tor, and ADMETLab 2.0. Further, Fasted State Simulated 
Intestinal Fluid (FaSSIF) and Fed State Simulated Intes-
tinal Fluid (FeSSIF) solubility was also predicted using 
ADMETPredictor.

Intestinal permeability was predicted in the form of 
CACO2 values using ADMETLab 2.0, ProtoPRED and 
OPERA, as well as in the form of MDCK permeability using 
ADMETLab 2.0 and ADMETPredictor. Fu values were pre-
dicted using seven different in silico tools: ADMETLab 2.0, 
ADMETPredictor, pkCSM (Pires et al. 2015), Watanabe 
et al. (2018), OPERA, VEGA logK and VEGA CORAL 
(Toma et al. 2018). Plasma clearance values were predicted 
using ADMETLab 2.0, pkCSM and the ScitoVation clear-
ance tool (https:// scito vation- testi ng. shiny apps. io/ clear 
ancet oolgui). Hepatocyte CLint values were predicted with 
OPERA, ADMETPredictor and ADMET-AI (Swanson et al. 
2023).

We also retrieved experimentally measured benchmark 
reference values of solubility, Fu, and clearance from pub-
lic sources when they were available. In particular, aqueous 
solubility (LogS) data were retrieved from Hughes et al. 
(2008), and the CompTox Chemicals Dashboard (Williams 

https://automeris.io/WebPlotDigitizer
https://ochem.eu/home/show.do
https://ochem.eu/home/show.do
https://www.simulations-plus.com/software/admetpredictor
https://www.simulations-plus.com/software/admetpredictor
https://protopred.protoqsar.com/
https://protopred.protoqsar.com/
https://scitovation-testing.shinyapps.io/clearancetoolgui
https://scitovation-testing.shinyapps.io/clearancetoolgui
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et al. 2017). Fu values were collected from Tonnelier et al. 
(2012), Yamazaki and Kanaoka (2004), Lombardo et al. 
(2002), Riley et  al. (2005), Sohlenius-Sternbeck et  al. 
(2010), Votano et al. (2006), Zhu et al. (2013), from the 
CompTox Chemicals Dashboard and the R httk package 
version 2.2.1 (Pearce et al. 2017). We also retrieved intrin-
sic hepatocyte clearance values from the R httk package 
version 2.2.1 (Pearce et al. 2017), as well as fitted PK-Sim 
intestinal permeability values from Willmann et al. (2004). 
Finally, we retrieved in vivo observed plasma clearance 
values from the literature, preferentially from IV studies, 
except for compounds for which no IV studies were avail-
able. When multiple values of a property were acquired for 
a single compound, the average values were used. And when 
experimental values of a compound were found in the pre-
viously described in silico tool’s training set, those values 
were also added to the experimental data retrieved from the 
aforementioned datasets.

Software, model parameterisation and performance 
metrics

All PBK model simulations were performed with the stand-
ard whole-body PBK model implemented in PK-Sim version 
11.1.137 (Willmann et al. 2003) executed from R using the 
ospsuite package version 11.1.143 and R version 4.2.2 (R 
Core Team 2022). For every retrieved PK study, a corre-
sponding PBK model simulation was performed by parame-
terising a generic PBK model with (a) all compound-specific 
parameter values as provided by the different tools in the 
different parameterisation strategies, (b) the study-specific 
parameters like route of administration, dose and infusion 
duration (IV) or formulation (PO), if provided in the PK 
data, and (c) demographic parameters like sex, age, weight, 
and height of subjects, if provided in the PK data. When 
demographic parameters were not available, PK-Sim default 
settings (healthy adult male) were used for simulation.

Predicted or measured hepatic intrinsic clearance (CLint) 
values were scaled to in vivo liver clearance as

Using the same values as Pearce et al. (2017) with a hepato-
cellularity of 1.1 ×  108 cells/g (Ito and Houston 2004), a liver 
density of 1.05 g/ml (Snyder et al. 1979) and the PK-Sim 
default liver volume.

For oral simulations, we also set a formulation-specific 
dissolution parameter (80% dissolution time of Lint80 for-
mulation as defined in PK-Sim), as some of the oral data 
was not obtained by administration of drugs in solution but, 
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for example, in the form of capsules or tablets which are not 
dissolved immediately upon administration. The values used 
for this were 25 min for “capsule” and 40 min for “tablet” 
formulations.

After simulating PBK models, the simulation results 
and the observed concentration–time data of corresponding 
PK studies were compared against each other and different 
model performance metrics were calculated to quantify PBK 
model quality: Log2-fold changes of predicted/observed val-
ues of Cmax, Tmax, AUC 0-last calculated using the linear 
up-log down method of the PKNCA package version 0.10.0 
(Denney et al. 2015), as well as the percentage of datapoints 
within different fold ranges (1.5-/2-/3-/5-/tenfold). Further, 
we evaluated the goodness of the entire concentration–time 
profile prediction against all datapoints in the in vivo PK 
profile calculating the Relative and Absolute Log2 Errors as

for all N datapoints in every concentration–time profile such 
that the Relative Log2 Error captures biases in prediction, 
i.e., over- or underestimates (systematic error), while the 
Absolute Log2 Error quantifies overall closeness of PBK 
model simulations to the observed concentration–time val-
ues (random error).

When we had obtained multiple concentration–time pro-
files of a single compound, we selected the median perfor-
mance value of all studies as the representative value for the 
compound to ensure that individual PK study outliers would 
not distort our results. To later summarise the overall perfor-
mance of full parameterisation strategies, we followed the 
same approach to integrate the results of the various com-
pounds in our dataset, so that when we refer to the Median 
Log2 Error, this means the median of the Log2 Error values 
of all the compounds in the evaluation dataset.

Results

PK data extraction and simulation strategy

After the retrieval of PK data from the different databases 
and the literature (SI-1), we initially obtained a total of 2235 
healthy human adult in vivo concentration–time profiles of 
210 unique compounds (Fig. 1A). For all compounds in 
this dataset, we then collected the various input data we 
intended to evaluate for PBK model parameterisation, for 
instance, lipophilicity values or predicted and measured 
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plasma clearances. This resulted in a complete dataset of 
718 IV profiles (143 compounds) and 1402 PO profiles (169 
compounds) for which all compounds also had the required 
input data. Notable exceptions to this were in vitro meas-
ured intrinsic hepatic clearance values (CLint), which were 
taken from httk and were available for only 97 compounds, 
and measured solubility values which were only available 
for 167 compounds. The 182 compounds in the final data-
set were a diverse set of small molecules with a molecular 
weight of less than 900 Dalton, different ionisation states 
at physiological pH, and mostly belonged to ECCS class 
2, suggesting that metabolism is driving their clearance 
(Fig. 2B).

Evaluating the performance of all PBK models param-
eterised from all the different input data sources against a 
large number of in vivo PK data requires many model simu-
lations and leads to long computation times. For this reason, 
we split the simulation and analysis of the HT-PBK model 
parameterisation strategies into three steps, to be able to sys-
tematically evaluate all relevant parameterisation decisions 
one-at-a-time while keeping the number of required model 
simulations manageable (here 15 + million).

Briefly summarised, the rationale for our simulation and 
analysis strategy was as follows (Fig. 2). In the first step, 
we investigated which of the physico-chemical parameter 
sources performed best for predicting the passive distribu-
tion of compounds within the body. We generated, simu-
lated, and evaluated every PBK model parameterisation 
strategy for all compounds of which IV data were avail-
able. To initially limit the variability, we only used in vivo 
observed plasma clearance and in vitro measured Fu values 
as high-quality benchmark reference values in the first step. 
In the second step, we then used the same IV data, but now 

only using the best physico-chemical parameter predictions 
as determined in the first round, and then tested various Fu 
and clearance prediction tools to understand which of these 
would result in the best PK predictions. In the third step, we 
finally used the oral PK data for evaluation, along with the 
best physico-chemical, Fu and clearance prediction sources 
as determined in the previous steps. Then, we systemati-
cally varied the various solubility and intestinal permeability 
values to evaluate how to best predict oral absorption and 
to assess how well the best full high-throughput strategies 
would perform overall.

Step 1: evaluation of physico‑chemical property 
predictions

In the first step, we systematically evaluated how to best set 
the physico-chemical PBK model parameters that determine 
the passive distribution of compounds within the body. In 
PK-Sim, these are primarily the lipophilicity of a compound, 
its pKa values, and the method used to predict the com-
pound’s partitioning coefficients. The lipophilicity values of 
compounds were predicted with six different in silico tools: 
three LogD prediction tools (SimPlus, ADMETLab, Bayer), 
two LogP tools (OCHEM and VEGA), and one LogMA tool 
(Bayer). pKa values were predicted using ChemAxon and 
SimPlus, and for comparison we also tested not providing 
pKa values, effectively assuming that all compounds were 
neutral. The five tested partitioning methods available in PK-
Sim were PK-Sim (Willmann et al. 2005), Schmitt (2008), 
Rodgers and Rowland (2006), Poulin and Theil (2002), 
and Berezhkovskiy (2004). To limit the variability in this 
first analysis, we used in vivo observed plasma clearance 
and experimentally measured Fu values as high-quality 

Fig. 1  Summary statistics of the collected PK dataset and of various 
compound properties. A Overview of the number of concentration–
time profiles and compounds during and at the end of the PK data 
retrieval process. B Physico-chemical and pharmacokinetic proper-
ties of compounds in the retrieved PK dataset. LogD, LogP, aqueous 

solubility and CACO2 permeability are given as the mean of values 
predicted in silico by the different prediction tools used in this study. 
Plasma clearance values are the median of in  vivo values collected 
from the literature. Ionisation at physiological pH (7.4) was predicted 
using ChemAxon
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benchmark values for simulation, so that any remaining PBK 
model simulation inaccuracies would only be due to mispre-
dictions of passive compound distribution alone. Then, we 
evaluated which physico-chemical prediction tools resulted 
in the best PBK model simulations by systematically testing 
all combinations of input parameter sources against our 718 
collected concentration–time profiles after IV administra-
tion. For each simulation, we calculated Median Relative 
and Absolute Log2 Errors as measures of prediction bias 
(systematic error) and precision (random error), respectively.

Out of the tested parameters, we found the strongest fac-
tor determining PBK model accuracy was which lipophi-
licity values were used for PBK model building (Fig. 3A). 
Tools that predicted LogP performed overall worse than 
those predicting LogD or LogMA lipophilicity values. Like-
wise, the performances of tools predicting the same type 
of lipophilicity also differed. For example, LogD values 
predicted by the Bayer tool worked better for PBK model 
parameterisation than the ones coming from ADMETLab 
or SimPlus (ADMETPredictor). The higher errors of the 

LogP tool based predictions were correlated with a general 
bias for underprediction of the PK data. When investigating 
this effect on the individual compound level (Fig. 3E–J), it 
became apparent that for some compounds the LogP tools 
predicted very high lipophilicity values (> 5), which then 
led to a severe underprediction of those compounds’ plasma 
concentrations, while the same compounds’ PK was pre-
dicted reasonably well when using LogD or LogMA values 
for PBK model parameterisation.

The results of the partitioning methods were less straight-
forward. We observed a stable hierarchy in the predictive 
performances of the different methods, with the Berezhk-
ovskiy method performing best and the Schmitt method 
performing worst under most circumstances (Fig.  3A). 
However, this difference in performance was only observed 
clearly when using lipophilicity values from the less well-
performing LogP prediction tools, whereas when using 
the better lipophilicity values (LogD and LogMA Bayer) 
the difference in prediction precision between the differ-
ent partitioning methods was only marginal (Fig. 3C). We 

Fig. 2  Conceptual overview of the simulation and analysis strategy. 
A For each compound various PBK models were generated using 
all combinations of available input parameter sources. Their perfor-
mance was then compared against gathered concentration–time pro-
files. B The simulation and evaluation of PBK models built from 
the various parameterisation sources was split into three steps, each 
focusing on the evaluation of a separate level of ADME processes. 

C Model performance was first evaluated at the level of individual 
simulations as the difference between model simulation and observed 
data. Then, for every parameterisation strategy, the median error of 
all compounds was used as a measure of the performance of that 
parameterisation strategy. Finally, comparing all performances of 
all strategies using the same input property prediction tools allowed 
benchmarking of the various tools against each other
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further investigated this at the individual compound level 
(SI-Fig. 1), and we observed that the methods of Poulin & 
Theil and of Berezhkovskiy were not generally more pre-
dictive for the majority of compounds. Rather, we found 
that Poulin & Theil and Berezhkovskiy were less negatively 
impacted by the very high lipophilicity values predicted by 
the LogP tools for some compounds (SI-Fig. 2). It was only 

their robustness to these high lipophilicity outliers, which 
decreased the observed performance of the other partitioning 
methods but not theirs, that made them appear to be superior 
overall (SI-Fig. 3).

For the provision of predicted pKa values, there was 
no strong trend observable, even though one may have 
expected that partitioning methods that use pKa values 

Fig. 3  Comparison of predictive performances of different physico-
chemical parameter sources (step 1). Combinations of all available 
PBK model parameterisation sources were evaluated against the col-
lected IV dataset. Clearance and fraction unbound were parameter-
ised using in  vivo and in  vitro benchmark reference values, respec-
tively. The top row shows Median Absolute Log2 Errors (A) and 

Median Relative Log2 Errors (B) for different lipophilicity prediction 
methods. The middle row shows Median Absolute Log2 Errors (C) 
and Median Relative Log2 Errors (D) for different partitioning meth-
ods. The bottom rows (E–J) show the Relative Log2 Errors of pre-
dictions for every individual compound for the different lipophilicity 
prediction tools used. Dashed lines indicate tenfold errors
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as input should perform better when those are provided. 
However, this was only consistently the case for Rodgers 
& Rowland partitioning, and only when it was used with 
LogP lipophilicity values (SI-Fig. 4). The other methods 
using pKa values, namely the methods of Schmitt, Poulin 
& Theil and Berezhkovskiy, performed sometimes better, 
sometimes worse, depending on which lipophilicity pre-
diction tool was being used for simulation.

Finally, we evaluated two approaches to further improve 
lipophilicity predictions for PBK modelling. The first 
approach was that of using consensus values of the dif-
ferent prediction tools, e.g., for LogP, simply by taking 
the mean of the values predicted by the different tools. 
We did this with both the tools for LogP, as well as for 
LogD, respectively, and, interestingly, observed oppo-
site effects (SI-Fig. 5). Averaging the LogP predictions 
indeed resulted in better predictivity of the PBK models 
than any of the individual LogP tools. For the LogD, how-
ever, averaging produced better results than the worst tool 
(SimPlus) but worse results than the better tools (Bayer, 
ADMETLab).

The second strategy we tested to improve lipophilicity 
predictions was to use regression equations that empiri-
cally relate LogP or LogD values to membrane affinity 
(LogMA). We obtained two equations for converting LogP 
values (Yun et al. 2014; Endo et al. 2011) and generated 
a comparable equation for LogD values based on the 
data presented in Loidl-Stahlhofen et al. (2001). But we 
found that only one of the three strategies, namely using 
the Yun et al. (2014) equation, consistently improved PK 
predictions, regardless of which LogP tool or partitioning 
method it was used with (SI-Fig. 6). Whereas the two other 
methods showed at best mixed results, or even worsened 
predictions in the case of our self-derived equation based 
on the Loidl-Stahlhofen et al. (2001) data. The improve-
ment in PK predictions, achieved by converting LogP to 
LogMA values using the equation from Yun et al. (2014), 
suggests that the tested LogP prediction tools may not 
be inherently less accurate than the LogD tools. Rather, 
they may just provide a type of lipophilicity value that is 
less suitable for the PBK modelling of certain compound 
classes.

Given these results, we concluded that there was no obvi-
ously superior partitioning method, nor that providing the 
pKa values was consistently providing better predictions. 
However, the lipophilicity values provided by the Bayer 
tools (LogD and LogMA) did appear to give superior predic-
tions compared to the other lipophilicity prediction sources. 
For this reason, we proceeded with the mean of those tools 
as the best lipophilicity prediction, as well as all partition-
ing and pKa prediction methods into the next round for the 
evaluation of clearance and Fu prediction tools (step 2).

Step 2: evaluation of clearance and fraction 
unbound predictions

After evaluating the physico-chemical properties determin-
ing passive distribution, we continued with the tools predict-
ing key parameters depending on organism biology, spe-
cifically the Fu and clearance of compounds. We used the 
same IV PK data for validation as in the first step, but only 
using the best physico-chemical predictions as determined 
previously, while this time varying the Fu and clearance 
predictions.

For the prediction of the Fu, we had obtained values from 
seven in silico tools, as well as in vitro measured benchmark 
values. As expected, we found that the importance of Fu 
predictions depended on the clearance prediction approach 
used. When using in vivo plasma clearance benchmark val-
ues for model parameterisation, only marginal differences 
between the performances of the different Fu prediction 
tools were observed (SI-Fig. 7). But when predicting in vivo 
clearance using in vitro measured hepatic CLint values, we 
observed larger differences between the different Fu pre-
diction tools (Fig. 4A, B). Our experimentally determined 
Fu values yielded better PK predictions than any in silico 
tool, which confirmed the validity of our benchmark refer-
ence values. However, the differences between the predic-
tion qualities were overall relatively small. All Fu predic-
tion tools led to Median Absolute Errors within the two- to 
threefold range when using in vitro CLint values and there 
was no obvious systematic bias for under- or overprediction 
for any of the Fu prediction tools.

For the prediction of compound clearance, three in silico 
tools directly predicting plasma clearance, as well as our 
own previously used in vivo plasma clearance benchmark 
values, were available. Further, we had retrieved in vitro 
measured hepatic intrinsic clearance (CLint) values from 
httk, as well as in silico predictions of CLint values from 
OPERA, SimPlus and ADMETAI.

Before comparing the performances of the different 
clearance prediction strategies, we first evaluated whether 
activating passive renal excretion would improve or worsen 
PBK model simulations. Plasma clearance values already 
represent the total effect of all systemic clearance processes, 
so that adding passive renal clearance on top of them should 
theoretically lead to less accurate results. Whereas PBK 
models are expected to yield better PK predictions when 
passive renal excretion is incorporated if their in vivo clear-
ance prediction is scaled up from hepatocyte-derived CLint 
values.

Overall, our results were consistent with these expec-
tations. When adding passive renal clearance on top of 
the in vivo observed plasma clearance, prediction quality 
became worse and shifted from no bias to underprediction, 
whereas in vitro hepatocyte-based clearances improved 
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from stronger to weaker overprediction of the PK data (SI-
Fig. 8). For in silico predicted clearances, the situation was 
less straightforward. For instance, in silico CLint values pre-
dicted by SimPlus and ADMETAI already led to underpre-
dictions of PK, which was then further exacerbated by addi-
tionally adding passive renal clearance. However, given the 
theoretical considerations, we continued our simulations by 
adding passive renal clearance on top of hepatocyte-scaled 
CLint, but not plasma clearance values.

Similar to the Fu, the in vivo observed plasma clearance 
benchmark values were the best input source for PBK model 
parameterisation (Fig. 4C). All clearance prediction strate-
gies yielded profoundly worse results than the benchmark 
in vivo clearance-based strategy, and almost all of them gave 
Median Absolute Errors worse than the twofold range. How-
ever, the differences between the clearance prediction tools 
were much larger than those between the Fu prediction tools. 
Out of the in silico predicted plasma clearance tools we 
found that ADMETLab gave the best predictions, followed 
by pkCSM and ScitoVation. While ADMETLab and pkCSM 
plasma clearance predictions led to a slight overprediction 

of the PK data, ScitoVation plasma clearance values led to a 
severe underprediction. We further confirmed these findings 
by directly comparing our in vivo plasma clearance values 
to the in silico predicted values of the different tools (SI-
Fig. 9), which showed that ADMETLab’s plasma clearance 
values correlated best with our in vivo measured benchmark 
values.

In vitro hepatocyte CLint values from httk were the 
second-best clearance prediction source, after our in vivo 
plasma clearance benchmark values. Similar to what was 
observed for the in silico tools predicting plasma clear-
ance values, the values from in silico CLint prediction tools 
also resulted in substantially worse PK predictions than the 
in vitro benchmark values. The best-performing CLint pre-
diction tool was OPERA, followed by SimPlus and ADME-
TAI. However, we noted that for some compounds OPERA 
provided CLint values identical to the in vitro CLint values 
retrieved from httk (SI-Fig. 10). This suggested that those 
values were not true in silico predictions, which implies that 
the OPERA predictions may not be directly comparable to 
the other tools. Overall, when comparing in silico tools 

Fig. 4  Comparison of predictive performances of different fraction 
unbound and clearance prediction sources (step 2). Combinations 
of all available parameterisation sources were evaluated against the 
collected IV dataset. Results shown were generated using bench-
mark values for parameterisation of the other parameters, i.e., in vitro 
CLint values from httk when comparing Fu predicting sources, and 
in  vitro measured Fu values when comparing clearance predicting 
sources, as well as the mean of the two previously determined best 
lipophilicity prediction tools (LogD and LogMA Bayer) as lipophi-

licity values. The top row shows the Median Absolute Log2 Errors 
(A) and the Median Relative Log2 Errors (B) for different fraction 
unbound prediction methods. The bottom row shows the Median 
Absolute Log2 Errors (C) and the Median Relative Log2 Errors (D) 
for different clearance prediction methods. CL refers to plasma clear-
ance values (measured or predicted), and CLint signifies hepatocyte 
intrinsic clearance (measured or predicted). In vitro measured CLint 
values from httk were only available for a subset of compounds (97 
out of 143)
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predicting plasma clearance values to the tools predicting 
hepatocyte CLint, most plasma clearance tools resulted in 
better PK predictions than most hepatocyte CLint predic-
tion tools.

Step 3: evaluation of solubility and intestinal 
permeability

In the third evaluation step, we investigated how to best pre-
dict parameters required for simulating oral administrations. 
In PK-Sim, these are primarily the solubility and intestinal 
permeability of a compound. We had obtained experimen-
tally measured benchmark values of aqueous solubility, as 
well as predictions of aqueous solubility from four in silico 
tools (OPERA, ADMETLab, ProtoQSAR, SimPlus), and of 
Fasted State Simulated Intestinal Fluid (FaSSIF) and Fed 
State Simulated Intestinal Fluid (FeSSIF) solubility from 
SimPlus. For the intestinal permeability, no benchmark ref-
erence values were obtained. Instead, CACO2 permeability 
predictions from three in silico tools were used (OPERA, 
ADMETLab, ProtoQSAR), as well as MDCK permeability 

predictions from ADMETLab and SimPlus. Finally, we also 
obtained intestinal permeability predictions using the PK-
Sim internal prediction equation, which is based on com-
pounds’ molecular weight and lipophilicity (LogMA Bayer).

For the evaluation, we initially only used data from PK 
studies in which the administered formulation implied that 
the compound was already dissolved at administration (e.g., 
labelled as “solution” or “suspension”) and not in a solid 
state (e.g., “tablet” or “capsule”), since this additionally 
requires knowledge about the dissolution times of these 
formulations. We tested the mentioned prediction tools 
against the 286 concentration–time profiles (94 compounds) 
from those liquid formulation studies (Fig. 5). However, no 
substantial difference was observed between the different 
parameterisation sources for either property. In the case of 
solubility, all in silico tools gave results similar to each other, 
and also comparable to the results of our experimentally 
measured benchmark values. Likewise, all intestinal perme-
ability prediction tools gave comparable results.

Further, we observed a general trend for overpredic-
tion of the velocity of oral absorption which resulted in a 

Fig. 5  Comparison of predictive performances of different solubil-
ity and intestinal permeability prediction sources (step 3). Combina-
tions of all available parameterisation sources were evaluated against 
the collected PO dataset (dissolved formulations). Results shown 
were generated using benchmark values for parameterisation of other 
parameters, i.e., in vivo plasma clearances, in vitro fraction unbound 
values and the mean of the two previously determined best lipophi-
licity prediction tools (LogD and LogMA Bayer) as lipophilicity val-
ues. The top row shows the Median Absolute Log2 Errors (A) and the 
Median Relative Log2 Errors (B) for different solubility prediction 

methods. The bottom row shows the Median Absolute Log2 Errors 
(C) and the Median Relative Log2 Errors (D) for different intestinal 
permeability prediction methods. For comparison of solubility pre-
dictions, the intestinal permeability values used were the PK-Sim 
internal equation values (PK-Sim eq.). For comparison of intestinal 
permeability sources, the solubility values used were SimPlus FaSSIF 
values. Results for the PK-Sim internal equation were generated with 
the Bayer LogMA predictions. Intestinal permeability predictions are 
either CACO2 or MDCK permeability predictions
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consistently strong underprediction of Tmax values, and 
a slight tendency for overprediction of Cmax values (SI-
Fig. 11). We hypothesised that this might be because the in 
silico tools do not predict the PK-Sim specific intestinal per-
meability directly but instead were trained to predict in vitro 
measured CACO2 or MDCK permeabilities. However, when 
using such in vitro measured permeabilities, the standard 
procedure would be to scale these values, for example, using 
reference compounds, to the PK-Sim intestinal permeability 
parameter. Only when no measurements for reference com-
pounds exist would one use the in vitro measured perme-
ability values directly without scaling.

To take this into account, we extracted fitted PK-Sim 
intestinal permeability values of 56 compounds from Will-
mann et al. (2004) and then, for every in silico tool, deter-
mined a scaling factor based on the relationship between 
the values predicted by every tool and the assumed to be 
optimal values. While we found that there was a clear trend 
for the CACO2 values to be larger than the optimal PK-Sim 
intestinal permeability values (SI-Fig. 12), incorporating this 
scaling did not substantially improve PK predictions overall 
(SI-Fig. 13). Even though, it did reduce the strength of the 
bias in the underprediction of Tmax values.

Finally, we evaluated whether our conclusions based on 
the 94 compounds from liquid formulation studies would 
also hold true for the compounds of which we only had data 
from solid formulation studies. The simulation of these 
formulations required at least one additional parameter to 
describe the dissolution velocity of the solid formulations, 
which in reality will vary between different formulations. 
To at least determine which values might be appropriate 
average values, we tested different Lint80 dissolution times 
(10–30 min for capsules, 15–60 min for tablets) and then 
compared which average dissolution time would yield errors 
similar to what we had observed for the liquid formula-
tions. Based on this we decided to use 25 min for formula-
tions labelled “capsules” and 40 min for “tablets”, which 
extended the oral dataset for evaluation to 1200 PO con-
centration–time profiles (161 compounds). Using this larger 
dataset, all previously outlined conclusions were confirmed.

Predictive performances of full HT‑PBK strategies

After evaluating step-by-step how to best predict every 
compound property required for HT-PBK modelling, we 
eventually assessed how well different types of HT-PBK 
strategies would predict the collected PK data overall. We 
identified the best strategies out of three classes. (1) As a 
benchmark comparison, we determined the performance of 
the best strategy overall, using in vivo and in vitro deter-
mined benchmark values of plasma clearance and Fu. (2) 
Additionally, the best fully in silico-based strategy was iden-
tified, for which we also considered property predictions 

coming from proprietary tools. (3) And finally, the best in 
silico strategy based exclusively on freely available tools was 
determined. The respective parameterisation strategies and 
their performances are presented in Table 1. Unsurprisingly, 
we found the strategy using benchmark reference values to 
be the most predictive. However, even fully in silico-based 
strategies yielded acceptable predictivity with 87%, or 89%, 
of Cmax values being predicted within tenfold when using 
proprietary, or freely available prediction tools, respectively. 
Even more importantly, due to overestimation of the velocity 
of oral absorption in all strategies, the Cmax mispredictions 
outside the tenfold range were mostly over- not underpre-
dictions and therefore would lead to conservative, health-
protective risk assessment conclusions. The performance of 
the best in silico-based HT-PBK approach is presented in 
Fig. 6 and that of the other strategies is shown in SI-Fig. 14.

Discussion

We here assembled a large dataset of healthy human in vivo 
concentration–time profiles (200 + compounds), as well as 
in vitro and in silico generated property predictions from 
various sources required for PBK modelling of the corre-
sponding compounds. We systematically compared all pos-
sible HT-PBK modelling strategies to understand which 
prediction tools, and combinations thereof, perform best 
for parameterising PK-Sim to predict concentration–time 
data. Thereby, we quantified the expected accuracy of such 
HT-PBK predictions for typical pharmaceutical compounds.

For some input properties, especially lipophilicity and 
clearance, we found major differences in PBK model per-
formances, while for other properties there was little varia-
tion. This may be due to larger differences in the predictive 
performances of the respective tools or due to differences 
in the sensitivity of the PBK model towards the different 
input parameters. Based on this observation, we conclude 
that generating and comparing PBK model simulations with 
different prediction tools for these critical parameters might 
be required to achieve more robust PBK model predictions. 
In contrast, for less sensitive parameters that may be of 
less importance. This could either be achieved by averag-
ing property predictions of different tools, or by simulat-
ing ensembles of different PBK model variants. The latter 
would further allow to generate a distribution of simulation 
outcomes, thereby providing a confidence interval around 
simulation predictions. Such an explicit representation of 
uncertainty could then, for example, also be useful for con-
ducting probabilistic risk assessment.

We also performed a large-scale comparison of the per-
formances of frequently for PBK modelling used partition-
ing methods and found that all methods implemented in PK-
Sim performed similarly well when based on high-quality 
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lipophilicity values. However, for very high lipophilicity val-
ues, Poulin & Theil and Berezhkovskiy resulted in better PK 
predictions than other methods. It is likely though that more 
subtle differences in the performances of the different parti-
tioning methods were not detectable with our approach, due 
to the intrinsic variability of our heterogeneous PK dataset 
gathered from several databases and the literature. Of note, 
even different PK profiles of the same compound but from 

different studies were not exactly identical to each other, 
which implies that our dataset contains intrinsic variability 
that even an ideal generic PBK model could never capture 
entirely. Consequently, this may have been the reason why 
we were unable to detect more subtle performance differ-
ences between the partitioning methods when using the 
highest quality lipophilicity values.

Fig. 6  Predictive performance of the best fully in silico-based HT-
PBK modelling strategy (proprietary). HT-PBK models were gen-
erated following the approach outlined in Table  1, then model 
simulations were compared against the collected PO dataset of 161 
compounds (dissolved and solid formulations). A Predicted against 
observed Cmax values of all concentration–time profiles in the 
PO dataset. B Predicted against observed AUC values. C Predicted 
against observed Tmax values. Mind that A–C show individual con-

centration–time profiles with some compounds only represented 
by a single and others by multiple PK profiles. D The median Log2 
Cmax and AUC predicted/observed values of each compound in the 
PO dataset. Dashed lines indicate tenfold errors. E–G Representative 
concentration–time profile predictions, and corresponding in vivo PK 
data, of three compounds embodying different levels of prediction 
quality. Blue colour marks the same representative compounds in D 
(colour figure online)
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Besides their absolute errors, we also investigated 
whether any PK prediction strategies had biases for over- or 
underprediction. Our most noteworthy observation, apart 
from some tools having their individual biases, was that 
all HT-PBK modelling strategies seemed to overestimate 
the velocity of oral absorption, leading to an overprediction 
of Cmax and an underprediction of Tmax values. It is not 
fully clear why this occurred, as many factors influence oral 
absorption in vivo. Some of our fundamental assumptions, 
such as that “suspension” formulations were fully dissolved 
at administration, may have been inaccurate. Further, we 
parameterised our PBK models with a simple passive intes-
tinal permeability parameter, thereby ignoring gut efflux 
transporters which are known to sometimes have profound 
impacts on the intestinal absorption of compounds. Ignoring 
such effects may have led to more rapid and full oral absorp-
tion in our simulations than occurred in vivo.

CACO2 or MDCK permeability values should, theo-
retically, account for such transporter effects (Volpe 2011). 
However, to be used in PK-Sim, they require scaling. 
Interestingly, our attempt to perform such a scaling using 
previously published fitted intestinal permeability values 
(Willmann et al. 2004) did indeed correct the biases in the 
underprediction of Tmax values, but the absolute PK pre-
diction’s errors did not improve. One possible explanation 
for this result is that underpredictions of the velocity of 
oral absorption may have had a more severe impact on PK 
predictions than its overprediction. And for this reason, we 
observed lower Absolute Log2 Errors when using CACO2 
values directly, despite scaled CACO2 values being poten-
tially more correct representations of in vivo oral permeabil-
ity. For applications in the pharmaceutical domain, it may 
therefore be of interest to further investigate such CACO2 
scaling approaches. However, for toxicological applications, 
an overprediction of the velocity of oral absorption may even 
be preferable since it leads to a health-protective bias in risk 
assessments.

Similar to gut transporters, we were also unable to 
explicitly account for the contribution of transporter effects 
in other body tissues that may potentially alter compounds’ 
PK. Performing high-throughput assessments requires a 
generic modelling approach and readily available, homo-
geneous input data from the same sources to be able to 
systematically compare the predictive performances of 
strategies. Unfortunately, such data were not available for 
transporters. Further, our approach solely focused on par-
ent compounds and neglected the issues of bioactivation 
and metabolism, since the formation of metabolites cannot 
be predicted quantitatively. Also, it would be valuable to 
gain more insight into which compound properties (phys-
ico-chemical properties, clearance pathways, transporter 
affinity, etc.) are correlated with lower or higher prediction 

accuracies, since we do observe large differences between 
prediction accuracies among different compounds.

Because most compounds in our dataset were typical 
pharmaceutical compounds, it is further likely that many 
of them were present in the training data of the in silico 
tools we evaluated, potentially biasing our analysis. This was 
most evident for the CLint values gathered from OPERA, 
which, for some compounds, were identical to the in vitro 
CLint values from httk. It might be insightful to analyse in 
more detail how prediction accuracies of in silico tools differ 
between those compounds on which the models were trained 
originally and those compounds that were outside their train-
ing datasets. Nevertheless, from a practical point of view, 
the fact that some in silico tools may be able to recall data 
from larger or higher quality training datasets may also be 
interpreted as a strength of these tools.

Eventually, we showed that it is possible to generate reli-
able HT-PBK models for the prediction of IV and PO PK of 
pharmaceuticals. In principle, it is also possible to apply our 
approach to other classes of compounds, although the valida-
tion of this is hampered by the absence of comparable con-
centration–time data for validation. Potential applications 
of such HT-PBK modelling strategies are vast, and there 
have been many efforts recently in both pharmacology and 
toxicology to establish such strategies for different use cases 
and based on different approaches. Many of them, however, 
relied exclusively on rodent data for their validation (Sch-
neckener et al. 2019; Kamiya et al. 2021; Naga et al. 2022; 
Punt et al. 2022b; Obrezanova et al. 2022; Mavroudis et al. 
2023; Handa et al. 2023; Führer et al. 2024). Others did 
perform predictions for humans but relied in their validation 
of prediction quality on summary PK parameters, like Cmax 
or AUC values (Punt et al. 2022a; Miljković et al. 2021; Li 
et al. 2023). The problem with such approaches is that they 
do not consider the full information about the quality of 
the predicted concentration–time curve as a whole. Hence, 
they are unable to deconvolute the biases of individual 
input sources, that can potentially compensate each other, 
and which may obscure inaccuracies in model parameterisa-
tion. This is why we here relied on full concentration–time 
profiles, and multiple summary parameters, for evaluation, 
as it would be done by an expert for the traditional develop-
ment of a PBK model.

Another now frequently used strategy is to use ML and 
AI techniques to directly predict summary PK parameters, 
like the Cmax, AUC or bioavailability of compounds (Sch-
neckener et al. 2019; Miljković et al. 2021; Fagerholm 
et al. 2021; Obrezanova et al. 2022). However, so far, this 
approach did not perform as well as using in silico pre-
dicted properties to then inform mechanistic simulations 
based on PBK models. For this reason, we here followed 
the latter strategy of using ML models to predict mecha-
nistically meaningful compound properties to then input 
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these into the PK-Sim PBK model, which incorporates 
ab initio expert knowledge about known body physiology 
into our high-throughput predictions. Besides yielding 
more accurate predictions of PK parameters, this approach 
maintains the explainability of our models and their pre-
dictions. Since every PBK model parameter has a physi-
ological meaning, the approach further enables investiga-
tion into why certain compounds might be mispredicted 
by different strategies and to understand which property 
mispredictions are responsible for inaccurate PK predic-
tions. Furthermore, this approach makes it possible to lev-
erage PBK models’ ability to mechanistically extrapolate 
predictions, for example, to special populations or other 
exposure scenarios.

Finally, the here presented HT-PBK modelling is a prom-
ising tool for applications in both pharmacology and toxicol-
ogy. In drug discovery, HT-PBK models have the potential 
to aid rapid compound selection and optimisation decisions. 
While HT-PBK modelling may not initially match the accu-
racy of traditional PBK models, it can provide a base model 
which may then be progressively refined throughout the drug 
development cycle to meet escalating demands for accuracy 
and detail. For toxicological risk assessment, accurate pre-
dictions of internal organ concentrations are key to replace 
animal testing with in vitro and in silico methods. Such pre-
dictions can, for example, assist with the prioritisation and 
classification of chemicals, or provide valuable information 
for quantitative in vitro to in vivo extrapolation. For a new 
methodology like HT-PBK modelling to be used in Next 
Generation Risk Assessment, however, it is key to validate 
its predictive performance, to generate the high confidence 
required for its regulatory use. Using a large, heterogene-
ous PK dataset, we here showed that the outlined HT-PBK 
modelling strategies are fit-for-purpose for such applications.
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