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Abstract
Grouping/read-across is widely used for predicting the toxicity of data-poor target substance(s) using data-rich source 
substance(s). While the chemical industry and the regulators recognise its benefits, registration dossiers are often rejected 
due to weak analogue/category justifications based largely on the structural similarity of source and target substances. Here 
we demonstrate how multi-omics measurements can improve confidence in grouping via a statistical assessment of the 
similarity of molecular effects. Six azo dyes provided a pool of potential source substances to predict long-term toxicity to 
aquatic invertebrates (Daphnia magna) for the dye Disperse Yellow 3 (DY3) as the target substance. First, we assessed the 
structural similarities of the dyes, generating a grouping hypothesis with DY3 and two Sudan dyes within one group. Daphnia 
magna were exposed acutely to equi-effective doses of all seven dyes (each at 3 doses and 3 time points), transcriptomics and 
metabolomics data were generated from 760 samples. Multi-omics bioactivity profile-based grouping uniquely revealed that 
Sudan 1 (S1) is the most suitable analogue for read-across to DY3. Mapping ToxPrint structural fingerprints of the dyes onto 
the bioactivity profile-based grouping indicated an aromatic alcohol moiety could be responsible for this bioactivity similarity. 
The long-term reproductive toxicity to aquatic invertebrates of DY3 was predicted from S1 (21-day NOEC, 40 µg/L). This 
prediction was confirmed experimentally by measuring the toxicity of DY3 in D. magna. While limitations of this ‘omics 
approach are identified, the study illustrates an effective statistical approach for building chemical groups.

Keywords  NAM · Omics · Multi-omics · Bioactivity similarity · Bioactivity profile-based grouping · Replicability 
confidence

Introduction

Grouping/read-across (G/RAx) is a widely used alternative 
(non-animal) method for chemical risk assessment, utilising 
knowledge of a well-characterised source substance to pre-
dict the toxicity of a target substance. Traditionally, the first 
step is to group substances into a chemical category based 
on similar structural parameters and ideally similar toxico-
logical responses and/or shared metabolism, described as a 

grouping hypothesis. The second step is to read across the 
known toxicity data–for a specific endpoint–from the source 
to the target, often referred to as data-gap filling. G/RAx has 
been used to predict at least one toxicological endpoint in 
up to 75% of chemical registration dossiers submitted to the 
European Chemicals Agency (ECHA), frequently being used 
for ecotoxicological and higher-tier human health endpoints 
(European Chemicals Agency 2020, 2023). In the US Envi-
ronmental Protection Agency’s (EPA) High Production Vol-
ume Chemicals Challenge Program, this alternative method 
has satisfied 55% of toxicity endpoints across 1,420 chemi-
cals, which would otherwise have required extensive animal 
testing (Bishop et al. 2012). G/RAx is supported by exten-
sive guidance, for example the Organisation for Economic 
Cooperation and Development (OECD) Guidance on Group-
ing of Chemicals No. 194 (OECD 2017) and ECHA’s Read-
Across Assessment Framework (RAAF; European Chemi-
cals Agency 2015). The latter describes how to construct and 
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report an (eco)toxicological G/RAx as part of a regulatory 
submission under REACH legislation Annex XI.

While the chemical industry, regulators and policymak-
ers recognise the benefits of G/RAx as reducing time, costs 
and use of animals compared to standardised toxicity testing 
guidelines, several challenges to its effective implementation 
remain, particularly in forming a robust grouping hypothesis. 
Industry has relied heavily on building grouping hypotheses 
based only on similar structural and/or other physicochemi-
cal parameters, leading to a high rejection rate of REACH 
registration dossiers. Strengthening the group by incorporat-
ing a similarity assessment of mechanistic (eco)toxicologi-
cal effects is a potential solution for reducing uncertainty in 
G/RAx, with the OECD stating that “the most compelling 
evidence in support of a read-across hypothesis is informa-
tion on a common mode of action of the substances and a 
mechanistic rationale for their common biological behav-
iour” (OECD 2017). The question arises as to which experi-
mental strategies could be used to generate the bridging data 
for the source and target substances, informing on the mode 
of action (MoA). Arguably, for data-poor targets, a broad 
range of potential MoAs should be examined to ensure that 
any significant toxicological effects are included in the simi-
larity assessment. Therefore, ‘omics technologies, such as 
transcriptomics (i.e., systematic study of gene expression 
providing information on upstream pathway perturbations) 
and metabolomics (i.e., study of the levels of small-molecule 
endogenous metabolites, providing information on more 
downstream functional responses), are a highly relevant type 
of approach to apply as part of a bridging study.

This case study aimed to demonstrate how multi-omics 
measurements can improve the confidence in forming cat-
egories of data-poor chemicals, enabling the read-across 
of a toxicological endpoint to fill a data gap for a target 
substance. This work builds on earlier demonstrations of 
metabolomics and transcriptomics-based G/RAx (Grimm 
et al. 2019; Sperber et al. 2019; OECD 2020; Nakagawa 
et al. 2021; Vrijenhoek et al. 2022) by implementing and 
demonstrating the value of combining ‘omics methodolo-
gies for the ecotoxicological risk assessment of azo dyes. 
Disperse Yellow 3 (DY3) is the target substance and long-
term toxicity to aquatic invertebrates (Daphnia magna) is 
the apical endpoint to be read across. Azo dyes are widely 
used in the textile industry and account for up to 70% of all 
dyestuff in textile production (Brüschweiler & Merlot 2017). 
Some have been shown to have negative impacts on human 
and environmental health, the former associated with the 
release of aromatic amines resulting in genotoxicity, muta-
genicity and/or carcinogenicity (Chung 2016; Brüschweiler 
& Merlot 2017). Azo dyes can negatively impact aquatic 
health in the environment due to decreased light penetration 
and photosynthetic activity, resulting in oxygen deficiency 
and dysregulation of biological cycles (Przystaś, et  al., 

2012). Azo dyes have also been shown to disrupt micro-
bial communities in soil, and to disrupt the germination and 
growth of plants (Lellis et al. 2019). Our first objective was 
to investigate six potential source substances (all azo dyes), 
applying conventional approaches to generate a grouping 
hypothesis based on structural similarity and quantitative 
structure–activity relationship (QSAR) profiling. The sec-
ond objective was to apply multi-omics approaches (polar 
and apolar metabolomics, transcriptomics) to generate bio-
activity profiles for each azo dye, measured in acute toxicity 
tests with D. magna, and then to calculate the ‘bioactivity 
similarity’ between the dyes. The metabolomics datasets 
were also analysed to seek evidence for internal exposure 
of D. magna to each azo dye. Quantifying the similarities 
of the bioactivity profiles generates an alternative grouping 
hypothesis, which may either substantiate or disprove the 
structure-based grouping hypothesis. The third objective was 
to map the structural fingerprints of the azo dyes onto the 
alternative grouping hypothesis to discover which structural 
features could be driving the bioactivity profile-based group-
ing. The fourth objective was to read across the endpoint, 
long-term toxicity to Daphnia, from the selected source 
substance to fill the data gap for DY3. The chronic toxicity 
of DY3 was measured experimentally to attempt to confirm 
the read-across prediction and thereby add confidence to this 
‘omics bioactivity profile-based G/RAx workflow.

Materials and Methods

Azo dyes

Criteria were developed to guide the substance selec-
tion, including regulatory and experimental considera-
tions (Online-Resource 1, Table S1). Seven azo dyes were 
selected comprising one target (Disperse Yellow 3, DY3) 
and six potential source substances; Sudan Red G (SRG), 
Sudan 1 (S1), Disperse Orange 25 (DO25), Disperse Orange 
61 (DO61), Disperse Red 1 (DR1) and Disperse Red 13 
(DR13). All dyes had a purity ≥ 95% and were purchased 
from LGC Standards (UK), except for DO25 purchased from 
Sigma-Aldrich (UK). Identifiers are provided in Online-
Resource 1, Table S2 and the structures presented in Online-
Resource 1, Fig. S1.

Conventional grouping approaches

Experimental (where available) and predicted physico-
chemical properties for the azo dyes are provided in Online-
Resource 1, Table S3. (Q)SAR alerts based on chemical 
fragments were collected for each azo dye using several pro-
filers in the OECD QSAR Toolbox (v4.3), including ECO-
logical Structure Activity Relationships (ECOSAR v2.0) 
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classification and OASIS acute toxicity mode of action. A 
conventional grouping hypothesis was formed by manually 
examining these (Q)SAR alerts. Confidence in this group-
ing was increased by calculating the structural similarities 
between the dyes based on Tanimoto coefficients, represent-
ing each dye by a ToxPrint chemotype (729 bits encoding 
physicochemical properties of atoms, bonds and structural 
fragments). Using the pvclust package (version 2.2–0; 
Suzuki & Shimodaira 2006), the binary distance (method.
dist = "binary") was calculated between every pair of dyes, 
which were assimilated into a distance matrix for all dyes 
and hierarchically clustered (method.hclust = "ward.D2") 
with multiscale bootstrap resampling (n = 10,000 bootstrap 
pseudo-replications). Clusters where the pvclust calculated 
selective inference (SI) value was ≥ 0.95, were strongly sup-
ported by the data.

Daphnia magna exposure studies

The overall workflow for the acute D. magna toxicity stud-
ies to generate samples for the multi-omics measurements 
is shown in Online-Resource 1, Fig. S2, and described 
in detail in Online-Resource 1, Section S1.1, comprising 
acute dose range-finding, benchmark dose modelling and 
further acute exposures. In brief, acute (48-h) toxicity of the 
azo dyes was determined following OECD test guidelines 
(OECD 2004) after consulting published data to establish 
crude dose ranges, using ≥ 5 nominal doses of each dye 
(Online-Resource 1, Tables S4–S5). Dimethyl sulfoxide 
(DMSO) was used as a carrier solvent for all samples (final 
concentration 0.1%). Benchmark dose (BMD) modelling 
was conducted on 48-h immobilisation data using PROAST, 
exporting lower and upper estimates of BMD (BMDL and 
BMDU, respectively), from which doses for the ‘omics study 
were derived. The multi-omics experimental design included 
three sampling time points (2-h, 24-h and 48-h) and three 
dose groups plus untreated controls (0.1% DMSO) per dye, 
which were conducted in six exposure batches (Online-
Resource 1, Table S6). Doses were phenotypically anchored 
to 10% Daphnia immobilisation (‘high’ dose), from the 
BMD modelling (i.e. CES of 0.1); ‘medium’ and ‘low’ 
doses were sequentially half-log10 lower due to the steep-
ness of the dose–response curves. Each replicate sample for 
‘omics analysis contained ten to twelve D. magna (< 24-h 
old) per exposure vessel, with n = 6 vessels per treatment 
group. At each sampling time point, D. magna from each 
exposure vessel were divided equally for metabolomics and 
transcriptomics (each containing 5–6 animals per replicate 
sample). Samples were collected for ‘omics, flash-frozen in 
liquid nitrogen and stored at − 80 °C. D. magna chronic (21-
d) toxicity was determined per OECD test guidelines (OECD 
2012) and described in Online-Resource 1, Section S1.2.

Polar and apolar metabolomics: sample extraction, 
data acquisition, processing and feature 
annotations

Detailed methods are described in Online-Resource 1, 
Section S1.3. In brief, polar and apolar metabolites were 
extracted from frozen D. magna and separately analysed by 
nanoelectrospray direct infusion mass spectrometry (DIMS) 
metabolomics, as reported previously (Southam et al. 2017). 
The MEtabolomics standaRds Initiative in Toxicology 
(MERIT) best practice guidelines (Viant et al. 2019) were 
followed, including use of a system suitability quality con-
trol (QC), intrastudy QC and process blank samples. Data 
acquisition was conducted using an Orbitrap Elite mass 
spectrometer (Thermo Scientific) interfaced with a Triversa 
NanoMate nanoelectrospray source (Advion). DIMS data 
were processed using DIMSPy, implemented in Galaxy, 
including steps to remove any dye-related features from the 
endogenous feature matrices prior to statistical analysis. The 
processed data matrices of feature intensities from the polar 
and apolar DIMS assays are provided in Online-Resources 2 
and 3, respectively. Features were putatively annotated using 
the Birmingham mEtabolite Annotation for Mass Spectrom-
etry (BEAMS) pipeline (https://​more.​bham.​ac.​uk/​beams/).

Untargeted xenobiotic analysis

An untargeted xenobiotic data analysis workflow was 
applied to each of the DIMS metabolomics feature matri-
ces, as described previously (Bowen et al. 2023) with slight 
modifications, to attempt to confirm the internal exposure 
of D. magna to each azo dye and to discover metabolic bio-
transformation products (BTPs). The workflow was applied 
to each ‘blank-filtered’ feature matrix, with settings to reject 
all endogenous biochemicals, as detailed in Online-Resource 
1, Section S1.4. Dye-related m/z features were putatively 
annotated by matching to a list of in silico predicted phase 
I and II BTPs (Systematic Generation of potential Metabo-
lites, SyGMa; (Ridder & Wagener 2008)) for each azo dye. 
Confidence in these annotations was increased when their 
normalised intensities were observed to correlate with the 
nominal exposure doses of the azo dyes.

Transcriptomics: RNA extraction, data acquisition, 
processing and gene annotations

Detailed methods are described in Online-Resource 1, Sec-
tion S1.5. In brief, total RNA was extracted from frozen 
Daphnia samples using the Agencourt RNAdvance Tis-
sue Kit (Beckman Coulter); only n = 4 replicate samples 
were analysed per treatment group. Expression data were 
obtained using TempO-Seq® and a custom BioSpyder plat-
form consisting of 1991 D. magna genes (Online-Resource 

https://more.bham.ac.uk/beams/
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4, Table S7). This probe set contains Daphnia genes with 
homology to human genes from the Molecular Signature 
Database and S1500 + gene set in addition to a subset 
identified during a pilot D. magna exposure to DR1 (data 
not shown). Raw counts were summarised to gene level 
and genes with low counts (< 10 across all samples) were 
removed. Count normalisation and differential expression 
analysis were conducted in R using the DESeq2 package. 
The processed data matrix of gene counts from the transcrip-
tomics assay is provided in Online-Resource 5. Analyses 
were performed on treated and control samples for each dye 
separately, treating each dose/time combination as a separate 
sample type (n = 4).

Statistical analyses to group substances using single 
and multi‑omics data

Following standard processing of the three ‘omics data 
streams described above, the transcriptomics, DIMS polar 
and apolar metabolomics were grouped using the workflow 
summarised in Online-Resource 1, Fig. S3. All statistical 
analyses were conducted in the R environment (version 
R-4.0.3), using the structToolbox (version 1.3.1; Lloyd et al. 
2021) DESeq2 (version 1.30.0; Love et al. 2014) and pvclust 
packages (version 2.2–0; Suzuki & Shimodaira 2006). First, 
principal component analysis (PCA) was applied to identify 
any outlying samples in each ‘omics dataset for each dye, 
with samples lying outside a 95% confidence limit being 
removed. Next, independent two-sample t-tests were applied 
across all molecular features (genes and m/z features), com-
paring dye-specific untreated controls with each of nine 
treated dose/time groups (per dye), to gain insights into 
the magnitude of perturbations induced by each treatment. 
Also, these t-statistics served as the basis for unsupervised 
hierarchical cluster analysis (HCA) to visualise the similari-
ties of the ‘omics bioactivity profiles between treatments. 
Specifically, HCA was performed on the vector normalised 
(i.e., convert to a unit vector on a feature-by-feature basis) 
t-statistics (with n = 10,000 multiscale bootstrap pseudo-rep-
lications), utilising Euclidean distance and Ward’s linkage 
method (“ward.D2” method; Murtagh & Legendre 2014). 
HCA was applied to three different combinations of input 
data: t-statistics derived from the polar and apolar metabo-
lomic responses only, transcriptomic responses only and 
a concatenated matrix of t-statistics from all three ‘omics 
datasets. In addition, for each of these combinations of input 
data, two further approaches were applied: first, HCA of all 
(typically 9) dose/time groups per dye, for all 7 dyes; and 
secondly, HCA of 3 dose groups per dye, for all 7 dyes, col-
lapsing the time points to a single point by selecting only the 
largest transcriptional and largest metabolic perturbations 
(i.e., using the highest absolute t-statistic across the 3 time 
points, referred to as the ‘maximum-perturbation’ approach). 

Collectively, these HCA analyses enabled comparisons of 
single- versus multi-omics-based grouping; an overview of 
the effects of dose and time per dye, yielding relatively com-
plex dendrograms; and more interpretable clustering of the 
seven dyes at low, medium and high doses.

Results and discussion

Establish a grouping hypothesis based on structural 
similarity and QSAR profiling

Define grouping/read‑across scenario and assimilate 
existing data

This study corresponds to an ECHA RAAF scenario 2: 
Analogue approach, for which the read-across hypothesis 
is based on different compounds with qualitatively similar 
properties. The target is DY3, and we sought to use new 
and existing data to determine the most suitable analogue 
from a pool of six structurally similar azo dyes. The toxico-
logical endpoint to be read across from source to target is 
long-term toxicity to aquatic invertebrates. First, all seven 
dyes’ chemical structures, purity profiles and physico-chem-
ical properties were collected (Online-Resource 1, Fig. S1, 
Tables S2–S3, respectively). All the dyes comprise an azo 
functional group and substituted aromatic rings, providing 
an initial structure-based justification for the group. Since 
the reported purity for each dye is ≥ 95.0%, it was assumed 
that impurities do not contribute significantly to any toxico-
logical effects observed in this study. A comparison of the 
physico-chemical properties is described in Online-Resource 
1, Table S3 and Section S2.1. Existing aquatic toxicity data 
for the seven azo dyes are summarised in Online-Resource 
1, Table S4. The NOEC and LOEC chronic aquatic toxicity 
for S1, DY3 and DO61 was measured and reported as part 
of this study (Online-Resource 1, Table S4).

Conventional grouping hypothesis based on structural 
similarity and QSAR profiling

The seven azo dyes were grouped using structural similarity 
(ToxPrint chemotypes) and (Q)SAR profiling to formulate a 
conventional grouping hypothesis, against which the ‘omics 
bioactivity profile-based grouping would be compared. The 
grouping presented here uses hierarchical cluster analysis 
(HCA), ensuring consistency across the conventional and 
‘omics approaches, visualising group membership in den-
drograms. HCA groups substances based on the distances 
between their underlying data, and is widely used to analyse 
high-dimensional datasets. First, we applied HCA to parti-
tion the seven dyes into categories based on chemical struc-
ture. Structure-based grouping using ToxPrint chemotypes 



Archives of Toxicology	

(Fig. 1) reveals two distinct groups of dyes: (1) S1, SRG and 
the target DY3 and (2) DR1, DR13, DO25 and DO61. There-
fore, we initially concluded that the two Sudan dyes are the 
more suitable analogues for the read-across to DY3. Next, 
multiple (Q)SAR profilers relevant to aquatic toxicity were 
applied using the (Q)SAR Toolbox (v4.3), including aquatic 
toxicity classification by ECOSAR, acute aquatic toxicity 
MOA by OASIS, OECD HPV Chemical Categories and US-
EPA New Chemical Categories (Fig. 1). These results indi-
cate that the seven dyes may be classified into three groups: 
(1) DY3, (2) Sudan dyes and (3) disperse orange and red 
dyes. However, the ECOSAR profiler identifies both DY3 
and the Sudan dyes as belonging to phenols, suggesting that 
these three dyes (including the target) may form one group, 
which would be more consistent with the findings from the 
purely structural comparison. In conclusion, applying con-
ventional approaches generates a grouping hypothesis with 
the target, DY3, most likely belonging to the same small 
group as the two Sudan dyes, though with some uncertainty.

Determine an alternative grouping hypothesis 
based on bioactivity similarity using multi‑omics 
data

Acute aquatic toxicity of azo dyes to Daphnia

First, 48-h dose range-finding studies were conducted with 
Daphnia and benchmark dose modelling applied to deter-
mine the nominal aqueous concentrations that induced 10% 
immobilisation, referred to as the ‘equi-effective dose’ for 
each dye (Online-Resource 1, Table S5). As DO25 did not 
immobilise the Daphnia at any dose investigated, its equi-
effective dose was set to the highest equi-effective dose 
across the six other dyes. The equi-effective doses were 
used for two purposes: (i) to determine the relative poten-
cies of the dyes to ensure the ‘worst-case approach’ crite-
ria were met for the read-across (Sect. "Read-across apical 
endpoint and confirm the prediction experimentally"), and 
(ii) to define the three nominal exposure concentrations, per 
dye, used to generate samples for multi-omics measurements 
(Online-Resource 1, Table S6). The ‘omics exposure study 
comprised three doses (‘low’, ‘medium’ and ‘high’, plus 
untreated controls) and three sampling time points (2-, 24- 
and 48-h), hence nine dose/time groups per dye, and a total 
of 63 treatment groups in the study. Two 48-h groups were 
discarded for S1 (medium and high doses) and one for DO61 
(high dose) due to high Daphnia immobilisation, reducing 

Fig. 1   Structural similarity of the seven azo dyes derived from hier-
archical cluster analysis of the binary distance calculated between 
each pair of dyes, using 33 non-zero structural fragments of Tox-
Print chemotypes to encode the structures. Selective inference (SI) 
bootstrap replicability confidence values are shown at each node 
when ≥ 95%, indicating the dyes form two distinct groups: (1) DY3, 
S1, SRG, and (2) DO25, DO61, DR1, DR13. (Q)SAR profiler alerts 
are shown for each substance obtained from ECOSAR 2.0 (ECO-
SAR), US EPA New Chemical Categories (EPA), OECD HPV 

Chemical Categories (OECD) and OASIS as follows: (1) Belongs 
to phenols, (2) Belongs to phenols, amides & phenol amines, (3) 
Belongs to neutral organics, (4) Belongs to phenols (acute toxicity), 
(5) Belongs to neutral organics, (6) Belongs to m,p-cresols, (7) Reac-
tive unspecified alert by acute aquatic toxicity. The groups are colour-
coded according to analogous profile descriptors across different pro-
filers: green classifies phenols, dark orange classifies neutral organics, 
blue classifies m,p-cresols, yellow classifies reactive unspecified alert 
by acute aquatic toxicity mode of action
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the total number of groups for multi-omics measurements 
to 60.

Untargeted xenobiotic analysis confirms azo dye internal 
exposure and metabolism

Polar and apolar metabolomics data were generated as 
described in Sect. "Polar and apolar metabolomics: sample 
extraction, data acquisition, processing and feature annota-
tions", primarily to detect endogenous biochemical pertur-
bations, but were also analysed using an untargeted xenobi-
otic workflow to seek confirmation of internal exposure of 
D. magna to each azo dye, and to attempt to discover any 
metabolic BTPs. All seven dyes were detected in the Daph-
nia extracts (Table 1), predominantly in the apolar DIMS 
dataset, consistent with their high log Kow values (Online-
Resource 1, Table S3). The relative intensities of several of 
the dyes increased across the three nominal exposure doses, 
confirming dose-dependent internal exposure of the Daph-
nia (Online-Resource 1, Fig. S4). In addition, the untargeted 
xenobiotic workflow discovered BTPs for the target DY3 
and potential analogues S1, SRG and DO25, summarised in 
Table 1 and detailed in Online-Resource 1, Tables S8 and 
S9. While these observations provided evidence for internal 
exposure to each dye, incorporating the biotransformation 
data into the grouping hypothesis was beyond the scope 
of this paper. However, the potentially considerable added 
value of these data for supporting a grouping hypothesis by 
providing evidence of shared metabolism (i.e. shared BTPs 
between target and source substances) should be noted.

Daphnia multi‑omics bridging study of azo dyes

Polar and apolar metabolomics (both using direct infusion 
mass spectrometry) and transcriptomics (using the BioSpy-
der TempO-Seq® 1991-gene array) responses were meas-
ured as described in Sects. "Polar and apolar metabolomics: 
sample extraction, data acquisition, processing and feature 
annotations" and "Transcriptomics: RNA extraction, data 
acquisition, processing and gene annotations", primarily to 
detect endogenous molecular perturbations induced by expo-
sure to each dye, at three doses and three time points. Each 
of the large-scale raw datasets (e.g., a total of 2,204 DIMS 

analyses were conducted on 760 Daphnia samples) was pro-
cessed individually, generating a positive ion DIMS polar 
metabolomics dataset (referred to below as ‘polar metabo-
lomics’; 245 features, median relative standard deviation 
(RSD) of intrastudy QC samples of 26.6%), a positive ion 
DIMS apolar dataset (‘apolar metabolomics’; 183 features, 
median RSD of intrastudy QC samples of 21.8%) and a tran-
scriptomics dataset (1889 genes after processing). Of the 63 
possible treatment groups (7 dyes, 3 doses, 3 time points), 
three were not measured due to high Daphnia immobilisa-
tion (48-h medium and high doses for S1, 48-h high dose for 
DO61). Two were removed by quality-filtering during data 
processing and PCA (2-h low- and medium-dose groups for 
DO25), leaving 58 dose/time groups for statistical analysis; 
note that due to the integrative multi-omics analyses con-
ducted, if ‘omics data were missing for one data stream, 
that treatment group was removed from all further analyses. 
Figure 2 confirms that polar metabolic, apolar metabolic 
and transcriptional changes were induced by exposure to 
the azo dyes, represented graphically as the percentage of 
features that changed significantly (p < 0.05) per assay, for 
each of 58 treatment groups. In general, a greater percent-
age of features demonstrated significant changes at the later 
24- and 48-h time points than at 2-h, with a similar lower 
level of response in low-dose samples versus medium and 
high concentrations.

Bioactivity similarity of azo dyes using multi‑omics 
molecular data

The bioactivity similarity of the seven azo dyes was calcu-
lated and visualised to determine which of the six poten-
tial source substances exhibits a molecular effect that most 
closely resembles the response of D. magna to the target, 
DY3. Hierarchical cluster analysis (HCA) was performed 
initially on all 58 remaining treatment groups (all dyes, 
doses and time points), using the DIMS polar and apolar 
metabolomics data (Online-Resource 1, Fig. S5a), tran-
scriptomics data (Fig. S5b) and all three ‘omics datasets 
combined (Fig. S5c). One anticipated pattern observed was 
the grouping of low-, medium- and high-dose groups (which 
span a concentration range of less than one order of mag-
nitude), conditional on the time points, suggesting that the 

Table 1   Azo dye parent and 
metabolic biotransformation 
products detected and putatively 
annotated in the DIMS polar 
and apolar metabolomics 
datasets

*Tentative annotation as fold-change filtering criteria were not met

Extract measured by 
DIMS metabolomics

DY3 S1 SRG DR1 DR13 DO25 DO61

Parent chemical detected Apolar Yes Yes Yes Yes Yes Yes* Yes
Polar Yes Yes Yes* Yes No Yes No

No. of BTPs detected Apolar 4 1 2 0 0 1* 0
Polar 2 0 1 0 0 0 0
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‘omics workflow is achieving its intended purpose of group-
ing similar molecular responses. This pattern was particu-
larly evident when all three datasets were combined, with 14 
of the 18 remaining dye/time treatments demonstrating low, 
medium and high doses clustered together.

Next, an approach was implemented to reduce the com-
plexity of the visualisation, reducing the 2-h, 24-h and 48-h 
data to a single time point by comparing and then selecting 
only the largest transcriptional and largest metabolic pertur-
bations, referred to as the maximum-perturbation approach 
(Sect. "Statistical analyses to group substances using single 
and multi-omics data"). HCA was performed on this reduced 
21-treatment group dataset using the DIMS polar and apo-
lar metabolomics (Fig. 3a), transcriptomics data (Fig. 3b) 
and all three ‘omics datasets combined (Fig. 3c). Again, the 
clustering of the low, medium and high doses for a major-
ity of dyes is evident when selected ‘omics modalities are 
used and is observed for all seven dyes when analysing the 
combined ‘omics data. Overall, a higher confidence in the 
grouping pattern (i.e., occurrence of more high bootstrap 
replicability confidence values of > 80% using approximately 
unbiased (AU) tests of non-selective inference) is achieved 
when analysing the three concatenated ‘omics datasets. This 

demonstrates value in combining a range of upstream and 
downstream molecular changes into the bioactivity simi-
larity statistical assessment. Of principal interest is which 
source substance groups closest to the target. Grouping 
based on chemical structures (Fig. 1) indicated that S1 and 
SRG were equally similar to DY3, forming a distinct group 
separated from the remaining four dyes. This structure-based 
grouping is strongly supported by the bioactivity profile-
based grouping (94% bootstrap replicability confidence, i.e., 
6% probability that the grouping is not true) despite a small 
ratio of the average distance between this group (DY3, S1, 
SRG) and the neighbouring group (DO25, DR1) over the 
average intergroup distances (Fig. 3c). Furthermore, bio-
activity profile-based grouping indicated that S1 is more 
similar to the target DY3 than SRG (89% bootstrap repli-
cability confidence using AU tests of non-selective infer-
ence). By contrast, among the 10,000 pseudo-replicates, no 
dendrograms were found to have an equivalent cluster where 
all dose groups of DY3 and SRG are grouped into a single 
cluster at the exclusion of other substances. Therefore, we 
conclude that, based on a statistical assessment the ‘omics 
data have substantiated the grouping hypothesis derived 
using chemical structure, confirming that S1 and SRG are 

Fig. 2   Bar charts showing proportion of the total number of features 
detected within each ‘omics dataset (apolar metabolomics—red; polar 
metabolomics—green; transcriptomics—blue) that are differentially 
abundant (p < 0.05) between treated and control samples of Daphnia 

magna neonates collected following 2-, 24- and 48-h exposures to 
low (top panel), medium (mid panel) and high doses (bottom panel) 
of seven azo dyes (S1, SRG, DO25, DO61, DR1, DR13, DY3)
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the only valid analogues. Additionally, the ‘omics data 
uniquely revealed that the bioactivity of S1 is most similar 
to the target and therefore this dye is selected as the source 
for read-across to DY3.

Identify structural features that may drive 
the alternative grouping hypothesis

Structural fingerprints as ToxPrint chemotypes of the azo 
dyes were mapped to the alternative grouping hypothesis 
(derived from the bioactivity similarity assessment, shown 
in Fig. 3) to detect which structural features could be driv-
ing the bioactivity profile-based grouping. The aim was to 
strengthen the grouping hypothesis by associating the struc-
tural and biological elements. ToxPrints consist of a binary 
encoding of 729 structural fragments (e.g. atomic, bond and 
chain types) associated with biological properties and modes 
of action (Yang et al. 2015). Using the non-zero structural 

fragments (i.e., those fragments that are present in a dye) of 
the ToxPrints chemotypes that are shared within substance 
groups (red shading, Fig. 4), only two aromatic alcohol frag-
ments are unique to the group comprising DY3, S1 and SRG. 
This finding suggests that the aromatic alcohol moiety could 
be responsible for driving the ‘omics responses observed in 
D. magna. A more extensive analysis for all 7 dyes is pre-
sented in Online-Resource 1, Table S10.

Read‑across apical endpoint and confirm 
the prediction experimentally

Given the structure-based grouping proposed S1 and SRG 
as potential source substances, and the ‘omics bioactivity 
profile-based grouping uniquely demonstrated that S1 is 
the most suitable analogue for read-across to DY3, we then 
predicted the D. magna chronic reproductive toxicity of the 
target; i.e., we read across a 21 days NOEC of 40 µgL−1 and 

Fig. 3   Dendrograms produced by the HCA grouping workflow using 
t-statistics derived from a polar and apolar metabolomics data com-
prising 428 features, b transcriptomics data comprising 1889 features 
and c all three ‘omics datasets combined, from samples of Daphnia 
magna neonates collected at the exposure time producing the maxi-
mum biomolecular perturbations at low, medium and high doses of 
seven azo dyes (DY3, S1, SRG, DR1, DR13, DO25, DO61), corre-
sponding to 21 treatment groups. X-axis values indicate the distance 
measurements (the sum of branch lengths) among any pair of doses 
and substances. The values at the top of the branches indicate % boot-

strap replicability confidence (using approximately unbiased (AU) 
tests of non-selective inference) for nodes that are grouping all three 
doses for the same substance (for a-c), and confidence in the ‘omics 
grouping of the seven dyes substantiating the hypothesis derived from 
the structure-based grouping shown in Fig. 1 (shown in c only). The 
labels on all three dendrograms are coloured according to the mem-
bership of the seven azo dyes within three multi-omics defined groups 
(panel c: red, blue, green) to facilitate comparisons with single-omics 
grouping (panels a, b)
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LOEC of 60 µgL−1 from S1 (Online-Resource 1, Table S4) 
to DY3. This meets the criteria in the RAAF for a conserva-
tive prediction (the ‘worst-case approach’, reading from a 
more potent to less potent substance) as the potency of S1 
is higher than for DY3 (based upon the measured D. magna 
acute toxicity). To confirm this read-across prediction and 
add confidence to the bioactivity profile-based grouping/
read-across workflow presented here, the chronic toxicity of 
DY3 was measured experimentally in D. magna. Although 
the predicted log Kow values for these two substances differ 
somewhat (Table S3), suggesting some difference in toxicity, 
the measured values were similar to the predicted 21 days 
NOEC and LOEC for DY3 (Fig. 5). To add further confi-
dence to the bioactivity profile-based grouping results, the 
chronic toxicity of DO61, which groups away from DY3, 
was considered. The measured toxicity for DO61 was much 
lower than DY3, confirming that it would not be an appropri-
ate source substance (Fig. 5). Together these results demon-
strate that the ‘omics bioactivity profile-based grouping can 
improve the confidence in analogue selection for data-poor 
substances.

Limitations of multi‑omics workflow for chemical 
grouping

While this study successfully demonstrated how multi-
omics technologies can add value to a chemical group-
ing workflow, limitations were identified. The most major 
concern is the evidence generated for the analogue jus-
tification. Undeniably, DY3 (target) and S1 (source) do 
share common structural features (Fig. 1) and also exhibit 
quantitatively similar ‘omics response profiles confirmed 
using statistical approaches with associated probabilities 
(Fig. 3c). This,in turn, suggests these dyes share a simi-
lar MoA. However, what is lacking from this study is a 
plausible toxicological interpretation of the molecular 
data that could provide a third layer of evidence, which 
together with the structural similarity and ‘omics-based 

bioactivity profile-based grouping could form a stronger 
analogue justification. There are two reasons we did not 
attempt a toxicological interpretation of the ‘omics data 
to support the read-across primarily, the metabolomics 
data were derived using DIMS for which it is difficult to 
identify metabolites with high confidence, hence a reli-
able biochemical interpretation of that ‘omics data was 
not feasible. Furthermore, the transcriptomics data were 
measured using a reduced gene set, which limited our abil-
ity to conduct an analysis of known functional pathways 
that are enriched by the signature gene set. Given this 
case study was focused on demonstrating high confidence 

Fig. 4   Mapping of the 33 non-
zero structural fragments of 
ToxPrint chemotypes onto the 
dendrogram derived from multi-
omics bioactivity profile-based 
grouping (Fig. 3). Red shading 
indicates the non-zero structural 
fragments that are shared within 
a substance group. Only two 
aromatic alcohol fragments are 
unique to the DY3, S1 and SRG 
group, which are depicted for 
all three azo dyes: COH alcohol 
aromatic bond, COH alcohol 
aromatic phenol bond

Fig. 5   Chronic reproductive toxicity to Daphnia magna of the tar-
get Disperse Yellow 3 (DY3), showing the accuracy of the predicted 
(green) no-observed-effect-concentration (NOEC) and lowest-
observed-effect-concentration (LOEC) values—derived by reading 
across (black arrows) the measured toxicity values from the source 
Sudan 1 (S1; blue)—with the experimentally measured values for 
DY3 (red). Measured toxicity values for Disperse Orange 61 (DO61; 
blue), which was shown to induce dissimilar ‘omics responses to 
DY3, are also illustrated
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in the use of ‘omics-derived bioactivity similarities for 
grouping, we concluded it was not appropriate to use low-
confidence methods to attempt any toxicological inter-
pretation. We recommend that future case studies should 
employ (1) genome-wide transcriptomics and (2) hybrid 
liquid chromatography–mass spectrometry metabolomics, 
which in addition to untargeted profiling can also target 
pre-selected metabolic biomarkers, as we have recently 
proposed (MTox700 + biomarker list; Sostare et al. 2022). 
Together, this would increase confidence in the metabolite 
identification and enable multi-omics pathway analysis to 
help provide a plausible toxicological interpretation for a 
chemical group.

There are two additional limitations when considering 
the regulatory context. These include the lack of reporting 
of this case study using internationally accepted guidelines 
for ‘omics bioactivity profile-based G/RAx, and the use of 
approaches that have not yet been validated, including the 
unproven reliability of bioactivity profile-based grouping 
using ‘omics data. Regarding the former, the OECD Omics 
Reporting Framework (OORF) has recently been developed 
to provide guidance on reporting the acquisition, processing 
and statistical analysis of ‘omics data in regulatory toxi-
cology (Harrill et al. 2021). Additionally, a project by the 
OECD Working Party on Hazard Assessment is currently 
defining how to report chemical grouping using ‘omics data. 
Regarding a lack of validation, the reliability of chemical 
grouping using metabolomics data has recently been dem-
onstrated in the Cefic LRI-funded MATCHING (MetAbo-
lomics ring-Trial for CHemical groupING) project (Viant 
et al. 2024). This ring-trial comprised six blinded laborato-
ries each acquiring, processing and statistically analysing a 
set of rat plasma samples obtained from a 28-day exposure 
study, with five partners achieving an identical grouping of 
eight test substances. Also, a new framework has just been 
proposed to evaluate the quality and reliability of targeted 
metabolomics assays, including in toxicology (Sarmad et al., 
2023). These recent and ongoing efforts all contribute sig-
nificantly to building confidence in the application of ‘omics 
data to regulatory toxicology.

While not a limitation of the multi-omics workflow for 
chemical grouping per se, this case study provides an exam-
ple where the results derived from bioactivity profile-based 
grouping, structural and QSAR approaches are all in agree-
ment. Thus yielding a consistent hypothesis for the selection 
of an analogue to the DY3 target substance. Currently, there 
is no international guidance on how to reconcile differing 
hypotheses from biological-based grouping and structural 
approaches for chemical grouping: this situation is likely to 
arise in future studies. Further well-designed case studies 
are needed to evaluate and determine where the precedence 
should lie, i.e., how to weigh each approach’s relative con-
tributions to the final grouping hypothesis.

Conclusions

We have demonstrated how metabolomics and transcrip-
tomics can be combined to improve the confidence in 
grouping data-poor chemicals, enabling the read-across 
of a toxicological endpoint to fill a data gap for a target 
substance. Multi-omics bioactivity profile-based grouping 
uniquely revealed that S1 is the most suitable analogue for 
read-across to DY3, supported by statistical evidence, and 
substantiates the structure-based grouping using (Q)SAR 
profilers that identified S1, SRG and DY3 as a group. The 
read-across of Daphnia chronic reproductive toxicity from 
S1 to DY3 was subsequently confirmed experimentally, 
increasing confidence in the capability of the multi-omics 
workflow. Mapping ToxPrint structural fingerprints of the 
dyes onto the bioactivity profile-based grouping indicated 
an aromatic alcohol moiety could be responsible for the 
shared molecular effects of S1 and DY3. Additionally, the 
metabolomics measurements provided insights into ADME 
processes, enabling the simultaneous discovery of the fate 
and biochemical effects of the azo dyes. The ‘omics meas-
urements confirmed internal exposures of D. magna to 
each dye and discovered multiple biotransformation prod-
ucts. Some limitations of the overall approach have been 
identified. Foremost is the lack of plausible toxicological 
interpretation of the molecular effects, which was not fea-
sible for technical reasons yet could in principle provide a 
third layer of evidence for the analogue justification, build-
ing on the structural similarity and bioactivity similarity 
of the ‘omics profiles. A further limitation related to the 
future regulatory application of bioactivity profile-based 
grouping is the lack of standardised methodologies and 
reporting. However, efforts are underway to help address 
these issues. While acknowledging these limitations, this 
case study demonstrates an effective multi-omics NAM for 
building chemical groups to enable read-across.
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