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Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic persistent chemicals, which are used in many 
industrial and commercial applications. Hundreds of different PFAS have been identified in the environment and they are 
commonly found also in human blood. Due to the chemical stability and extensive use, PFAS pose a risk for human health 
and wildlife. Mounting evidence indicates that PFAS-exposure adversely affects many organs including liver, kidney, and 
reproductive tissues and induces tumors in laboratory rodents. Epidemiological studies show association between PFAS-
exposure and some tumors also in humans. Effects of PFAS-exposure are complex and obviously do not depend only on the 
concentration and the structure of PFAS, but also on age and sex of the exposed individuals. It has been difficult to show a 
causal link between PFAS-exposure and tumors. Moreover, molecular mechanisms of the PFAS effects in different tissues 
are poorly understood. PFAS are not directly mutagenic and they do not induce formation of DNA binding metabolites, 
and thus are assumed to act more through non-genotoxic mechanisms. In this review, we discuss the involvement of PFAS-
compounds in tumor development in tissues where PFAS exposure has been associated with cancer in epidemiological and 
animal studies (liver, kidney, testicle and breast). We will focus on molecular pathways and mechanisms related to tumor 
formation following PFAS-exposure.
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Introduction

Per- and polyfluoroalkyl substances (PFAS) are a large 
group of manmade fluorinated chemicals, which are now 
present in the environment worldwide (Sunderland et al. 
2019; Kurwadkar et al. 2022; Evich et al. 2022) and rather 
commonly detected in human blood (Calafat et al. 2007; 
Wielsøe et al. 2017; Li et al. 2020; Mancini et al. 2020). 
Increasing evidence indicates that PFAS-exposure can be 
involved in carcinogenesis by disrupting metabolic and 
immunologic pathways and inducing reproductive and devel-
opmental toxicity (Blake and Fenton 2020; Steenland et al. 
2020; Fenton et al. 2021; Purdue et al. 2023). An increase 
of tumors in rodent tissues has been shown after dietary 
treatment with PFAS (Biegel et al. 2001; Butenhoff et al. 

2012). In addition, epidemiological studies have reported an 
association between serum PFAS-levels and a risk of tumors 
in human tissues (Table 1). The increased risk of tumors 
has particularly been found in occupationally exposed indi-
viduals and in residents living in PFAS contaminated envi-
ronment. Drinking water and contaminated air have often 
been identified as the source of PFAS exposure (Vieira et al. 
2013; Mastrantonio et al. 2018; Bartell and Vieira 2021; 
Li et al. 2022a). The International Agency for Research on 
Cancer (IARC) has classified PFOA as a possible carcinogen 
in humans (class 2B, IARC 2016).

PFAS have been manufactured for about seven decades. 
They are used in many industrial and commercial applica-
tions such as firefighting foams, furniture, clothing, non-
stick kitchenware, food packaging material, paints, and cos-
metics (Sunderland et al. 2019; Evich et al. 2022). PFAS 
consist of a common aliphatic carbon backbone with differ-
ent lengths and branches. The structure of several PFAS sub-
stances resembles endogenous fatty acids (Fig. 1). Research 
has generally focused on PFAS with four to sixteen car-
bons, and among these perflurooctanoic acid (PFOA) and 
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Table 1  Examples of PFAS-exposure in association with kidney, testicular, breast and liver cancers

The data published in BubMed between 2010–2023
PFDA perfluorodecanoic acid, PFDOA perfluorododecanoic acid, PFHxA perfluorohexanoic acid, PFHxS perfluorohexane sulfonic acid, PFHpA 
perfluoroheptanoic acid, PFHpxS perfluoroheptane sulfonic acid, PFOA perfluorooctanoid acid, PFOS perfluorooctane sulfate, PFNA per-
fluorononanoic acid, PFOSA perfluorooctanesulfonamide, PFUnDA perfluoroundecanoic acid, OR odds ratio, HR hazard ratio

References Study design
Participants (n)

PFAS  Cancer type OR or  HR2

(95%Cl)

Vieira et al. (2013) Case–control
61 cases
7339 controls

PFOA Kidney, testicle 2.0 (1.0, 3.9)
2.8 (0.8, 9.2)

Barry et al. (2013) Community cohort
32,254 residents

PFOA Kidney, testicle 1.10 (0.98, 1.24)
1.34 (1.00, 1.79)

Purdue et al. (2023) Nested case–control
530 patients
530 controls

PFOS Testicle 2.60 (1.1, 6.4)

Shearer et al. (2021) Case–control
324 patients
324 controls

PFOA Kidney 1.71 (1.23, 2.37)

Li et al. (2022a) Cohort
60,507 participants

PFOA
PFOS
PFHxS

Kidney, testicle 1.27 (0.85, 1.89)
1.28 (0.73, 2.15)

Bonefeld-Jørgensen et al. (2011) Case–control PFOA Breast 1.20 (0.77, 1.88)
Wielsøe et al. (2017) Case–control

77 patients
84 controls

PFOA,
PFHxS

Breast 1.26 (1.01, 1.58)
1.16 (1.02, 1.32)

Mancini et al. (2020) Nested case–control
194 patients
194 controls

PFOA
PFOS

Breast 7.73 ER- (1.46, 41.08)
3.44 PR- (1.30, 9.10)
2.22 ER + (1.05, 4.69)
2.47 PR + (1.07, 5.56)

Li et al. (2022a, b) Case–control
373 patients
657 controls

PFOA
PFDA

Breast 2.39 (1.88, 3.05)
2.00 (1.54, 2,58)

Feng et al. (2022) Case-cohort
226 patient
990 control

PFOA,
PFHpA

Breast 1.35 (1.03, 1.78)
1.20 (1.02, 1.48)

Tsai et al. (2020) Case–control
120 patients
119 control

PFOS Breast 2.34 (1.02, 5.38)

 Velarde et al. (2022) Case–control
75 patients
75 controls

PFDOA,
PFHxA

Breast 9.26 (2.54, 45.10)
2.66 (0.95, 7.66)

Goodrich et al. (2022) Nested case–control
50 patients
50 controls

PFOS Liver 4.5 (1.20, 16.00)

Itoh et al. (2021) Case–control
405 patients
405 controls

PFOA,
IsoPFOA

Breast  < 1.0

Hurley et al. (2018) Case–control PFOA
PFOS
PFUnDA
PFNA
PFHxS

Breast  < 1.0

 Bonefeld-Jørgensen et al. (2014) Case–control
250 patients
233 controls

PFHxS
PFOSA

Breast  < 1.0
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perfluorooctane sulfate (PFOS) have been the most widely 
identified PFAS in humans and wildlife (Sunderland et al. 
2019). PFAS are resistant to chemical, physical and biologi-
cal transformation and accumulate in the food chain. Due to 
these properties the production and use of PFOA and PFOS 
have been restricted globally (EU 2020; UNEP 2009). Many 
alternatives to the restricted PFAS have been introduced 
on the global market. These PFAS are usually short-chain 
PFAS-compounds (< 6 carbon) such as perfluorobutane sul-
fonic acid (PFBS), perfluorobutanoic acid (PFBA), GenX or 
HFPO DA (ammonium salt of hexafluoropropylene oxide 
dimer acid; CAS: 62037-80-3) and some fluorotelomer alko-
hols (e.g., 4:2 ETOH, CAS: 2043-47-2 and 6:2 ETOH; CAS: 
647-42-7) (Kjølholt et al. 2015; Solan et al. 2023). Although 
these substances have shorter half-lives, they do contain per-
sistent carbon–fluorine (C–F) bonds and their toxicity and 
health effects are for the most part still unknown.

The main exposure-routes of humans and wildlife are 
ingestion of PFAS-contaminated food and water, or inhala-
tion of contaminated air (Sunderland et al. 2019). PFAS have 
been demonstrated to cross placenta to a developing fetus, 
and newborn both in animals and humans can be exposed 
through breastfeeding (Blake and Fenton 2020; Varsi et al. 
2022; Blomberg et al. 2023). The evaluation of human expo-
sure to 17 PFAS-compounds in food samples obtained from 
16 different European countries during 2007–2018 showed 

that the most prominent PFAS were PFOS, followed by 
PFOA, perfluorohexane sulfonic acid (PFHxS) and per-
fluorononanoic acid (PFNA) (EFSA 2018, 2020). Unlike 
other POP-compounds, PFAS do not primarily accumulate 
in the body fat but are distributed in plasma proteins (albu-
min, lipoproteins) mainly to the liver and kidney (Lau et al. 
2007). Accumulation has also been reported in other tissues 
e.g., brain, lungs and reproductive tissues (Pérez et al. 2013).

In humans, PFAS are readily absorbed in the gastroin-
testinal tract and lungs but only slowly eliminated. There is 
no evidence that PFAS can be metabolized before excretion 
in urine and bile. In general, the elimination is enhanced 
as the carbon chain length decreases. There are large gen-
der and species differences in the half-lives of PFAS; they 
are faster eliminated in females than in males, and faster in 
laboratory animals than in humans (Table 2). PFAS with 
known half-lives bind extensively to proteins, also to organic 
anion transporter proteins (OATs), and are reabsorbed in 
the proximal tubule of the kidney (Lau et al. 2007; Louisse 
et al. 2023). The variation in elimination between animals 
and humans complicates the use of animal data in human 
risk assessment (Lau et al. 2007; Olsen et al. 2007; Fenton 
et al. 2021).

PFAS have been associated with adverse health effects 
in humans including the elevated serum cholesterol and 
liver enzyme levels, immunosuppression and pregnancy 

Fig. 1  Some structures of PFAS 
that have been detected in bio-
logical samples
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complications (DeWitt et al. 2019; Blake and Fenton 2020; 
Steenland et al. 2020; Fenton et al. 2021). Epidemiological 
studies have further reported associations between serum 
PFAS-levels and a risk of tumors in many organs includ-
ing kidney, bladder, testis, prostate, breast, ovarian, liver 
and immune tissue (non-Hodgkin lymphoma) (Vieira et al. 
2013; Mastrantonio et al. 2018; Bartell and Vieira 2021; 
Boyd et al. 2022; Goodrich et al. 2022; Li et al. 2022a; Pur-
due et al. 2023). The risk has most often been described fol-
lowing exposures to long-chain PFAS (e.g., PFOA, PFOS, 
PFHxA, PFDA) whereas the risk after exposure to short-
chain PFAS is less studied. In rat, PFAS have been shown to 
induce tumors in several organs including liver, testicle and 
pancreas (Biegel et al. 2001; Lau et al. 2007; Butenhoff et al. 
2012). There is no reported evidence of renal tumors after 
PFAS-treatment in rodents. However, there is epidemiologi-
cal evidence of PFAS-related tumors in kidney, whereas no 
association between pancreatic tumors and PFAS-exposure 
in humans.

Although exposure to PFAS is known to have adverse 
health effects and potentially inducing tumors in many 
human tissues, molecular mechanisms of such effects are 
poorly understood. In general, PFAS have not been shown to 
be directly mutagenic or induce formation of DNA binding 
metabolites but assumed to act more through non-genotoxic 
mechanisms. These substances are not acutely toxic but act 
more chronically altering gene expression and reprogram-
ming various molecular pathways. In this review, we will 
discuss molecular changes in PFAS-associated cancers in 
liver, kidney, testicular and breast tissues. These tissues 
were chosen because the liver and kidney are the main target 
organs where PFAS accumulate and PFAS have previously 
been shown to induce tumors in rodent liver and testicle. 
Furthermore, there is rather good epidemiological support 
for the risk of tumors in testicle, kidney and breast follow-
ing PFAS-expose (Mancini et al. 2020; Bartell and Vieira 
2021; Li et al. 2022a; Purdue et al. 2023). We will focus on 

molecular mechanisms and pathways related to tumors after 
PFAS-exposures in humans and laboratory animals.

Tissue‑specific mechanisms related 
to tumors

Effects of PFAS in the liver

The liver is the main target organ of toxicity and accumu-
lation of PFAS in humans and rodents. PFAS-levels (e.g., 
PFOA, PFOS, PFNA) in human blood have been associ-
ated with increased serum enzyme protein levels (AST, 
ALT, GGT), which generally indicate liver injury (Darrow 
et al. 2016; Costello et al. 2022). There is also evidence 
that PFAS-exposure dysregulates bile acid metabolism and 
contributes to the kind of lipid accumulation that is pre-
sent in patients with non-alcoholic fatty liver (Jin et al. 
2020; Sen et al. 2022). Experiments with human primary 
hepatocytes and human immortalized hepaRG cells in vitro 
have shown that occupationally relevant concentrations of 
PFAS decrease the expression of hepatic nuclear factor 4α 
(HNF4α) and its downstream effector, the cholesterol-7a-hy-
droxylase (CYP7A1). HNF4α is regarded as a regulator of 
many liver-specific processes including liver development, 
lipid metabolism and maintaining hepatocellular differentia-
tion. CYP7A1 is a key enzyme in bile acid synthesis from 
cholesterol and therefore the decreased expression of HNF4α 
and CYP7A1 reduce bile acid synthesis and flow, and may 
contribute to the development of hepatic steatosis (Beggs 
et al. 2016; Behr et al. 2020). Moreover, in vitro PFAS 
induce endoplasmic reticulum stress and alter CYP-enzyme 
activities (e.g., CYP2C19, CYP2D6, CYP3A4, CYP2E1). 
Most of the tested PFAS have been shown to inhibit CYP-
activities in PFAS structure-dependent and CYP-dependent 
ways (Louisse et al. 2020; Amstutz et al. 2022).

Table 2  Some common PFAS 
substances and the estimated 
serum half-lives in three species 
(Olsen et al. 2007; Fenton et al. 
2021)

d days, h hour, y year, NA not available

Chemical name Abbreviation Formula Human Monkey Rat

Perflurobutanoic acid PFBA C4HF7O2 3 d 1.7 d 1–9 h
Perfluorohexanoic acid PFHxA C6HF11O2 32 d 2.4–5.3 h 0.4–0.6 h
Ammonium salt of hexafluoro-

pylene oxide dimer acid
GenX
HFPO DA

C6HF11O3 4–6 d NA 3–8 h

Perfluoroheptanoic acid PFHpA C7HF13O2 1.2–2.5 NA 1.2 -2.4 h
Perfluorooctanoic acid PFOA C8HF15O2 2.1–3.8 y 21–30 d 2–6 d
Perfluorononanoic acid PFNA C9HF17O2 2.5–4.3 y NA 1.4–55 d
Perfluorodecanoic acid PFDA C10HF19O2 3.1–4.4 y NA NA
Perfluorobutane sulfonic acid PFBS C4HF9O3S 28 d 3.5–4.0 d 2.1–4.5 h
Perfluorohexane sulfonic acid PFHxS C6HF13O3S 5.3–8.5 y 87–141 d 1.8–6.8 d
Perfluorooctane sulfonic acid PFOS C8H2F17NO2H 3.4–5.0 y 110–132 d 62–41 d
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In rats, exposure to PFAS increases liver tumors (Biegel 
et  al. 2001). In rodent livers, PFAS-exposure activates 
signaling via the peroxisome proliferator-activated recep-
tor alpha (PPARα) and the expression of genes related to 
cell cycle, lipid metabolism and transport, apoptosis and 
cell proliferation (Biegel et al. 2001; Elcombe et al. 2012; 
Rosen et al. 2017). The increased fatty acid oxidation and 
proliferation trigger the generation of hydrogen peroxide, 
oxidative stress and epigenetic chances. In prolonged expo-
sures, these are the main changes considered to be respon-
sible for increased cell proliferation and formation of liver 
adenoma and carcinoma (Biegel et al. 2001; Elcombe et al. 
2012; Butenhoff et al. 2012). In addition, long-chain PFASs 
inhibit gap-junctional intercellular communication in cell 
culture models in vitro and in rat liver in vivo (Upham et al. 
2009). Cell culture experiments have further indicated that 
the inhibition is dependent on the activation of extracellu-
lar signal-regulated kinase (ERK) and phosphatidylcholine 
specific phospholipase C (Upham et al. 2009). Inhibition or 
disruption of gap-junctional communication is a proposed 
mechanism by which tumor cells avoid growth suppressive 
signals (for reviews, see e.g., Nahta et al. 2015; Mesnil et al. 
2018).

Not only long-chain PFAS but also some short-chain 
PFAS-alternatives have been reported to induce tumorigenic 
responses in murine and human livers. Several studies indi-
cate that exposures to these fluorochemicals induce hepa-
tocellular hypertrophy, oxidative stress, activate PPARα-
signaling and genes involved in cell cycle and carcinogenic 
pathways (Sheng et al. 2018; Guo et al. 2022; Heintz et al. 
2022; Xie et al. 2022; Thompson et al. 2023). In human pri-
mary hepatocyte cultures, GenX disturbs lipid metabolism 
and induce fibro-inflammatory signaling as well as stimu-
late growth factors and pro-mitotic pathways (Robarts et al. 
2022).

There is evidence that the initial effect of PFAS-expo-
sure is activation of PPARα-receptor-mediated pathways in 
rodent and human livers. However, the PPARα-receptor in 
human liver is less responsive to proliferative stimulus of 
PFAS than the receptor in rodents (Elcombe et al. 2012; 
Rosenmai et al. 2018; Corton et al. 2018; Attema et al. 2022; 
Heintz et al. 2023). PPARα belongs to the ligand activated 
nuclear receptors. It acts as a lipid and xenobiotic sensor 
regulating energy combustion, lipid homeostasis and inflam-
mation. PPARα modulates the activities of mitochondrial, 
peroxisomal and microsomal fatty acid oxidation. Sustained 
activation of this receptor has been linked to hepatocellu-
lar carcinoma in rodents (Pyper et al. 2010; Corton et al. 
2018; Wagner and Wagner 2022). Gene-profiling stud-
ies conducted in rodents have shown evidence that also 
other nuclear receptors such as PPARγ and CAR/PXR can 
mediate the PFAS-induced adverse metabolic and carcino-
genic changes (Rosen et al. 2017; Attema et al. 2022). For 

instance, PFOA can alter the expression of genes related 
to fatty acid and xenobiotic metabolism, inflammation and 
cell cycle progression in both wild type PPARα and PPARα 
null mice (Rosen et al. 2017). On the other hand, short-
chain GenX and the synthetic PPARα-agonist Wy-14,643 
alter the genes in wild PPARα mice but not in PPARα null 
mice indicating specificity of these compounds to PPARα 
(Attema et al. 2022). This also implicates that various PFAS-
congeners may activate this receptor with subsequent differ-
ent down-stream effects. Although the permanent activation 
of PPARα can lead to fatty liver in human, the downstream 
cell proliferation/growth pathways are generally less acti-
vated  than in rodent liver after PFAS-exposure (Elcombe 
et al. 2012; Corton et al. 2018; Heintz et al. 2023).

Only a few epidemiological studies exist on PFAS-expo-
sure and hepatic tumors. A recent nested case–control study 
(Goodrich et al. 2022) found that high levels of PFOS is 
associated with a 4,5-fold elevated risk for hepatocellular 
carcinoma. Altered metabolism of bile acids, branched-chain 
amino acids and glucose were suggested as mechanisms 
affected by PFOS-exposure in human liver. This study identi-
fied four metabolites (glucose, butyric acid, α-ketoisovaleric 
acid and 7α-hydroxy-3-oxo-4-cholestenoate), each of which 
was positively associated with PFOS-exposure and hepato-
cellular cancer (Goodrich et al. 2022).

Effects of PFAS in the kidney

Kidney is another major target organ of PFAS-exposures 
and important for excretion, and reabsorption of PFAS (Lau 
et al. 2007; Pérez et al. 2013; Louisse et al. 2023). High 
blood flow and large endothelial surface per organ weight 
make kidney vulnerably to chemical insults (Vervaet et al. 
2017). In humans, following PFAS exposure indications of 
kidney failure and injury, such as reduction in the glomerular 
filtration rate, increase of serum uric acid and tumors have 
been reported (Shankar et al. 2011; Stanifer et al. 2018; Lu 
et al. 2019; Shearer et al. 2021). Occupational and large 
community-based studies have also reported an association 
between high serum PFAS-levels and a risk of kidney and 
testicular tumors (Table 1; Barry et al. 2013; Steenland et al. 
2020; Bartell and Vieira 2021; Li et al. 2022a; Purdue et al. 
2023). The relationship between PFOA, and kidney and tes-
ticular tumors have been reported most likely to be causal 
(Bartell and Vieira 2021).

Experimental in vitro and rodent studies have shown that 
PFAS induce toxicity and changes in renal histology, metab-
olism and functions. These include disturbances in lipid and 
energy metabolism, oxidative stress, increased apoptosis 
and tubular epithelial hypertrophy (Zhang et al. 2011; Chou 
et al. 2017; Wen et al. 2021; Lee et al. 2022). PFOS was 
shown to dose-dependently alter the expression of several 
genes related to epigenetic pathways in mouse kidney. PFOS 
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up-regulated mRNA of several transcription factors (e.g., 
Ppara, Ppard, Nef2l2, Hes1) and histone demethylases (e.g., 
Kdm1a, Kdm4c). In addition, PFOS decreased global DNA-
methylation and down-regulated Pparg and Smarca2 (Wen 
et al. 2022). Epigenetic alterations have also been reported 
in murine kidney by treatment with PFOA (Rashid et al. 
2020). Similar to liver, many adverse effects in the kidney 
are linked to deregulation of signaling via nuclear recep-
tors, particularly via PPAR-receptors and their down-stream 
pathways. Use of specific antagonists to PPARα leads to 
cell cycle arrest (G0/G1) and apoptosis in the human renal 
epithelial cell line Caki-1 (Aboud et al. 2015). Studies in rat 
tubular epithelial cells (RTCs) further indicate that PFOS 
treatment decreases expression of antioxidant enzymes 
and induce apoptosis through inactivation of the PPARγ-
receptor. PFOS treatment was also shown to induce dedif-
ferentiation of tubular epithelial cells with disrupting epithe-
lial cell junctions, leading to increased permeability, partial 
epithelial-mesenchymal transition and cell migration (Wen 
et al. 2016; Chou et al. 2017). In addition, mitochondrial 
disorders e.g., uncoupling of ATP-synthesis and increase of 
ROS production have been shown to play a critical role in 
an injury in rat tubular cells in vitro after PFOS-treatment 
(Wen et al. 2021; Lee et al. 2022).

Effects of PFASs in the testicle

In rat, PFAS induce tumors in testicular Leydig cells (Biegel 
et al. 2001; Klaunig et al. 2012). These cells are responsi-
ble for synthesizing testosterone that is essential for sexual 
development in fetal period and for the support of sperm 
production later (Teerds and Huhtaniemi 2015). PFAS-
induced Leydig cell tumors in rodents are strongly linked 
with hormonal changes principally with the increased ratio 
of serum estrogen/testosterone levels (Biegel et al. 2001; 
Klaunig et  al. 2012; Zhao et  al. 2014). One suggested 
mechanism to hormonal imbalance is PFAS-caused down-
regulation of the expression of testicular steroidogenic 
enzymes (e.g., Cyp11a1, Cyp17a1, Hsd17b3) as shown in 
mice (Zhang et al. 2014; Tian et al. 2019; Li et al. 2021). An 
additional mechanism of PFAS-exposures may be increased 
expression of the hepatic aromatase enzyme (CYP19A1) 
that metabolizes testosterone to estrogen (Liu et al. 1996). 
Hormonal imbalance can increase gonadotropin releasing 
hormone and LH, which stimulate Leydig cell proliferation. 
In addition, disturbances in hormonal balance may increase 
expression of growth factors (e.g., insulin-like growth fac-
tors and  transforming growth factor alpha), which may pro-
mote cell survival and proliferation of Leydig cells leading 
to tumor formation (Klaunig et al. 2012; Li et al. 2021). 
The hormonal imbalance and other effects on Leydig cells 
have particularly been reported after PFAS-treatment of 
rodents during prenatal and pubertal periods (Zhao et al. 

2014; Li et al. 2021) Abnormalities in sperm quality and 
lowering of testosterone level by PFAS have been seen in 
wild type PPARα mice and in the mice containing human 
PPARα but not in the PPARα-null mice. This implicates that 
the PPARα-receptor may also be involved in the hormonal 
imbalance (Li et al. 2011).

Epidemiological studies have reported an association of 
tumors in the testicle with high serum PFAS levels (Table 1). 
However, Leydig cell tumors are rare in humans, and tes-
ticular tumors refer generally to germ cell tumors, which 
occur typically in males at 15 to 40-years of age (Klaunig 
et al. 2012; Skakkebæk et al. 2016). The etiology of germ 
cell tumors is not fully understood but genetic susceptibil-
ity and environmental factors may play an important role. 
Established risk factors such as low androgen levels, geni-
tal malformations, and poor semen quality have been sus-
pected to arise in utero (Skakkebæk et al. 2001, 2016). There 
is, however, evidence that exposures in adolescence and 
adulthood to environmental chemicals such as PFAS may 
increase the risk of testicular tumors (McGlynn and Trabert 
2012; Bartell and Vieira 2021; Purdue et al. 2023).

Insufficient androgen levels may also play an important 
role in the etiology of human testicular cancer (Skakkebaek 
et al. 2016). Several epidemiological studies have inves-
tigated the relationship between sex hormone levels and 
PFAS-exposure (Lewis et al. 2015; Zhou et al. 2016; Cui 
et al. 2020; Luo et al. 2021). However, it has been difficult to 
get conclusive results since PFAS-exposure can affect hor-
mone levels in gender-, age-, and congener-specific manner 
(Xie et al. 2021). Another mechanism, by which PFAS could 
disturb endocrine functions, is by interfering with hormone 
receptors. In vitro experiments provide evidence that PFAS 
(e.g., PFOA, PFOS, PFHxS, PFNA, and PFDA) inhibit tes-
tosterone binding to the androgen receptor (AR). PFOA has 
also been shown to reduce testosterone-induced transloca-
tion of AR to the nucleus, thus eliciting anti-androgenic 
effect (Kjeldsen and Bonefeld-Jørgensen 2013; Nisio et al. 
2019).

Effects of PFAS in the mammary gland

Breast cancer is the most common cancer in women and 
exposure to endocrine disrupting chemicals such as PFAS 
has been regarded as a risk factor in the disease (Gore et al. 
2015; Wan et al. 2022). There is some evidence for an asso-
ciation between serum PFAS levels and the risk for breast 
cancer in non-occupationally exposed women (Table 1). 
The relationship between high serum PFAS-levels and the 
risk of breast cancer was reported among Inuit women in 
Greenland. The consumption of seafood is likely the source 
for the high levels of PFAS in their serum (Bonefeld-Jør-
gensen et al. 2011; Wielsøe et al. 2017). Mancini and cow-
orkers (2020) reported a connection between breast cancer 
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and serum PFAS-levels among postmenopausal French 
women. In that study, serum PFOS-levels were in a positive 
dose–response relationship with the risk of receptor-positive 
(ER+ /PR+) breast tumor whereas only low serum concen-
trations of both PFAS and PFOS were associated with the 
receptor-negative breast tumor. This study provides evidence 
that high and low PFAS exposures may affect differently 
the hormone-dependent tissues (Mancini et al. 2020). In 
addition, a relationship between serum PFAS-levels and the 
risk of breast cancer has been reported among women from 
Asian countries (Table 2; Tsai et al. 2020; Feng et al. 2022; 
Li et al. 2022a, b; Velarde et al. 2022).

Experimental studies with human breast cell models have 
revealed that several PFAS (e.g., PFOA, PFOS, PFHxS) have 
estrogenic properties or they can enhance ER-transactivation 
and accelerate cell proliferation (Maras et al. 2006; Kjeld-
sen and Bonefeld-Jørgensen 2013; Sonthithai et al. 2016; 
Pierozan et al. 2018). In a mixture with two other chemicals 
(bisphenol-A and methylparaben), environmentally relevant 
concentration of PFOA increased proliferation of benign 
breast epithelial cells through disruption of cell cycle, sup-
pression of apoptosis and increasing of ERα-receptor level. 
The mixture of chemicals perturbed the key pathways more 
than each individual compound alone implicating that the 
perturbation would have been missed by evaluating the 
effects of each single component separately (Dairkee et al. 
2018). Low concentrations of a binary mixture (PFOA and 
PFOS) were also shown to act synergistically and transform 
breast epithelial cells (MCF-10A) into a malignant pheno-
type (Pierozan et al. 2023).

Experiments conducted in rodents implicate that PFAS-
exposures, particularly during vulnerable developmental 
periods have adverse effects on endocrine organs and serum 
sex hormone levels (White et al. 2011; Zhao et al. 2012; Su 
et al. 2022). Chronic exposure to PFOA alters morphological 
development of mammary gland and the changes can last 
over generations (White et al. 2011). Zhao and coworkers 
(2012) have shown that pre-pubertal PFOA-exposure inhib-
its growth of the mammary gland in wild type mice but not 
in PPARα-knockout mice. In addition, exposures to PFOA 
decreased the levels of several ovarian enzymes (CYP11A1, 
HSD3β1, HSD17β1), which are involved in biosynthesis of 
estrogen and progesterone. Recent study by Su and cow-
orkers (2022) also reported that pubertal exposure of rats 
to a mixture of low-dose PFOA and zearalenone (a myco-
toxin) inhibits mammary gland development and increases 
susceptibility of the animals to DMBA-induced tumors in 
the mammary gland. This was associated with alterations 
in estrogen- and Wnt-signaling pathways and was related 
to the increased expression of growth factors and oncogenes 
(Su et al. 2022).

Mechanistic studies with pre-neoplastic breast cells 
(MCF-10A) have further revealed that treatments with 

PFOS or PFOA alter the levels of cell cycle proteins (e.g., 
CDK6/4, p21, p53), promote cell proliferation, increase 
histone modifications, and induce epithelial-mesenchymal 
transition (EMT) (Pierozan and Karlsson 2018; Pierozan 
et al. 2018, 2020). During EMT, epithelial cells progres-
sively acquire the morphological and other properties of 
mesenchymal cells. In this process, cells gain migratory 
and invasive properties and this leads to metastasis (for a 
review see Fedele et al. 2022). In the studies of Pierozan 
and coworkers (2018a, 2018b), the proliferation of MCF-
10A cells by PFOA was associated with an activation of 
the PPARα receptor, while PFOS had no effect on PPARα-
signaling as demonstrated by the use of inhibitors of PPARα. 
Instead, treating the cells with an inhibitor (ICI182,780) of 
the estrogen receptor α (ERα) was able to partially reduce 
the stimulating effect of PFOS on cell proliferation (Pierozan 
et al. 2018). In addition to signaling via ERα and PPARα, 
crosstalk with other receptors e.g., PXR, and CAR is asso-
ciated with EMT-pathways in PFAS-exposed breast cells 
in vitro (Zhao et al. 2012; Pierozan et al. 2022, 2023).

In addition, Pierozan and coworkers (2022) studied the 
capacity of alternative PFAS-substances to induce prolif-
eration and neoplastic transformation of MCF-10A cells. 
Only perfluorohexane sulfonate (PFHxS) of the six alter-
natives (PFHxA, PFO2OA, HFBA, PFBS, GenX, and 
PFHxS) induced cell migration and invasion and activated 
the PPARα- and CAR-receptors. PFHxS altered also the 
expression of proteins that regulate cell cycle and caused 
histone modifications. However, higher concentrations of 
PFHxS than PFOA or PFOS were required to induce these 
effects (Pierozan et al. 2022).

Summary and conclusions

It is evident from both rodent and human studies that PFAS 
induce cancer-related molecular changes in several organs. 
The effects of exposures are complex and depend on many 
factors such as dose and the chain length of PFAS, as well 
as species, age and sex of the exposed individuals. In addi-
tion, effects of different PFAS-congeners may vary. The 
main adverse pathways include disturbance of signaling 
via nuclear receptors, disruption of lipid metabolism and 
endocrine balance and induction of oxidative stress and epi-
genetic changes. Signaling via central metabolic regulators 
such as PPARα, and γ, CAR, PXR, ER and AR are directly 
or indirectly altered following PFAS-exposure.

Molecular changes in the main PFAS-target organs, 
liver and kidney, resemble each other in many respects, 
but vary from the effects in the hormone-dependent organs 
testicle and breast. Disturbing of signaling via the PPARα-
receptor and the expression of its down-stream genes leads 
to reprogramming of metabolism, particularly lipid and 



1248 Archives of Toxicology (2024) 98:1241–1252

bile acid metabolism. These are the most important initial 
changes in the liver. In rodents, the changes lead further to 
proliferation and tumors, whereas in humans the changes 
can lead to the kind of lipid accumulation that is present 
in non-alcoholic fatty liver, but proliferation and tumors 
are not common. In the kidney, PFAS evoke toxicity and 
change renal functions that include deregulation of sign-
aling via PPAR-receptors, metabolic changes, oxidative 
stress and epigenetic alterations.

PFAS are also endocrine disruptors modulating hor-
monal functions in testicle and mammary gland. PFAS-
induced insufficient androgen levels and/or anti-andro-
genic effects are important causes leading to proliferation 
and tumors in rodent testicular Leydig cells. There is some 
data suggesting that similar molecular changes are associ-
ated with human testicular cancer. However, the precise 
mechanisms are not known. Several PFAS have estrogenic 
properties and they can enhance estrogenic responses and 
increase susceptibility to other carcinogens in the mam-
mary gland. The mechanisms include signaling via ER and 
PPARα-receptors as well as crosstalk with other nuclear 
receptors, increase in cell proliferation and suppression 
of apoptosis. Timing of the exposure is important and it 
seems that exposure to PFAS during prenatal and post-
natal periods may disrupt mammary gland development. 
The effects may last across different generations. In addi-
tion, PFAS-exposure inhibits intercellular communication 
through gap-junctions and induces EMT. These alterations 
promote the development of a malignant cell phenotype 
enabling migration and metastasis.

PFAS-induced tumorigenic changes are significant 
from public health perspective because most individu-
als are exposed to these persistent chemicals in everyday 
life. Moreover, most of our knowledge on the involvement 
of PFAS in tumors is from studies with a few long-chain 
PFAS compounds. Other PFAS-congeners and especially 
PFAS mixtures need more research. Current results raise 
particularly concerns about potential consequences of 
PFAS-exposure in endocrine system during developmental 
period, which also needs more research.
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