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Abstract
The rapid progress of AI impacts diverse scientific disciplines, including toxicology, and has the potential to transform 
chemical safety evaluation. Toxicology has evolved from an empirical science focused on observing apical outcomes of 
chemical exposure, to a data-rich field ripe for AI integration. The volume, variety and velocity of toxicological data from 
legacy studies, literature, high-throughput assays, sensor technologies and omics approaches create opportunities but also 
complexities that AI can help address. In particular, machine learning is well suited to handle and integrate large, heterogene-
ous datasets that are both structured and unstructured—a key challenge in modern toxicology. AI methods like deep neural 
networks, large language models, and natural language processing have successfully predicted toxicity endpoints, analyzed 
high-throughput data, extracted facts from literature, and generated synthetic data. Beyond automating data capture, analysis, 
and prediction, AI techniques show promise for accelerating quantitative risk assessment by providing probabilistic outputs 
to capture uncertainties. AI also enables explanation methods to unravel mechanisms and increase trust in modeled predic-
tions. However, issues like model interpretability, data biases, and transparency currently limit regulatory endorsement of AI. 
Multidisciplinary collaboration is needed to ensure development of interpretable, robust, and human-centered AI systems. 
Rather than just automating human tasks at scale, transformative AI can catalyze innovation in how evidence is gathered, 
data are generated, hypotheses are formed and tested, and tasks are performed to usher new paradigms in chemical safety 
assessment. Used judiciously, AI has immense potential to advance toxicology into a more predictive, mechanism-based, and 
evidence-integrated scientific discipline to better safeguard human and environmental wellbeing across diverse populations.

Keywords Artificial intelligence · Toxicology · Predictive modeling · Chemical safety · Risk assessment · Computational 
toxicology

Introduction

Artificial intelligence (AI) refers to computer systems that 
are capable of performing tasks that typically require human 
intelligence, such as visual perception, speech recognition, 

decision-making, and language translation (Pérez-Santín 
et  al. 2021). AI has seen rapid advancements in recent 
years, driven by exponential growth in computing power, 
availability of large datasets, and improvements in machine 
learning algorithms. The field of toxicology is poised to ben-
efit immensely from the integration of AI techniques (e.g., 
Luechtefeld and Hartung 2017; Idakwo et al. 2018; Tang 
et al. 2018; Baskin 2018; Luechtefeld et al. 2018a, Bhhatarai 
et al. 2019; Pu et al. 2019; Mansouri et al. 2021; Lin and 
Chou 2022; Jeong et al. 2022; Sedykh et al. 2022; Tuyet 
et al. 2023, Hartung 2023b, 2023c).

Toxicology deals with understanding the harmful 
effects of chemical, physical and biological agents on 
living organisms and the ecosystem. It involves generat-
ing, integrating, and analyzing data from diverse sources 
to predict toxicity potentials, determine mechanisms of 
action, and enable risk assessment of toxins and toxicants 

*The title of this article refers to the 1987 R.E.M. song “This is the 
end of the world as we know it (and I feel fine)”.
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(Wu and Wang 2018; Lin and Chou 2022). While the 
majority of AI use so far is in assessing human health 
risks, ecotoxicology is following suite (Miller et al. 2018; 
Wu et al. 2022). AI is well suited to handle the complexity 
and large volumes of data associated with modern toxicol-
ogy research (Fig. 1). In particular, machine learning, a 
subset of AI focused on algorithms that can learn from 
data and generate novel predictions, has emerged as a 
promising approach with diverse applications in toxicol-
ogy (Wu and Wang 2018). The last decade has seen dra-
matic increases in the generation, publication, and accessi-
bility of scientific information, resulting in an AI-enabling 
resource known as “big data” (Shilo et al. 2020).

Big data is a term that describes large volumes of data—
both structured and unstructured—that form the basis 
of AI technologies. A simple definition of AI could be: 

technologies to make big sense from big data. However, the 
amount of data alone is not the sole driver, but this concept 
is more comprehensively defined by the Five-V (Fig. 2):

1. Volume: The quantity of data that is produced is a criti-
cal aspect of big data, and has consequences in terms 
of storage, management, and energy consumption. The 
volume could range from dozens of terabytes to several 
petabytes in a single data set.

2. Velocity: This refers to the speed at which data is cre-
ated, stored, analyzed, and visualized. In many situa-
tions, data need to be analyzed in real-time or near real-
time to provide value.

3. Variety: This term refers to the many types of data that 
are available. Traditional data types were structured and 
could easily fit into a relational database. With the rise 
of big data, data types are now classified as structured, 
semi-structured, and unstructured.

4. Veracity: This term refers to the quality of the data. 
Because data come from various sources, it is important 
to test the veracity/quality of the data.

5. Value: This refers to our ability to analyze, interpret, 
translate, and apply data to gain insights that can help 
advance knowledge and improve decision making, and 
thereby increase value.

Big data technology allows for the storage, processing, 
mining, and analysis of these large datasets (Fig. 3). Apache 
Hadoop and Spark are popular frameworks used for big data 
processing, and they allow distributed processing of large 
datasets across clusters of computers. Big data analytics 
involves the use of analytics techniques like machine learn-
ing, data mining, natural language processing, and statistics.

Fig. 1  A variety of data sources transform toxicology from a data-
poor to a data-rich discipline

Fig. 2  The Three (or Five) V defining Big Data. Modified and 
redrawn from https:// www. rd- allia nce. org/ group/ big- data- ig- data- 
devel opment- ig

Fig. 3  The principal tasks of handling Big Data. Modified and 
redrawn from https:// www. edure ka. co/ blog/ top- big- data- techn ologi es

https://www.rd-alliance.org/group/big-data-ig-data-development-ig
https://www.rd-alliance.org/group/big-data-ig-data-development-ig
https://www.edureka.co/blog/top-big-data-technologies
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Until recently, databases of the past had to be well-
structured as Relational Databases to allow analyses and 
struggled with incomplete datasets. However, increasingly 
unstructured datasets are employed, and structuring is part 
of the analytical algorithm itself (Fig. 4).

Cloud computing (Fig.  5) has made many Big Data 
approaches easier, but it is not at all a prerequisite for AI.

AI Impact on toxicology

Some key areas where AI is expected to transform toxicol-
ogy include:

1. Predictive toxicology Machine learning models can be 
trained on existing datasets of chemicals and their toxic-
ity profiles to predict potential toxicity of new chemi-
cal entities. This can accelerate chemical screening and 
reduce reliance on animal testing (Luechtefeld et al. 
2018a; Mansouri et al. 2020, 2021).

2. Data analysis AI techniques like natural language pro-
cessing can automate tasks like mining legacy animal 
studies, extracting information from scientific literature, 
analyzing high-throughput screening data, and integrat-
ing diverse omics datasets (Kavlock et al. 2012; Foster 
et al. 2024).

3. Risk assessment AI models provide probabilistic out-
puts that account for uncertainty and variability, ena-
bling more robust quantitative risk assessment (Zhang 
et al. 2019; Gilmour et al. 2022).

4. Mechanistic research Although AI models are often 
“black-boxes”, advances in explainable AI can help 

Fig. 4  Example Big Data technologies moving from highly structured 
to increasingly unstructured approaches. Modified and redrawn from 
https:// www. slide share. net/ Splunk/ splun ksumm it- 2015- real- world- 
big- data- archi tectu re. SQL (Structured Query Language) is a pro-
gramming language used to communicate with data stored in a rela-
tional database management system. ETL, which stands for extract, 
transform and load, is a data integration process that combines data 
from multiple data sources into a single, consistent data store that is 
loaded into a data warehouse or other target system. NoSQL data-
bases (aka "not only SQL") are non-tabular databases and store data 
differently than relational tables. NoSQL databases come in a vari-
ety of types based on their data model. The main types are document, 

key-value, wide-column, and graph. They provide flexible schemas 
and scale easily with large amounts of data and high user loads. The 
Apache Hadoop software library is a framework that allows for the 
distributed processing of large data sets across clusters of computers 
using simple programming models. MapReduce is a programming 
model or pattern within the Hadoop framework that is used to access 
big data stored in the Hadoop File System (HDFS), i.e., the primary 
data storage system used by Hadoop applications. Splunk is a big data 
platform that simplifies the task of collecting and managing massive 
volumes of machine-generated data and searching for information 
within it

Fig. 5  Cloud computing often makes big data approaches easier but 
is not a prerequisite. Modified and redrawn from https:// medium. 
com/ myclo udser ies/ how- to- start- using- cloud- compu ting- as-a- start up- 
77055 c60f7 4f

https://www.slideshare.net/Splunk/splunksummit-2015-real-world-big-data-architecture
https://www.slideshare.net/Splunk/splunksummit-2015-real-world-big-data-architecture
https://medium.com/mycloudseries/how-to-start-using-cloud-computing-as-a-startup-77055c60f74f
https://medium.com/mycloudseries/how-to-start-using-cloud-computing-as-a-startup-77055c60f74f
https://medium.com/mycloudseries/how-to-start-using-cloud-computing-as-a-startup-77055c60f74f
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provide insight into mechanisms underlying chemical 
toxicity (Kleinstreuer et al. 2018, 2020).

  This review aims to provide a comprehensive over-
view of the emerging applications of AI in predictive 
toxicology, data analysis, risk assessment, and mecha-
nistic research. It summarizes key accomplishments, 
challenges and opportunities at the intersection of AI 
and toxicology, and provides specific examples of pro-
jects and tools that are enabling innovative applications 
of AI. The review concludes with recommendations for 
integrating and advancing AI in a responsible manner to 
transform the field of toxicology.

Introduction into AI in the life sciences

Artificial Intelligence (AI) is a rapidly developing field with 
tremendous impact on various domains of the life sciences. 
AI comes in many different forms (Fig. 6).

Life scientists can leverage the power of AI to analyze 
vast and complex biological data sets, enhance the precision 
and speed of diagnosis, expedite drug discovery, personalize 
medicine, elucidate disease mechanisms, and much more in 
a truly transformative way for healthcare,12 (Hartung 2023c). 

AI is the ability of a digital computer or machine to perform 
tasks commonly associated with intelligent beings. This 
includes learning from experiences, understanding natural 
language, recognizing patterns, and making decisions. Cen-
tral concepts include:

1. Machine Learning (ML)—ML is a subset of AI that 
uses statistical methods to enable machines to improve 
with experience. This is particularly useful in life sci-
ences, where vast amounts of data are generated. For 
instance, ML can help identify disease patterns from 
huge genomic datasets or medical images. Multiple 
types of learning can be distinguished.

a. In Supervised Learning (Fig.  7, right side), the 
model is trained on a labeled dataset. That is, each 
instance in the training set includes both the input 
data and the correct output, often called the label or 
the target. The goal of the model is to learn a func-
tion that, given an input, predicts the correct out-
put. Common tasks include regression (predicting 
a continuous output) and classification (predicting 
discrete categories).

b. In Unsupervised Learning (Fig. 7, left side), the 
model is trained on a dataset without labels, and 
the goal is to discover structure in the data. This 
could involve clustering, where the aim is to group 
similar instances together, or dimensionality reduc-
tion, where the aim is to simplify the data without 
losing too much information. Another common task 
is anomaly detection, where the aim is to detect unu-
sual instances in the data. Both supervised and unsu-
pervised learning techniques can leverage transfer 
learning to improve algorithmic outcomes.

c. Transfer learning (Fig. 7, lower panel) is a ML tech-
nique where a pre-trained model, often developed 
for a large-scale task like image recognition or lan-
guage understanding, is used as the starting point for 
a related but different task. The idea is to leverage 
the patterns and knowledge learned from the first 
task, which had abundant data, to improve perfor-
mance on the second task that may have less avail-
able data. This approach can significantly reduce 
training time and computational resources, and often 
yields better performance, especially in scenarios 
where training data is limited.

d. Reinforcement Learning (Fig. 8) is a type of ML 
where an agent learns to make decisions by taking 
actions in an environment to maximize some notion 
of cumulative reward. The agent learns from trial 
and error, receiving rewards or penalties for the 
actions it performs, and its goal is to learn a policy, 

Fig. 6  Different forms of Artificial Intelligence (AI) uses. Modified 
and redrawn from https:// www. datam ation. com/ artifi cial- intel ligen ce/ 
what- is- artifi cial- intel ligen ce/

1 https:// www. wefor um. org/ press/ 2023/ 06/ new- world- econo mic- 
forum- resea rch- ident ifies- top- ai- appli catio ns- that- could- revol ution 
ize- global- healt hcare/.
2 https:// www. wefor um. org/ repor ts/ scali ng- smart- solut ions- with- ai- 
in- health- unloc king- impact- on- high- poten tial- use- cases.

https://www.datamation.com/artificial-intelligence/what-is-artificial-intelligence/
https://www.datamation.com/artificial-intelligence/what-is-artificial-intelligence/
https://www.weforum.org/press/2023/06/new-world-economic-forum-research-identifies-top-ai-applications-that-could-revolutionize-global-healthcare/
https://www.weforum.org/press/2023/06/new-world-economic-forum-research-identifies-top-ai-applications-that-could-revolutionize-global-healthcare/
https://www.weforum.org/press/2023/06/new-world-economic-forum-research-identifies-top-ai-applications-that-could-revolutionize-global-healthcare/
https://www.weforum.org/reports/scaling-smart-solutions-with-ai-in-health-unlocking-impact-on-high-potential-use-cases
https://www.weforum.org/reports/scaling-smart-solutions-with-ai-in-health-unlocking-impact-on-high-potential-use-cases
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which is a strategy that dictates what action to take 
under what circumstances. It is widely used in areas 
such as game playing, robotics, navigation, and real-
time decision making.

 2. Deep learning (DL)—DL is also a subset of ML which 
is continuously and rapidly expanding to constitute its 
own field of AI. The artificial neural network algo-
rithms used in DL are inspired by the structure and 
function of the human brain and are particularly useful 
in processing large and complex datasets (Fig. 9). DL 
models are composed of multiple processing layers for 

learning representations of data with multiple levels 
of abstraction (LeCun et al. 2015). A unique feature 
of DL is that performance of the model continues to 
increase with the addition of more data. DL is behind 
the advancements in image recognition, natural lan-
guage processing, and speech recognition which can be 
used in applications like disease diagnosis from radiol-
ogy images or developing speech recognition systems 
for patients with speech impairments.

 3. Federated Learning—A federated machine learning 
approach allows models to be trained across numerous 
devices or servers holding local data samples, with-
out exchanging the data itself. This approach ensures 
data privacy as all the raw data remain on the origi-

Fig. 7  Both supervised and 
unsupervised learning can 
benefit from transfer learning. 
Modified and redrawn from 
https://i. ytimg. com/ vi/ mKTD8 
X4iokQ/ maxre sdefa ult. jpg and 
https:// www. seman ticsc holar. 
org/ paper/A- Survey- on- Trans 
fer- Learn ing- Pan- Yang/ a25fb 
cbbae 1e8f7 9c436 0d26a a11a3 
abf1a 11972/ figure/0

https://i.ytimg.com/vi/mKTD8X4iokQ/maxresdefault.jpg
https://i.ytimg.com/vi/mKTD8X4iokQ/maxresdefault.jpg
https://www.semanticscholar.org/paper/A-Survey-on-Transfer-Learning-Pan-Yang/a25fbcbbae1e8f79c4360d26aa11a3abf1a11972/figure/0
https://www.semanticscholar.org/paper/A-Survey-on-Transfer-Learning-Pan-Yang/a25fbcbbae1e8f79c4360d26aa11a3abf1a11972/figure/0
https://www.semanticscholar.org/paper/A-Survey-on-Transfer-Learning-Pan-Yang/a25fbcbbae1e8f79c4360d26aa11a3abf1a11972/figure/0
https://www.semanticscholar.org/paper/A-Survey-on-Transfer-Learning-Pan-Yang/a25fbcbbae1e8f79c4360d26aa11a3abf1a11972/figure/0
https://www.semanticscholar.org/paper/A-Survey-on-Transfer-Learning-Pan-Yang/a25fbcbbae1e8f79c4360d26aa11a3abf1a11972/figure/0
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nal device or server. The central server only receives 
updates to the model parameters, not the actual data, 
which is especially useful in scenarios where data pri-
vacy and security are critical.

 4. Natural Language Processing (NLP)—NLP is a sub-
field of AI focused on the interaction between comput-
ers and humans in natural language. It can be used to 
mine valuable information from scientific literature, 
clinical records, and patient interactions, helping life 
scientists draw new insights or aid decision-making 
processes.

 5. Network effects—In data science, network effects 
refer to the concept that the more data an algorithm 
has access to, more effectively it can learn patterns, 
make accurate predictions or uncover insights.

 6. Bioinformatics—This is an interdisciplinary field that 
applies computational methods to analyze large collec-
tions of biological data, such as genetic sequences. AI 
can significantly speed up data processing and analy-
sis in bioinformatics, providing insights into disease 
mechanisms, drug targets, toxicological effects, etc.

Fig. 8  The principles of reinforcement learning. Reinforcement learn-
ing represents a branch of machine learning where an agent (acting 
entity) determines how to make decisions by performing actions 
within a specific environment to amplify a cumulative reward metric. 
Through a process of trial and error, the agent experiences penalties 
or rewards for its actions, aiming to formulate a policy, essentially a 
guide to deciding what action to take in a given scenario. Modified 
and redrawn from https:// dynag race. com/ what- is- reinf orcem ent- learn 
ing- all- you- need- to- know- about/

Fig. 9  The principles of deep 
learning. Deep learning is a 
form of machine learning, 
which involves the use of 
artificial neural networks with 
several layers—hence the term 
"deep"—to model and under-
stand complex patterns in data-
sets. DL continues to become 
better with increase in data. 
Modified and redrawn from 
https:// verne global. com/ news/ 
blog/ deep- learn ing- at- scale and 
https:// towar dsdat ascie nce. com/ 
is- deep- learn ing- hitti ng- the- 
wall- d2f56 0419d af

https://dynagrace.com/what-is-reinforcement-learning-all-you-need-to-know-about/
https://dynagrace.com/what-is-reinforcement-learning-all-you-need-to-know-about/
https://verneglobal.com/news/blog/deep-learning-at-scale
https://verneglobal.com/news/blog/deep-learning-at-scale
https://towardsdatascience.com/is-deep-learning-hitting-the-wall-d2f560419daf
https://towardsdatascience.com/is-deep-learning-hitting-the-wall-d2f560419daf
https://towardsdatascience.com/is-deep-learning-hitting-the-wall-d2f560419daf
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 7. Drug Discovery—AI is revolutionizing the drug dis-
covery process by predicting how different drugs will 
interact with targets in the body. Machine learning 
algorithms can process massive amounts of data on 
molecular structures and biological processes to help 
predict drug outcomes and side effects.

 8. Genomics and Precision Medicine—AI is being used 
to analyze large genomic datasets to understand dis-
ease mechanisms at the molecular level, paving the 
way for personalized treatments. This has significant 
implications for diseases like cancer, where treatment 
can be tailored to the patient's specific genetic makeup.

 9. Medical Imaging and Diagnosis—AI can analyze 
medical images like MRIs, X-rays, and CT scans, and 
detect anomalies, assisting doctors in diagnosing dis-
eases like cancer, heart disease, and neurological dis-
orders at an early stage. Digital pathology applications 
of AI may provide more reproducible and objective 
assessments of complex pathophysiology, morpho-
logical biomarker detection, patient stratification, and 
toxicological study outcomes (Baxi et al. 2021; Song 
et al. 2023).

 10. Digital Twins – Large patient populations are being 
combined with systems biology models to create digi-
tal twins. Patient-specific digital twins can use infor-
mation about an individual in combination with AI to 
parameterize models and predict individual suscepti-
bilities or targeted therapeutic interventions.

 11. Synthetic Data – Algorithms such as generative 
adversarial networks can be used to generate synthetic 
datasets that are trained from real world data and may 

supplement or substitute the need for experimental ani-
mals, e.g. via virtual control groups.

 12. Large Language Models (LLMs) – LLMs are charac-
terized by their extensive data training and high com-
putational resource use. These models have billions 
of parameters and have evolved to achieve general-
purpose language understanding and generation, with 
comprehensible textual reasoning and inference out-
puts. Models such as ChatGPT are trained on massive-
scale data (i.e. the content of the internet), but increas-
ingly LLMs are being trained for discipline-specific 
applications using quality-controlled datasets.

The multitude and continuously expanding universe of 
mathematical approaches used in AI is beyond the scope of 
this review. Figure 10 shows an “AI family tree”. The funda-
mentals of many of today’s algorithms have been around for 
decades, but only recently do we have enough data and suffi-
cient computational power to make these technologies work.

The evolution of AI in toxicology

Artificial intelligence (AI) and toxicology have evolved as 
distinct scientific disciplines over the past several decades. 
While toxicology has its roots in traditional observational 
studies, the data explosion, especially from high-throughput 
assays and omics technologies, has created new opportuni-
ties for applying AI techniques. The synergistic integration 
of these two fields is poised to transform how chemical tox-
icity evaluation is performed. This section provides an over-
view of the major developments at the intersection of AI and 

Fig. 10  An Artificial Intelligence (AI) family tree. Modified and redrawn from https:// ro. pinte rest. com/ pin/ 61164 51931 33116 162/

https://ro.pinterest.com/pin/611645193133116162/
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toxicology over the past few decades, in the order in which 
they first occurred. It highlights key milestones reflecting the 
evolution in capabilities, focus areas, and techniques as these 
fields have matured. The limitations faced during different 
eras as well as emerging trends for the future are discussed.

Early expert systems (1980s–1990s)

The earliest applications of AI in toxicology involved expert 
systems, which aimed to encode human expert knowledge 
into computer programs using rule-based logic and reason-
ing. Programs like DEREK, METEOR, HazardExpert and 
OncoLogic were developed to predict potential toxicity 
based on chemical structure patterns and rules identified by 
experts (Marchant et al. 1988; Payne et al. 1995; Benfenati 
and Gini 1997). However, these systems were limited by 
the rigidity of rule-based approaches and the challenge of 
comprehensively encoding expert knowledge from literature, 
guideline studies, and human intellect. They relied heavily 
on manual input and lacked adaptability to new data. These 
limitations prevented wide adoption, but the efforts demon-
strated promise for complementing human reasoning with 
prediction tools.

Statistical learning and QSARs (1990s–2000s)

The emphasis shifted from knowledge engineering to statis-
tical and machine learning models driven by data. Quantita-
tive structure–activity relationship (QSAR) models incorpo-
rated techniques like regression, random forests, and support 
vector machines to relate chemical descriptors to toxicity 
endpoints (Eriksson et al. 2003; Tropsha 2010) (Fig. 11). 
Public efforts like the OECD QSAR Toolbox (https:// www. 
oecd. org/ chemi calsa fety/ risk- asses sment/ oecd- qsar- toolb 
ox. htm) compiled data and programs to generate QSARs 
for regulatory applications. However, reliance on human-
crafted descriptors, simplistic models, and small datasets 

restricted predictive performance. This era evidenced grow-
ing recognition of the need for curated public data resources 
to develop robust data-driven toxicology tools. QSAR mod-
eling continues to evolve with the advent and implementa-
tion of chemical curation workflows (Mansouri et al. 2024), 
more informative structural descriptors (Sedykh et al. 2020), 
large curated datasets (Karmaus et al. 2022; Kleinstreuer 
et al. 2016a), and ensemble modeling approaches (Mansouri 
et al. 2021).

Data‑driven movement (2000s–2010s)

The early 2000s marked the emergence of public reposito-
ries like PubChem, ChemBL, ACToR and Tox21/ToxCast 
that compiled volumes of chemical data and high-throughput 
screening assay results (Kavlock et al. 2012; Williams et al. 
2017). Toxicogenomics data from microarrays reflected 
a shift from descriptive to mechanistic toxicology. These 
diverse evidence streams necessitated moving from statisti-
cal QSAR models to techniques like machine learning capa-
ble of integrating multi-modal data. An analysis of QSAR 
literature 2009–2015 (Devinyak and Lesyk 2016) observed 
that the number of QSAR papers using standard regression 
tools was decreasing, while more papers used ML meth-
ods, especially RF and naive Bayes. The Toxicology in the 
21st Century initiative emphasized evidence-based, mecha-
nism-driven predictive toxicology enabled by such data-rich 
resources (NRC 2007).

Rise of deep learning (2010s‑present)

The current era is being shaped by deep learning, which uti-
lizes neural networks with multiple layers to extract higher-
level features from raw input data. Seminal applications 
used deep learning on chemical structures to predict toxic-
ity, outperforming previous approaches (Mayr et al. 2016; 
Luechtefeld et al. 2018a, b). DeepTox demonstrated the 

Fig. 11  General steps involved in QSAR modelling. Modified and redrawn from (Abuhammad and Taha 2015)

https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
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power of deep learning for diverse endpoints using Tox21 
datasets (Wu et al. 2018). Active areas of research include 
multi-modal deep learning to integrate heterogeneous data 
types, generating synthetic toxicology data, and improving 
model interpretability. Initiatives like Tox21 and ToxCast 
continue generating rich public datasets to further AI capa-
bilities (Kavlock et al. 2012).

Emergence of AI for toxicology (present onwards)

Modern toxicology is increasingly embracing the synergies 
of big data and AI. Techniques like natural language pro-
cessing are automating literature mining for evidence extrac-
tion. AI is also enabling integration of ontologies, adverse 
outcome pathways and systems models to derive mechanistic 
insights from multifaceted data. Cloud platforms are allow-
ing easy access to computational toxicology resources. As 
predictive toxicology relies increasingly on in silico tools, 
AI has penetrated every stage of the toxicity testing para-
digm. Explainable AI, automated lab robots, and sensors are 
expected to be transformative as data generation and analysis 
become more intertwined.

The trajectory of progress in applying AI for predicting 
and understanding chemical toxicity has closely mirrored 
advances in data availability, algorithmic capabilities, and 
interdisciplinary collaborations. While rule-based expert 
systems were promising proofs-of-concept, the lack of large 
curated datasets was a fundamental limitation. Deep learn-
ing and modern AI finally offer the potential to handle the 
complexities of toxicology big data and provide robust pre-
dictive tools to augment human insight. Federated learning 
across distributed servers is an opportunity which seems to 
be ideally suited for toxicology, where data sharing is often 
challenging. Promoting open data sharing and/or federated 
model building, encouraging academia-industry partner-
ships, and fostering AI literacy among toxicology research-
ers will be vital to fully realize the promise of this integra-
tive new field – ToxAIcology (2023b, 2023c).

AI for toxicity prediction

Predicting potential toxicity and adverse effects of chemi-
cals is a crucial application of computational methods in 
toxicology. Traditionally, quantitative structure–activ-
ity relationship (QSAR) models have been used for this 
purpose. However, in some instances these models have 
limited predictive power as they rely solely on chemical 
descriptors and lack capacity to integrate diverse data 
types (Hartung and Hoffmann 2009). The field of compu-
tational toxicology has enjoyed rapid growth over the last 
decade, with the maturation of cognitive algorithmic tools 
and software to mine, process, and model data to facilitate 

robust and reliable predictions of chemical property, activ-
ity, and toxicity endpoints. Success lies in iterative and 
mutually informative approaches along a continuum of 
findable, accessible, interoperable, and re-usable (FAIR) 
data resources, predictive analyses, experimentation, and 
mechanistic models, with the goal of generating insights 
into human disease processes and their susceptibility to 
environmental perturbations. Underpinning this “Comp-
Tox continuum” is a multidisciplinary field that leverages 
big data and computational tools to join techniques of AI, 
ML, natural language processing, mathematical modeling, 
and data analytics to enhance and support human intellect. 
Applications to predictive toxicology range from model 
development for specific toxicity endpoints, to automation 
of data curation and annotation, to computational work-
flows enabling hypothesis generation and testing, to estab-
lishing scientific confidence in new approach methodolo-
gies. AI methods, especially DL, are a critical tool along 
the CompTox continuum to offer more robust solutions 
for predictive toxicology. With sufficient training data, 
DL models can capture complex relationships between 
chemical structure, bioactivity and toxicity. Various types 
of neural networks, like convolutional and recurrent neural 
networks, have been applied for toxicity prediction. One 
seminal study demonstrated the use of DL for predicting 
mutagenicity, reproducing the accuracy of mutagenicity 
assays for over 90% of chemicals (Mayr et al. 2016). Deep 
neural networks have also shown promise in predicting 
developmental and reproductive toxicity, such as terato-
genicity (Challa et al. 2020; Sukur et al. 2023).

A key advantage of DL in toxicology is the capacity to 
learn both chemical structural features as well as patterns 
in assay bioactivity data predictive of toxicity. This ability 
to fuse heterogeneous data allows for more robust toxicity 
predictions. Deep learning methods are also better suited 
to handle large and complex toxicological datasets. Impor-
tantly, DL models can provide probabilistic predictions 
conveying the confidence of toxicity potential rather than 
binary or categorical classifications. However, reliance on 
large training datasets, lack of interpretability, and suscepti-
bility to data biases remain as challenges. Ongoing research 
is focused on using explainable AI techniques to increase 
model interpretability (Jia et al. 2023). Overall, as chemi-
cally diverse and multi-modal toxicological datasets grow, 
AI and DL show immense potential to transform predictive 
toxicology.

AI for toxicological data analysis

Modern toxicology research involves generating and 
analyzing large volumes of complex data from various 
sources. These include scientific literature, legacy animal 
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studies, high-throughput screening assays, and diverse 
omics datasets. Manual curation and analysis of such 
heterogeneous big datasets is infeasible, as it is resource 
prohibitive and prone to human error. AI methods offer 
solutions through automating data extraction, normaliza-
tion, annotation, integration and mining.

Natural language processing (NLP) techniques enable 
mining of unstructured textual data in published literature 
and old animal toxicity studies to extract relevant facts and 
relationships (Kleinstreuer et al. 2018; Foster et al. 2024). 
This can make use of existing evidence more efficient. For 
high-throughput screening data, AI can automate quality 
control, data cleaning, and hit-calling to streamline analy-
sis (Allen et al. 2014).

Integrating diverse omics data to derive mechanistic 
insights is crucial but challenging for toxicologists. AI meth-
ods like graph neural networks can integrate transcriptom-
ics, metabolomics and lipidomics data to enable multi-omics 
analyses (Wang et al. 2021). Through dimensionality reduc-
tion, AI can integrate such heterogeneous data modalities to 
find patterns predictive of toxicity phenotypes.

Causality assessment from observational data is another 
active area of AI research with applicability in toxicology 
for deriving adverse outcome pathways (AOPs) from diverse 
evidence (Rugard et al. 2020). Techniques like generative 
adversarial networks are also gaining traction to generate 
synthetic toxicology datasets where real data are lacking.

However, issues like hidden biases and batch effects in 
experimental data, reproducibility challenges, relevance of 
the training data for the prediction goals, and need for mul-
tidisciplinary expertise remain as caveats for applying AI 
in toxicological data analysis. Ongoing efforts like Tox21 
are helping generate quality curated datasets to realize the 
promise of data-driven toxicology through AI.

AI for risk assessment

Risk assessment is central to regulatory decision-making in 
toxicology. It involves integrating data across multiple levels 
of biological organization to determine the probability of 
adverse effects occurring under specific exposure conditions. 
AI is well suited for data-driven quantitative risk assessment 
due to its capacity for probabilistic modeling.

Most AI models provide predictive outputs as probabili-
ties or confidence levels rather than binary classifications. 
This allows for capturing and propagating various uncer-
tainties in the risk modeling workflow. AI can account for 
population variability by incorporating diverse exposure, 
toxicokinetic and toxicodynamic data (Zhang et al. 2019). 
This enables more refined probabilities and margins-of-
exposure calculations. Bayesian approaches have become 

increasingly applied due to vast improvements in computa-
tional processing power and speed, providing probabilistic 
distributions that can be used to estimate risk and protect 
for sensitive and vulnerable subpopulations (Chiu et al. 
2017).

AI can also help overcome challenges in extrapolating 
dose–response or exposure–response relationships from 
high-to-low doses typical in toxicology risk assessment. 
Deep learning models are capable of integrating diverse end-
point assays with in vivo data to derive more robust point-
of-departure metrics for low-dose extrapolation (Thomas 
et al. 2019).

Active areas of AI research for risk assessment include 
integrating human and animal data, combining in vitro and 
in vivo data, and incorporating mechanistic or causal bio-
logical knowledge into probabilistic risk models. However, 
issues like model interpretability, uncertainty quantification, 
and bias management remain as challenges. Alignment with 
the adverse outcome pathway framework and OECD guide-
lines for quantitative in vitro-to-in vivo extrapolation is also 
warranted.

Overall, as toxicology progressively shifts from quali-
tative hazard identification to quantitative risk-based para-
digms, AI adoption for predictive risk modeling will likely 
accelerate to strengthen evidence-based safety decision 
making.

Explainable AI and toxicology

While AI models like deep neural networks achieve high pre-
dictive performance, their inner workings are often opaque 
making them hard to understand and interpret, and thus less 
likely to achieve regulatory acceptance and implementation. 
This black-box nature poses particular challenges for appli-
cations in toxicology where mechanistic transparency and 
causal explanations are crucial. The field of explainable AI 
(xAI) aims to address these interpretability issues (Samek 
et al. 2021).

xAI refers to methods for producing explainable models 
while also enabling human-understandable explanations to 
be generated for individual predictions. Strategies like visu-
alizing activations in hidden layers, occlusion analysis, and 
perturbation-based approaches are being applied to unpack 
and demystify AI toxicity models.

Local explanation methods can determine the influence 
of different input chemical features on individual toxicity 
predictions. Global explanation techniques characterize the 
entire model behavior through surrogate models or summary 
visualizations. xAI implementations are being standardized 
through open-source libraries like InterpretML and initia-
tives such as DARPA's xAI program (Gilpin et al. 2018).
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Most xAI approaches remain model-specific and focused 
on post-hoc explanations. Advances are needed for stand-
ardized, human-centered xAI techniques applicable across 
different model types and use cases in toxicology. Alignment 
with the adverse outcome pathway knowledge framework 
(OECD 2017) could be valuable for mechanistic and causal 
insights. Overall, xAI will be key for increasing trust and 
transparency in AI-based decision support systems for regu-
latory toxicology.

Challenges and opportunities

While AI promises to be transformative for toxicology, there 
are certain challenges that need to be addressed. Andreas 
Bender in his comment3 “‘AI’ in Toxicology (In Silico Toxi-
cology) – The Pieces Don’t Yet Fit Together” coined the 
Anna Karenina Principle, adapted from Tolstoy:”All happy 
molecules are alike; each unhappy molecule is unhappy in 
its own way.” Some key limitations and mitigation strategies 
are discussed below:

1. Data bias and quality AI models are prone to reinforc-
ing biases in training data which can lead to inaccurate 
predictions. Ensuring curated, representative, and unbi-
ased datasets for model development is crucial (Tong 
et al. 2018).

2. Lack of standardization Heterogeneous data formats, 
protocols, and nomenclature make integration challeng-
ing. Community efforts for standardized ontologies, 
minimal reporting guidelines, and FAIR data practices 
are needed.

3. Multidisciplinary expertise Developing and imple-
menting AI workflows require collaborating with data 
scientists, software engineers, chemists, biologists and 
toxicologists. Cross-domain partnerships should be fos-
tered.

4. Model interpretability Complex AI models lack inter-
pretability. Advances in explainable AI techniques to 
derive mechanistic understanding from models are 
needed.

5. Regulatory acceptability Lack of transparency around 
model assumptions and development could hinder regu-
latory endorsement. Verification, validation and uncer-
tainty quantification are important. A recent report from 
the Interagency Coordinating Committee on the Valida-
tion of Alternative Methods (ICCVAM) offers a foun-
dational framework that is general across new approach 
methodologies (ICCVAM 2023), while efforts at the 

OECD have generated a new QSAR Assessment Frame-
work (OECD 2023).

  Despite these limitations, AI also presents promising 
opportunities such as:

1. Animal replacement I.e., reducing animal Testing: AI 
predictive models trained on existing data can reduce 
reliance on animal studies to screen new chemicals for 
toxicity.

2. Accelerating safety evaluation AI can automate tedi-
ous tasks allowing toxicologists to focus on high-value 
complex analyses to accelerate assessment.

3. Democratization of knowledge AI systems can enable 
easy access to toxicology prediction tools and databases 
to aid various end-users from regulators to industry. AI/
big data and globalization are two sides of the same coin 
or probably better two sides of the same Rubik’s cube. 
Similar to science and enlightenment.

  The following section details specific subdisciplines 
and example projects that are effectively developing and 
applying AI to enhance predictive toxicology.

AI to accelerate evidence‑based toxicology

Evidence-based toxicology (EBT) (Hoffmann and Hartung 
2006) aims to bring principles of transparency, objectivity, 
and consistency from evidence-based medicine to toxicology 
and risk assessment. Core EBT activities include systematic 
literature reviews, quality appraisal of studies, quantitative 
evidence synthesis, and evidence integration (Hoffmann 
et al. 2017). AI methods like machine learning and neural 
networks have potential to assist with and enhance various 
EBT tasks through automation. SysRev4 is such a tool allow-
ing semi-automated systematic reviews (Bozada et al. 2021). 
AI capabilities for processing text, images, and diverse data-
sets can help extract, analyze and integrate evidence from 
toxicology literature and legacy reports. Neural networks 
can learn to assess study quality and bias. Meta-analysis 
and evidence synthesis algorithms operating on standard-
ized data can accelerate quantitative synthesis. Knowledge 
graphs and interactive visualizations can provide evidence 
maps. Explainable AI techniques promote model transpar-
ency. Overall, purposeful AI design and use can both accel-
erate and enhance EBT.

1. Automated Literature Mining—A fundamental chal-
lenge in EBT is comprehensive evidence gathering 
from enormous toxicology literature. AI text mining 
uses natural language processing (NLP) to extract facts, 

3 http:// www. drugd iscov ery. net/ 2019/ 08/ 31/ ai- in- toxic ology- in- sil-
ico- toxic ology- the- pieces- dont- yet- fit- toget her/ 4 https:// sysrev. com.

http://www.drugdiscovery.net/2019/08/31/ai-in-toxicology-in-silico-toxicology-the-pieces-dont-yet-fit-together/
http://www.drugdiscovery.net/2019/08/31/ai-in-toxicology-in-silico-toxicology-the-pieces-dont-yet-fit-together/
https://sysrev.com
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relationships, and reported findings from papers to popu-
late structured databases (Yan et al. 2022). Toxicologi-
cal ontology mapping further enables mining context-
specific information (Foster et al. 2024). Legacy toxicity 
data in PDF reports can also be unlocked by AI optical 
character recognition and document classification tech-
niques (Clark and Divvala 2016). Metadata extraction 
and reinforcement learning supports document triage 
and search (Walker et al. 2022). Thus, AI can accelerate 
evidence identification and extraction (Fig. 12).

2. Risk of Bias Assessment—Quality appraisal of studies 
for risk of bias is integral to EBT but time consuming. 
AI holds promise for automated study scrutiny using 
guidelines and checklists to train neural networks to 
automate the scrutiny of AI-based studies, ensuring 
that they meet the necessary standards for transparency, 
completeness, and quality. Models can learn risk-of-bias 
patterns from manual assessments done by experts. AI-
human loops can enable efficient semi-automated study 
appraisal Fig. 13.

3. Evidence Synthesis—Quantitative evidence synthe-
sis involves aggregating results across similar studies, 
requiring data normalization and statistical meta-anal-
ysis. AI can automate extraction of study results and 
metadata into standardized formats (Kiritchenko and 
Mohammad 2017). Meta-analysis algorithms tailored for 
toxicology data can synthesize diverse evidence types 
(Vidgen et al. 2021).

4. Uncertainty Analysis—Characterizing uncertainties is 
key in EBT evidence synthesis. Bayesian AI models 
can quantify uncertainty bounds for meta-analysis while 
sensitivity analysis based on neural network Jacobian 
matrices can reveal influential sources of uncertainty 
(Kwon et al. 2020; Liu et al. 2023; Li et al. 2021). This 
supports focus on material gaps.

5. Evidence Maps—AI knowledge graphs integrating 
literature mining and network analysis techniques can 
provide interactive visualizations of evidence clusters 
and relationships (Kejrival 2022). User filters and multi-
dimensional views allow exploring evidence maps tai-
lored to specific questions.

6. Explainable AI—Transparency of AI models and analy-
ses is crucial for trustworthy EBT integration. Explaina-
ble AI methods like LIME (Ribeiro et al. 2016) can pro-
vide local explanations for individual predictions. Model 
debugging techniques including adversarial examples, 
counterfactuals and stress testing evaluate model limita-
tions (Chou et al. 2022). Causal analysis ensures internal 
validity.

In summary, AI has considerable potential to accelerate 
and enhance EBT by extracting, analyzing, synthesizing and 

integrating toxicological evidence from literature and data. 
This can overcome manual bottlenecks in evidence-based 
approaches. However, purposeful and ethical AI design 
remains pivotal for reliable and transparent EBT assisted by 
AI. Overall, AI transformation coupled with ongoing efforts 
in mechanistic toxicology will enable more swift, robust and 
reproducible evidence-based safety evaluations.

AI to enable probabilistic risk assessment

Probabilistic risk assessment (ProbRA) has emerged as a 
quantitative methodology to characterize risks by incor-
porating probability distributions instead of single point 
estimates for key model parameters. This captures inher-
ent variability and uncertainties to enable more realis-
tic risk estimates compared to traditional deterministic 
approaches (Maertens et al. 2022). AI methods are well 
suited for facilitating and enhancing various aspects of 
ProbRA, given their ability to analyze large, multi-modal 
datasets, identify patterns, and make data-driven predic-
tions. This chapter provides an overview of some key 
application areas where AI shows promise to transform 

Fig. 12  Machine learning in the systematic review process. Modified 
and redrawn from Varghese et al. (2020)
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ProbRA capabilities by automating tedious tasks, integrat-
ing diverse evidence streams, explaining model behaviors, 
and supporting risk management decisions under uncer-
tainty. However, responsible and ethical development and 
use of AI tools remain crucial for wider acceptance of 
data-driven ProbRA.

1. Data Extraction and Curation—The first step in evi-
dence-based ProbRA involves comprehensive gather-
ing and curation of relevant data from various sources 
to parameterize risk models. AI natural language pro-
cessing (NLP) methods enable text mining of enormous 
scientific literature to extract factual information and 
reported evidence in toxicology (Hoffmann et al. 2017). 
For example, Grover et al. (2019) designed a Biomedi-
cal Entity Relation Extraction dataset spanning scientific 
findings from over 18,000 PubMed abstracts annotated 
via crowdsourcing. Such abilities to rapidly compile rel-
evant prior results can better inform ProbRA models. 
Meanwhile, vast volumes of historical toxicity data exist 
as inaccessible legacy reports in PDF formats. AI optical 
character recognition (OCR) and Intelligent Document 
Processing (IDP) allow layout understanding techniques 
that unlock these by extracting tables, figures, and tex-
tual information (Acodis 2020). Further, meta-analysis 
algorithms and study quality assessment models can 
synthesize evidence from diverse publications to derive 
realistic model parameter estimates and uncertainties 
(Briggs et al. 2012). For big datasets, which are com-
monplace in chemical risk assessment, AI methods like 
deep learning enable automated data wrangling, nor-

malization and quality checking to maintain reliability 
(Luo et al. 2021). Overall, AI unlocks large volumes of 
multimodal data to better parameterize ProbRA models.

2. Predictive Modeling—At the core of ProbRA are math-
ematical models relating exposures to eventual risks. AI 
methods like deep neural networks have shown tremen-
dous successes for predictive toxicology, for example, 
deep learning on chemical structures and bioactivity 
data can yield high accuracy models for mutagenicity, 
rodent carcinogenicity, and other toxicity endpoints suit-
able for ProbRA (Mayr et al. 2016). Multimodal deep 
learning suits ProbRA needs by jointly analyzing chemi-
cal information, in vitro assay data, omics profiles etc. 
to derive robust structure–activity relationships captur-
ing complex real-world risks (Wu et al. 2018). Deep 
generative models like generative adversarial networks 
can create realistic synthetic biomonitoring data where 
human evidence is sparse, to better train ProbRA models 
(Kadurin et al. 2016). Overall, AI predictive modeling 
strengthens the evidence-basis of ProbRA.

3. Uncertainty Quantification—A key advantage of 
Prob RA lies in expressing model predictions along with 
associated uncertainties that can guide further refine-
ment. AI methods like Bayesian deep learning explicitly 
model uncertainties in neural network weights and out-
puts (Kwon et al. 2020). This allows deriving confidence 
intervals and probabilities for risk estimates. AI uncer-
tainty quantification techniques also enable efficient sen-
sitivity analysis to identify influential model parameters 
(Liu et al. 2020). This supports focusing additional data 
curation on the most important sources of uncertainty.

Fig. 13  Main Components of the NIEHS Integrated Chemical Environment. IVIVE = In vitro-to-in vivo-extrapolation. Modified and redrawn 
from https:// ice. ntp. niehs. nih. gov/

https://ice.ntp.niehs.nih.gov/
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4. Evidence Integration—Integrating diverse evidence 
streams from literature meta-analysis, physicochemical 
data, in vitro & in vivo assays, etc. to derive weight-of-
evidence risk conclusions is challenging. AI provides 
suitable tools such as probabilistic logic learning meth-
ods to synthesize disparate pieces of evidence (Vidgen 
et al. 2021). Causal analysis with Bayesian networks can 
incorporate mechanistic understanding into probabilis-
tic inferences (Korb and Nicholson 2008). Overall, AI 
enables aggregating population variability, human het-
erogeneity, exposure factors and hazard potential into 
integrated ProbRA models.

5. Explainable AI—While AI models provide powerful 
predictive capabilities, their ‘black box’ opacity poses 
challenges for regulatory acceptance in particular for 
risk assessment applications. The xAI field aims to 
decipher model behaviors and predictions (Adadi et al. 
2018). For instance, methods like integrated gradients 
can identify influential chemical features driving toxic-
ity predictions (Vidgen et al. 2021). Such transparency 
will be key where ProbRA informs high-stakes decision 
making. Evaluation of model limitations via testing on 
out-of-distribution data will also be crucial.

In summary, AI has immense potential to enable more 
expansive, transparent and human-centric ProbRA by auto-
mating data extraction & curation, predicting risks from 
multimodal data, quantifying uncertainties, integrating 
diverse evidence, and explaining model behaviors. This 
can lead to higher quality risk-based decisions to better 
safeguard human and environmental wellbeing. However, 
responsible AI development and use by multidisciplinary 
teams spanning AI, risk science and domain experts will be 
pivotal for wider acceptance and realizing the promises of 
AI-enabled ProbRA.

AI to enable the ONTOX project goals

AI techniques offer immense potential to facilitate vari-
ous aspects of the goals of numerous global collabora-
tions, e.g. ONTOX, RISK-HUNT3R, PANORAMIX, 
PrecisionTox, and aligns with the paradigm shift towards 
human-relevant new approach methodologies (NAMs) 
and evidence-based toxicology. Efforts under these pro-
jects enabled by AI include extracting and analyzing evi-
dence from literature, generating predictive models from 
chemical and biological data, characterizing uncertainties, 
integrating diverse evidence streams in a causal frame-
work, and promoting model transparency. The ONTOX 
project funded by the EU Horizon 2020 program aims 
to develop innovative non-animal methods (NAMs) for 
predicting repeat dose systemic toxicity. The specific 

adverse outcomes addressed are liver steatosis and chol-
estasis, kidney tubular necrosis and crystallopathy, and 
neural tube closure and cognitive function defects. A key 
objective is integration of tailored exposure assessment 
with mechanistic information to enable human-relevant 
chemical safety evaluation (Vinken et al. 2021).

1. Data Curation and Extraction—A comprehensive evi-
dence-base of existing knowledge is key to develop 
NAMs for predicting toxicity pathways and outcomes. 
AI text mining of enormous scientific literature can 
accelerate evidence gathering. For instance, natural 
language processing methods developed by Corradi 
et al. (2022) could extract factual toxicological find-
ings and relationships from PubMed abstracts and full 
texts. Further, AI techniques can unlock legacy toxicity 
data trapped as scan PDF reports via optical character 
recognition and document layout analysis (Palm et al. 
2019). Also, standardized ontologies mapped to adverse 
outcome pathways will enable structured representation 
of extracted evidence (Kleinstreuer et al. 2016a, b, c). 
Overall, AI supports ONTOX goals by better utilizing 
existing knowledge.

2. Predictive Modeling—Modern deep learning models 
excel at learning predictive patterns from chemical 
and biological data relevant for toxicity prediction. For 
example, graph neural networks operating on molecular 
graphs can yield high accuracy for toxicity endpoints 
(Jin et al. 2019). Integrating such chemical data with 
pathway-based biological readouts using multimodal 
deep learning suits ONTOX’s goals of mechanistic 
NAMs. Where human evidence is scarce, deep genera-
tive models can create realistic synthetic data (Kadurin 
et al. 2016) to train more robust AI models and analyze 
uncertainties. Causal analysis methods can infer plau-
sible mechanisms from observational data (Schölkopf 
et al. 2021). Overall, AI modeling strengthens ONTOX’s 
evidence basis.

3. Uncertainty Characterization—For wider regulatory 
acceptance, NAMs must provide confidence estimates 
alongside predictions. AI tools like Bayesian deep learn-
ing (Kwon et al. 2020) allow probabilistic outputs to 
capture uncertainties. Sensitivity analysis based on auto-
matic differentiation methods (Daxberger et al. 2021) 
can reveal the most influential sources of uncertainty to 
prioritize additional experiments or data curation. Thus, 
AI facilitates uncertainty characterization in ONTOX.

4. Evidence Integration—Integrating diverse evidence 
streams from literature mining, in vitro assays, omics 
data, etc. into a consistent picture is challenging. AI 
techniques like probabilistic logic learning using 
Markov Logic Networks (Richardson and Domingos 
2006) allow evidence synthesis by incorporating domain 
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knowledge. Causal graph representations permit incor-
porating mechanistic insights into model predictions. 
Overall, AI enables evidence integration for ONTOX.

5. Explainable AI—While AI models provide strong pre-
dictive performance, transparency regarding their rea-
soning and potential limitations is crucial for trust and 
regulatory acceptance. Explainable AI techniques, such 
as layerwise relevance propagation for deep learning 
models (Bach et al. 2015), can identify influential fea-
tures driving particular predictions. Evaluation on out-
of-domain examples can reveal model vulnerabilities. 
Such AI model debugging ability aids ONTOX’s goals.

In summary, AI has an essential role in extracting, ana-
lyzing and integrating evidence to develop robust NAMs 
for human-relevant chemical safety assessment as aimed by 
ONTOX and other global projects. However, purposeful and 
ethical AI development and use remains pivotal for real-
izing its benefits. Overall, AI transformation coupled with 
ongoing efforts in mechanistic toxicology will enable the 
ONTOX vision of evidence-based chemical safety assess-
ment using fewer animals.

The example of the Integrated Chemical 
Environment (ICE) as resource and user 
interface for AI in toxicology

The Integrated Chemical Environment (ICE: https:// 
ice. ntp. niehs. nih. gov/) is an example of a suite of mod-
els, tools, and high-quality datasets that are designed to 
democratize access to AI-enabled computational toxicol-
ogy resources across the scientific community (Abedini 
et al. 2021; Daniel et al. 2022). The ICE database is organ-
ized by toxicity endpoint and mechanism, and uses stand-
ardized terminology, units, and formatting to adhere to 
FAIR principles, and is programmatically accessible via a 
REST API. Additional curated information in ICE includes 
reference chemical lists with classifications and bioactiv-
ity, in vitro assays annotated with defined terminology and 
curated based on analytical QC and technological informa-
tion, and computational workflows. ICE facilitates explo-
ration and interpretation of large datasets like the Tox21 
HTS human cell-based assay data, by linking assay targets 
to organ systems in the body and mechanisms of toxicity. 
The user can interact with the concentration response data 
from individual tests or combine data from mechanisti-
cally related assay targets to provide insight into biological 
effects observed at increasing exposures to environmen-
tal toxicants. Data-driven graphical displays provide the 
ability to filter the in vitro HTS data based on a variety of 

parameters like mechanistic target, platform, and bioactiv-
ity level, and search for similar chemical structures using 
chemical identifiers, SMARTS strings, Tanimoto scores, 
and availability of bioactivity data.

Other AI-enabled computational tools in ICE can be 
used to run virtual animal/human studies, via user-defined 
parameters like species, dosing route, duration, etc., to 
simulate how external chemical exposure will result in 
internal chemical concentrations in different tissues of the 
body (Hines et al. 2022). These PBPK models can be run 
in a forward dosimetry fashion, or in reverse dosimetry to 
perform in vitro to in vivo extrapolation (IVIVE), where 
critical parameters like plasma protein binding or hepatic 
clearance are either experimentally derived or predicted 
using embedded ML models. Additional workflows in 
ICE provide insight into where chemicals of concern 
appear in consumer products, cross-referenced with the 
bioactivity patterns across groups of mechanistic targets 
from the HTS data, to further link exposure to potential 
toxicity.

The future of AI in toxicology

The integration of AI in toxicology is still in its early 
stages. Overall, a responsible adoption of AI in toxicol-
ogy research and regulation requires proactively address-
ing concerns around ethics, transparency, data practices 
and model interpretability while harnessing the power of 
AI. As techniques and adoption mature, AI is expected to 
become integral to multiple facets of toxicology. Figure 14 
summarizes some of the use areas.

Toxicology has started to embrace AI as shown in Fig. 15 
with the logarithmic growth of such articles combining the 
two from 1980 to now. Some key trends for the future of AI 
in toxicology are:

Predictive toxicology

Increasing availability of diverse toxicological big data 
will drive more powerful and generalized predictive mod-
els using techniques like deep learning and reinforcement 
learning.

Mechanistic toxicology

Causal inference methods and graph neural networks will 
derive explanatory networks integrating multiple evidence 
streams to refine mechanistic understanding and AOPs.

https://ice.ntp.niehs.nih.gov/
https://ice.ntp.niehs.nih.gov/
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In vitro to In vivo extrapolation

Multi-modal in vitro assay data will be integrated with 
PBPK modeling to enable robust quantitative IVIVE tai-
lored to human biology for more accurate risk assessment.

Toxicant screening

Automated high-throughput toxicity testing systems coupled 
with robotics and sensors will enable rapid screens for envi-
ronmentally relevant mixtures guided by AI experimental 
design.

Precision toxicology

AI analysis of exposure, genetic, epigenetic and microbiome 
data will enable personalized toxicity risk assessment and 
precision safety testing.

To realize this future, multidisciplinary and multi-sector 
collaborations are imperative. Ethical guidelines for trans-
parency, bias mitigation, and responsible AI must be proac-
tively developed through community engagement. Education 
programs integrating data science into toxicology curricula 
will develop the hybrid skillsets needed.

A recent workshop on the future of toxicology5 prompted 
by the US Department of Defense assembled an avant-garde 
of toxicologists and not surprisingly, AI played a central role 
in their vision (Hartung 2023a). With the rapid evolution of 

Fig. 14  Evidence integration 
serving the different goals of 
safety sciences. Modified and 
redrawn from Vo et al. (2019)

Fig. 15  Articles in PubMed by year combining toxicology with AI. 
The following search was conducted in PubMed (https:// pubmed. 
ncbi. nlm. nih. gov) (A.I. OR artificial intelligence OR machine learn-
ing) AND (toxicology OR toxicity OR hazard) on 28 Nov 2023

5 https:// basic resea rch. defen se. gov/ Porta ls/ 61/ Docum ents/ future- 
direc tions/ Future% 20Dir ectio ns% 20Wor kshop% 20-% 20Adv ancing% 
20the% 20Next% 20Sci entif ic% 20Rev oluti on% 20in% 20Tox icolo gy. 
pdf? ver= q0_ CyJCAT- aj4HVv_ W0a9Q% 3D% 3D.

https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
https://basicresearch.defense.gov/Portals/61/Documents/future-directions/Future%20Directions%20Workshop%20-%20Advancing%20the%20Next%20Scientific%20Revolution%20in%20Toxicology.pdf?ver=q0_CyJCAT-aj4HVv_W0a9Q%3D%3D
https://basicresearch.defense.gov/Portals/61/Documents/future-directions/Future%20Directions%20Workshop%20-%20Advancing%20the%20Next%20Scientific%20Revolution%20in%20Toxicology.pdf?ver=q0_CyJCAT-aj4HVv_W0a9Q%3D%3D
https://basicresearch.defense.gov/Portals/61/Documents/future-directions/Future%20Directions%20Workshop%20-%20Advancing%20the%20Next%20Scientific%20Revolution%20in%20Toxicology.pdf?ver=q0_CyJCAT-aj4HVv_W0a9Q%3D%3D
https://basicresearch.defense.gov/Portals/61/Documents/future-directions/Future%20Directions%20Workshop%20-%20Advancing%20the%20Next%20Scientific%20Revolution%20in%20Toxicology.pdf?ver=q0_CyJCAT-aj4HVv_W0a9Q%3D%3D
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AI technologies (Fig. 16), current applications are already 
moving further to Distributed Agents and Swarm Deep 
Reinforcement Learning; part of this is federated model con-
struction. While AI may automate certain tasks and enhance 
predictive capabilities, the creativity, skepticism and exper-
tise of toxicology researchers will remain indispensable to 
employ these emerging tools for advancing the science of 
safety. AI holds great potential for life sciences, but it also 
brings challenges like data privacy and ethical concerns that 
need to be addressed responsibly. Moreover, the successful 
application of AI in life sciences requires interdisciplinary 
collaboration, bridging the gap between AI experts and life 
scientists.
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