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Abstract
The most important dose-limiting factor of the anthracycline idarubicin is the high risk of cardiotoxicity, in which the 
secondary alcohol metabolite idarubicinol plays an important role. It is not yet clear which enzymes are most important 
for the formation of idarubicinol and which inhibitors might be suitable to suppress this metabolic step and thus would be 
promising concomitant drugs to reduce idarubicin-associated cardiotoxicity. We, therefore, established and validated a mass 
spectrometry method for intracellular quantification of idarubicin and idarubicinol and investigated idarubicinol formation in 
different cell lines and its inhibition by known inhibitors of the aldo–keto reductases AKR1A1, AKR1B1, and AKR1C3 and 
the carbonyl reductases CBR1/3. The enzyme expression pattern differed among the cell lines with dominant expression of 
CBR1/3 in HEK293 and MCF-7 and very high expression of AKR1C3 in HepG2 cells. In HEK293 and MCF-7 cells, mena-
dione was the most potent inhibitor (IC50 = 1.6 and 9.8 µM), while in HepG2 cells, ranirestat was most potent (IC50 = 0.4 µM), 
suggesting that ranirestat is not a selective AKR1B1 inhibitor, but also an AKR1C3 inhibitor. Over-expression of AKR1C3 
verified the importance of AKR1C3 for idarubicinol formation and showed that ranirestat is also a potent inhibitor of this 
enzyme. Taken together, our study underlines the importance of AKR1C3 and CBR1 for the reduction of idarubicin and 
identifies potent inhibitors of metabolic formation of the cardiotoxic idarubicinol, which should now be tested in vivo to 
evaluate whether such combinations can increase the cardiac safety of idarubicin therapies while preserving its efficacy.
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Introduction

The anthracycline drug idarubicin has been used for decades 
predominantly for the treatment of acute myeloid leukemia 
(AML) and acute nonlymphocytic leukaemia (ANLL), 
especially in paediatric populations. The main mechanisms 
underlying the antiproliferative effects of anthracyclines 
consist of intercalation and cross-linking of DNA and of 
inhibition of the topoisomerase II leading to disturbed DNA 

synthesis (Pommier et al. 2010; Marinello et al. 2018; Kac-
zorowska et al. 2020).

The main pathway for anthracycline metabolism is a two-
electron reduction of the C-13 carbonyl group, producing 
alcohol metabolites, as depicted in Fig. 1 for idarubicin. This 
process is primarily catalyzed by two groups of enzymes, 
the superfamily of aldo–keto reductases (AKRs) and the 
carbonyl reductases (CBRs) belonging to the superfamily 
of short-chain dehydrogenases/reductases (SDRs) (Le Bot 
et al. 1998; Hofman et al. 2015; Koczurkiewicz-Adamczyk 
et al. 2022; Novotná et al. 2020).

Idarubicin is extensively metabolized to idarubicinol, 
which has a long half-life in the blood and peak plasma 
concentrations generally exceeding those of idarubicin 
(Crivellari et al. 2004; Tamassia et al. 1987; Gillies et al. 
1987; Zanette et al. 1990; Camaggi et al. 1992; Robert 
et al. 1993). The main metabolising organ is the liver and 
idarubicin is primarily excreted as idarubicinol via the 
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bile—only about 5% of an idarubicin dose can be found in 
urine, mainly as idarubicinol (Crivellari et al. 2004). Unlike 
other alcohol metabolites of anthracyclines, idarubicinol 
also has high cytotoxic activity (Ferrazzi et al. 1991; Kuf-
fel et al. 1992; Toffoli et al. 1996 and similar potency to its 
parent compound (Toffoli et al. 1996). The carbonyl reduc-
tion of anthracyclines to their alcohol metabolites is cata-
lyzed by different AKRs and CBR1 and CBR3. However, 
the importance of single enzymes appears to differ between 
the different anthracyclines and between tissues and differ-
ent neoplastic entities (Bains et al. 2008, 2009, 2010, 2013; 
Novotna et al. 2008; Blanco et al. 2008; Kassner et al. 2008; 
Skarka et al. 2011; Hofman et al. 2014; Piska et al. 2021; Jo 
et al. 2017). In contrast to the other anthracyclines, whose 
metabolism has been largely elucidated, it is still unclear 
for idarubicin which reductase plays the main role in the 
conversion to idarubicinol. In addition, there is little data on 
whole cells or whole animals: most studies were conducted 
with purified or recombinant enzymes, which allows only 
limited conclusions to be drawn about the situation in vivo.

The main dose-limiting factor in anthracycline chemo-
therapy is the high risk of acute and/or late-onset cardiotox-
icity, which can lead to heart failure and death (Henriksen 
2018; Jong et al. 2022; Iarussi et al. 2005), limiting their 
therapeutic use. In childhood cancer survivors, cardiovascu-
lar complications are a leading cause for morbidity and mor-
tality (Mulrooney et al. 2009, Armenian et al. 2015). There 
is a clear association between exposure to anthracyclines and 
cardiomyopathy risk (Blanco et al. 2012). For doxorubicin, 
the incidence of clinical heart failure is 5% at a cumula-
tive dose of 400 mg/m2 and 48% at a cumulative dose of 
700 mg/m2 (Swain et al. 2003). In leukemia patients treated 
with idarubicin, a cardiomyopathy incidence of 5% has been 
reported at cumulative doses between 150 and 290 mg/m2 
(Anderlini et al. 1995). Although preclinical and clinical 
data indicate a lower cardiotoxicity of idarubicin compared 
to other anthracyclines (Goebel 1993; Robert 1993; Crivel-
lari et al. 2004), the cardiotoxicity of idarubicin is similar 

when administered in amounts that exhibit equimolar myelo-
toxicity (Iarussi et al. 2005).

Whereas the exact mechanism of anthracycline cardio-
toxicity is still under debate and seems to be multifacto-
rial, several lines of evidence indicate that the secondary 
alcohol metabolites of anthracyclines play an important 
role, particularly in the chronic cardiotoxicity of anthracy-
clines (Menna et al. 2007): (1) These metabolites inhibit 
the ATPases that control systolic contraction and diastolic 
relaxation much more than their parent compounds (Boucek 
et al. 1987; Olson et al. 1988; Olson and Mushlin 1990; 
Mushlin et al. 1993). (2) Myocardial accumulation of these 
alcohol metabolites correlates with the development of car-
diomyopathy (Stewart et al. 1993). (3) Some studies dem-
onstrate an association of polymorphisms in the enzymes 
involved in the carbonyl reduction of anthracyclines and the 
cardiomyopathy risk: e.g., in children, homozygous carriers 
of the wildtype G-allele of the CBR3 polymorphism V244M 
(1096G > A), who reduce doxorubicin faster to doxorubi-
cinol than the polymorphic variant, have an increased risk 
for cardiomyopathy at low-to-moderate doses of doxorubicin 
(Blanco et al 2008, 2012). (4) Studies in transgenic mice 
demonstrate that the overexpression of human CBR1 in the 
heart advances the development of doxorubicin-induced 
cardiotoxicity (Forrest and Gonzalez 2000), whereas mice 
with a null allele of CBR1 are protected from doxorubicin-
induced cardiotoxicity (Olson et al. 2003). (5) Inhibition of 
CBR1 reduced the concentration of doxorubicinol in hearts, 
alleviated doxorubicin-induced cardiotoxicity in mice (Zhou 
et al. 2015; Jo et al. 2017), and protected cardiomyocytes 
against doxorubicin-induced toxicity in vitro Koczurkie-
wicz-Adamczyk et al. 2022).

The effect of the alcohol metabolites of anthracyclines 
on their cardiotoxicity suggests that inhibition of the car-
bonyl-reducing enzymes during anthracycline therapy may 
reduce the risk of cardiac side effects (Minotti et al. 1998; 
Plebuch et al. 2007). This approach is especially interest-
ing for idarubicin, because inhibition of the formation of 

AKR

CBR

Idarubicin Idarubicinol

Fig. 1   Metabolism of idarubicin to idarubicinol. Chemical structures were plotted with ChemDraw Professional Version 20.0.0.41
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idarubicinol should have no profound impact on the efficacy 
of idarubicin: the metabolism to the alcohol metabolite does 
not represent a detoxification mechanism given the fact that 
idarubicinol is as effective as idarubicin itself (Toffoli et al. 
1996; Yamashita et al. 2008). In the case of idarubicin, how-
ever, it is not yet clear which enzymes are most important 
for the formation of idarubicinol and which inhibitors might 
be suitable for suppressing this metabolic step and would 
therefore be promising candidates for clinical testing. We, 
therefore, investigated the formation of idarubicinol in dif-
ferent cell lines and its inhibition by known inhibitors of 
AKR1A1, AKR1B1, AKR1C3, CBR1, and CBR3 to elu-
cidate the contribution of these reductases on idarubicinol 
formation.

Materials and methods

Materials

Cell culture media, fetal calf serum (FCS), supplements, 
Hank’s buffered salt solution (HBSS), HEPES, phosphate-
buffered saline (PBS), menadione, ranirestat, GenElute™ 
Mammalian Total RNA Miniprep Kit, the Cytotoxicity 
Detection Kit (LDH), and the Amersham™ Hybond® P 
membrane were obtained from Sigma-Aldrich (Taufkirchen, 
Germany). Qiazol, 1 × Quantifast SYBR Green Mix and 
1 × QuantiTect Hs were from Qiagen (Hilden, Germany) and 
the primers for the housekeeping genes were synthesized by 
Eurofins Genomics (Ebersberg, Germany). Human serum 
albumin (HSA) was purchased from Octapharma (Langen-
feld, Germany). DMEM was purchased from PAN Biotech 
(Aidenbach, Germany). Pepstatin, aprotinin, and dimethyl 
sulfoxide (DMSO) were from AppliChem (Darmstadt, Ger-
many). Pefabloc was obtained from Carl Roth (Karlsruhe, 
Germany). The RevertAid™ H Minus First Strand cDNA 
Synthesis Kit, the Absolute QPCR SYBR Green Mix, the 
Pierce™ BCA Protein Assay Kit, the Pierce ECL Western 
Blotting Substrate, the secondary HRP-conjugated anti-
rabbit antibody, 2’-hydroxy-flavanone (2-OH-flavanone), 
and the RIPA buffer were purchased from Thermo Fisher 
Scientific (Waltham, MA, USA). The mouse monoclonal 
antibodies against β-actin (sc-47778), AKR1B1 (aldose 
reductase (H-6, sc-166918)), CBR1 (B-11, sc-390554), and 
CBR3 (E-12, sc-374393) were obtained from Santa Cruz 
(Heidelberg, Germany), the rabbit monoclonal antibody 
against AKR1C3 (ab209899) and the rabbit polyclonal anti-
body against AKR1A1 (ab125878) were from Abcam (Cam-
bridge, United Kingdom). The secondary HRP-conjugated 
goat anti-Mouse IgG was from GE Healthcare (Chicago, IL, 
USA). The 4 × Laemmli protein sample buffer was purchased 
from Bio-Rad (Feldkirchen, Germany). The AKR1C3 
human ORF-Clone and the pCMV6-Entry Mammalian 

Expression Vector were purchased from Origene (Rock-
will, MD, USA). Fugene® HD Transfection Reagent was 
obtained from Promega (Madison, WI, USA). Ammo-
nia solution (25%), and trifluoroacetic acid (TFA) were 
obtained from Merck (Darmstadt, Germany). Tert-butyl 
methyl ether (TBME) was provided by VWR International 
(Darmstadt, Germany). Purified water was produced using 
an arium® mini (Sartorius, Göttingen, Germany) ultrapure 
water system. The remaining reagents and solvents, metha-
nol (MeOH), acetonitrile (ACN), and formic acid (FA) were 
purchased from Biosolve (Valkenswaard, The Netherlands) 
in the highest purity available. Idarubicin and idarubicinol 
were obtained from Toronto Research Chemicals Inc. (North 
York, Canada). Luteolin and leupeptin were purchased from 
Biomol (Hamburg, Germany) and daunorubicin (Daunoblas-
tin®) from Pfizer Pharma (Berlin, Germany).

Stock solutions

The stock solution of idarubicin was prepared by dissolving 
1 mg idarubicin hydrochloride in 1 mL water for injection 
(1.9 mM). A stock solution of idarubicinol was prepared 
by dissolving 0.5 mg in 2 mL ACN/H2O 1/1 + 0.1% FA 
(0.5 mM). Daunorubicin stock solution contained 2 mg/mL 
daunorubicin hydrochloride in water for injection. Stock 
solutions of the inhibitors (100  mM) were prepared in 
DMSO. All stock solutions were stored in aliquots at -20 °C.

Cell culture

MCF-7, HepG2, and HEK293 cells (all available at ATCC, 
Manassas, VA, USA) were cultured in DMEM with 10% 
FCS, 2 mM glutamine, 100 U penicillin/100 μg streptomy-
cin, and 1% HEPES under standard cell culture conditions.

Cytotoxicity assay

Cytotoxic effects can damage cells and thus influence the 
uptake of compounds. We, therefore, tested for possible 
cytotoxic effects of idarubicin, idarubicinol, and the inhibi-
tors used in all cell lines using the Cytotoxicity Detection Kit 
according to the manufacturer’s instructions. Neither idaru-
bicin nor idarubicinol nor the inhibitors tested revealed any 
short-time cytotoxic effects up to their maximum concentra-
tion used in the assays.

Western blotting

After harvesting, cells were washed with ice-cold PBS and 
lysed in RIPA buffer supplemented with pepstatin (1 µg/
mL), aprotinin (1 µg/mL), leupeptin (5 µg/mL), and pefa-
bloc (1 mg/mL) as protease inhibitors. Protein quantification 
was conducted using the Pierce™ BCA Protein Assay Kit 
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according to the manufacturer’s instructions. After SDS-
PAGE proteins were blotted on a Hybond PVDF mem-
brane. Western blot detections were performed using specific 
antibodies against AKR1A1 (1:1000), AKR1C3 (1:1000), 
AKR1B1 (1:200), CBR1 (1:200), and CBR3 (1:200). β-actin 
(1:2000) was used as a loading control. HRP-conjugated 
goat anti-Mouse IgG was used as secondary antibody for 
β-actin, AKR1B1, CBR1, and CBR3 detection. HRP-con-
jugated donkey anti-Rabbit IgG was used as secondary anti-
body for AKR1A1 and AKR1C3 detection.

Western blots were conducted at least in triplicate and 
bands were visualized by enhanced chemiluminescence 
using the Pierce ECL Western Blotting Substrate in an Azure 
Biosystems 600 detection system (Biozym, Hessisch-Olden-
dorf, Germany) and an Intas ECL ChemoStar PLUG Imager 
(Intas Science Imaging Instruments, Göttingen, Germany), 
respectively.

Human liver samples

To check whether the HepG2 expression of the five reduc-
tases is similar to that in non-cancerous human liver sam-
ples, we compared their expression in HepG2 cells with the 
expression in seven human non-cancerous liver samples. 
The samples were obtained from the surrounding healthy 
tissue of resected liver metastases of rectum or colon car-
cinoma patients who did not receive any neoadjuvant 
chemotherapy before resection. The samples were obtained 
from the Department of Surgery of Heidelberg University 
Hospital and their use was approved by the Ethics Commit-
tee of the Medical Faculty of the University of Heidelberg 
(S-649/2012) and all patients gave their written informed 
consent prior to the study. Due to the very low amount of 
material, mRNA instead of protein was quantified.

Quantification of mRNA expression of AKR1A1, 
AKR1B1, AKR1C3, CBR1 and CBR3 in human liver 
and in HepG2 cells

For RNA extraction from the cell lines, the GenElute™ 
Mammalian Total RNA Miniprep Kit was used. For the 
liver samples, a Qiazol method was applied as published 
previously (Shen et  al. 2020). RNA was reverse tran-
scribed to cDNA with the RevertAid™ H Minus First 
Strand cDNA Synthesis Kit according to the manufactur-
er’s instructions. mRNA expression was quantified by real-
time reverse transcription (RT) polymerase chain reaction 
(qRT-PCR) with the LightCycler® 480 (Roche Applied 
Science, Mannheim, Germany) as described previously 
(Albermann et  al. 2005). For quantifying target gene 
mRNA, the corresponding QuantiTect Hs primer set was 
used. As reference genes for normalization, human acidic 
ribosomal protein (HUPO) and 60 s ribosomal protein 

L13 (RPL13) were used, for which primer sequences were 
published previously (Zisowsky et al. 2007).

PCR amplifications were carried out in 20 µL reaction 
volume containing 5 µL 1:10 diluted cDNA, 1 × Quantifast 
SYBR Green Mix and 1 × QuantiTect Hs or 1 × Absolute 
QPCR SYBR Green Mix and 0.15 µM sense and antisense 
primers each. Data were evaluated via calibrator-normal-
ized relative quantification with efficiency correction using 
the LightCycler® 480 software version 1.5.1.62 (Roche 
Applied Science). Results were expressed as the target/
reference ratio. Human liver samples were amplified in 
technical duplicates and HepG2 cells in septuplets.

Uptake of idarubicin and metabolism to idarubicinol 
in different cell lines

To investigate idarubicin metabolism mediated by CBR1, 
CBR3, and AKRs in different cell lines, its uptake and 
the formation of idarubicinol was quantified in MCF-7, 
HepG2, and HEK293 cells.

In brief, cells were washed once with PBS after har-
vesting. For each sample, 1 × 106 cells were suspended 
in 300 µL medium containing 1 µM idarubicin in 1.5 mL 
low-binding reaction tubes and incubated at 37 °C on a 
rotary shaker (450 rpm) for 10, 30, 60, 90, or 120 min. 
Uptake was stopped by 5 min centrifugation at 1000 × g 
and 4 °C. Subsequently, cells were washed twice with ice-
cold HEPES buffered HBSS (HHBSS)/2% HSA before fur-
ther proceeding as described in the section presenting the 
UPLC-MS/MS method.

Inhibition of idarubicinol formation in different cell 
lines

To investigate the effects of AKR and CBR inhibitors on 
the formation of idarubicinol in different cell lines, intra-
cellular concentrations of idarubicin and idarubicinol were 
quantified in MCF-7, HepG2, and HEK293 cells. After 
5 min pre-incubation with the respective inhibitor and 
30 min incubation with 1 µM idarubicin, idarubicin and 
idarubicinol were quantified in cell pellets as described in 
the section presenting the UPLC-MS/MS method. Luteo-
lin, 2-OH-flavanone, menadione, and ranirestat were tested 
between 0.5 and 150 µM and ranirestat additionally at 0.05 
and 0.15 µM in HepG2 cells. For calculation of the IC50 
values, non-linear regression curves were calculated with 
GraphPad Prism version 9.4.1 (GraphPad Software Inc., 
La Jolla, CA, USA) using the four-parameter fit (sigmoidal 
dose–response curves with variable slope). Each experi-
ment was conducted thrice with three technical replicates 
each.
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Over‑expression of AKR1C3 in HEK293 
and inhibition of idarubicinol formation 
by ranirestat

To verify inhibition of AKR1C3 by ranirestat, HEK293 cells 
expressing only very low amounts of AKR1C3 were tran-
siently transfected with AKR1C3 using the AKR1C3 ORF 
clone. As a mock control, HEK293 cells were transfected 
with the empty vector pCMV6-Entry. Cells were trans-
fected in 12-well plates after reaching 60–80% confluency 
using Fugene® HD at a ratio of 2:1 transfection reagent to 
DNA. Two days after transfection, cells were harvested and 
used for inhibition assays with ranirestat as described in the 
section before. Ranirestat was tested at a concentration of 
150 µM corresponding to the concentration with the maxi-
mum inhibition of idarubicin metabolism in our previous 
experiments. To determine the IC50 value of inhibition of 
idarubicinol formation by ranirestat in HEK293-AKR1C3 
cells, ranirestat was tested in a range from 0.015 to 150 µM. 
For calculation of the IC50 values, non-linear regression 
curves were calculated with GraphPad Prism version 9.4.1 
(GraphPad Software Inc., La Jolla, CA, USA) using the four-
parameter fit (sigmoidal dose–response curves with variable 
slope). The experiment was conducted thrice with two tech-
nical replicates each.

Intracellular quantification of idarubicin 
and idarubicinol by ultra‑high‑performance liquid 
chromatography coupled to triple quadrupole 
tandem mass spectrometry (UPLC‑MS/MS)

For intracellular concentration analyses, cell pellets were 
lysed using 100 µL of 5% aqueous NH3. Concentrations of 
idarubicin and idarubicinol in the lysates were quantified 
with a UPLC-MS/MS (Acquity Classic UPLC system cou-
pled to a Xevo TQ-XS triple quadrupole mass spectrom-
eter equipped with a Z-spray heated electrospray ionisation 
source; Waters, Eschborn, Germany), which was validated 
according to the applicable parts of the ICH M10 guide-
line on bioanalytical method validation and study sample 
analysis (ICH 2023). Calibration and quality control (QC) 
standards were prepared by spiking 100 µL of blank cell 
lysate with 25 µL of the respective standard solution. Cali-
bration samples were prepared at 0.1, 0.3, 1, 3, 10, 30, 
and 100 ng/mL and QC samples were prepared indepen-
dently at 0.1, 0.3, 37.5, and 75 ng/mL. Daunorubicin was 
used as internal standard (IS) at a sample concentration 
of 25 ng/mL. The assay achieved an LLOQ of 0.1 ng/mL 
and fulfilled the pertinent limits for accuracy and precision 
(± 15%, ± 20% at LLOQ) with interday and intraday accu-
racy of 105.6–114.0% and corresponding precision ≤ 8.1%. 
The IS-normalized matrix effect was within required limits 
(± 15%) and recovery was consistent and above 80% for all 

substances. Processed extracts were stable over 24 h at 10 °C 
covering the required time for sample measurements.

Sample preparation

Cell pellets were lysed with 100 µL of 5% aqueous NH3. 
For the calibration standards and QCs, 25 µL of the cor-
responding spike solution was added. Study samples were 
spiked with 25 µL of blank solvent (ACN/water + 0.1% FA) 
for volume compensation. Subsequently, 25 µL of IS solu-
tion was added to each sample. Protein precipitation was 
carried out by adding 100 µL of 25% aqueous TFA. After 
centrifugation (16,100 × g, 3 min), 150 µL of the supernatant 
was transferred to a 96-well collection plate for injection of 
20 µL onto the UPLC-MS/MS system.

UPLC‑MS/MS conditions

Chromatography was performed on an ACQUITY UPLC® 
Peptide BEH C18 300 Å column (1.7 µm, 2.1 × 50 mm) 
maintained at 40  °C using gradient elution and mobile 
phases consisting of water/ACN 9/1 + 0.1% FA (A) and 
ACN + 0.1% FA (B) with a flow rate of 0.5 mL/min. The 
gradient started at 5% B and was changed after 0.1 min to 
40% B within 1.9 min. Then, a flushing step of 95% B for 
0.5 min was performed (change to 95% within 0.1 min) 
before returning to initial conditions within 0.3 min and 
equilibration for 0.2 min. This resulted in a run time of 
3 min. Initial conditions were maintained during preparation 
of the subsequent injection resulting in a cycle time of 4 min. 
The peaks of idarubicin and idarubicinol were baseline sep-
arated with retention times of 1.91 and 1.76, respectively 
(daunorubicin 1.78), which is essential to avoid interference 
of idarubicin isotopes in the idarubicinol measurements.

Mass spectrometric detection was performed in the 
positive ion mode with multiple reaction monitoring using 
argon for collision-induced dissociation. The selected mass 
transitions were m/z 498.0 → 291.0 for idarubicin at a colli-
sion energy of 12 V, m/z 500.0 → 291.0 for idarubicinol at 
a collision energy of 12 V, and m/z 528.0 → 321.0 for the IS 
daunorubicin at a collision energy of 8 V, corresponding to 
the identical dissociation location in the molecules. MS/MS 
parameters were optimized with the integrated MassLynx 
system software (v 4.2) and are shown in Table 1.

Statistical analysis

Statistical differences in idarubicinol formation in the trans-
fected cells were calculated using one-way ANOVA followed 
by Dunnett’s multiple comparison test. A p value < 0.05 was 
considered statistically significant.
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Results

Protein expression of AKR1A1, ARK1B1, AKR1C3, 
CBR1, and CBR3 in MCF‑7, HepG2, and HEK293 cells

Western blot data of the protein expression of the five reduc-
tases investigated revealed a different expression pattern 
in MCF-7, HepG2, and HEK293 cells (Fig. 2): AKR1A1 
expression was generally low and nearly absent in HEK293 
cells. AKR1B1 expression was highest in HepG2 cells and 
only weak in MCF-7 and HEK293 cells. AKR1C3 was over-
expressed in HepG2 cells, but only weak in the other two 
cell lines. CBR1 and CBR3 expression was similar in all 
three cell lines with the highest expression in MCF-7 cells.

Formation of idarubicinol in MCF‑7, HepG2, 
and HEK293 cells

Idarubicinol was generated in all three cell lines, whereas 
the ratio between idarubicin and idarubicinol reached about 
20% in HepG2 and HEK293 after 120 min of incubation and 
about 8.5% in MCF-7 cells (Fig. 3).

Inhibition of idarubicinol formation by ranirestat, 
menadione, 2‑OH‑flavanone, and luteolin

To investigate which reductase might be the most impor-
tant in idarubicinol formation and which inhibitor might be 
promising in preventing its generation, we quantified the 
inhibitory potency and efficacy of four known inhibitors in 
the three cell lines investigated.

In HEK293 cells (Table 2; Fig. 4), menadione was the 
most potent inhibitor, followed by luteolin, whereas 2-OH-
flavanone was much weaker and did not reach maximum 
effects up to 150 µM. Ranirestat had no effect at all, exclud-
ing a substantial contribution of AKR1B1 to the idarubicinol 
formation in this cell line (data not shown).

In HepG2 cells (Table 2; Fig. 5), the most potent inhibi-
tor was ranirestat, followed by 2-OH-flavanone, menadione, 
and luteolin.

In MCF-7 cells, menadione was most potent followed by 
luteolin and 2-OH-flavanone. As in HEK293 cells (Table 2; 
Fig. 6), ranirestat had no effects in MCF-7 cells indicating 
no contribution of AKR1B1 to the idarubicinol formation 
in this cell line (data not shown).

Over‑expression of AKR1C3 in HEK293 cells 
and inhibition of idarubicinol formation 
by ranirestat

HEK293 cells were successfully transfected with the 
AKR1C3 ORF clone (Fig. 7). As expected, the over-expres-
sion lead to a significantly higher idarubicinol formation 
in HEK293 cells, which could completely be reversed by 
150 µM ranirestat to the level in the control cell line (Fig. 8). 
The IC50 of ranirestat for the inhibition of idarubicinol for-
mation in HEK293-AKR1C3 cells was 0.5 ± 0.1 µM and 

Table 1   MS/MS conditions

Parameter Value

Capillary voltage [kV] 1.5
Source temperature [°C] 150
Desolvation temperature [°C] 600
Cone gas flow (N2) [L/h] 150
Desolvation gas (N2) [L/h] 1000
Collision gas flow (Ar) [mL/min] 0.15
Nebulizer gas flow [bar] 7
Dwell time [ms] 50

AKR1C3: 37 kDa

AKR1A1: 37 kDa
AKR1B1: 37 kDa

CBR1: 30 kDa

CBR3: 31 kDa

β-ac�n: 42 kDa

Fig. 2   Western blot of the AKR1B1, AKR1A1, AKR1C3, CBR1, 
and CBR3 in HepG2, MCF-7, and HEK293 cells. β-actin served as 
a loading control. Depicted is one blot of a series of three for each 
protein investigated

Fig. 3   Formation of idarubicinol (%) in the different cell lines after 
incubation with 1 µM idarubicin. Intracellular idarubicin and idarubi-
cinol were quantified by UPLC-MS/MS. Depicted are the results of a 
sextuplett. Each value represents the mean ± SEM
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thus similar to the IC50 obtained in HepG2 cells (Fig. 9; 
Table 2).

Comparison of the reductase mRNA expression 
in human liver samples and HepG2 cells

To evaluate whether the expression of the AKRs and the 
CBR1/3 in HepG2 cells is representative for human liver, 
we quantified their mRNA expression in 7 human non-can-
cerous liver samples and compared it to the expression in 
HepG2 cells. As shown in Fig. 10, expression of the reduc-
tases was quite variable in human liver samples with the 
highest median expression of CBR1 followed by AKR1A1, 
AKR1C3, and AKR1B1. Expression of CBR3 was low and 

in some samples below the detection limit. In HepG2 cells, 
the rank order of mRNA expression was AKR1C3 >​ AKR1B1 ​
= AKR1A1​ > CBR3​ ​> ​CBR​1.​

Discussion

The cardiac anthracycline pool decides on the cardiac tox-
icity of anthracyclines and secondary alcohol metabolites 
like idarubicinol are supposed to play a crucial role (Boucek 
et al. 1987; Olson et al. 1988, 2003; Olson and Mushlin 
1990; Mushlin et al. 1993; Stewart et al. 1993; Blanco et al 
2008, 2012; Forrest and Gonzalez 2000; Koczurkiewicz-
Adamczyk et al.; 2022; Zhou et al. 2015; Jo et al. 2017; Sal-
vatorelli et al. 2018). Interestingly, ex vivo experiments with 

Table 2   Inhibition of idarubicinol formation by different inhibitors in HEK293, HepG2, and MCF-7 cells

*  at the highest concentration tested. ** Inflection point of the inhibition is not reached, thus IC50 was not reliably calculable. AKR, aldose 
reductase; CBR, carbonyl reductase

Compound Established inhibitor for HEK293 HepG2 MCF-7

IC50 [µM] % Inhibition* IC50 [µM] % Inhibition* IC50 [µM] % Inhibition*

2-OH-flavanone AKR1C3  > 50 ** 51 4.5 ± 1.2 73 48.4 ± 5.7 48
Luteolin AKR1C3, CBR1 3.7 ± 1.0 91 34.5 ± 4.4 74 14.9 ± 2.5 86
Menadione CBR1, CBR3 1.6 ± 0.2 86 11.9 ± 1.9 74 9.8 ± 4.5 91
Ranirestat AKR1B1 No inhibition No inhibition 0.4 ± 0.1 77 No inhibition No inhibition

Fig. 4   Inhibition of idarubicinol formation in HEK293 cells. Cells 
were pre-incubated for 5 min with the respective inhibitor before add-
ing idarubicin (final concentration 1 µM) and incubation for further 
30  min. Intracellular idarubicin and idarubicinol were quantified by 
UPLC-MS/MS. Depicted is the idarubicinol formation (% of idaru-
bicin) of one experiment of a biological triplicate and each data point 
represents the mean ± S.E.M. of a technical triplicate

Fig. 5   Inhibition of idarubicinol formation in HepG2 cells. Cells 
were pre-incubated for 5 min with the respective inhibitor before add-
ing idarubicin (final concentration 1 µM) and incubation for further 
30  min. Intracellular idarubicin and idarubicinol were quantified by 
UPLC-MS/MS. Depicted is the idarubicinol formation (% of idaru-
bicin) of one experiment of a biological triplicate and each data point 
represents the mean ± S.E.M. of a technical triplicate



814	 Archives of Toxicology (2024) 98:807–820

myocardial strips indicate that in contrast to doxorubicin and 
epirubicin, the cardiac anthracycline pools of daunorubicin 
and idarubicin mainly consist of the alcohol metabolites and 
for idarubicin most of the intracardial idarubicinol is taken 
up from plasma and not formed intracardially (Salvatorelli 
et al. 2018). This indicates that inhibition of systemically 
formed idarubicinol, which achieves high plasma concen-
trations (Crivellari et al. 2004) might reduce the risk of 
cardiotoxicity while maintaining its efficacy, because this 
metabolite is as effective as the parent compound in killing 
tumor cells (Ferrazzi et al. 1991; Kuffel et al. 1992; Toffoli 

et al. 1996). While biochemical experiments with isolated 
enzymes, in silico docking analyses, and in vitro experi-
ments in cells over-expressing single reducing enzymes 
demonstrated that CBR1 and AKR1C3 are able to form 
idarubicinol from idarubicin (Hofman et al. 2014; Piska 
et al. 2021), so far, it was not clear whether other reductases 
are also involved, and which inhibitors might be suitable 
to substantially reduce idarubicinol formation. To elucidate 
the reductive enzymes involved, we, therefore, compared 
the intracellular idarubicinol formation in comparison to the 
intracellular idarubicin concentration (metabolic ratio) in 
cell lines with different expression of several AKRs, CBR1 
and CBR3 and evaluated several potential inhibitors for their 
potency and efficacy to inhibit the formation of idarubicinol 
in these cell lines.

Based on protein expression data, HEK293, HepG2, and 
MCF-7 cells differed especially in their AKR expressions, 
whereas CBR1 and CBR3 were expressed in all cell lines, 
albeit somewhat lower in HepG2 than in the other two cell 
lines (Fig. 2). Most prominent was the AKR1C3 expres-
sion in HepG2 cells, which most likely explains the high-
est idarubicinol formation in the cell lines tested. Given the 
very low expression of AKR1A1, AKR1B1, and AKR1C3 
in HEK-293 cells, CBR1 and CBR3 are most likely respon-
sible for the idarubicinol formation in this cell line. Interest-
ingly, although the enzyme configuration was similar and the 
CBR expression even higher, MCF-7 produced much less 
idarubicinol than HEK293 cells (Fig. 3). Taken together, 
the expression data alone do not explain the differences in 
idarubicinol formation among the cell lines.

To further elucidate the idarubicinol formation, we 
tested known inhibitors of the different AKRs and CBR1 
and CBR3 that may be suitable for use as cardioprotective 
agents during idarubicin therapy regimens: 2-OH-flavanone, 
menadione, luteolin, and ranirestat.

2-OH-flavanone is a potent AKR1C3 inhibitor (Skary-
dova et al. 2009; Hofman et al. 2014; Verma et al. 2019) 

Fig. 6   Inhibition of idarubicinol formation in MCF-7 cells. Cells 
were pre-incubated for 5 min with the respective inhibitor before add-
ing idarubicin (final concentration 1 µM) and incubation for further 
30  min. Intracellular idarubicin and idarubicinol were quantified by 
UPLC-MS/MS. Depicted is the idarubicinol formation (% of idaru-
bicin) of one experiment of a biological triplicate and each data point 
represents the mean ± S.E.M. of a technical triplicate

Fig. 7   AKR1C3 western blot of 
HEK293 cells transfected with 
AKR1C3 and the empty vector 
(pCMV6 Entry, mock control). 
Depicted is the biological 
triplicate, β-actin was used as a 
loading control

β-ac�n: 42 kDa

AKR1C3: 37 kDa
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that also inhibits AKR1C1 and AKR1C2, albeit less potently 
(Skarydova et al. 2009). Menadione is a non-selective CBR 
substrate and inhibitor (Berhe et al. 2010; Maser et al. 2000). 
Luteolin has originally been described as a potent CBR1 

inhibitor (Arai et al. 2015) but is also a weak AKR1C3 
inhibitor (Skarydova et  al. 2009). Ranirestat has been 
developed and described as a specific and potent AKR1B1 
inhibitor (Kurono et al. 2001; Ishibashi et al. 2016; Bril et al. 
2004). Because our experiments did suggest that ranirestat is 
also an AKR1C3 inhibitor, we confirmed inhibition charac-
teristics in HEK293 cells over-expressing AKR1C3.

In our experiments, 2-OH-flavanone inhibited idaru-
bicinol formation with different potency and efficacy that 
correlated well with the extent of AKR1C3 expression. In 
contrast, ranirestat had no effect in HEK293 and MCF-7 
cells with only very low expression of AKR1B1 (Table 2), 
excluding that this enzyme plays a significant role in idaru-
bicinol formation. Surprisingly, in HepG2 cells with very 
high AKR1C3 expression, ranirestat potently inhibited 

Fig. 8   Inhibition of idarubicinol formation by ranirestat in HEK293 
cells transfected with AKR1C3 or the empty vector pCMV6 Entry. 
Cells were pre-incubated for 5 min with 150 µM ranirestat in medium 
or medium alone before adding idarubicin (final concentration 1 µM) 
and incubation for further 30 min. Intracellular idarubicin and idaru-
bicinol were quantified by UPLC-MS/MS. Depicted is a biological 
triplicate and each data point represents the mean ± S.E.M

Fig. 9   Concentration-dependent inhibition of idarubicinol forma-
tion in HEK293-AKR1C3 cells. Cells were pre-incubated for 5 min 
with ranirestat before adding idarubicin (final concentration 1  µM) 
and incubation for further 30  min. Intracellular idarubicin and ida-
rubicinol were quantified by UPLC-MS/MS. Idarubicinol forma-
tion without addition of ranirestat was set to 100%. Depicted is the 
mean ± S.E.M. of a biological triplicate

Fig. 10​  ​​ Expression of the mRNA of​ th​e f​ive reductases in human 
liver samples and HepG2​ ce​lls​. mRNA expression of AKR1A1, 
AKR1B1, AKR1C3, CBR1, and CBR3 was quantified in 7 human 
liver samples and HepG2 cells via real-time RT-PCR and normal-
ized to the expression of the two housekeeping genes HUPO and 
RPL13. Each data point for the liver samples represents the mean of 
a technical duplicate and the data for the HepG2 cells represent the 
mean ± S.E.M. for n = 7
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idarubicinol formation (Table 2; Fig. 5) indicating that ranir-
estat is also an AKR1C3 inhibitor, which we were able to 
confirm.

Luteolin potently and effectively inhibited idarubicinol 
formation in HEK293 and MCF-7 cells (Figs. 4, 6), as did 
menadione, suggesting that in these cells CBR1/3 play the 
main role in idarubicinol formation. Nevertheless, mena-
dione also inhibited idarubicinol formation in HepG2 cells 
with high efficacy, indicating that menadione is able to 
inhibit AKR1C3 as well. Additionally, due to the fact that 
ranirestat only efficiently inhibited idarubicinol formation in 
HepG2 cells with high AKR1C3 expression, luteolin most 
likely is also a weak inhibitor of CBR1/3.

One still open question is which AKRs and/or CBR are 
most important for the systemic formation of idarubicinol. 
While the obtained results make precise conclusion on the 
contribution to idarubicin metabolism challenging, our data 
verify that AKR1C3 metabolizes idarubicin and indicates 
that CBR1/3 also contribute to the formation of idarubicinol. 
Further, it may be assumed that AKR1C3 is somewhat more 
efficacious in metabolizing idarubicin compared to CBR1/3, 
because of the similar inhibition efficacy of 2-OH-flavanone, 
menadione, and ranirestat, which is only possible if the con-
tribution of CBR1/3 compared to AKR1C3 is low. However, 
the expression levels of CBR1/3 are apparently lower in this 
cell line. In addition, we cannot exclude that further reduc-
tases not addressed in this study contribute to the forma-
tion of idarubicinol possibly explaining, why this metabolic 
step was not completely inhibited by any of the inhibitors 
applied.

As the liver is the main metabolising organ for idarubicin 
(Crivellari et al. 2004), it might be worth having a closer 
look at the data obtained in the hepatic HepG2 cells. In 
these cells, the highest idarubicinol formation was observed, 
which could be suppressed to around 25% of initial values 
with AKR1C3 and CBR inhibitors. However, the expression 
of the different AKRs and CBR1/3 in this tumor cell line is 
obviously not representative for the human liver: healthy 
human liver expressed much more CBR1 and less AKR1C3 
mRNA than the neoplastic HepG2 cells (Fig. 10), matching 
previous data postulating that CBR1 is the predominant dox-
orubicin reductase in human liver (Kassner et al. 2008) and 
demonstrating that AKR1C3 is over-expressed in hepatocel-
lular carcinoma (Zhu et al. 2021; Zhou et al. 2021; Zheng 
et al. 2022; Pan et al. 2022). Nevertheless, having in mind 
that the more relevant protein expression data do not com-
pletely match the mRNA expression data (as can be seen for 
HepG2 cells: cf. Figures 2 and 10), it is reasonable to assume 
that inhibition of AKR1C3 and/or CBR1 in humans under 
chemotherapy with idarubicin would substantially reduce 
the systemic formation of idarubicinol, which appears to be 
the main source of the intracardial pool (Salvatorelli et al. 
2018). Therefore, AKR1C3 and CBR inhibitors might be 

useful adjuvants in idarubicin therapy possibly reducing the 
risk of cardiotoxicity. In our experiments, luteolin, ranirestat 
and 2-OH-flavanone did substantially reduce formation of 
idarubicinol, and therefore, might be feasible candidates for 
reducing anthracycline cardiotoxicity. Further, these sub-
stances have additional characteristics that render them suit-
able candidates for this purpose. Beyond its AKR1C3- and 
CBR-inhibiting properties, luteolin acts as an anti-oxidant, 
scavenger, anti-inflammatory, and UV-protecting drug and 
has, therefore, multiple health-promoting effects and is e.g. 
applied against tumors, diverse inflammations, Alzheimer’s 
disease, Parkinson’s disease, and Long-COVID (Tuorkey 
2016; Luo et al. 2017; Aziz et al. 2018; Imran et al. 2019; 
Theoharides et al. 2021; Siddique 2021; Daily et al. 2021). 
Menadione is already tested as an adjuvant in several tumor 
entities and chemotherapy regimens Gul et al. 2022). 2-OH-
flavanone is a natural flavonoid present in several vegetables 
and fruits (Bailly 2021) and already tested against several 
kinds of cancers (Cherian et al. 2022). Although the potency 
for inhibition of AKR1B1 is higher (Kurono et al. 2001; 
Matsumoto et al. 2009), therapeutic plasma concentrations 
of ranirestat, which is currently under development for the 
treatment of diabetic neuropathy (Bril et al. 2006; Sekiguchi 
et al. 2019; Itou et al. 2020) are in the micromolar range 
(Itou et al. 2020) and might, therefore, be high enough to 
efficaciously inhibit AKR1C3.

In contrast to other anthracyclines, where inhibition 
of the formation of alcohol metabolites via AKR or CBR 
increases efficacy (Liu et al. 2023; Verma et al. 2016, 2019; 
Jo et al. 2017; Piska et al. 2021; Koczurkiewicz-Adamczyk 
et al. 2022), this is most probably not the case for idaru-
bicin, because idarubicinol is as cytotoxic as the parent com-
pound. Interestingly, inhibition of AKR1C3 has overcome 
tumor resistance also towards idarubicin (Hofman et al. 
2014), which is possibly caused by modulation of resistance 
mechanism mediated by AKR1C3, which are not associated 
with the metabolism of anthracyclines. Some of them are: 
(1) AKR1C3 promotes hormonal cancers progression by 
increasing local androgen and estradiol formation (Auchus 
2004; Sharifi & Auchus 2012); (2) AKR1C3 activates the 
anti-apoptosis phosphatase and tensin homolog (PTEN)/Akt 
pathway (Zhong et al. 2015);; (3) AKR1C3 promotes the 
phosphorylation of AKT (Zheng et al. 2022); (4) AKR1C3 
mediates the activation of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) and signal transducer 
and activator of transcription 3 (STAT3) (Zhou et al. 2021).

There are several limitations of our study worth to be 
mentioned: (1) we only investigated inhibition of the ida-
rubicinol-formation in a hepatic tumor cell line and not in 
primary cells. To assess, whether systemic formation of 
idarubicinol can be substantially inhibited e.g. by ranir-
estat, these experiments should be repeated in primary cells 
or liver organoids or finally in animal experiments before 
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conducting a clinical study. (2) We only investigated the 
expression of selected AKRs and CBR1/3 and the inhibition 
of idarubicinol formation by inhibitors of them. We cannot 
exclude that other reductases as well might contribute to ida-
rubicinol formation in HEK293, HepG2, and MCF-7 cells 
including the new microsomal carbonyl reductase, which 
has been demonstrated to reduce idarubicin to idarubicinol 
(Skarka et al. 2011). (3) We did not study idarubicinol for-
mation in cardiomyocytes, which also express reductases 
(Koczurkiewicz-Adamczyk et al. 2022; Salvatorelli et al. 
2018; Keith et al. 2009; Liang et al. 2021). (4) We did not 
examine whether inhibition of idarubicinol-formation indeed 
reduces cardiotoxic side effects of idarubicin. However, this 
can only be reliably assessed in an animal or clinical study.

Conclusions

In conclusion, our study underlines the importance of 
AKR1C3 and CBR1 for the reduction metabolism of idaru-
bicin and identifies inhibitors which substantially inhibit the 
formation of the cardiotoxic idarubicinol and might be used 
in vivo in combination with idarubicin to increase the safety 
of the therapy while likely preserving its efficacy.
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