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Abstract
Assessment factors (AFs) are essential in the derivation of occupational exposure limits (OELs) and indoor air quality 
guidelines. The factors shall accommodate differences in sensitivity between subgroups, i.e., workers, healthy and sick 
people, and occupational exposure versus life-long exposure for the general population. Derivation of AFs itself is based on 
empirical knowledge from human and animal exposure studies with immanent uncertainty in the empirical evidence due to 
knowledge gaps and experimental reliability. Sensory irritation in the eyes and airways constitute about 30–40% of OELs 
and is an abundant symptom in non-industrial buildings characterizing the indoor air quality and general health. Intraspecies 
differences between subgroups of the general population should be quantified for the proposal of more ‘empirical’ based AFs. 
In this review, we focus on sensitivity differences in sensory irritation about gender, age, health status, and vulnerability in 
people, based solely on human exposure studies. Females are more sensitive to sensory irritation than males for few volatile 
substances. Older people appear less sensitive than younger ones. However, impaired defense mechanisms may increase 
vulnerability in the long term. Empirical evidence of sensory irritation in children is rare and limited to children down to 
the age of six years. Studies of the nervous system in children compared to adults suggest a higher sensitivity in children; 
however, some defense mechanisms are more efficient in children than in adults. Usually, exposure studies are performed with 
healthy subjects. Exposure studies with sick people are not representative due to the deselection of subjects with moderate or 
severe eye or airway diseases, which likely underestimates the sensitivity of the group of people with diseases. Psychological 
characterization like personality factors shows that concentrations of volatile substances far below their sensory irritation 
thresholds may influence the sensitivity, in part biased by odor perception. Thus, the protection of people with extreme 
personality traits is not feasible by an AF and other mitigation strategies are required. The available empirical evidence 
comprising age, lifestyle, and health supports an AF of not greater than up to 2 for sensory irritation. Further, general AFs 
are discouraged for derivation, rather substance-specific derivation of AFs is recommended based on the risk assessment 
of empirical data, deposition in the airways depending on the substance’s water solubility and compensating for knowledge 
and experimental gaps. Modeling of sensory irritation would be a better ‘empirical’ starting point for derivation of AFs for 
children, older, and sick people, as human exposure studies are not possible (due to ethical reasons) or not generalizable 
(due to self-selection). Dedicated AFs may be derived for environments where dry air, high room temperature, and visually 
demanding tasks aggravate the eyes or airways than for places in which the workload is balanced, while indoor playgrounds 
might need other AFs due to physical workload and affected groups of the general population.
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LOAEL	� Lowest observed adverse effect level
MIE	� Molecular initiating event
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MOA	� Mode of action
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OECD	� Organization for economic co-operation 

and development
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PK/PD	� Pharmacokinetic/pharmacodynamics 

modeling
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QSAR	� Quantitative structure–activity 

relationship
sMCS	� Self-reported multiple chemical 

sensitivity
SPES	� Swedish performance evaluation system
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Introduction

Exposure limits for volatile substances should be based on 
risk assessments considering empirical research (World 
Health Organization 2010). Such knowledge is a snapshot of 
current and past research that might be challenged by future 
and conflicting research results (e.g., based on newly devel-
oped research methods). Therefore, exposure limits should 
be regarded as temporary, since new empirical and reliable 
research data will require a reassessment.

Risk assessment should consider—on the one hand—the 
terms and conditions of exposure and—on the other hand—
all exposed groups of people. In the worst case, exposure to 
a volatile substance lasts 24 h a day, seven days a week for a 
span of life (Rohlman et al. 2008; World Health Organization 
2010). Further, one must consider that certain subgroups in 
the general population (might) differ systematically in sen-
sitivity. Individual differences in sensitivity might be due to 
internal as well as external factors. Accordant to others (Bell 
et al. 2013; Hooper and Kaufman 2018; Portier et al. 2010), 
susceptibility of an individual, here, refers to factors inher-
ent to internal factors (physical predisposition, i.e., internal 
defects) and vulnerability refers to external factors (e.g., low 
humidity leads to dry eyes in an otherwise healthy person). 
Both susceptible and vulnerable conditions could increase 
the sensitivity to volatile substances. The distinction, how-
ever, is far from clear as every perception is the result/inter-
action of internal and external factors. Susceptibility and 
vulnerability are often used interchangeable (cf., Merriam-
Webster Thesaurus of ‘vulnerability’1). Getting back to 
the general population, i.e., children, older people, or sick 

people might be more vulnerable or susceptible to certain 
volatile substances than healthy adults (Rohlman et al. 2008; 
World Health Organization 2010) and could, therefore, be 
more sensitive as a group. Such ‘group sensitivities’ must 
be considered in risk assessment.

Experimental exposure studies with human subjects 
are considered the gold standard for the derivation of No 
Observable Adverse Effect Concentrations for sensory irri-
tation (Brüning et al. 2014; Nielsen and Wolkoff 2017). 
However, as experimental human exposure studies with 
susceptible or vulnerable people (i.e., children and persons 
with moderate or severe diseases) are rare from an ethical 
standpoint, other knowledge must be considered for risk 
assessment.

Much knowledge about exposure limits was derived from 
experimental animal models. In the past, animal models have 
provided information about the ‘mode of action’ (MOA) of 
different volatile substances (Andersen and Dennison 2001; 
Bushnell et al. 2007; Clewell 2005). However, the use of 
data from animal studies for setting human exposure limits 
is complicated by interspecies differences. Meanwhile, the 
current strategy in toxicology is to reduce and replace animal 
testing (National Research Council 2007). Therefore, alter-
native methods are propagated that use less animals, such as 
Quantitative Structure Activation Relations (QSAR; OECD 
2014; Sullivan et al. 2014), and this also helps to establish 
a MOA/Adverse Outcome Pathways (AOP) (Organisation 
for Economic Co-operation and Development; OECD 2014; 
Patlewicz et al. 2014).

Since about 30–40% of the occupational exposure limits 
(OELs) (Dick and Ahlers 1998; Paustenbach 2001) of vola-
tile substances are set to avoid irritation of mucous mem-
branes, sensory irritation is an appropriate and sensitive 
parameter for measuring irritating effects in the respiratory 
tract (Brüning et al. 2014). Chemical sensitivity spanning 
chemosensory modalities seems unlikely (Lundström et al. 
2012), thus different target sites (Alarie 1973; Arts et al. 
2002) must be investigated. Shusterman (2002) described 
levels of impact on mucous membrane irritation depending 
on the water solubility of the volatile substance in the air-
ways, and considering that the sites of irritation are concen-
tration dependent, i.e., a nasal irritant at low concentration 
could readily become a pulmonary irritant at higher concen-
tration (cf., U. S. Environmental Protection Agency 1994):

–	 Eyes, nose, pharynx, larynx (high water solubility) – high 
deposition.

–	 Trachea, bronchi (medium water solubility) – medium 
deposition.

–	 Bronchioles, alveoli (low water solubility) – low deposi-
tion.

1  https://​www.​merri​am-​webst​er.​com/​thesa​urus/​vulne​rabil​ity.

https://www.merriam-webster.com/thesaurus/vulnerability
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The first sites of contact with a volatile substance in 
the air are the eyes and the nasal mucosa, which are the 
focus of most of the methods assessing sensory irritation 
(Beuerman and Stern 2005; Doty et al. 2004; Kjærgaard 
et al. 1992). The cornea of the eye is the most innervated 
tissue in the body (Bonini et al. 2003; Yang et al. 2018; 
Zander and Weddell 1951). Various stimuli can be trans-
duced by the cornea: thermal, mechanical, and chemical 
(Beuerman and Stern 2005; Yang et al. 2018). About 70% 
of the receptors are polymodal nociceptors, which convey 
inter alia pain in response to chemical stimuli via unmy-
elinated C-type nerves (Steen and Reeh 1993; Yang et al. 
2018). Furthermore, 10% of the receptors in the cornea are 
Aδ- and C-fiber cold receptors, which may react (amongst 
others) to environmentally (e.g., dry air) induced tear film 
desiccation (Acosta et  al. 2001; Beuerman and Stern 
2005; Yang et al. 2018). Sensory irritation of the upper 
and lower airways is mediated by the activation of unmy-
elinated axons of the trigeminal nerve in the nasal mucosa 
(Alarie 1973) and beneath the epithelium of the lower air-
ways (Benemei et al. 2015; Geppetti et al. 2010; Narula 
et al. 2014). Chemoreceptors/nociceptors (e.g., transient 
receptor potential channels; TRP channels) located on 
free endings of peripheral nerves innervating the airways 
(Bessac and Jordt 2008) elicit various reflexes or defense 
mechanisms. Therefore, there are receptors in the eyes, the 
nose, and lower airways that can be activated by volatile 
substances (Lehmann et al. 2017), which results in specific 
perceptions (e.g., burning, stinging; cf., Hummel 2000) 
and other reflexes and defense mechanisms, e.g., eye blink-
ing (Doty et al. 2004). The response cascade elicited by 
volatile substances is of special interest because it allows 
for identifying objective markers of sensory irritation. A 
scientific approach to describe a response cascade is the 
concept of AOP (Ankley et al. 2010). Thus, Martinez and 
Eling (2019) describe such an AOP with a molecular-ini-
tiating event (MIE) and three sequential key events (KE) 
leading to an adverse outcome (sensory irritation).

A prolonged exposure to volatile substances eliciting 
sensory irritation (so-called local irritants; Schaper 1993) 
can lead to inflammation and subsequent tissue damage 
(cytotoxic effect) (Brüning et al. 2014). Thus, physiological 
indicators of sensory irritation should be avoided for the 
protection of the organism from chronic health effects such 
as tissue damage; these indicators are trigeminal-mediated 
reflexes (e.g., increase of eye blinking frequency) or inflam-
mation (e.g., release of neuropeptides such as substance P) 
(Brüning et al. 2014). The avoidance of sensory irritation 
is one aim of setting exposure limits (Brüning et al. 2014; 
Nielsen and Wolkoff 2017). Thus, the difficulty of distin-
guishing between genuine sensory irritation-mediated per-
ceptive and objective effects and cytotoxic effects should be 
emphasized.

The purpose of risk assessment is to identify a level of 
exposure to volatile substances at which the freedom of 
health effects is provided with some assurance (health-
based standard; Fairhurst 1995). There are several critical 
outcomes of volatile substances that must be considered 
in setting exposure limits (World Health Organization 
2010). If the database is limited, several (n-fold) assess-
ment factors are used for extrapolation; for example, from 
animal exposure studies to humans or from young healthy 
individuals to the general population (Fairhurst 1995). 
The nomenclature of such factors differs depending on 
the organization (cf., Dankovic et al. 2015): Assessment 
factors, extrapolation factors, safety factors, uncertainty 
factors. This review uses the term assessment factors (AF, 
according to Vermeire et al. 1999, p. 441) and aims at 
intra-species extrapolation from young, healthy, mostly 
male individuals to the general population. Such an AF 
is’inherently arbitrary, debatable and potentially variable, 
depending on particular circumstances’ (Fairhurst 1995, 
p. 379).

While OELs usually are set to protect the worker popu-
lation at employable age, environmental and indoor expo-
sure limits should protect the general (whole) population 
including susceptible and vulnerable sub-groups. For the 
worker population, individual variability in sensitivity to 
sensory irritation is considered by a maximum AF of 2 if 
the threshold is based on valid human exposure studies 
with enough subjects (Brüning et al. 2014; Fairhurst 1995; 
Nielsen and Wolkoff 2017). Such an AF could be higher 
for the general population, comprising young and old, 
females, males, children, individuals with allergy (asthma) 
and other diseases (which may alter the sensitivity to sen-
sory irritants). One reason is that the relatively low num-
ber of subjects in the exposure studies is not representative 
of the whole spectrum of human variability. Thus, for the 
general population usually an AF of 10 shall be applied 
according to ECHA Guidance R8 (Annex R.8–15: Guid-
ance on Derivation of DNEL/DMEL from Human Data).

The assessment/uncertainty factor of 10 for the general 
population, however, is not dedicated to specific studies 
(endpoints) that aim to derive such AFs. Thus, the first 
aim of this study is to identify relevant controlled human 
exposure studies that could be a platform for derivation 
of (an) AF(s) for the general population, which is specific 
for ‘sensory irritation’ in the eyes and airways. The sec-
ond aim is to propose (an) adequate AF(s) for the general 
population based on the identified exposure studies. Such 
a factor still has the disadvantage of AFs per se (cf., Fair-
hurst 1995), but its derivation is a step towards a more 
evidence-based approach to risk assessment (for sensory 
irritation).
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Procedure

A literature search was carried out to identify relevant 
human experimental exposure studies. A total of more than 
400 papers on sensory irritation in humans was scanned for 
information about (human) intraspecies variance in sensi-
tivity to sensory irritation in the eyes and airways. Sensory 
irritation, here, comprises stimulation of nociceptors located 
in the upper airways. Such afferent stimulation may cause 
'pungent sensations' to limit cytotoxic exposure but may also 
stimulate protective physiological responses suited to miti-
gate tissue injury (see discussion by Nielsen and Wolkoff 
2017 and OECD 2017).

Grouping factors of the general population

In search of potential sources of intraspecies variability in 
sensory irritation, the following grouping factors for the gen-
eral population were considered:

(1)	 Gender
(2)	 Age

•	 Children.
•	 Older people/retired.

(3)	 Health status

•	 People with allergic diseases.
•	 Asthmatics.

(4)	 Vulnerability.2

•	 (self-reported) multiple chemical sensitivity (MCS).
•	 Psychological traits (e.g., affectivity).

Several studies have been identified with respect to the 
variability of sensory irritation in these sub-groups. The 
quality of studies was evaluated regarding the criteria 
for controlled chamber studies described by Nielsen and 
Wolkoff (2017). The most important criterion is that sen-
sory irritation was appropriately measured, and the volatile 
substance exposure was well characterized.

Sensory irritation is linked to pungent sensations: sting-
ing, piquancy, burning, tingling, freshness, prickling, irri-
tation, itching, and cooling (Doty et al. 2004). Pungency 
refers to nasal (and oral) sensations that are mediated by 
the trigeminal nerve (Doty et al. 2004). As stated above, 
there are different target sites of sensory irritation in humans 
(Doty et al. 2004; Shusterman 2002). The following exam-
ples (non-exclusive) of markers of irritation are used at these 
target sites:

–	 Eyes: i.e., irritation thresholds, blinking frequency, 
break-up time, eye redness, biomarkers in tear film, rat-
ing of eye irritation.

–	 Nose: i.e., irritation thresholds, nasal airflow, changes 
in secretion, biomarkers in nasal lavage fluid, changes 
in nasal blood flow, changes in ciliary beat frequency, 
mucociliary clearance rate, rating of nasal irritation.

–	 Pharynx/Larynx; Throat: i.e., changes in blood flow, rat-
ing of throat irritation, exhaled nitric oxide (FeNO).

–	 Trachea/Bronchi: i.e., coughing, breathing parameters, 
exhaled nitric oxide (FeNO), urge to cough.

–	 Bronchioles/Alveoli: i.e., coughing, breathing parame-
ters, exhaled nitric oxide (FeNO), urge to cough, exhaled 
breath condensate.

–	 The dry sensation in eyes and upper airways is often 
associated with exposure to some sensory irritants, which 
may be considered a proto-state of sensory irritation as 
proposed by Cain et al (2008). However, dry eye sensa-
tion may also be induced by other routes, e.g., desic-
cation of the eye tear film (Wolkoff 2020) or airways 
(Wolkoff 2018).

Subjective vs. objective markers of sensory 
irritation

Markers of sensory irritation are not necessarily assigned to 
only one level of sensory irritation (like breathing param-
eters). For this study, the level of (subjectively) perceived 
irritation is of secondary importance. Usually, objective 
markers are more reliable than ratings (Arts et al. 2006a; 
Paustenbach et al. 1997; Philpott et al. 2006) as the latter 
combine sensory and cognitive odor/irritation processing 
(Cometto-Muñiz and Cain 1991; van Thriel et al. 2008); 
thus, objective markers are prioritized. For example, 
the lateralization of chemicals (basis for irritation thresh-
old studies) can only occur if an irritation takes place 
(e.g., Dalton et al. 2000) and this irritation is due to the 
volatile substance (chemesthesis). However, other stimuli 
than sensory irritants may influence sensory irritation. For 
instance, reflexive changes in eye blinking frequency can 
also be influenced by mechanical impact, thermal changes, 
air dryness, visual tasking, and individual factors (Klenø 
and Wolkoff 2004; Wolkoff 2020, 2018, 2017; Yang et al. 

2  The grouping factor is named ‘Vulnerability’ as external factors 
like chemicals lead to altered perceptions in vulnerable persons. The 
reason for the altered perception, however, might be an internal factor.



621Archives of Toxicology (2024) 98:617–662	

2018). Objective markers may be influenced by other than 
chemical exposure. Examples are biomarkers in nasal lav-
age and congestion (i.e., inflammation, allergy; Guilemany 
et al. 2009), coughing (i.e., air temperature; Benemei et al. 
2015), and breathing frequency/depth (i.e., air temperature, 
COPD; Barry and Annesi-Maesano 2017). Therefore, poten-
tial stimuli having an impact on markers of irritation must be 
controlled in the experimental studies to trace back the sen-
sory irritation to the chemical exposure without invalidating 
bias. Accordingly, information about different markers of 
sensory irritation is important.

For subjective measures, the time course of rated sensory 
irritation provides indirect information of sensory irritation, 
which takes place, though odor perception may increase 
the report of symptoms (Nielsen et al. 2007; Wolkoff et al. 
2006) as shown by Cometto-Muñiz and Cain (1991). This 
is because odor thresholds generally are one to three orders 
of magnitude lower than thresholds for sensory irritation 
(Cometto-Muñiz and Abraham 2016). Contrary to odor rat-
ings that generally show adaptation over time, ratings of 
sensory irritation should reveal an over-time increase in per-
ceived irritation to a certain plateau (van Thriel et al. 2002). 
For eye irritation, many studies indicate that the time course 
of ratings (over hours) is close to objective markers (i.e., 
eye blinking frequencies; Juran et al. 2012; Kleinbeck et al. 
2017, 2008; Pacharra et al. 2016c). Furthermore, the time 
course of eye irritation ratings appears plausible in view of 
pharmacokinetic/pharmacodynamics (PK/PD) modeling3 
of the rabbit eye (Kleinbeck et al. 2020). Thus, subjective 
ratings will also be considered with adequate caution, 
especially in studies where sensory irritation is also meas-
ured by objective markers.

There is only one experimental exposure study with chil-
dren (Hummel et al. 2007); thus, their possible susceptibility 
or vulnerability for sensory irritation in the eyes and res-
piratory tract must be assessed by other approaches. Child-
hood can be conceptualized as a sequence of life stages 
comprising of windows of susceptibility to environmental 
agents, which might be enhanced (Firestone et al. 2008; 
Saadeh and Klaunig 2015; U. S. Environmental Protection 
Agency 2005). For this reason, developmental aspects of 
the target organs and their respective innervation will be 
considered. Potential factors for differential sensitivity in 
children compared to adults are the eye (precorneal) tear 
film stability (Borchman et al. 2012; Shrestha et al. 2011; 
Sledge et al. 2017), intranasal trigeminal function (Hummel 
et al. 2007), inhalation dosimetry (Foos et al. 2008; Garcia 
et al. 2009; Ginsberg et al. 2005), specific health effects and 
risks (Nielsen et al. 2013; Selgrade et al. 2008; Sunderland 

et al. 2019; Wolkoff and Nielsen 2010), internal dose met-
rics (Firestone et al. 2008; Valcke and Krishnan 2011), 
somatosensory processing (Uppal et al. 2016), and AOPs 
for developmental neurotoxicity (cf., Pistollato et al. 2020).

Manifestations of sensitivity

Sensitivity in sensory irritation to volatile substances has 
different manifestations. First, sensitivity can refer to sen-
sory irritation at different concentrations of a volatile sub-
stance (that is, a lower threshold of sensory irritation means 
higher sensitivity). Second, the same concentration of a 
volatile substance can elicit stronger reactions in the sen-
sory system in sensitive than in ‘normal-healthy’ persons 
(that is, the same concentration leads to a stronger physi-
ological reaction of the sensory system in sensitive people). 
Third, the same physiological reaction can be perceived dif-
ferently due to cognitive processing, e.g., odor-mediated. It 
is unclear whether these manifestations are interrelated (at 
least, the third seems to be another entity), but it is possible 
that they are independent. At first glance, the first manifesta-
tion of sensitivity might be the most important in deriving 
exposure limits based on sensory irritation. At long-lasting 
exposures to volatile substances, however, the other manifes-
tations may become relevant, too. For example, sensitization 
could occur at lower concentrations in more sensitive people 
(second manifestation), independently of their sensory irrita-
tion threshold. The third manifestation of sensitivity is the 
most difficult for the derivation of AFs. This manifestation 
of sensitivity can lead to (reports of) perceptual aspects of 
sensory irritation in the presence of a volatile substance but 
without detectable physiological markers of sensory irrita-
tion. Though this manifestation of sensitivity is primarily 
based on cognitive processing it can elicit (psychogenic) 
symptoms that could be unbearable for an affected person 
(e.g., with multiple chemical sensitivity (MCS)). An AF for 
such manifestation of sensitivity is difficult to derive without 
detailed knowledge about the causality.

Temporal aspects of sensory irritation

Methods to identify differences in sensory irritation in 
humans are linked to different exposure durations. The toxic 
load in sensory irritation is a result of both concentration (C) 
and time (t) of exposure  (Cn x t; Pauluhn 2019). While an 
exposure of a few seconds is reasonable for the assessment 
of (acute) thresholds, short-term exposure studies usually 
last minutes to hours, and epidemiological studies refer to 
years. However, temporal summation and carry-over effects 
may occur for sensory irritation: across seconds (Wise et al. 
2009a, b, 2006, 2005), across minutes (Cain and Cometto-
Muñiz 1995), and across hours (Cain et al. 2010; Cain and 
Cometto-Muñiz 1995; Kleinbeck et al. 2020, 2017).

3  Such models comprise of a kinetic component (delivery to target 
site) and a dynamic component (action at target site and physiological 
response) in pharmacology or toxicology (Ashauer and Escher 2010).



622	 Archives of Toxicology (2024) 98:617–662

Though differences in sensitivity might be observed in an 
exposure over seconds, a temporal summation over minutes 
or hours might occur at lower concentrations. The trigemi-
nal system seems to act as a mass detector rather than a 
concentration detector (Frasnelli et al. 2017; Hummel and 
Frasnelli 2019; Kleinbeck et al. 2020). The detection of the 
trigeminal impact of a volatile substance may take tens of 
minutes especially at low concentrations (Cain et al. 2010; 
Wolkoff and Nielsen 2010). This is due to the latency of 
response of the responsible chemoreceptors for sensory irri-
tation that could exceed minutes (as in the case of formal-
dehyde; Tian et al. 2009). Here, the second manifestation of 
sensitivity (see ‘Manifestations of sensitivity’) may play a 
role. Studies across days with human subjects are rare. Thus, 
a carry-over effect from one day to the other could not be 
found for ethyl acrylate in humans (Kleinbeck et al. 2020); 
however, signs of sensory irritation could be observed on 
every single day (increase in eye blinking frequency). Fur-
thermore, Wolkoff et al. (2012) did not find an increase in 
sensory irritation in mice from day to day when repeatedly 
exposed to irritating mixtures of ozone-initiated limonene 
oxidation products over a period of ten days. These studies 
indicate that clean air between chemical exposures allowed 
for reversibility between daily impacts. However, the influ-
ence of longer continuous exposure periods (days) without 
recreation phases (which must be considered for indoor 
exposure limits) has not been studied in human subjects, yet.

Repeated exposure for three weeks to a water aerosol of 
76 mg/m3 (31 ppm) acetic acid caused a substance-specific 
decrease in both the psychophysical and electrophysiological 
response to sensory irritation (n = 12) (Dalton et al. 2006). 
The study suggests that sensory irritation at low exposure 
levels either shows no carry-over effect or a carryover effect 
may cause desensitization; this is supported by a mice study, 
cf., Wolkoff et al. (2012), see above.

Epidemiologic studies comprising years were excluded 
from this review due to multi-factorial influences, and inad-
equate exposure characterization.

Highest to lowest priority for studies in this analysis of 
exposure:

(1)	 across hours.
(2)	 across minutes.
(3)	 across seconds (thresholds).
(4)	 across days.
(5)	 across years (epidemiological studies) – excluded.

Therefore, studies will, in the first step, be tabulated by 
exposure duration (pattern) and target organ (cf., Shuster-
man 2002).

Limitations with respect to volatile substances

Studies with carbon dioxide were excluded for the deriva-
tion of an AF due to experimental caveats (e.g., unrealis-
tic high levels) and its acidic nature, though some of these 
studies show significant differences. However, the caveats 
hamper a reasonable transfer of results to risk assessment 
for sensory irritants. Excluded studies concern gender, age, 
and health status (Acosta et al. 2006; Cometto-Muñiz and 
Noriega 1985; Feng and Simpson 2003; Kjærgaard et al. 
1992; Scheibe et al. 2009; Shusterman and Balmes 1997; 
Shusterman et al. 2003a).

Influence of grouping factor gender 
on sensory irritation

Table 1 provides an overview of studies, which included 
‘sensory irritation’ in both female and male subjects. Further 
characteristics of the studies (substances, substance deliv-
ery, examined concentrations, water solubility, and measures 
of sensory irritation) can be found in Sect. ‘Characteristics 
of the reviewed studies’ (Table 7). 4 At first glance, most 
studies either investigate exposure times of seconds (mostly 
threshold studies) or exposure times of hours. While the first 
kind of study utilizes acute irritation to determine irritation 
thresholds, the second kind of study usually uses lower con-
centrations. Sensory irritation, however, could arise by tem-
poral summation in these studies. Therefore, it is essential 
to ensure that sensory irritation occurs at all during studies 
with hours of low exposure concentrations. Therefore, only 
studies with objective signs of irritation at the highest inves-
tigated concentration were analyzed.

Studies investigating ‘seconds’‑exposure

Objective measures

Only three studies report gender differences in objective 
measures.

Claeson and Nordin (2011) found a significant gender 
effect in the detection of nasal irritation from amyl acetate.5 
They plotted the detection proportion at seven concentra-
tions for males and females. The exposure concentrations 
(1592–3849 ppm) were presented in randomized order 
together with interrandomized exposure to clean air. The 
slope of the regression differed markedly between females 
and males and with a steeper regression in females (cf., 

4  Studies are numbered consecutively. In later tables, studies keep 
their number for reasons of clarity. In Table  7, all reviewed studies 
are sorted by number.
5  Water solubility: slightly soluble.
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Table 1   Studies of sensory irritation in males and females (bold number, if significant gender difference is observed)

a Stimulus is thermal pain
Hours
[1] Ernstgård et al. (2002) n = 56
[2] Gminski et al. (2011); n = 24
[3] Hey et al. (2009); n = 23
[4] Juran et al. (2012); n = 24
[5] Kleinbeck et al. (2008); n = 24
[6] Kleinbeck et al. (2017); n = 19
[7] Pacharra et al. (2017); n = 37
[8] Pacharra et al. (2016c); n= 48
[9] Schäper et al. (2015); n= 32
[10] Sucker et al. (2019); n = 22
[11] van Thriel et al. (2010); n = 16
[12] Wålinder et al. (2008); n = 29
[13] Sundblad et al. (2004); n= 12
Minutes
[14] Shusterman et al. (2005); n = 16
[15] Yang et al. (2001); n = 8
Seconds
[16] Claeson and Nordin (2011); n = 24
[17] Dalton et al. (2000); n = 40
[18] Frasnelli and Hummel (2003); n = 16
[19] Hummel et al. (2003); n= 24
[20] Kleinbeck et al. (2011); n = 44
[21] Mattes and DiMeglio (2001); n = 50
[22] Stuck et al. (2006); n = 95
[23] van Thriel et al. (2006); n = 144
[24] Wise et al. (2007); n = 26
[25] Ohla and Lundström (2013); n = 26
[26] Olofsson and Nordin (2004); n= 36
[27] van Thriel et al. (2008); n = 39
[28] Gui et al. (2014); n = 53
Days
[29] Kleinbeck et al. (2020); n = 30.

Exposure duration

Hours Minutes Seconds Days

Objective Subjective Objective Subjective Objective Subjective Objective Subjective

Eyes [1] [2] [3] [4] [5] [6] 
[7] [8] [9] [10] [11] 
[12]

[1] [2] [3] [4] [5] [6] 
[7] [8] [9] [10] [11] 
[12]

[14] [15] [15] [29] [30] [29] [30]

Nose [1] [5] [6] [7] [8] [11] 
[12] [13]

[1] [2] [3] [4] [5] [6] 
[7] [8] [10] [11] 
[12] [13]

[16] [17] [18] 
[19] [20] 
[21] [22] 
[23] [24]

[16] [17] 
[20] 
[23] 
[25] 
[26] 
[27]

[29] [30] [29] [30]

Pharynx/Larynx; 
Throat

[1] [1] [2] [3] [4] [5] [6] 
[7] [8] [10] [11]

Trachea/Bronchi [1] [2] [3] [4] [5] [6] 
[7] [8] [10] [11]

[28]a

Bronchioles/Alveoli
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Fig. 1 in Claeson and Nordin 2011). This indicates that a 
higher percentage of males detected irritation at lower con-
centrations, while a lower percentage of males detected irri-
tation at higher concentrations. The P50 (irritation detected 
by 50%) was 1597 ppm for males and 1509 ppm in females 
as assessed from the regression line (cf., Table 1 in Clae-
son and Nordin 2011). Though the detection thresholds of 
females and males are without statistical significance, Clae-
son and Nordin (2011) demonstrated that the extrapolated 
P90 (irritation detected by 90%) is about half for females 
(3312 ppm) than for males (6678 ppm). Consequently, 
while around 90% of females would indicate 3300 ppm 
amyl acetate as irritating less than 75% of males would do 
so (cf., Table 1 in Claeson and Nordin 2011). An exposure 
limit, however, should protect the most sensitive individu-
als. In this case, females appear more sensitive compared 
to males. However, the sample is too small and too homog-
enous (mean ± SD age = 25.8 ± 3.6) for generalization to the 
general population. Further, there might be an odor bias to 
report nasal irritation in response to clean air, since amyl 
acetate has a strong odor component (Claeson and Nor-
din 2011), thus, leading to concern about the presence of 
sensory irritation at all investigated concentrations. Fur-
thermore, the odor component of amyl acetate might have 
influenced the irritation ratings more among women than 
men (Claeson and Nordin 2011). This is possibly due to 
evolutionary and hormonal explanations (Brand and Millot 
2001; Claeson and Nordin 2011; Doty and Cameron 2009). 
Cognitive and emotional factors may play a role in gender 
differences (Claeson and Nordin 2011; Lundström et al. 
2005; Royet et al. 2003; Thuerauf et al. 2009). Interest-
ingly, subjective ratings of irritation intensity did not elicit 
a significant gender difference.

Stuck et al. (2006) showed a gender effect in eucalyp-
tol6 lateralization. Thus, females demonstrated significantly 
higher sensitivity than males (35.64 vs. 33.00; higher val-
ues mean higher sensitivity). A gender difference was also 
observed in event-related potential (ERP) analyses. Ampli-
tude and latency of the first negative peak and the second 
positive peak after a chemosensory event were higher in 
females compared to males.

It has been demonstrated that the thermal pain threshold 
is lower in females than in males (Gui et al. 2014). There-
fore, males and females might perceive a cooling sensation 
of certain substances (i.e., menthol) differently leading to 
a proto-state of sensory irritation. Higher subjective rat-
ings in females, hence, might be due to thermo-sensation. 

Furthermore, hygroscopic properties of certain substances 
may lead to a feeling of dryness in the eyes and nose. This 
perceived dryness might be a reason for ratings of sensory 
irritation without objective signs of sensory irritation (Dal-
ton et al. 2018; Wolkoff 2018).

Several studies did not report significant gender differ-
ences at all, comprising nasal lateralization threshold for 
methyl isobutyl ketone (Dalton et al. 2000), linalool and 
menthol (Frasnelli and Hummel 2003), ammonia (Sund-
blad et al. 2004), benzaldehyde and eucalyptol (Hummel 
et al. 2003), ethanol (Mattes and DiMeglio 2001), formic 
acid, acetic acid, propionic acid, cyclohexylamine, dimeth-
ylamine, trimethylamine, ethyl formate, ethyl acetate, ethyl 
acrylate, methylcyclohexanone, cyclohexanone, cyclohex-
anol, ammonia, and hydrochloric acid (2 gender- and age-
stratified samples of 72 non-smoking healthy subjects at two 
research institutes dividing out the substances; van Thriel 
et al. 2006), and temporal integration of homologous alco-
hols (Wise et al. 2007).

Therefore, a general higher sensitivity of females com-
pared to males for acute sensory irritation for most sub-
stances seems unlikely based on the above studies. For a 
few substances, females appeared to be more sensitive; for 
instance, amyl acetate (Claeson and Nordin 2011) and euca-
lyptol (Stuck et al. 2006). Other, non-significant hints point 
in the same direction. However, no study showed a higher 
sensitivity in men.

Subjective ratings

Subjective ratings of irritation were higher in females com-
pared to males in many studies. Females generally reported 
a significantly more intense pungency than males when 
exposed to nine different concentrations (ranging from odor 
to lateralization threshold) of six substances7 (formic acid, 
acetic acid, propionic acid, ethyl formate, ethyl acetate, and 
cyclohexylamine) each (van Thriel et al. 2008).

A significant gender effect was observed in ratings of 
nasal irritation when exposed to the highest concentration 
of SO2 8 at 9 different concentrations (0.17 mg/m3 to 34 mg/
m3; Kleinbeck et al. 2011). However, the authors argue that 
the dose–effect relationship of nasal irritation rating follows 
a saturation function that is typical for olfactory ratings, 
which differs from sensory irritation. However, 10% reduc-
tion of the breathing depth (tidal volume) was observed as 
the first objective and possible sign of sensory irritation at 

[30] Lang et al. (2008); n = 21
Table 1   (continued)

6  Water solubility: slightly soluble.

7  Water solubilities: soluble to freely soluble and miscible.
8  Water solubility: freely soluble.
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the highest exposure concentration. The responsible site of 
stimulation is not clear. It cannot be ruled out that the reduc-
tion of breathing depth is olfactory-driven. As a single breast 
belt was used, a change of breast breathing to abdominal 
breathing could be possible, though implausible in sitting 
subjects (Kleinbeck et al. 2011).

A gender difference in nasal irritation was not observed 
by exposure to menthol9 by nostril lateralization (Ohla and 
Lundström, 2013). However, the authors found gender dif-
ferences in response (event-related potentials) to cineole 
(higher late positive component (LPC) amplitudes and dif-
ferent temporal patterns in females). Parameters of the EEG 
were analyzed, i.e., amplitudes, latencies, and more special 
parameters like the LPC. The LPC proved to be faster and 
more pronounced in females compared to males in response 
to cineole.

Other studies did not report gender differences at all in 
the perception of sensory irritation (Claeson and Nordin 
2011; Olofsson and Nordin 2004; van Thriel et al. 2006).

However, as mentioned above, over longer periods (min-
hours) even sub-acute concentrations can have a trigeminal 
impact due to temporal summation (Cain et al. 2010).

Studies investigating ‘minutes’‑exposure

Gender effects are not reported after 15 min exposure to 
15 ppm acetic acid (Shusterman et al. 2005). Likewise, Yang 
et al. (2001) reported no gender effects in subjects’ eyes 
exposed for 5 min to very high concentrations of formalde-
hyde, a strong sensory irritant, at 1.65, 2.99, and 4.31 ppm. 
However, in these irritating conditions, no temporal summa-
tion took place, but an adaptation/habituation in eye blinking 
frequency as well as the subjective ratings. As conditions 
were clearly irritating (increased blinking frequency com-
pared to clean air control condition), temporal summation 
could take place at lower (sub-acute) concentrations.

Studies investigating ‘hours’‑exposures

Objective measures

Only exposure studies with objective signs of irritation 
are considered. This is due to that objective sensory irrita-
tion could be questioned in many studies as markers do not 
increase even at the highest exposure concentration (Ernst-
gård et al. 2002; Gminski et al. 2011; Hey et al. 2009; Juran 
et al. 2012; Kleinbeck et al. 2008; Sundblad et al. 2004; van 
Thriel et al. 2010; Wålinder et al. 2008). However, Wålinder 
et al. (2008) reported a significant increase of 2.3 eye blinks/
min by two-hour exposure to 10 mg/m3 1-octen-3-ol,10 but 

the eye blinking frequency is still low in the exposure con-
dition (about 8 eye blinks/minute). The change in the eye 
blinking frequency is probably not due to objective eye 
irritation but biased by the smell of 1-octen-3-ol, because 
the exposure concentration is below an estimated LOAEL 
for sensory irritation (Wolkoff 2013). Furthermore, the eye 
tear film was unaffected. Ernstgård et al. (2002) reported 
a gender effect on forced vital capacity 3 h after exposure 
to 50 ppm m-xylene.11 However, this gender difference is 
unlikely due to acute sensory irritation, as it could not be 
demonstrated immediately after exposure, and the exposure 
concentration is far below an estimated LOAEL (Wolkoff 
2013).

Objective sensory irritation (as seen in eye blinking fre-
quency) shows up at the end of exposure in studies with 
significant changes in eye irritation (4 h, 0–10 ppm peaks of 
ethyl acrylate, Kleinbeck et al. 2017; 4 h, 0–40 ppm ammo-
nia, Pacharra et al. 2017, 4 h, 0–20 ppm propionic acid, 
Pacharra et al. 2016c; 4 h, 20 ppm 2-ethylhexanol, Schäper 
et al. 2015; 4 h, 0–10 ppm ethyl acrylate, Sucker et al. 2019). 
Though eye blinking frequencies also increase with time 
during the control condition (likely due to visual demands 
during ‘exposure’), the blinking frequencies are significantly 
higher at the end of the highest exposure concentration.

Most notably, objective sensory irritation from ethyl 
acrylate was re-investigated in a similar manner (4 h expo-
sure; 0–10 ppm) (Kleinbeck et al. 2020, 2017; Sucker et al. 
2019). A significant increase in the eye blinking frequency 
(e.g., 5 blinks/min in Kleinbeck et al. 2017) was seen at the 
highest exposure condition in comparison to the control con-
dition (0 ppm). Neither of the studies found a gender effect 
on the eye blinking frequency when subjects were exposed 
to 5 ppm ethyl acrylate (TWA) with peaks of 10 ppm.

Other studies reported objective measures of eye irritation 
(eye blinking frequency), but no gender effect was observed. 
For instance, a change in irritation markers was observed for 
propionic acid (10 ppm with peaks of 20 ppm; Pacharra et al. 
2016c), ammonia (20 ppm (TWA) with peaks of 40 ppm; 
Pacharra et al. 2017), and 2-ethylhexanol (20 ppm; Schäper 
et al. 2015). All exposures were at or above their estimated 
threshold for sensory irritation (Wolkoff 2013).

Temporal summation is usually accompanied by the 
respective perceptual ratings during the exposure condition 
(i.e., Fig. 4 in Kleinbeck et al. 2017).

Subjective ratings

Significant gender effects could only be observed in studies 
in which objective irritation is uncertain (Ernstgård et al. 
2002; Wålinder et al. 2008).

9  Water solubility: slightly soluble.
10  Water solubility: slightly soluble. 11  Water solubility: very slightly soluble.
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Pacharra et al. (2016b) analyzed perceptual ratings in 
nine experiments, in which subjects were exposed to dif-
ferent substances (some of the experiments are described 
above). The results showed that trait-like modulators (i.e., 
odor-mediated sensitivity) affected (pungency and burning) 
ratings by females, but not by males.

Studies investigating ‘days’‑exposure

Kleinbeck et al. (2020) and Lang et al. (2008) exposed sub-
jects on subsequent days to ethyl acrylate and formalde-
hyde, respectively. Lang et al. (2008) used five randomized 
sequences of 10 exposure conditions on 10 subsequent work-
days for two weeks. Therefore, the sequence of exposures is 
unbalanced and could lead to systematic biases (e.g., system-
atic desensitization). Day-to-day carry-over effects cannot be 
excluded and could aggravate the effects of low exposures. 
Carry-over effects on objective and subjective markers were 
studied systematically by exposure of the subjects to the 
same concentration of ethyl acrylate for five subsequent days 
on objective and subjective markers (Kleinbeck et al. 2020). 
Carry-over effects were unobservable, neither in males nor 
in females from day-to-day exposure, though sensory irrita-
tion could be seen on each day.

Summary of findings

Ocular irritation

Doughty (2002) reported no gender effects on spontane-
ous eye blinking but gender differences in the prevalence of 
reported eye irritation symptoms have been observed (Smith 
et al. 2007; van Wijk and Kolk 1997; Wolkoff et al. 2003). 
However, the influence of gender on sensory irritation in 
the eye due to experimental exposure to volatile substances 
could not be supported.

A large variance in eye blinking frequency may emerge 
over different studies due to individual differences, due to 
different tasks and situational factors, due to the inadequate 
separation of complete versus incomplete eye blinking, or 
insufficient data sampling for statistical analysis. Personal 
and occupational factors may also play a role in sensory 
irritation at the eye, e.g., use of contact lenses, eye make-up, 
certain medication, and eye diseases result in a more vulner-
able tear film (Alves et al. 2023; Wolkoff 2020).

Nasal irritation

Gender differences only showed up in sensory irritation at 
the nose. It is surprising that studies that show gender dif-
ferences in objective markers of sensory irritation report no 

gender difference in subjective markers or vice versa if both 
kinds of markers were measured. Differences are visible dur-
ing short (seconds) exposures.

Irritation in the middle and lower airways

The only study that showed gender differences on objective 
markers (urge-to-cough; Gui et al. 2014) investigated ther-
mal pain and not exposure to a volatile substance. However, 
this gender difference might explain influences other than 
exposure to volatile substances that might trigger or aggra-
vate sensory irritation in females.

Generally, there is a higher incidence of chronic cough in 
females compared to males in the adult population regardless 
of exposure context (Morice et al. 2020; Morice and Kaste-
lik 2003; Nasra and Belvisi 2009). Dicpinigaitis and cow-
orkers demonstrated gender effects in urge-to-cough thresh-
olds when subjects inhaled a capsaicin aerosol (non-volatile 
substance) with higher sensitivity in females (Dicpinigaitis 
et al. 2012; Dicpinigaitis and Rauf 1998). A similar effect of 
higher sensitivity was found in females regarding urge-to-
cough with nebulized tartaric acid in a physiological saline 
solution (Fujimura et al. 1990). The fraction of a volatile 
substance reaching the lower airways is unclear due to the 
scrubbing effect of the nose in nasal breathing (Brüning 
et al. 2014; Garcia et al. 2009; Nielsen and Wolkoff 2017; 
Shusterman 2007). However, oral breathing together with 
physical exercise may increase the amount of inhaled vola-
tile substances reaching the middle and lower airways.

In summary, no convincing evidence has been identified 
about a general gender difference for the endpoint ‘sensory 
irritation’ for most substances. However, for a few sub-
stances gender effects could be demonstrated for females, 
which turned out to be ‘more sensitive’ than males. This is in 
accordance with Nielsen and Wolkoff (Nielsen and Wolkoff 
2017; Wolkoff 2013), who state that gender-related influ-
ences are, if observed at all, small. However, the influence 
of odor perception cannot be ruled out to bias the outcome, 
cf., Cometto-Muniz and Cain (1991) and van Thriel et al. 
(2008). Furthermore, climatic conditions (e.g., exposure to 
dry air) were not considered by Nielsen and Wolkoff (2017). 
Thus, the observed gender differences reported here may 
be due to the methodological shortcomings of the reviewed 
studies.

Nielsen and co-workers (Nielsen and Wolkoff 2017; 
Nielsen et al. 2007) argued that an AF of about 2 would 
account for the known differences in sensitivity due to gen-
der (and age, lifestyle, and diseases). Furthermore, they 
claimed that a data-driven AF requires the evaluation of the 
effects of age, smoking, gender, and differences between eye 
and nasal irritation for each specific substance (Nielsen and 
Wolkoff 2017). Such a data-driven AF also requires consist-
ency across studies (Nielsen and Wolkoff 2017).



627Archives of Toxicology (2024) 98:617–662	

In the light of possible gender effects, only six studies 
reported gender differences in sensory irritation due to vola-
tile substances out of 29 reviewed studies. These have inves-
tigated a variety of different substances (See Sect. 'Char-
acteristics of the reviewed studies', Table 7), and of which 
some outcomes might have been odor-driven (Claeson and 
Nordin 2011; Wålinder et al. 2008). However, interactions 
of gender and lifestyle and of gender and diseases (which 
both are included in the AF of 2 proposed by Nielsen and 
Wolkoff (2017)) are not reported in this review due to such 
studies are rare. Most of the reviewed studies investigate first 
and foremost young, healthy, non-smoking subjects. On that 
basis, a conservative AF of 2 for gender, age, lifestyle, and 
diseases is unchallenged. However, for this specific group 
of the general population and the respective substances, an 
AF for gender could be lower than 2, in part due to an odor-
mediated bias. Consequently, substance-specific AFs are 
favorable from an economic point of view.

Influence of grouping factor age / older 
people on sensory irritation

Table 2 shows studies comparing young adults and older 
adults. Further characteristics of the studies (substances, 
substance delivery, examined concentrations, and measures 
of sensory irritation) can be found in Sect. ‘Characteristics 
of the reviewed studies’ (Table 7). Nearly all studies inves-
tigated short exposures (seconds) in the nose. Many studies 
determine irritation thresholds.

Studies investigating ‘seconds’‑exposure

Some studies showed significant age effects in objective 
measurements. Of these, all thresholds for sensory irritation 
of volatile substances in older subjects are shown in Table 3.

If there is a significant effect of age, older subjects show 
lower sensitivity (higher thresholds) than younger subjects.

Subjective ratings do not reflect the objective differences 
in thresholds (cf., Table 3). It should be considered that age-
related pathologies might be responsible for the loss of nasal 
sensitivity (Nordin et al. 2012; Stevens et al. 1982). Further, 
higher odor thresholds (lower sensitivity) among older peo-
ple (Olofsson et al. 2021; Sinding et al. 2014; Stevens and 
Cain 1987) may also contribute to the overall variance.

Studies investigating ‘hours’‑exposure

There is only one study that investigated the age effects of 
a longer exposure duration of 4 h with 2-ethylhexanol12 
(Schäper et al. 2015). Sensory irritation could be dem-
onstrated by higher eye blinking frequency at the end of 
the highest and constant exposure condition of 20 ppm 

2-ethylhexanol (temporal summation). However, there is 
no difference in eye blinking frequency or in eye irrita-
tion rating between young (18–35 years) and older subjects 
(45–67 years). The lack of difference, however, might be due 
to the relatively low age of the older subjects. Age effects in 
trigeminally induced eye blinks by fragrances occur mostly 
in subjects above 60 years (cf., Acosta et al. 2006; Frasnelli 
and Hummel 2003; Stevens et al. 1982).

Summary of findings

The compiled information about age effects may indicate 
that older people have higher thresholds. Confounding fac-
tors, i.e., (unrecognized) diseases (Rosenkranz et al. 2020), 
might cause higher prevalence in older age (Nordin et al. 
2012). Another confounding factor could be differences in 
odor thresholds with lower odor sensitivity among older 
people (Olofsson et al. 2021; Sinding et al. 2014; Stevens 
and Cain 1987). On the other hand, it is well-known that 
older people, especially females, have a less stable eye tear 
film, which might result in elevated sensitivity to sensory 
irritants in the eyes (Wolkoff 2020).

Hence, the overall picture of possible age effects for the 
general population, as concluded by Nielsen and Wolkoff 
(2017), appears less clear, in part, since health status and 
other confounders may bias the outcome.

Table 2   Studies of age effects (young vs. old adults) in sensory irrita-
tion (bold number, if significant age effects are observed)

Hours
[9] Schäper et al. (2015); n = 32
Seconds
[18] Frasnelli and Hummel (2003); n = 16
[19] Hummel et al. (2003); n = 24
[20] Kleinbeck et al. (2011); n = 44
[22] Stuck et al. (2006); n= 95
[23] van Thriel et al. (2006); n = 144
[31] Wysocki et al. (2003); n = 142
[27] van Thriel et al. (2008); n = 39

Exposure duration

Hours Seconds

Objective Subjective Objective Subjective

Eyes [9] [9]
Nose [9] [18] [19] [20] 

[22] [23] [31]
[20] [23] [27]

12  Water solubility: very slightly soluble.
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Age‑related changes in the eye

Physiologically, there is a progressive reduction in nerve 
density in the human cornea occurring at the age of 70 years 
and older (He and Bazan 2010). This might be the effect of 
age-related pathologies (or eye diseases) and not a general 
decrease associated with age. The reduction might lead to 
reduced eye blinking in case of chemical exposure. Nor-
mal eye blinking has two functions: to restore the tear film 
and to defend the eye from environmental exposures (Alves 
et al. 2023; Wolkoff 2020). Therefore, eye blinking activ-
ity is essential for a healthy ocular surface; for instance, in 
maintaining the eye tear film stability (Wolkoff 2020). The 
loss of sensitivity, therefore, might result in a longer pres-
ence of a sensory irritant in the eyes.

Peshori et al. (2001) analyzed eye blinking frequency in 
human subjects of different ages (20–80 years). They used 
irritating electrical stimuli of the supraorbital branch of the 

trigeminal nerve to evoke blinking. The lowest stimulus 
intensity that reliably evoked blinking was set as threshold. 
For data collection, the electrical stimulus was the twofold 
threshold. They demonstrated a significant increase in lid-
closing duration, excitability, and latency of the eye blinking 
in subjects over 60 years compared to younger subjects. A 
reduced sensitivity and higher latency of eye blinking may 
lead to slower clearance of the eye tear film in older adults. 
Therefore, a more efficient clearance may prevent sensory 
effects in the eyes of young adults but be detrimental to the 
eyes of older people with a  longer clearance time. For exam-
ple, age is a risk factor for eye symptomatology (Sharma and 
Hindman 2014; Wolkoff 2020).

Age‑related changes in the nose

The odor thresholds among older people are higher (lower 
sensitivity) than among younger people (Olofsson et al. 2021; 

Table 3   Age differences in nasal sensory irritation thresholds

a Low values indicate low thresholds (Frasnelli and Hummel 2003)
b Water solubility: slightly soluble
c Water solubility: slightly soluble
d The higher the lateralization score, the lower the threshold
e Miscible
f Water solubility: practically insoluble
g The higher the relative sensitivity, the lower the threshold
h Miscible
i Miscible
n.s. = non-significant

Substance Study Age (years) N Unit Threshold Sig

Menthol Frasnelli and Hummel (2003) 18–35 8 Dilution step 1.0 in younger subjects vs. 3.3 in older 
subjectsa

ANOVA: 
p = 0.001

Post hoc:
menthol 

p = 0.027
linalool 

p = 0.098 
(n.s.)

59–67 8
Linaloolb Frasnelli and Hummel (2003) 18–35 8 1.3 in younger subjects vs. 3.5 in older 

subjects59–67 8

Benzaldehydec Hummel et al. (2003) 25.4 29 Lat. Scored 31.2 t-test
p < 0.0161.0 12 27.8

Eucalyptol Hummel et al. (2003) 25.4 (< 35) 29 Lat. Score 34.2 t-test
p < 0.00161.0 (> 35) 12 29.8

Propanole Shusterman et al. (2003a) 18–34 18 No numbers given according to Fig. 3b p < 0.0001
35–51 24
52–69 18

Iso-amyl butyratef Stevens et al. (1982) 18–25 20 Relative sensitivityg No numbers given according to Fig. 1; 
factor 1.6 higher in younger subjects

t-test
p < 0.0165–83 20

Acetic acidh van Thriel et al. (2006) 18–45 19 ppm 35 ANOVA
p < 0.0545- 20 46

Cyclohexylaminei van Thriel et al. (2006) 18–45 19 ppm 290 ANOVA
p < 0.0545- 20 410
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Sinding et al. 2014; Stevens and Cain 1987). Whether sensory 
irritation is affected by odor perception is unclear. However, 
if sensory irritation ratings were (at least in part) olfactory-
driven, older subjects would probably show lower sensitiv-
ity. Sunwoo et al. (2006) demonstrated that the mucociliary 
clearance time (removal of foreign bodies; the saccharin test), 
which is generally slower in older males (n = 8, mean age: 
71.8 years) compared to young male subjects (n = 8; mean age: 
21.7 years), is affected by 90 min exposure to low air humid-
ity (10%) only in elderly subjects; however, the difference 
diminished after 180 min exposure. Ho et al. (2001) measured 
slower ciliary beat frequency, a higher percent of ciliary cross 
sections displaying single tubules, and longer mucociliary 
clearance time in subjects older than 40 years (41–90 years; 
n = 43) compared to younger subjects (11–40 years; n = 47). 
Consequently, harmful substances may stay longer in the nose 
of older people (see further discussion in Wolkoff 2018).

A detrimental effect of delayed protective reflexes in older 
subjects should come up with longer exposure. Consequently, 
older people might have higher thresholds (in ‘seconds’ expo-
sure) indicating lower sensitivity but would need, neverthe-
less, lower exposure levels due to other age-related influences 
on the susceptibility of sensory irritation at longer exposure 
periods (i.e., reduced warning signs). There is a small, but 
demonstrable age-related decline in early warning functions 
of pain (Gibson and Farrell 2004). For example, Barbariga 
et al. (2018) found an effect of aging on nerve morphology 
and substance P expression (loss with age) in human corneas.

Age‑related cognitive changes

Influence of expectations among old people cannot be ruled 
out. Older people might think that their eyes and nose have 
become less sensitive and therefore reduce their effort during 
threshold experiments. Miller et al. (2013) investigated the 
influence of priming elderly stereotypes (schematic images of 
a person due to group membership) on olfactory tests (Snif-
fin’ Sticks; Hummel et al. 1997), perceptual ratings, verbal 
and motor behaviors. Stereotypes were primed by describing 
a profound age-related decline in olfactory function in primed 
subjects while control subjects received general information 
regarding the olfactory system. They did not find an influence 
of priming on olfactory performance; however, verbal and 
motor behaviors were altered by priming older people.

Influence of the grouping factor age / 
children on sensory irritation

Empirical evidence

Hummel et  al. (2007) found differences between age 
groups in the assessment of the trigeminal function (nasal 

lateralization) of eucalyptol in children in comparison to 
adults (5–54 years). Thus, lower scores (i.e., lower sensitiv-
ity) were observed in the youngest group (5 years) compared 
to all other, lower scores in subjects at the age of 9 compared 
to participants at the age of 14, and subjects at the age of 
6 years had lower scores compared to’subjects aged 4 [!] and 
above’. However, the conclusion by Hummel et al. (2007) 
indicates no significant differences between subjects at age 
7 and older subjects (up to 54 years). It remains unclear 
whether the lower score in younger children (5 years) is due 
to lower sensitivity or due to the test procedures used for 
nasal lateralization.

There is no experimental study with children younger 
than 5 years. Therefore, other sources of information should 
be used in risk assessment. One must keep in mind that 
impairments of childhood development may have lifelong 
consequences on possible effects of sensory irritation in 
children (Peled 2011).

Other sources of information on sensory irritation 
susceptivility in children

While fetuses and children are particularly susceptible to 
neurotoxic effects as the brain is more sensitive during its 
growth stages, less is known about children’s sensitivity to 
sensory irritation (Berglund et al. 1992). However, develop-
mental changes in the organs potentially affected by sensory 
irritation can give indirect hints.

The eye tear film stability is higher in children compared 
to adults (Borchman et al. 2012). Thus, the meibum of infants 
and children contains less CH3 and unsaturated C-C groups 
and an increased aldehyde-to-lipid hydroperoxide ratio 
(Borchman et al. 2012; Shrestha et al. 2011; Sledge et al. 
2017; Wolkoff 2020). Further, the eye blinking frequency in 
infants is substantially lower (< 1 blinks/min; Mantelli et al. 
2007; Zametkin et al. 1979) than in adults (Cruz et al. 2011). 
Furthermore, the tear break-up time is longer in infants than in 
adults (Cho and Yap 1993; Mohidin et al. 2002; Ozdemir and 
Temizdemir 2010). This indicates that infants and children 
have a more stable and intact eye tear film.

Berglund et al. (1992) consider children’s respiratory sys-
tem as prone to the effects of indoor air pollutants that might 
lead to developmental impairment in the lung. Children have 
faster respiratory (Berglund et al. 1992; Ginsberg et al. 2005) 
and metabolic rates in comparison to adults (Berglund et al. 
1992). However, the nasal contribution to breathing with 
exercise is lower in children, in part due to oral inhalation, 
compared to adults (Bennett et al. 2008). Therefore, a sen-
sory irritant might reach the middle and lower respiratory 
system in children during exercise, while the irritant might 
be scrubbed in the nose of adults, depending on its water 
solubility (e.g., Garcia et al. 2009). Furthermore, children 
breathe 50% more per kg body weight compared to adults 
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(Peled 2011). The lung epithelium, however, is not fully 
developed during early childhood (Foos et al. 2008; Peled 
2011), while the pulmonary surface area per body weight 
is higher than in adults (Ginsberg et al. 2010). However, 
growth of the lung is not the only developmental factor 
(Saadeh and Klaunig 2015). All developmental changes in 
a child’s body may be crucial in the risk assessment pro-
cess for children. For example, children’s immune system 
is also developing (Foos et al. 2008; Peled 2011; Schwartz 
2004). All of this may cause more susceptibility in children 
to the systemic effects of air pollutants. This could be shown 
by Valcke and Krishnan (2011) for internal dose metrics in 
neonates compared to adults. Generalization, however, is 
hampered by many not well-characterized factors, e.g., the 
relevance of the pollutant polarity, the higher metabolic rate, 
and the exposed surface in the airways of children versus in 
the airways of adults (cf., Garcia et al. 2009).

Environmental factors like exposure to indoor and out-
door air pollutants like tobacco smoke or exhaust emissions 
are responsible for respiratory health effects in children 
(Kasznia-Kocot et al. 2010; Selgrade et al. 2008). Selgrade 
et al. (2008) summarized investigations on ozone (a pulmo-
nary irritant) exposure in infant rhesus monkeys compared 
to clean air exposure. This showed significant changes in 
airway development, i.e., decreased airway size, increased 
number of mucous cells, and less innervation. Therefore, 
pharmacokinetic and pharmacodynamics age- and gender-
specific models were developed (Sarangapani et al. 2003; 
Sweeney et al. 2015) to evaluate the risk of volatiles.

For instance, nasal modeling of airborne formaldehyde 
uptake (computational fluid dynamics) of human noses (2 
children, 5 adults) showed that 90% of inhaled formaldehyde 
was extracted in the nose of adults as well as children, while 
a maximum of 10% may pass the nasal cavity and reach the 
larynx and eventually the lower airways at resting conditions 
(Garcia et al. 2009). Another nasal modeling showed that 
airborne formaldehyde-induced DNA protein cross-linking 
about 1.5 higher in adults than in children (Firestone et al. 
2008), indicative of about 50% lower maximum effective 
dose in children; thus, indicative of less susceptible in chil-
dren than adults for this highly water-soluble substance.

Developmental influences

For the risk assessment of sensory irritation in children, it is 
reasonable to consider the development and the number of 
sensors as well as differences in nervous transfer.

Adverse outcome pathways represent the sequence of bio-
logical events that are caused by chemical exposures and 
disturb homeostasis (Frank et al. 2018). Adverse outcome 
pathways for sensory irritation have been described (Frank 
et al. 2018; Martinez and Eling 2019), and AOP key events 
have been defined that lead to a specific adverse outcome 

(OECD 2013). Such a sequence begins with MIEs, which 
describe initial points of interaction resulting in pertuba-
tion (OECD 2013). Frank et al. (2018) identified 5 MIEs for 
sensory airway irritation:

(1)	 Activation of nociceptors
(2)	 Peroxidation of membrane lipids
(3)	 Induction of reactive oxygen species (ROS) and oxida-

tive stress
(4)	 Abrupt changes in extracellular saline
(5)	 Phospholipase activation during detergent–membrane 

interactions

Each of these MIEs is directly induced by irritant expo-
sure and can result in sensory irritation symptoms (Frank 
et al. 2018). Some studies show developmental aspects of 
these MIEs, such as nociceptors (increased physiological 
sensitivity to pain in neonates; Anand and Carr 1989; Bouza 
2009), peroxidation of membrane lipids, and ROS and oxi-
dative stress (Auten and Davis 2009).

For volatile substances binding to the TRPA1 receptor, 
Martinez and Eling (2019) defined 3 KEs leading to the 
adverse outcome of sensory irritation:

(KE 1) Increase in intracellular CA+2 in nerves
(KE 2) Trigeminal/vagal nerve activation
(KE 3) Neurogenic inflammation (increase of substance 
P and CGRP)

Age‑related differences in KE1 ‘Increase in intracellular CA+2 
in nerves’

The increase in intracellular CA+2 is an indicator of recep-
tor (e.g., TRPA1) activation. Banzrai et al. (2016) found 
developmental differences in sensory axonal excitability 
in normal mice using threshold tracking. Though, it is not 
clear whether a transfer to humans’ sensory system is pos-
sible. As an indirect hint for developmental differences in 
receptor activation, the density of receptors is considered as 
they indicate differences in sensitivity (the higher the sen-
sor density, the higher the chance of receptor activation at a 
certain concentration).

In eyes, nerve terminals or free endings are responsible 
for transducing sensory stimuli into nerve signals (Belmonte 
et al. 2004; He et al. 2010). The numbers of free nerve end-
ings are proportional to corneal sensitivity (Belmonte et al. 
2004; He et al. 2010).

The sensory innervation of the cornea is derived from 
30–80 stromal nerve trunks (Spadea et al. 2013; Zander 
and Weddell 1951). A single neuron supports 200–3000 
individual corneal nerve endings (Spadea et  al. 2013). 
Developmental aspects of corneal innervation are known 
for mice (He and Bazan 2016). The innervation of adult 
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mice and adult humans share many common features (He 
and Bazan 2016, 2010). In mice, the innervation of the cor-
nea still develeops after birth (He and Bazan 2016). The 
mouse cornea is mature after 8 weeks from birth (He and 
Bazan 2016). Cornea maturity age in mice corresponds to 
the human age of 6 years (relating average lifespans of mice 
and men; Dutta and Sengupta 2016). Between week 1 and 
week 3 the mouse cornea is mainly innervated by stromal 
nerves (He and Bazan 2016). Epithelial nerves were short, 
thin, and extended without a determined direction. Epithe-
lial nerves derive from stromal nerve branches penetrate the 
subbasal layer of the cornea (He and Bazan 2016). With 
maturity, those nerves grow to a whorl-like structure. There 
is a stromal nerve regression when the mouse is mature, 
which might be due to neurotrophins regulating connections 
between nerve cells (e.g., nerve growth factor; He and Bazan 
2016).

As argued above for older people, less innervation means 
less sensitivity of children’s eyes, which might lead to less 
sensory irritation but a higher susceptibility to damage as 
defense mechanisms (like eye blinking) may be insuffi-
cient. Contrary, the tear film stability is higher in children 
compared to adults (Borchman et al. 2012). Therefore, risk 
assessment of any volatile substance requires accounting 
for the complex interplay of different defense mechanisms 
at different developmental stages in children. It is still not 
known whether volatile substances might have an impact on 
sensory development in children at a concentration harmless 
to adults. Any damage to corneal nerves, however, leads to 
diminished corneal sensitivity and could lead to long-term 
alterations in the functional integrity of the ocular surface 
(Marfurt 2010; Marfurt et al. 2010; Medeiros and Santhi-
ago 2020; Spadea et al. 2013). Although corneal nerves are 
capable of regeneration, this process is slow and imperfect 
(Spadea et al. 2013). For example, regeneration after most 
corneal surgeries is accompanied by reduced nerve density, 
alterations in nerve architecture, and consequently lower 
corneal sensitivity (Spadea et al. 2013). In children, any 
damage to sensory nerves might lead to long-term impair-
ment that must be considered in risk assessment.

Age‑related differences in KE2 ‘Trigeminal/vagal nerve 
activation’

In addition to differences in nerve density, there might be 
differences in nerve transmission during developmental 
changes in children. Uppal et al. (2016) investigated the 
neural dynamics of somatosensory processing of adaptation 
across childhood via vibrotactile stimuli at the children’s 
wrist. Differences in somatosensory evoked potentials 
could be identified in different age groups (6–10, 10–13, 
and 13–17 years old). The authors conclude that reactivity 
to tactile stimulation seems to change dramatically during 

childhood. Uppal et al. (2016) speculate that such difference 
might be due to the co-working of’immature’ and’mature’ 
networks; for instance, there could be different configu-
rations of neural generators in somatosensory cortices or 
developmental changes in the anatomy. Otherwise, it is pos-
sible that skull thickness might influence the scalp-reported 
signal, though the underlying neuronal response was the 
same (Uppal et al. 2016).

Many populations of neurons in the vertebrate nervous 
system pass through 4 phases of development (Davies 1988):

(1)	 Differentiation from progenitor cells
(2)	 Growth of axons to their target fields
(3)	 Target field innervation
(4)	 Remodelling axon connections

Though much of the trigeminal system of rats develops 
during the embryonic stage (Davies 1988; Stainier and Gil-
bert 1991) there is also postnatal development of the trigem-
inal system (Toma et al. 2006). For example, glial elements 
of root entry zones in the central nervous system are mainly 
developed postnatally in rats (Toma et al. 2006) until the 
end of week 2 (corresponding to 1 year in humans, relating 
average life spans of rats and men; Andreollo et al. 2012). 
Therefore, the central nervous system parts of mammalian 
trigeminal systems seem not to be mature at birth. This could 
lead to stronger adverse perceptions in children at a certain 
developmental stage exposed to stimulus intensities, which 
would not be adverse in children at other developmental 
stages (cf., vibrotactile stimuli in Uppal et al. 2016).

Age‑related differences in KE3’Neurogenic inflammation 
(increase of Substance P and CGRP)’

Distribution of the neural peptides substance P and cal-
citonin gene-related protein (CGRP) was determined by 
staining in mice cornea (He and Bazan 2016) with a higher 
content of CGRP than that of substance P in mice epithelial 
innervation. However, the authors did not investigate devel-
opmental changes in this distribution. In older studies, the 
pattern of corneal CGRP innervation of rats continuously 
changes during the first 3 weeks after birth (1.5 years in 
humans, relating average life spans; Andreollo et al. 2012) 
and then reaches the adult state (Jones and Marfurt 1991). 
During week 1, for example, CGRP innervation density of 
the pericentral corneal epithelium increases relative to the 
peripheral corneal epithelium, intraepithelial axons become 
more branched, thinner, more prominently beaded, and the 
number of free nerve endings increases (Jones and Mar-
furt 1991). This suggests that less CGRP might be released 
due to sensory irritation of the eye in children compared 
to adults due to lower availability. The same might be true 
for substance P as 99% of all corneal protein gene product 
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(PGP)-p.5-immunoreactive nerves contain both CGRP and 
substance P in dog corneas (Marfurt et al. 2001).

Risk assessment for children, therefore, requires consid-
eration of developmental changes affecting MIEs and KEs.

Summary of findings

The only experimental study with children demonstrated 
that 7-year-old children are as sensitive to nasal irritation 
as adolescents and adults (Hummel et al. 2007). Therefore, 
some researchers consider that risk assessment of sensory 
irritation in children might not be of special concern (Dour-
son et al. 2010). Others conclude that children’s risk assess-
ment requires special consideration due to developmental 
changes (Saadeh and Klaunig 2015). For example, Hunter 
et al. (2010) identified postnatal phases of special suscepti-
bility to ozone in rats; however, ozone is not a sensory, but 
a pulmonary irritant.

Saadeh and Klaunig (2015) conceptualize different risk 
factors for children, inter alia physiological and immuno-
logical development, breathing rate, physical activity, and 
respiratory system development. They integrate the avail-
able methods for children’s inhalational risk assessment by 
comprehensive PK/PD modeling of different target sites. 
Such modeling could be used to identify target sites at which 
children might be more sensitive or obtain a higher dosage 
compared to young adults. A quantification of differences (if 
identified) must be the next step.

For occupational risk assessment, Maier et al. (2014) 
argue that young naïve non-smoking adults represent the 
most responsive sub-group for sensory irritation in con-
trolled exposure studies. Regarding the argumentation 
above, this claim cannot be transferred to the general popu-
lation. Children and older people might suffer more from the 
same exposure to sensory irritants than young naïve adults. 
Furthermore, certain (chronic) diseases might influence the 
sensitivity (even in naïve non-smoking young adults).

Influence of the grouping factor health 
status on sensory irritation

Different diseases have an impact on the eyes and the air-
ways. For example, inflammatory diseases have a direct 
impact on the sensors involved in sensory irritation. Further-
more, acute impacts can lead to worsening (exacerbation) of 
chronic lung diseases (‘acute on chronic’ lung disease; Kreu-
ter and Cottin 2017). Environmental pollution and occupa-
tional exposures elicit such exacerbations, for example in 
asthma and COPD (Eisner et al. 2010; Vogelmeier et al. 
2017; Skaaby et al. 2021).

Allergy/asthma

In respiratory allergies, substances that are harmless to the 
organism can elicit an immune response. The first step in 
developing a respiratory allergy is the sensitization to a sub-
stance (called antigen; Briatico-Vangosa et al. 1994). Such 
sensitization can be classified into 4 hypersensitivity reac-
tions (Dispenza 2019; Gell and Coombs 1963). The most 
common type which incorporates hay fever and allergic 
asthma (cf., prevalence in Germany, Bergmann et al. 2016) 
is Type 1 allergy. The critical event during sensitization is 
the development of mast cell binding antibodies (immuno-
globulin E; IgE). An individual is sensitized if during an 
immune response antigen-specific IgE antibodies are pro-
duced that ‘prime’ mast cells in various tissues (Briatico-
Vangosa et al. 1994). Consequently, repeated exposure to 
the same or similar substance leads to a hypersensitivity 
reaction (Briatico-Vangosa et al. 1994). The neuropeptide 
nerve growth factor is a neurotrophic factor that plays a criti-
cal role in hypersensitivity (Päth et al. 2002). A sensitized 
individual might develop an allergy on subsequent expo-
sure to the antigen. Activated mast cells, other inflamma-
tory cells, and resident cells can stimulate nerve endings and 
cause long-lasting changes in neuronal excitability (Undem 
and Taylor-Clark 2014). Such a reaction is an exaggerated 
response of the sensory system due to interaction with sen-
sory nerves, changes in central nervous processing, and 
altered transmission in sympathetic, parasympathetic, and 
enteric autonomic nerves (Undem and Taylor-Clark 2014).

Seasonal allergic rhinitis and asthma are inflammatory 
diseases affecting the airways, first the upper airways and 
second the lower respiratory tract. Both are linked by a 
common pathogenic process with overlapping inflamma-
tory cells, mediators, and cytokines (Bjermer 2007). The 
bridge between the upper and lower airways seems to be 
systemic inflammation (Alving and Malinovschi 2010; Bjer-
mer 2007), which might lead to a higher sensitivity against 
sensory irritants. Therefore, studies on elevated sensitivity 
in seasonal allergic rhinitis and in asthma were analyzed 
together.

Furthermore, exposure to some volatile substances by 
itself might generate an allergic disease (Nurmatov et al. 
2015; Tagiyeva and Sheikh 2014), i.e., occupational asthma 
(Maestrelli et al. 2009) or Reactive Airway Disease Syn-
drome (RADS; Johnson et al. 2019). Some volatile sub-
stances activate the TRPA1 receptor by forming a Michael 
addition product with a cysteine residue of TRPA1 through 
covalent protein modification; thus, as a consequence, 
causing allergic reactions (i.e., isothiocyanate and sulfides; 
Mihara and Shibamoto 2015).

Many studies have experimentally investigated differ-
ences between subjects with allergies and healthy con-
trol subjects. All of these have in common that there is a 
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self–selection of participants, i.e., only subjects with mild 
(or moderate) allergy may participate. In other words, people 
with severe disease and assumed higher sensitivity probably 
deselect such exposure studies. Table 4 shows the studies 
investigating allergy/asthma effects in sensory irritation. 
Further characteristics of the studies (substances, substance 
delivery, examined concentrations, and measures of sen-
sory irritation) can be found in Sect. 'Characteristics of the 
reviewed studies' (Table 7).

Studies investigating ‘seconds’‑exposure

Shusterman et al. (2003a) demonstrated that rhinitis status 
could predict VOC localization of n-propanol (indicator of 
irritation); allergic rhinitis sufferers turned out to be more 
sensitive than the healthy controls (no numbers given). An 
odor-driven bias reaction cannot be ruled out.

It was demonstrated that markers of sensory irrita-
tion depended on the severity of rhinitis by comparison 
of exposed subjects with non-active and active rhinitis 
with healthy controls to mannitol (dry powder mannitol; 
200 mg mannitol/mL; Koskela et al. 2000). An increase 
in 15-hydroxyeicosatetraenoic acid (molar mass = 320.5; 
an index of epithelial cell activation) correlated with 

nasal symptoms for itching and burning. Nasal symptoms 
increased even until 10 min after the challenge in subjects 
with active allergic rhinitis, while this was not the case in 
healthy subjects. Furthermore, nasal peak inspiratory flow 
was reduced after the mannitol challenge in patients with 
active allergic rhinitis. However, the transfer of these results 
to volatile substances is not possible.

Petrova et al. (2008) could not identify an elevated sensi-
tivity (ocular threshold, nasal threshold, combined thresh-
old) to ammonia in mild to moderate asthmatics compared 
to healthy control subjects. However, none of the asthmatics 
had acute inflammatory or rhinitis symptoms during the test 
sessions.

Studies investigating ‘minutes’ exposure

Shusterman et al. (2005) exposed subjects with and without 
seasonal allergic rhinitis to acetic acid  (15 ppm) for 15 min. 
The subjects with rhinitis were tested outside their relevant 
pollen season. The nasal airway resistance compared to 
baseline was greater among the subjects with rhinitis com-
pared to those without rhinitis immediately and 15 min after 
the exposure.

Table 4   Studies of allergy effects (non-allergic vs. allergic subjects) in sensory irritation (bold number, if significant allergy effects is observed)

a Stimulus is hot air
b Stimulus is mannitol powder
Hours
[7] Pacharra et al. (2017); n = 37
[10] Sucker et al. (2019); n  = 22
[12] Wålinder et al. (2008); n  = 29
[32] Fadeyi et al. (2015); n  = 71
Minutes
[14] Shusterman et al. (2005); n  = 16
[33] Shusterman et al. (2003b); n  = 52
[34] Shusterman et al. (1998); n  = 16
[35] Khosravi et al. (2014); n  = 13
Seconds
[36] Petrova et al. (2008); n  = 40
[37] Koskela et al. (2000); n  = 30

Exposure duration

Hours Minutes Seconds

Objective Subjective Objective Subjective Objective Subjective

Eyes [7] [10] [12] [7] [10] [12] [32] [36] [36]
Nose [7] [10] [12] [7] [10] [12] [32] [14] [33] [34]  [37]b [36]  [37]b [36]

Pharynx/Larynx; Throat [32] [35]a [35]a [36] [36]
Trachea/Bronchi [35]a [35]a [36]
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Shusterman et al. (1998, 2003b) exposed subjects with 
and without seasonal allergic rhinitis to chlorine13 (1 ppm; 
a reactive substance) for 15 min. The nasal airway resist-
ance compared to baseline was greater in the rhinitis group 
immediately and 15 min after exposure compared to the 
group without rhinitis. However, the subjective rating of 
nasal irritation was low (closer to the label ‘none’ than to 
‘slight’) so that sensory irritation might not be the reason for 
this physiological reaction. An odor-mediated bias for both 
studies cannot be ruled out.

Studies investigating ‘hours’ exposure

Pacharra et al. (2017) describe weak changes in the eye 
blinking frequency (marker of sensory irritation) by expo-
sure to ammonia (peaks of 40 ppm, 20 ppm TWA). Subjects 
with seasonal allergic rhinitis did not show a higher sensitiv-
ity than healthy control subjects, neither in subjective ratings 
nor in objective markers of sensory irritation. The study was 
conducted off-season, subjects with seasonal allergic rhinitis 
still showed higher fractional exhaled NO (FeNO). There 
might be a self-selection of subjects with mild allergic rhini-
tis since those with moderate or severe symptoms are likely 
to deselect participation in an exposure study.

Sucker et al. (2019) found differences in perceptual rat-
ings only during sham exposure to ethyl acrylate14 with 
higher ratings in atopic subjects compared to healthy con-
trol subjects. Moreover, the interaction between atopy and 
ethyl acrylate exposure was not significant. However, they 
observed that the eye blinking frequency in all atopics was 
higher than 20 blinks/min, while the healthy control subjects 
showed 8 to 37 blinks/min. Yet, the main effect of atopy on 
eye blinking was only marginal.

Fadeyi et al. (2015) exposed asthmatic and non-asthmatic 
subjects to a mixture of ozone-limonene reaction products 
(i.e., formaldehyde15) in a field environmental chamber for 
3 h. Odor intensity and sensory irritation were rated lower 
by asthmatic subjects compared to healthy control subjects. 
Perceived physiological–like symptom ratings (flu, chest 
tightness, and headache) of asthmatics, however, were often 
higher compared to the non-asthmatic subjects. It is unclear 
whether sensory irritation took place as objective markers of 
sensory irritation were not measured. Although the report of 
sensory irritation is low among both groups of subjects, the 
finding is compatible with the fact that asthmatics produce 
more mucous acting as a scrubber (e.g., Garcia et al. 2009), 
in agreement with the finding that sensitized mice are less 
sensitive than normal mice to formaldehyde at low relative 
humidity (Larsen et al. 2013). In general, no convincing 

evidence has been found that asthmatics are more sensitive 
than healthy subjects to formaldehyde (a highly water-solu-
ble substance), as reviewed by Wolkoff and Nielsen (2010); 
a conclusion later supported by Golden (2011).

Summary of findings

There is inconclusive evidence of higher sensitivity in sub-
jects with allergic diseases. Subjects with seasonal allergic 
rhinitis were usually investigated outside the pollen season 
(Pacharra et al. 2017; Shusterman et al. 2005; Sucker et al. 
2019). It remains unclear whether the described (lack of) 
effects could also be seen during pollen season with acute 
complaints and whether a medication during pollen season 
has additional effects. Still, a minimal persistent inflamma-
tion can also be observed in patients with seasonal allergic 
rhinitis outside the pollen season (Ricca et al. 2000).

As mentioned by Pacharra et al. (2017) and above, indi-
viduals with a severe allergic disease probably deselect par-
ticipation in such exposure studies. Therefore, other sources 
of knowledge must be considered.

There are indirect hints that airway inflammation (due 
to acute allergy) might change the sensitivity to sensory 
irritants based on animal experiments and knowledge about 
inflammatory processes during allergic phases in the eyes 
and airways. For instance, Belvisi (2003) proposed that 
changes in Aδ- und C-fibers in airway inflammation might 
lead to exaggerated function in response to the inflammatory 
process. The next paragraphs discuss such influences.

Potential influences of allergic diseases on the eye  Acosta 
et al. (2013) investigated keratoconjunctivitis in guinea pigs. 
They recorded changes in the electric activity of cornea con-
junctival sensory nerve fibers in response to CO2 following 
an ocular allergic challenge provoked by ovalbumin. After 
repeated exposure to the allergen, the frequency of impulses 
in polymodal fibers was significantly higher and the impulse 
latencies were shorter compared to controls. The response 
to heat, however, was lower after the first allergic challenge 
but returned to control levels after the repetitive exposures.

Potential influences of  allergic diseases on  nose/air‑
ways  Opiekun et al. (2003) could not identify differences in 
objective markers of sensory irritation (ocular redness, nasal 
mucosal swelling) when exposing asthmatics and healthy 
control subjects to fragrances, though asthmatics reported 
more nasal symptoms. No sensory irritation could be pro-
voked by the fragrances at the investigated concentrations.

Asthma is frequently cited as an outcome of adverse 
health events relating to air fresheners (Johnson et al. 2019). 
Fragrances inhaled in indoor air are usually below thresholds 
for sensory irritation (Nielsen and Wolkoff 2017). However, 
asthma symptoms can be triggered by very low doses of 

13  Water solubility: slightly soluble.
14  Water solubility: sparingly soluble.
15  Water solubility: freely soluble.
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the sensitizer and irritants can exacerbate existing asthma 
(Johnson et al. 2019). Basketter et al. (2019) reviewed the 
impact of fragrances on asthmatics compared to healthy sub-
jects. They conclude that adverse health effects caused by 
inhalation of fragrances are uncommon, and a convincing 
biological and mechanistic basis is lacking.

Volatile substances might cause respiratory allergies (i.e., 
occupational asthma; Baur et al. 2012; Briatico-Vangosa et al. 
1994). Several substances have been identified that can cause 
hypersensitivity when inhaled (Baur et al. 2012; Briatico-Van-
gosa et al. 1994; Nurmatov et al. 2015). Work-related asthma 
can be divided into occupational asthma (new onset asthma) 
and work-aggravated asthma (Baur et al. 2012). Occupational 
asthma is elicited by occupational allergens with well-defined 
etiological role and IgE-mediated patho-mechanisms as well 
as occupational agents with unknown patho-mechanism 
(Baur et al. 2012). Atopics with nonspecific bronchial hyper-
responsiveness are a susceptible group that is also affected 
by chronic exposure to relatively low doses of irritant gases, 
fumes, or aerosols (Baur et al. 2012; Burge et al. 2012; Dyke-
wicz 2009; Kipen et al. 1994). Often, such chronic causative 
concentrations of irritants are below their OELs or permis-
sible exposure limits (Baur et al. 2012).

Subjects suffering from allergic rhinitis show a greater 
increase in nasal resistance than healthy subjects when they 
were exposed to substance P and methacholine (Devillier 
et al. 1988). This effect might be due to the increased num-
ber of basophils and mast cells in and on the nasal epithe-
lium of the allergic patients (Devillier et al. 1988; Nielsen 
1991) indicating a higher vegetative reaction capacity.

Oetjen and Kim (2018) describe the reciprocal interac-
tions between the immune and the sensory nervous system. 
The immune system shapes the scope and intensity of sen-
sory responses by modulating the sensory nervous system. 
For example, the TRP channels can be activated by volatile 
substances but also act as a common pathway for many dif-
ferent immune-cell-derived stimuli (Chiu et al. 2012; Oetjen 
and Kim 2018). These proteins encompass different channels 
that regulate different sensory responses like nociception 
and thermo-reception (Bautista et al. 2014; Oetjen and Kim 
2018). For example, chronic inflammation can affect neu-
ronal physiology by increasing innervation at sites of inflam-
mation (Jia and Lee 2007; Oetjen and Kim 2018). O'Hanlon 
et al. (2007) could demonstrate that nerve fibers in the epi-
thelium, subepithelium, and glandular/vascular regions are 
significantly increased in allergic rhinitis. Nasal sensitivity 
was correlated with protein gene product 9.5 subepithe-
lial innervation as well in subjects with allergic rhinitis as 
in healthy subjects (O’Hanlon et al. 2007). Furthermore, 
Undem et al. (2000) describe changes in neural activity in 
allergic diseases, thus, allergic inflammation affects inter 
alia the primary afferent nerve leading to changes in neu-
ronal excitability. Allergic inflammation may cause central 

sensitization, which might modulate neural reflexes (Undem 
et al. 2000).

It is hypothesized that even skin allergy might result in 
higher respiratory responsiveness (Arts et al. 2006b) indicat-
ing that skin and respiratory allergy are not separate diseases 
in animal models (Arakawa et al. 1995; Arts et al. 2006b, 
2004, 1998; Blaikie et al. 1995; Botham et al. 1989). How-
ever, in humans, contact sensitization of a fragrance mix leads 
to a higher rate of bronchial hyper-responsiveness in women 
(Schnabel et al. 2010) and of non-allergic rhinitis (Gelardi 
et  al. 2017). Furthermore, inhalation of fragrances may 
heighten the risk of developing contact dermatitis in patients 
with contact allergy (Schnuch et al. 2010). A sensitization of 
the respiratory tract, therefore, can be facilitated by the skin 
and inhalative exposure (Kimber et al. 2018). Many volatile 
substances can migrate across the skin and trigger immune 
responses (Kimber et al. 2018). A hybrid (combined) AOP 
for both skin and respiratory sensitization is proposed com-
prising 4 KEs considering communalities and differences 
between contact allergens and chemical respiratory allergens 
(cf., Fig. 2 in Kimber et al. 2018). This hybrid AOP highlights 
where the pathways of skin sensitization and sensitization of 
the respiratory tract overlap and where they may diverge.

Allergy in rats and mice  Fujimaki et al. (2004) showed that 
exposure to formaldehyde (40; 80; 2000 ppb for 12 weeks) 
can induce differential immunogenic and neurogenic 
inflammatory responses (Interleukin 1, nerve growth factor, 
interferon-γ) in an allergic mouse model at different expo-
sure concentrations in comparison to non-allergic mice. 
The results should be assessed carefully, because the high-
est level of formaldehyde would have induced stress-related 
reactions, because of a substantial reduction of the breathing 
rate in the mice, according to Nielsen et al. (1999).

Morris et al. (2003) investigated breathing responses to 
irritants in the healthy and allergic airway-diseased mice. 
Mice with ovalbumin-induced allergic airway disease 
showed enhanced breathing patterns and/or obstructive 
responses.

However, Hansen et al. (2016) investigating mice with 
airway allergy observed no aggravation of allergic symptoms 
when exposed to ozone or a mixture of ozone and limonene 
reaction products. They even hypothesized that anti-inflam-
matory properties of the tested limonene-containing pol-
lutants might have attenuated airway allergy (Hansen et al. 
2016).

Neither air humidity nor allergic sensitization (by ovalbu-
min) had an impact on sensory irritation by 5 ppm formal-
dehyde in mice (Larsen et al. 2013). This might be due to a 
more efficient scrubber effect for this highly water-soluble 
substance caused by increased mucus production in asth-
matic animals and in agreement with Garcia et al. (2009).
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However, it is undisputed that capsaicin-sensitive sensory 
nerve mechanisms are upregulated by allergy-caused sensi-
tization and inflammation in the airways (Lundberg 1995; 
Saria 1988).

Chronic obstructive pulmonary disease (COPD).

Chronic obstructive pulmonary disease (COPD) is ‘a dis-
ease state with progressive airflow obstruction.’ (Bose et al. 
2015 p. 245). COPD leads to epithelial cell damage, bron-
choconstriction, lung parenchymal destruction, and mucus 
hypersecretion (Bose et al. 2015). There are TRP channels 
in the lung epithelium that are activated by irritants like 
chlorine (reactive substance) or aldehydes, which could 
contribute to COPD exacerbation (Bose et al. 2015). Bose 
et al. (2015) reviewed the role of oxidative stress and TRP 
channels in COPD. Inhalation of substances, triggering the 
redox-sensitive signaling cascades, can cause cough, wheez-
ing, and the exacerbation of airway inflammation, especially 
in susceptible people with asthma and COPD, children and 
older people (Zholos 2015). Oxidative stress leads to lipid 
peroxidation which might result in an inflammatory response 
(Zholos 2015). Several TRP channels are capable of sens-
ing reactive oxygen species and reactive nitrogen species 
(Shimizu et al. 2014), i.e., TRPM8 in COPD.

Basoglu et al. (2015) investigated the influence of aer-
osolized Adenosine 5’-triphospate (ATP) in smokers and 
patients with COPD compared to non-smoking controls. 
COPD patients reported the strongest change in dyspnea 
on a Borg scale (change between pre- and post-provocation 
with ATP) compared to smokers (lower change) and healthy 
controls (no change). Because of the inflammatory process, 
significant amounts of ATP are released from various cells, 
inter alia by nerve endings (Basoglu et al. 2015). Therefore, 
the inflammatory response of sensory irritation might aggra-
vate COPD by releasing ATP to extracellular space.

Chronic cough is a symptom of COPD (Nasra and Belvisi 
2009). The cough reflex is usually initiated by the activa-
tion of airway sensory nerves, i.e., C-fibers and Aδ-fibers 
(Nasra and Belvisi 2009). However, ‘cough receptors’ do not 
express TRPV1 receptors or substance P (Mazzone 2004; 
Ricco et al. 1996). Nevertheless, a lowered threshold to 
aerosolized citric acid- and capsaicin-induced (non-volatile 
substances) cough has been demonstrated in patients with 
asthma or COPD (Doherty et al. 2000; Gatti et al. 2006; 
Higenbottam 2002; Wong and Morice 1999).

Belvisi et al. (2011) summarize that the activation of the 
TRPA1 receptor on vagal sensory afferents in the lung by 
irritant substances could lead to central reflexes (dyspnea, 
changes in breathing pattern, and cough) which might aggra-
vate symptoms and pathophysiology of respiratory diseases.

Gatti et al. (2006) investigated the mechanism by which 
chronic inflammation (like in asthma or COPD) leads to 

a lowered cough threshold in Guinea pigs. They found 
that protease-activated receptor-2 stimulation exaggerates 
TRPV1-dependent cough by different mechanisms.

Shapiro et al. (2021) showed that the airway length and 
the number of branch points are significantly increased in 
chronic cough compared to healthy subjects in the human 
epithelium. Influence of age and gender was not found.

Impact of other diseases on the neurosensory 
system

Benoliel et  al. (2006) found changes in the trigeminal 
neurosensory system following acute and chronic parana-
sal sinusitis in human subjects. They measured electrical 
detection thresholds for large myelinated nerve fibers and 
heat detection thresholds for thin unmyelinated nerve fibers. 
They observed hypersensitivity of large myelinated nerve 
fibers in early inflammatory neuritis, while long-lasting pro-
cesses may result in hyposensitivity as they are, presumably, 
accompanied by nerve damage (Benoliel et al. 2006).

Auais et al. (2003) observed immunomodulatory effects 
of sensory nerves in rats during respiratory virus infection. 
The stimulation with capsaicin led to the recruitment of 
numerous lymphocytes (CD4 and T-cells) and monocytes 
in infected rats, while this could not be observed in healthy 
rats. Virus infection induced overexpression of NK1-recep-
tors for substance P on lymphocyte subpopulations in the 
lymphoid tissue (Auais et al. 2003).

Eye tear dysfunction is generally associated with tear film 
instability, hyperosmolarity, and corneal sensitivity leading 
to eye-irritating symptoms in human subjects (Rahman et al. 
2015). Other ocular diseases caused by environmental and 
occupational conditions further aggravate the tear film sta-
bility, which might lead to elevated vulnerability to external 
stimuli (Wolkoff 2020).

Summary of findings

There is ample evidence that the sensory system responsi-
ble for sensory irritation evoked by volatile substances is 
affected in airway diseases (i.e., TRPV1; Szallasi 2002). 
Bessac and Jordt (2008) argue that both TRPV1 and TRPA1 
sensors, which play a major role in sensory irritation caused 
by volatile irritants, are also important in airway reflex con-
trol. Therefore, they may contribute to chemical hypersen-
sitivity, chronic cough, airway inflammation in asthma, 
COPD, and reactive airway dysfunction syndrome. TRPV1 
and TRPA1 (together with TRPV4 and TRPM8 receptors) 
are affected by airway diseases (Grace et al. 2014). Thus, 
there is a complex interplay in diseases, where the sensory 
system is affected and contributes to diseases in the airways. 
The same may be true for the sensory system of the eyes.
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The quantification of differences between healthy indi-
viduals and individuals with diseases is difficult. Johansson 
et al. (2016) suggested a three-fold higher sensitivity of asth-
matics compared to healthy individuals. Even a nine-fold 
difference in sensitivity was identified for sulfur dioxide. 
However, this study’s outcome should be considered cau-
tiously because substantial differences between asthmatics 
and healthy people were only identified for a few substances. 
Furthermore, the differences could be ascribed to oral inha-
lation breathing or the substances were pulmonary irri-
tants or both sensory and pulmonary irritants, as for sulfur 
dioxide, see discussion in Nielsen and Wolkoff (2017). The 
study does not support a general AF for asthmatics, rather, 
protection of asthmatics should be based on a substance-by-
substance approach.

Furthermore, the perception of sensory irritation 
depends on personal factors, which are discussed in the next 
paragraph.

Influence of the grouping factor vulnerability 
on sensory irritation

Individuals might differ in the amount of ‘adversity’ of per-
ceived sensory irritation. Differences arise from differences 
in the sensory system itself or from differences in the evalua-
tion of the perception delivered by the sensory and olfactory 
systems. For example, expectations and beliefs (i.e., health 
risk perception; Dalton 1999), reactions of co-workers and 
bystanders, and affective orientation (Watson et al. 1988) 
influence the perception and report of irritation. Perceived 
health risk is also able to modulate inflammatory airway 
response in asthmatics (Jaén and Dalton 2014). Psychosocial 
factors like personality and stress might lead to building-
related complaints and could even exacerbate CI and symp-
toms (Dalton and Jaén, 2010). External factors may alter the 
perception of volatile substances. Furthermore, there is a 
high individual variation in reporting trigeminal sensitivity; 
consequently, what is irritant to one might barely be noticed 
by another subject (Dalton and Jaén, 2010). Therefore, expo-
sure to odors and irritants can lead to adverse responses in 
(vulnerable) people with MCS, which is also known as idi-
opathic environmental intolerance (Dalton and Jaén, 2010). 
As there are no uniform diagnostic criteria for MCS (Eis 
et al. 2008), declarations of prevalence range from 0.5% to 
33% (Dantoft et al. 2021; Rossi and Pitidis 2017; Zucco and 
Doty 2022; highest prevalence in studies without a medical 
evaluation).

Multiple chemical sensitivity is a syndrome of non-spe-
cific multisystem symptoms caused by exposure to com-
mon odorous substances at non-toxic levels (Azuma et al. 
2015; Cullen 1987; Dalton and Jaén, 2010; Eis et al. 2008; 
Graveling et al. 1999; Nordin 2020; Rossi and Pitidis 2017; 

Winder 2002). Exaggerated responses in MCS subjects 
might be caused by differences in the sensory system or in 
the evaluation of the perception (Nordin 2020). Neurogenic 
inflammation can be the result of volatile substances inter-
preted as threats that act as stressors upon the body (Nordin 
2020). Consequently, the threshold for sensory perception 
in MCS subjects might be lower (Nordin 2020).

Studies investigating the impact of volatile irritants on 
sensory irritation in MCS patients are shown in Table 5 and 
associated substances are listed in Sect. 'Characteristics of 
the reviewed studies' (Table 7). MCS patients were identified 
by criteria developed by Cullen (1987), while other studies 
rely on self-reporting using questionnaires (self-reported 
MCS, sMCS).

Studies investigating ‘seconds’‑exposure

Objective markers

Nordin et al. (2005) investigated chemosensory ERPs in 
self-reported hyper- and hyposensitive subjects (as meas-
ured by the Chemical Sensitivity Scale; Nordin et al. 2003). 
Ratings of malodorous pyridine16 exposure were higher in 
hypersensitive subjects compared to hyposensitive subjects. 
However, this effect is not reflected in ERP amplitudes or 
latencies (no group differences; Nordin et al. 2005). The 
authors argue that the neural cortical basis for this effect 
might be an uncaptured higher cortical level not acquired 
by chemosensory ERPs.

Subjective ratings

Female subjects with MCS rated the irritation of the odor-
ant γ-undecalatone17 (no concentration given) higher than 
female subjects without MCS (Azuma et al. 2016). MCS was 
diagnosed according to the 1999 consensus criteria (Anony-
mus 1999). However, there is no indication of any sensory 
irritation beyond subjective ratings.

In another study, females with MCS rated irritation 
caused by odorants higher than females without MCS; like-
wise, the odor was perceived more intense (Alobid et al. 
2014).

van Thriel et al. (2008) did a median-split on sMCS 
rating (based on the chemical and general environmental 
sensitivity questionnaire; Kiesswetter et al. 1999) on their 
subjects without a preselection. Nevertheless, when exposed 
to six different volatile substances18 at nine different con-
centrations (ranging from odor threshold to nasal irritation 

16  Miscible.
17  Water solubility: very slightly soluble.
18  Water solubilities: soluble to freely soluble and miscible.
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threshold) for several seconds (flow olfactometry), subjects 
with higher sMCS values rated pungency more intense 
(p = 0.06, n.s.).

Studies investigating ‘minutes’‑exposure

Objective markers

Andersson et al. (2015) investigated the breathing rate of 18 
MCS subjects (2 males) in response to a low concentration 
of n-butanol19 (3.7 ppm) for 50 min compared to subjects 
without MCS. MCS was diagnosed according to criteria 
described by Lacour et al. (2005). No differences in breath-
ing parameters were observed, though subjective ratings of 
odor intensity and symptoms were higher in the MCS group 
(even during ‘sham exposure’).

Dantoft et al. (2015) investigated the epithelial lining fluid 
from the nasal cavity of MCS and healthy control subjects 
before, during, and after exposure to 3.7 ppm n-butanol for 
50 min (different aspect but same experiment as described in 
Andersson et al. 2015). No abnormal upper airway inflam-
matory mediator levels in 19 cytokines and chemokines 

could be observed in the MCS subjects (Dantoft et al. 2015), 
i.e., no indication of sensory irritation. It should be noted, 
however, that the n-butanol concentration of 3.7 ppm is a 
factor of about 50 below an estimated LOAEL for sensory 
irritation (Wolkoff 2013), and a factor of 100 above its P100 
odor threshold (Nagata, 2003).

Subjective ratings

Claeson and Andersson (2017) exposed subjects with or 
without CI to heptane in combination with 70 µg/m3 acr-
olein,20 a strong sensory irritant. Chemical intolerance was 
addressed by a single question. Compared to control sub-
jects, subjects with CI reported greater sensory irritation in 
the eyes, nose, and throat when exposed to heptane-masked 
acrolein at a concentration considered to be below the sen-
sory irritation threshold. It remains unclear whether heptane 
has masked the smell of acrolein completely. If not, this 
would lead to different odor hedonics in the two experimen-
tal conditions (heptane vs. heptane + acrolein) that could 
influence the reported sensory irritation. Furthermore, it is 
uncertain whether the acrolein concentration is above the 

Table 5   Studies of sensory irritation in MCS and healthy subjects (bold number, if significant differences are observed)

Hours
[38] Kiesswetter et al. (2005) / van Thriel et al. (2005); n = 24
[39] van Thriel et al. (2002); n = 24
[40] Seeber et al. (2002); n = 160
[41] Pacharra et al. (2016b); v = 26
Minutes
[42] Andersson et al. (2015); n = 36
[43] Dantoft et al. (2015); n= 36
[44] Claeson and Andersson (2017); n = 37
[45] Österberg et al. (2004); n = 100
Seconds
[27] van Thriel et al. (2008); n = 39
[46] Nordin et al. (2005); n = 38
[47] Azuma et al. (2016); n = 16
[48] Alobid et al. (2014); n = 118

Exposure duration

Hours Minutes Seconds

Objective Subjective Objective Subjective Objective Subjective

Eyes [38] [39] [38] [40] [44] [45]
Nose [41] [39] [40] [41] [42] [43] [42] [44] [45] [46] [47] [48] [46] [27]
Pharynx/Larynx; Throat [42]
Trachea/Bronchi [42]

19  Water solubility: soluble. 20  Water solubility: freely soluble.



639Archives of Toxicology (2024) 98:617–662	

threshold for sensory irritation, cf., Dwivedi et al. (2015), 
Wolkoff (2013).

Studies investigating ‘hours’‑exposure

Objective markers

Kiesswetter et al. (2005) investigated eye blinking frequen-
cies in sMCS subjects and control subjects during exposure 
to 2-ethylhexanol (20 ppm). The eye blinking frequencies 
of sMCS subjects (identified according to Kiesswetter et al. 
1999) did not differ significantly from those of control sub-
jects. No difference was observed between female subjects 
with generalized self-reported CI (defined by questionnaires, 
cf., Pacharra et al. 2016a) and female control subjects in 
nasal inflammatory markers (substance P, TNF-α) after 
exposure to ascending concentrations steps up to 10 ppm 
ammonia, a concentration well below the lateralization 
threshold (Pacharra et al. 2016d; Smeets et al. 2007) for 
75 min. The addition of subjects’ olfactory function (meas-
ured by Sniffin’ Sticks; Hummel et al. 1997) as a covariate 
resulted in higher TNF-α in the CI group. However, this 
effect was not modulated by exposure (pre-post-comparison; 
Pacharra et al. 2016a).

Subjective ratings

Van Thriel et al. (2005) re-analyzed the subjective ratings 
of the above study (Kiesswetter et al. 2005). Only ratings 
of eye irritation symptoms (Swedish Performance Evalua-
tion System, SPES; Iregren 1998)21 were higher during con-
stant exposure in the sMCS group compared to the control 
subjects.

sMCS subjects reported higher ratings of eye and nose 
irritation (measured by SPES) than healthy controls when 
exposed to 2-butanone22 and ethyl benzene23 for 4 h not 
exceeding their OELs at that time (varying concentrations 
at an average of 189 ppm 2-butanone and 98 ppm ethyl ben-
zene) (van Thriel et al. 2002). While the ratings of sMCS 
subjects increased over time, the ratings of control sub-
jects stayed the same at a low and constant level of 10 ppm 
butanone and 10 ppm ethyl benzene.

Seeber et al. (2002) carried out and analyzed 14 experi-
mental inhalation studies with mostly 4 h’ exposures to dif-
ferent volatile substances24 at constant or changing concen-
trations. Eye and nose irritation was rated by the subjects, 
some with sMCS. Mean ratings of eye and nose irritation 

were higher in sMCS subjects than in control subjects dur-
ing the exposure. The ratings increased over time in sMCS 
subjects and stayed at a low level in control subjects, as in 
the study by van Thriel et al. (2002).

Female subjects with CI rated ammonia25 as more 
unpleasant and more pungent than female control subjects 
(Pacharra et al. 2016a; see above).

Summary of findings

In studies of ‘hours’ exposure, only subjective ratings 
increased in sMCS subjects compared to healthy controls. 
Eye blinking frequency as an objective marker of sen-
sory irritation was unaffected, though an exposure-related 
increase in blinking was seen at the highest exposure level.

In ‘seconds’ exposure, only MCS subjects reported an 
increase in ratings, but objective markers of sensory irrita-
tion remained unchanged. Only one study showed higher eye 
blinking frequency for exposure to ethyl acrylate (0–40 ppm) 
than the control condition (Kiesswetter et al. 2005). However, 
though an objective marker of sensory irritation (blinking 
frequency) could be related to chemical exposure, there was 
no moderating effect in sMCS on sensory irritation. It is pos-
sible that health risk perception has an influence on percep-
tion in MCS patients, as shown in asthmatics to result in 
moderate perception and airway response according to Jaén 
and Dalton (2014). Palmquist and Claeson (2022) argue that  
subjects with building-related symptoms and CI perceive 
irritation at lower concentrations than others. They hypoth-
esize that the increased sensitivity is due to altered trigeminal 
reactivity by inflammation or oxidative stress. It cannot be 
ruled out that this effect is odor-driven. Stress is known to 
have an impact (lowering) on the (olfactory) detection level 
of mercaptoethanol (Pacharra et al. 2015). In a recent review, 
Viziano et al. (2018) conclude that a combination of neu-
ral altered processing of sensorial ascending pathways with 
peculiar personality traits lead to MCS. The results reported 
here support the influence of personality traits. Thus, the next 
paragraph deals with the influence of personality traits (affec-
tivity) on the perception of sensory irritation.

Influence of the grouping factor affectivity 
on sensory irritation

Affectivity is the ability to experience and cope with affects. 
Such affects can be positive or negative (Watson et al. 1988). 
For instance, olfactory stimuli can induce mood changes 
(Seubert et al. 2009), i.e., there is an affective response to 
odors. Automatic associations about odors indicate implicit 
attitudes towards odors (Bulsing et al. 2009, 2007). The 

21  Ratings of different symptoms (inter alia nasal and ocular irrita-
tion) were conducted on a categorical 6-level- scale.
22  Water solubility: freely soluble.
23  Water solubility: very slightly soluble.
24  Water solubilities: cf., Table 7. 25  Water solubility: freely soluble.
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implicit association test can diagnose such associations 
(Bulsing et al. 2009, 2007). A few studies about affectivity 
and sensory irritation have been identified.

Studies about ‘hours’‑exposure

Subjective ratings

Lang et al. (2008) used ‘negative affectivity’ (Positive and 
negative affect scales, PANAS; Watson et al. 1988) as a 
covariate in their analysis already referred to in the gender 
paragraph. They argue that at lower formaldehyde concen-
trations, negative affectivity had a stronger influence than 
at high formaldehyde concentrations. However, this study 
suffers from methodological caveats (unbalanced sequence 
of exposures and unusually high eye blinking frequencies), 
which hampers the interpretation; however, negative affec-
tivity seems to affect ratings only at low concentrations.

Ihrig et al. (2006) investigated the influence of personal 
traits on the complaints about ammonia exposure. Subjects 
were exposed up to 50 ppm ammonia on five subsequent 
days in an ascending sequence. Besides the PANAS ques-
tionnaire, the Freiburger Persönlichkeits Inventar (FPI; 
Fahrenberg et al. 2010) was used to assess the affectivity. 
The study showed that positive affectivity was significantly, 
negatively correlated to the rating of irritative ocular and 
nasal symptoms (SPES; Iregren 1998) only at low concentra-
tions (10 and 20 ppm). This shows that the higher positive 
affectivity, the lower the symptom ratings when exposed to 
low ammonia concentrations. Subscales ‘Nervousness’ and 
‘Depression’ from the FPI had a significant positive cor-
relation with ratings of irritation symptoms at low concen-
trations. The higher the subscale, the higher the ratings of 
irritation.

Müller et al. (2013) also used the PANAS questionnaire 
to characterize their subjects. Furthermore, they identified 
hypo- and hypersensitive subjects with a median split on 
the rating of a CO2-exposure. Subjects were exposed to five 
different concentrations of formaldehyde on five subsequent 
days for 4 h. The irritation ratings by the hyposensitive sub-
jects compared to hypersensitive subjects did not differ sig-
nificantly for the eyes and the nose (SPES). However, results 
about the affectivity were unreported.

Nordin et al. (2017) exposed subjects to odorous sub-
stances (limonene as a pleasant odor and pyridine as an 
unpleasant odor) for 35 min at levels below their thresholds 
for sensory irritation but above their odor thresholds. They 
found that negative affectivity led to higher symptom ratings 
only when exposed to the unpleasant odor.

Pacharra et al. (2016d) used an implicit association test 
using odor terms (Bulsing et al. 2007) to identify subjects 
with negative and positive implicit associations towards 
odor. Furthermore, they divided the subjects into a low 

and a high olfactory acuity group (based on Sniffin’ Sticks; 
Hummel et al. 1997). Both dichotomized implicit asso-
ciation towards odor and dichotomized olfactory acuity, 
were independent factors that resulted in four experimen-
tal groups. The exposure scenario (with ammonia) was 
the same as in Pacharra et al. (2016b; see above). Sub-
jects with strong positive associations towards odor rated 
ammonia as more pungent than those with weak positive 
automatic associations towards odor only in the subgroup 
with low olfactory acuity.

Summary of findings

Both MCS and (negative) affectivity result in higher rat-
ings of irritation at low concentrations. At higher concentra-
tions, the ratings of MCS and negative affectivity subjects 
and control subjects converge. The exposure concentrations 
are generally far below the threshold for sensory irritation in 
most of the studies. In one study differences between MCS 
and control subjects could not be observed in the eye blink-
ing frequency at the highest exposure (Kiesswetter et al. 
2005). Thus, odor perception appears to play a central, but 
not exclusive role, in reporting irritation.

It is well known that expectations, beliefs, information, 
and biases have an impact on odor perception and reported 
irritation symptoms (Dalton and Jaén, 2010; Jaén and Dalton 
2014), as previously suggested by Das-Munshi et al. (2006). 
Several psychological characteristics are found in idiophatic 
environmental intolerance patients (Papo et al. 2006).

Bornschein et al. (2002) did not observe any deviation 
from norms between 12 MCS-patients and 12 matched 
controls in a positron emission tomography study where 
cerebral glucose metabolism was an indicator of cerebral 
dysfunction. Chemical intolerance seems to be associated 
with disease comorbidities (Palmer et al. 2021). However, a 
causal relationship has not been identified.

The influence of psychological and physiological com-
ponents on the report of sensory irritation is difficult to 
assess (Rossi and Pitidis 2017; Zucco and Doty 2022). The 
influence of expectations and beliefs, however, has not been 
found in objective markers of sensory irritation. Neverthe-
less, the perception of strong symptoms even at low concen-
trations of volatile substances should be considered in risk 
assessment. Thus, the complex (top-down) psychological 
effects of odorous (pleasant or unpleasant) substances should 
be assessed, if complete or partially-complete protection of 
the general population should be the target. This, however, 
is challenging since odor thresholds are orders of magnitude 
lower than thresholds for sensory irritation (Cometto-Muñiz 
and Abraham 2016). In this case, perceptual ratings, still, are 
the only possibility to quantify differences in sensitivity for 
MCS or negative affectivity individuals.
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General discussion

In the regulation of volatile substances, sensory irritation 
is an important endpoint (Brüning et al. 2014; Nielsen and 
Wolkoff 2017).

There are at least three obvious factors that have an 
impact on sensory irritation elicited by volatile substances:

(1)	 volatile substance at a certain concentration
(2)	 situational context/demands
(3)	 individual differences

Different volatile substances have different water solubili-
ties (cf., Garcia et al. 2009; Shusterman 2002) and, there-
fore, different deposition rates along the airways that deter-
mine the target site at which sensory irritation takes place. 
At target sites, different channels (i.e., TRPA, TRPV, GPCR, 
ASIC; Lehmann et al. 2017; Shusterman 2007) might lead to 
sensory irritation. High concentrations of substances, how-
ever, may reach ‘lower’ target sites depending on the depo-
sition capacity. Furthermore, for lipophilic substances, the 
protective perceived irritation in the upper airways may be 
absent. Thus, they can cause injury at high concentrations. 
Risk assessment should handle such lipophilic substances 
with special care in a substance-by substance approach.

However, the target site of a volatile substance also 
depends on situational influences like mode of breathing, 
i.e., nasal breathing versus oral breathing, e.g., due to the 
physical workload. Physical workload might lead to more 
oral breathing resulting in a higher fraction of volatile sub-
stances reaching ‘lower’ target sites. Individual variance 
might be higher or lower for one channel and vice versa.

This manuscript (1) reviewed empirical evidence about 
differences between groups in the general population and 
(2) aimed at deriving an AF for the general population. 
Wherever possible, controlled human exposure studies 
have been considered. The results of the reviewing process 
are summarized in Table 6.

Evaluation of differences identified by grouping 
factors

The first aim of this study is to identify relevant (human 
exposure) studies that could be a platform for derivation 
of (an) AF(s), which is specific for sensory irritation in the 
general population.

Individual differences in sensory irritation depend on 
the sensory receptors, the transduction, and the strength/
evaluation of the perception.

For instance, the density of receptors differs across 
lifespan (with a maximum in healthy adolescents and at 

healthy young adulthood). Further, some diseases might 
influence sensory density (i.e., chronic cough; Shapiro 
et al. 2021). However, there are the body´s own defense 
mechanisms (i.e., eye blinking, nasal mucociliary clear-
ance). These also depend on individual differences that 
might differ over the lifespan and may be hampered by 
diseases; thus, they may influence sensory irritation.

A first step to capture individual differences in the general 
population is to take a closer look at sub-groups known to 
represent such differences, i.e., gender, age groups, patients 
suffering from diseases, and subjects that consider them-
selves as sensitive. This first step is carried out in this study.

Gender

The grouping factor gender has the best empirical base of all 
reviewed grouping factors. The influence of gender on sen-
sory irritation has been investigated on a variety of endpoints 
at different time scales. Females report more symptoms in 
the eyes in a few studies. However, no gender differences 
could be found in objective markers of sensory irritation 
in the eye. Females seem to be more sensitive than males 
when exposing the nose for seconds in some studies, but an 
odor-mediated bias cannot be excluded in every significant 
study. Therefore, it cannot be ruled out that methodologi-
cal shortcomings have an impact on the differences. Many 
studies did not find convincing evidence for gender differ-
ences at all. The reviewed studies are unable to disprove 
an AF of 2 as proposed by Nielsen et al. (2007; Nielsen 
and Wolkoff 2017) because it must incorporate not only 
the influence of gender, but also the additional influences 
of age, lifestyle, and diseases, and in some cases climatic 
conditions. The reviewed studies are representative of first 
and foremost young, healthy, non-smoking subjects, and the 
investigated substances. Therefore, substance-specific AFs 
(for gender) might be more adequate than a general AF for 
gender influence.

Age

The influence of age on sensory irritation is ambiguous. 
Obviously, is it reasonable to distinguish between older 
people and young children in a risk assessment.

Older people  Based on the reviewed studies (n = 10), older 
people are less sensitive than young adults. However, it 
seems that high age is not necessarily a causal influence 
but could be a correlative effect on sensory (or olfactory) 
loss in older people. As there is a high variability as well in 
the young adult groups as in the older groups, age-related 
pathologies may be responsible for the effect of older age 
(Stevens et al. 1982). However, older people as a group are 
less sensitive to sensory irritation. An AF for older age, 
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therefore, seems unnecessary at first glance. Anyway, cau-
tion is advised. Lesser sensitivity might result in slower, 
weaker, or missing physiological defense processes against 
sensory irritants, i.e., less eye blinking (Sharma and Hind-
man 2014; Wolkoff 2020, 2017), or lower epithelial beat 
frequency (Ho et al. 2001). Especially, detrimental effects 
arising from weaker own-body protection might come up 
after longer exposures of hours or days (which are rarely/
not captured in the reviewed studies). Objective age effects 
are only seen in threshold studies (seconds exposure) with 
higher thresholds in older people. Only one study inves-
tigated exposures longer than seconds (4  h exposure of 
20 ppm 2-ethylhexanol; Schäper et al. 2015). No age effect 
was observed in eye blinking, though 2-ethylhexanol trig-
gered more blinking during the highest exposure condition 
(20 ppm) in both young and older subjects (45–67 years). 
However, it remains unclear whether there could be age 
effects at longer exposure times, older ages, with other 
substances or deteriorating climatic conditions. A tem-
poral summation (over longer periods) due to insufficient 
defense mechanisms in older people cannot be excluded. 
One long-standing question is whether a less stable eye tear 
film, as encountered in older people (especially women), is 
more vulnerable to sensory irritation, i.e., the no-observed-
adverse-effect-level for a given irritant would be lower than 
in younger people with a healthy and stable tear film. There-
fore, an empirically based quantification of a risk factor for 
older people is not possible.

Children  Experimental studies investigating the sensitivity 
of young children are scarce (n = 1). At the age of 7 years, 
children show no significantly lower sensitivity than older 
subjects when lateralizing eucalyptol in the nose. It is not 
clear whether younger children have a higher sensitivity. 
As experimental studies are difficult from an ethical per-
spective, other approaches are necessary to derive AFs for 
young children. For sensory airway irritation, Frank et al. 
(2018) identified so-called KEs and MIEs, which describe 
initial points of interaction with a volatile substance that 
result in a perturbation / sensory irritation. Several studies 
have shown developmental changes in processes involved 
in MIEs.

Therefore, KEs leading to sensory irritation by volatile 
substances binding to the TRPA1 receptor might be mod-
erated by developmental processes at a young age. Thus, 
developmental processes might influence the perception of 
sensory irritation at a given concentration. To make it more 
complicated, the organism reacts to defend itself against 
harmful volatile substances; for instance, eye blinking to 
maintain the tear film stability and to clear the ocular surface 
and mucus production to remove harmful substances from 
the airways (mucociliary clearance). Such defense mecha-
nisms allow for coping with volatile substances that could Ta
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evoke sensory irritation. However, if these mechanisms are 
impaired, volatile substances could lead to sensory irrita-
tion at concentrations that otherwise would be tolerable for 
young healthy adults. Usually, there is more than one coop-
erating defense mechanism. For example, infants show lower 
eye blinking frequency (less than one time a minute). On the 
other hand, their eye tear film is more stable than in adults. 
Thus, there is a complex interplay of defense mechanisms 
involved in coping with sensory irritants. A comprehensive 
modelling of such mechanisms (i.e., PD/PK models) regard-
ing developmental changes would be helpful for risk assess-
ment as it allows for indirect assessment of exposure effects 
via ‘critical mass’ at the trigeminal system.

Based on what is known about developmental processes 
up to now, an AF could not be derived.

Health status

Target sites for volatile irritants are also impaired in several 
diseases (i.e., allergic rhinitis, asthma, COPD). Diseases 
might also influence the kinetics and dynamics of the sen-
sory irritant. However, empirical evidence by experimental 
exposure is limited to diseases. Most likely, patients with 
severe diseases refrain from participating in exposure stud-
ies. Consequently, empirical evidence is limited to patients 
with mild to moderate course of disease and cannot be gen-
eralized. Furthermore, many diseases might have a direct 
(higher sensitivity at target sites) or indirect impact (ham-
pering or intensifying defense mechanisms) on sensory 
irritation. The impact of diseases on sensory irritation has 
only been investigated in a few studies. Again, comprehen-
sive models of impaired target sites and suspended defense 
mechanisms would be helpful. In the case of allergy, aller-
gen-induced neuromodulations are accurately described 
(cf., Undem and Taylor-Clark 2014). Furthermore, AOPs of 
allergy development already exist (i.e., in the case of chemi-
cal respiratory allergy/occupational asthma; Kimber et al. 
2014). What is missing are models that allow for a quan-
tification of, for example, differences between healthy and 
asthmatic people in sensory irritation. Ideally, the severity 
of the disease (i.e., via RAST classes in allergy) should be 
considered in such models that might be expanded to comor-
bidities. It would be desirable that such models consider 
different degrees of impairment at target sites and defense 
mechanisms (dynamic components), which depend on the 
diseases. The magnitude of impairment can probably be 
mapped to the severity of disease. Prevalence of diseases 
should be considered for the derivation of an AF for the 
whole population, if possible, even regarding the severity 
(i.e., RAST classes in allergy). It is worth mentioning that 
long-term exposure to volatile substances at concentrations 
not generating sensory irritation might have an adverse 
impact (exacerbation of asthma / increased probability to 

develop asthma) in susceptible groups (asthmatics / children) 
of the general population. In risk assessment, such a poten-
tial hazard should be considered for each substance. Again, 
QSAR models of respiratory sensitizers (i.e., Graham et al. 
1997) would be helpful.

On the other hand, the disease asthma appears to exhibit 
an indirect protection against water-soluble irritants due to 
the excess mucus production in the nasal cavity and throat 
(cf., Fadeyi et al. 2015; Golden 2011; Johansson et al. 2017; 
Larsen et al. 2013; Wolkoff and Nielsen 2010).

Sensory irritants may cause or aggravate asthma/allergy 
symptoms (Baur et al. 2012; Briatico-Vangosa et al. 1994; 
Nurmatov et al. 2015). Thus, risk assessment for sensory 
irritation can be more complicated, even at concentrations 
far below the irritation threshold among subjects suffering 
from low affectivity or allergies. Odor-mediated reactions 
cannot be ruled out, cf., Cometto-Muniz and Cain (1991).

Vulnerability

There is a large individual variety in the perception of vola-
tile substances. The same volatile substance that causes an 
irritant perception in one person might be barely noticed 
by another person (Dalton and Jaén, 2010). This difference 
can be clearly observed in MCS patients (n = 12 studies 
reviewed). The exposure concentrations are far below sen-
sory irritation but above the threshold for odor perception in 
most studies about MCS. MCS subjects show higher percep-
tual and symptom ratings compared to control subjects, but 
MCS patients often perceive the odor more intensely, while 
the odor thresholds among MCS patients and healthy people 
do not differ (We referred to such an effect as the third mani-
festation of sensitivity in ‘Manifestations of sensitivity’).

Why some odors evoke health symptoms is not com-
pletely understood but some processes might be responsible 
(Schiffman and Williams 2005), like affectivity, modulation 
of breathing, exacerbation of diseases by inducing stress and 
impairing mood, and learned associations (Jaén and Dal-
ton 2014). Further factors influencing odor perception were 
summarized by Wolkoff (2013; cf., Table 3).

It is not possible nor reasonable to develop an AF that 
accommodates a sensitivity triggered, solely, by odor per-
ception, since odor thresholds generally are orders of mag-
nitude lower than thresholds for sensory irritation (Cometto-
Muñiz and Abraham 2016).

Adequate risk communication might mitigate such per-
ceptual differences (Dalton and Jaén, 2010; Jaén and Dalton 
2014; Nordin 2020).

AF for the general population

In addition to finding differences in sensitivity to sensory 
irritation between groups of the general population, the 
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second aim of this study was the derivation of an AF for 
the general population considering vulnerability and sus-
ceptibility factors. This aim could not be achieved due to 
several reasons:

(1)	 Lack of an empirical base (children, health status)
(2)	 Lack of representativity / generalization (health status, 

children, vulnerability)

•	 Self-selection of subjects (health status, MCS, affectiv-
ity)

(3)	 Time aspects (older people)

•	 Influence of altered warning signals / clearance (older 
people, children)

•	 Potential of volatile substances to elicit or aggravate dis-
eases (e.g., asthma, allergies)

(4)	 Absence of objective indicators of sensory irritation in 
many studies (most notably, vulnerability) or trigger 
olfactory effects

The investigated groups, however, might differ by other 
variables than the grouping factors. This may influence the 
outcome according to the study by Rosenkranz et al. (2020), 
who demonstrated that a fraction of otherwise ‘healthy’ 
subjects showed signs of diseases. Thus, study results may 
be influenced by unrecognized and undiscovered illnesses. 
Furthermore, psychological effects, inter alia expectations or 
stress might affect airway physiology (Jaén and Dalton 2014; 
Pacharra et al. 2015). In addition, methodological shortcom-
ings may underestimate the odor potencies of a substance 
as they increase the variability and therefore inflate what is 
assessed as individual differences (Cain and Schmidt 2009).

How to address the identified problems in risk assessment

Variety of target sites  In animal studies, extrapolation fac-
tors were used to extrapolate from subacute to subchronic 
exposures and from subchronic to chronic exposures. For 
example, a multitude of 226 different extrapolation factors 
have been identified for 71 volatile substances by extrapola-
tion from subchronic to chronic effects in inhalation (Escher 
et al. 2020). The variance in these factors shows confound-
ers like the uncertainty of identified no-observed-adverse-
effect-levels and differences in study design.

It seems reasonable to establish AFs that are target site 
specific. If a volatile substance at a certain concentration 

only affects the eye, gender variance at the nose does not 
necessarily have to be considered. The same might be true 
for other target sites.

Therefore, QSARs (Abraham et al. 2016, 2007, 1998, 
1996; Alarie et  al. 1996; Cometto-Muñiz et  al. 1998; 
Cometto-Muñiz and Abraham 2016; Cronin et al. 2003; 
Hau et al. 1999) could be a tool to refine grouping of sub-
stances (European Chemicals Agency 2021). The conse-
quence of such grouping procedures could be a variety of 
AFs for substance groups. The derivation of an AF would 
require knowledge about the concentration/mass of sen-
sory irritant at a specific target site (kinetic processes); 
and in the end, the defined target of percentage protection 
of the population.

Individual /intraspecies factors  In animal studies, intraspe-
cies factors are usually not considered at all. Risk assess-
ment for the general population, however, must consider 
susceptible and vulnerable groups with individual factors, 
i.e., children or persons suffering from chronic diseases.

This review could propose an AF only for the grouping 
factor gender. Other grouping factors describe other sensitiv-
ities in sensory irritation. Interaction between such grouping 
factors are also possible. Johansson et al. (2016), for exam-
ple, identified a ninefold higher sensitivity of asthmatics to 
sulfur dioxide. However, a general AF of 10, as proposed by 
the authors, could be valid only for pulmonary irritants (like 
sulfur dioxide). A substance-specificity in AFs, therefore, 
is more reasonable from an economic point of view than a 
general AF. Models must be developed that incorporate dif-
ferences in susceptible and non-susceptible people exposed 
to the same concentration of the same volatile substance 
(QSAR group). It must be emphasized, however, that justify-
ing and deriving AFs for susceptible people would require 
a detailed analysis of causation at the individual level, cf., 
Haanes et al. (2020). Furthermore, it must be considered that 
the efficiency of defense mechanisms (dynamic processes) 
also could be differential.

Temporal aspects of exposure  The duration of the volatile 
substance exposure is relevant. Controlled human exposure 
studies use different experimental situations to investigate 
individual differences in human sensory irritation, ranging 
from seconds- to hours-exposure and – rarely—to exposure 
on subsequent days. However, sensory irritation underlies 
temporal summation (effects of up to tens of minutes have 
been observed; Cain et al. 2010). Therefore, it is reasonable 
to assume that hours-exposures should reveal any sensory 
irritation effect. In human exposure studies over hours, only 
a few concentrations can be tested. Due to ethical reasons, 
the highest concentration is not allowed to exceed legal OEL 
values. Therefore, harmless concentrations might even be 
higher (cf., Mangelsdorf et al. 2020) and individual differ-
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ences would not come into effect. Therefore, seconds- and 
minutes-exposures are relevant, too.

In risk assessment, exposure effects found in seconds- to 
hours-exposures must be extrapolated to, in the worst case, 
lifelong exposure. It is unclear whether defense mechanisms 
would work properly if they were challenged continuously 
over the years. If not, it could be speculated that volatile 
substance concentrations repeatedly over hours might induce 
sensory irritation after longer-lasting exposures without suf-
ficient exposure-free periods for recovery. Such a situation, 
however, appears only hypothetical for a major part of the 
population.

The relationship between defense mechanisms / clearance 
in response to continuous volatile substance exposure should 
be further investigated.

The potential of volatile substances to elicit allergies/
asthma at low concentrations must be considered in risk 
assessment. Reliable models of such pathogenesis are 
necessary.

Situational contexts of  exposure  Changing from nasal to 
oral breathing (dynamic component) leads to a circumven-
tion of the nose and its scrubbing (kinetic) effect. There-
fore, there might be special AFs, i.e., for sports halls and 
playgrounds / schoolyards (regarding diseases and maybe 
also for hospitals / retirement homes). Furthermore, visual 
demands might lead to higher vulnerability of dry eyes 
because of less or incomplete eye blinking (Wolkoff 2020).

Coping with different situational contexts depends on 
individual prerequisites. Therefore, when considering indi-
vidual differences in sensory irritation and proposing AFs, 
substance and situational factors must be assessed, too (cf., 
Haanes et al. 2020).

Model requirements for risk assessment

Comprehensive modeling with kinetic (delivery to target 
site) and dynamic (action and reaction at target site) com-
ponents (i.e., PBPK26, PD/PK27, TD/TK28) could be used 
for subgroup-specific risk assessment (i.e., Poet et al. 2010). 
While Cn x t models require a non-interrupted exposure 
duration (Pauluhn 2019) with a stable influence of dynamic 
and kinetic processes, realistic exposure can be intermit-
tent. Thus, in some phases, one of the processes will prevail 
(leading to the summation of substance or clearance). Com-
prehensive modelling (i.e., PD/PK models) of the concentra-
tions at target sites is required in evidence-based risk assess-
ment for sensory irritation. Such models should consider the 

kinetic component (delivery to target side) as well as the 
dynamic component (action at target site and physiologi-
cal responses like defense mechanisms) in sensory irritation 
as well as the effects of continuous exposure. For systemic 
effects, gender and age differences in biochemical processes 
have been considered, e.g., in PB/PK models of 2-butox-
yethanol disposition in rats and mice (Corley et al. 2005).

Similar models for sensory irritation are still lacking. A 
‘critical’ mass of substances at the specific receptors that 
leads to sensory irritation should be identified (trigemi-
nal system as a mass detector rather than a concentration 
detector; Frasnelli et al. 2017; Hummel and Frasnelli 2019; 
Kleinbeck et al. 2020). Deliverance to the receptor as well as 
clearance at the receptors might be influenced by age effects 
at longer exposure and as a result may influence the critical 
mass at the receptor. One must keep in mind that not only 
the receptors but also nerve transmission might be affected 
(nerve damage in chronic sinusitis, Auais et al. 2003; i.e., 
developmental changes in children, Uppal et al. 2016). Nev-
ertheless, exposure studies with potentially susceptible sub-
jects are also needed to evaluate the adequacy of the PD/
PK modeling and to relate differences in the response of the 
target site to differences in objective and subjective markers 
in sensory irritation in vivo.

Conclusion

Though recent publications propose AFs for asthmatics and 
MCS patients, respectively, (10; Johansson et al. 2016) and 
the general population (20; Mangelsdorf et al. 2020), this 
review was unable to identify supporting and meaningful 
empirical evidence for an AF greater than 2 for protection of 
the susceptible subgroups of the general population, solely 
based on human exposure studies. This implies it can be for 
some substance between 1 and 2. Asthmatics and healthy 
controls were differently affected only by a few substances 
in the review by Johansson et al. (2016). However, Johans-
son et al. considered substances that were either pulmo-
nary irritants or both sensory and pulmonary irritants (e.g., 
sulfur dioxide), while Mangelsdorf et al. (2020) applied a 
general precautionary AF of 20 without scientific support. 
Thus, it is recommended to apply an evidence-based risk 
assessment approach to be carried out, substance by sub-
stance. QSARs can be used to classify substance classes for 
substance- and pathway-specific AFs (Falk-Filipsson et al. 
2007). Furthermore, contexts of exposure must be consid-
ered. Other AFs might apply for workplaces where dry air, 
high room temperature, and visually demanding tasks (e.g., 
video display unit work) aggravate the eye tear film stability, 
rather than for places in which workload is balanced. Indoor 
playgrounds might need other AFs due to physical workload 
and affected groups of the general population.

26  Physiology based pharmacodynamic (PBPK) modeling .
27  Pharmacodynamic, pharmacokinetic (PD/PK) modeling.
28  Toxicokinetic, toxicodynamic (TK/TD) modeling.
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Extra emphasis should be put on populations such as 
neonates and genetically sensitive subgroups, fetuses, and 
children, because they may be particularly susceptible or 
vulnerable during development and maturation. Gender dif-
ferences in sensitivity, deficiencies in the databases, nature 
of the effect, duration of exposure, and route-to-route extrap-
olation need also to be considered. Since AFs are used to 
compensate for lack of knowledge, we consider that it is 
prudent to adopt a conservative approach. When new empiri-
cal knowledge appears that reduces the uncertainties, this 
should be incorporated into a new risk assessment leading 
to more evidence-based AFs. While gender differences could 
be considered by a substance-specific conservative AF of 
1–2 (incorporating also influences of age, lifestyle, and dis-
eases, as proposed by Nielsen and Wolkoff 2017), empirical 
and supporting evidence for the development of other AFs 
(for children, older persons, patients suffering from diseases) 
is lacking.

Though older people as a group have higher thresholds 
for sensory irritation, other factors, like defense mechanisms 
might be impaired by diseases that could induce more sus-
ceptibility to long-term effects of volatile substance exposure.

For children, there might be time slots in their develop-
ment, in which they might be more susceptible or vulnerable 
to sensory irritation than adults. However, children might even 
be less susceptible (cf., higher tear film stability) than adults. 
Most likely, there is still development in sensory systems from 
birth to the age of 7 years that might be covered by an AF. 
However, a quantification based on empirical data is not possi-
ble. PD/PK models representing developmental changes could 
be established for an ‘empirical’ basis of an AF.

For patients suffering from diseases the derivation of an 
AF from empirical knowledge is also difficult. Many dis-
eases have an impact on sensory systems resulting in sensiti-
zation (that might depend on the severity of the disease). On 
the other hand, increased mucus production due to diseases 
could even protect the airways from sensory irritation, but 
such a protective effect of sensory irritation, probably, is an 
exception for highly water-soluble substances; exaggeration 
of sensory irritation by disease is more common. Volatile 
substances might even elicit diseases like allergies/asthma. 
Again, comprehensive PD/PK models of patients with dis-
eases (representing disease severity) considering the impact 
of volatile substances in pathogenesis would be desirable to 
achieve an ‘empirically-justified’ AF.

There is also a lack of knowledge about the impact of 
affectivity/MCS on sensory irritation (and the inevitable 
associated olfactory impact). At first glance, both seem to 
influence the perception of low concentrations of volatile 
substances. One must keep in mind that the exposure con-
centrations were far below sensory irritation thresholds in 
most of the studies. At higher concentrations (still below 

the sensory irritation threshold) such differences compared 
to’normal’ subjects decrease. Based on the reviewed stud-
ies, a special AF for sensory irritation regarding affec-
tivity/MCS is not justified. Nevertheless, the influence of 
affectivity/MCS on olfactory loads might be considered in 
setting exposure limits, however challenging, if possible 
beyond the individual level. Thus, for OELs perceptual 
(olfactory) effects of a substance are not health effects. 
Adverse exposure effects at workplaces require ‘(a) sen-
sory irritation, (b) considerable odor annoyance or (c) in 
individual cases’odor associated’ symptoms must occur’ 
(List of MAK and BAT Values 2021, https://​series.​publi​
sso.​de/​sites/​defau​lt/​files/​docum​ents/​series/​mak/​lmbv/​
Vol20​21/​Iss2/​Doc002/​mbwl_​2021_​eng.​pdf). Therefore, if 
the personality factor affectivity/MCS elicits ‘considerable 
odor annoyance’ or ‘odor-associated symptoms’ at lower 
concentrations than in groups with different personality, 
this must be dealt with case-by-case at the individual level. 
However, up to now, MCS is far from being a well-defined 
symptom class caused by known special properties of vol-
atile substances at specific concentrations. Protection of 
MCS patients by evidence-based AFs is not possible, and 
other mitigation strategies should be considered.

It is reasonable to use substance-specific AFs, since 
differences in sensitivity might be limited to one sensory 
system and the qualititative and quantitative database for 
sensory irritation might be different. For example, highly 
water-soluble substances are scrubbed by the nose and do 
not reach the middle or lower airways. Further, situational 
factors might lead to a circumvention of a sensory sys-
tem (e.g., mouth breathing in a high physical workload). 
Therefore, it is reasonable to consider situational factors 
in substance-specific AFs; furthermore, the influence of 
climatic conditions may be considered.

Comprehensive models of sensory irritation comprising 
developmental differences, changes caused by diseases, 
and age-related decline could bridge the gap of knowl-
edge caused by ethical concerns to expose children to 
volatile substances, experimentally, and by self-selection 
in experimental studies with patients suffering from dis-
eases. Physiochemical properties like water solubility 
and QSARs could help to categorize substances eliciting 
sensory irritation with respect to a target site (e.g., eyes, 
nose, middle, and lower airways) and mode of action at 
the target site.

Characteristics of the reviewed studies

See below Table 7.

https://series.publisso.de/sites/default/files/documents/series/mak/lmbv/Vol2021/Iss2/Doc002/mbwl_2021_eng.pdf
https://series.publisso.de/sites/default/files/documents/series/mak/lmbv/Vol2021/Iss2/Doc002/mbwl_2021_eng.pdf
https://series.publisso.de/sites/default/files/documents/series/mak/lmbv/Vol2021/Iss2/Doc002/mbwl_2021_eng.pdf
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