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Abstract
A suite of in vitro assays and in silico models were evaluated to identify which best detected the endocrine-disrupting (ED) 
potential of 10 test chemicals according to their estrogenic, androgenic and steroidogenic (EAS) potential compared to the 
outcomes from ToxCast. In vitro methods included receptor-binding, CALUX transactivation, H295R steroidogenesis, aro-
matase activity inhibition and the Yeast oestrogen (YES) and Yeast androgen screen (YAS) assays. The impact of metabolism 
was also evaluated. The YES/YAS assays exhibited a high sensitivity for ER effects and, despite some challenges in predicting 
AR effects, is a good initial screening assay. Results from receptor-binding and CALUX assays generally correlated and were 
in accordance with classifications based on ToxCast assays. ER agonism and AR antagonism of benzyl butyl phthalate were 
abolished when CALUX assays included liver S9. In silico final calls were mostly in agreement with the in vitro assays, and 
predicted ER and AR effects well. The efficiency of the in silico models (reflecting applicability domains or inconclusive 
results) was 43–100%. The percentage of correct calls for ER (50–100%), AR (57–100%) and aromatase (33–100%) effects 
when compared to the final ToxCast call covered a wide range from highly reliable to less reliable models. In conclusion, 
Danish (Q)SAR, Opera, ADMET Lab LBD and ProToxII models demonstrated the best overall performance for ER and AR 
effects. These can be combined with the YES/YAS assays in an initial screen of chemicals in the early tiers of an NGRA to 
inform on the MoA and the design of mechanistic in vitro assays used later in the assessment. Inhibition of aromatase was 
best predicted by the Vega, AdmetLab and ProToxII models. Other mechanisms and exposure should be considered when 
making a conclusion with respect to ED effects.

Keywords Endocrine-disrupting potential · NAMs · EATS · Oestrogen · Androgen · Steroidogenesis · In vitro/In silico · 
NGRA  · ToxCast

Introduction

An evaluation of the potential of a chemical to cause endo-
crine disruption (ED) is an important aspect of a safety 
evaluation since the endocrine system is responsible for the 
production and regulation of hormones, which are crucial 
for the normal development, growth and functioning of the 
body. Endocrine-disrupting chemicals can interfere with nor-
mal hormone signalling, leading to a wide range of adverse 
health effects, including reproductive and developmental 

abnormalities, cancer, obesity and neurological disorders 
(WHO 2012). Oestrogen (ER) agonists or antagonists can 
affect processes, such as reproduction and development, 
whilst chemicals that bind to the androgen receptor (AR) can 
affect sexual development and function (Amir et al. 2021). 
The evaluation of ED is challenging since no single assay 
can predict all pathways involved. Therefore, a combination 
of assays is necessary for a comprehensive assessment of ED 
potential. As a result, regulatory agencies, such as the OECD 
(OECD 2018), European Food Safety Authority (EFSA), 
the European Chemicals Agency (ECHA) and the Joint 
Research Centre (JRC) (ECHA et al. 2018), have developed 
guidelines and testing strategies to evaluate the ED potential 
of chemicals. These guidelines typically include a range of 
in vitro and in vivo assays to assess the potential effects of 
chemicals on hormone signalling pathways, as well as their 
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toxicity and exposure potential. This mechanistic approach is 
also in accordance with the next-generation risk assessment 
(NGRA) approach described by others for the assessment of 
cosmetic ingredients e.g. parabens (Alexander-White et al. 
2022). In an NGRA, the assessment is conducted in a tiered 
fashion, starting with an assessment of the structural and 
physicochemical properties, as well as in silico information 
to inform on a mode of action (MoA) and form a hypoth-
esis which is then investigated using targeted testing (using 
in vitro bioassays) and linking these with blood and tissue 
concentrations.

The aim of this study was therefore to identify which in 
silico models best predicted ER, AR and aromatase inhibi-
tion and whether these could be combined with the YES/
YAS assays in an initial screen of chemicals, which could 
be used in the early tiers of an NGRA to inform on the MoA 
and the design of mechanistic in vitro assays used later in 
the assessment. Thyroid effects were not considered in this 
study because there are a limited number of in silico tools 
available, mostly for predicting thyroid receptor, which rep-
resents only one of several mechanisms involved in thyroid 
hormone homeostasis (Mullur et al. 2014).

A rich source of data can be found in the EPA's Tox-
Cast database (US EPA). This contains ED data for ~ 1800 
chemicals in more than 700 high-throughput assay endpoints 
that cover a range of high-level cell responses. The US EPA 
is running an Endocrine Disruption Screening Program 
(EDSP), with the aim of prioritising chemicals using high-
throughput screening methods and computational toxicol-
ogy approaches to evaluate thousands of chemicals for ED 
activities. The OECD framework for ED assessment (OECD 
2018) requires animal testing at higher levels, where rel-
evant in vitro alternatives are missing e.g. for developmental, 
reproductive, neurological and immune effects. However, 
such follow-up testing is not possible for the cosmetics 
industry especially in the EU due to the complete animal 
testing ban which came into force in March 2013 (EU 2009). 
Even for other industries, animal models are not suitable for 
assessing ED effects due to issues relating to ethics, capac-
ity, speed and relevance (Patisaul et al. 2018). Therefore, 
chemicals which cannot be evaluated using in vivo method 
must be assessed using alternative methods e.g. in silico and 
in vitro methods listed in Levels 1 and 2 of the framework 
described in the OECD 150 test guideline (OECD 2018).

We have evaluated a suite of in silico prediction mod-
els and in vitro assays reflecting estrogenic, androgenic 
and steroidogenic effects for their ability to identify the 
ED properties of ten test chemicals (tamoxifen, 4-tert-
octylphenol (4-TO), mestanolone, daidzein, benzyl 
butyl phthalate (BBP), mono-benzyl phthalate (MBP), 
2-(4-(diethylamino)-2-hydroxybenzoyl)benzoic acid 
(DEABA); 2-[4-(dibutylamino)-2-hydroxybenzoyl]benzoic 
acid (DBABA), isoeugenol and terephthalic acid, Fig. 1). 

The chemicals have different uses e.g. drug, plasticizer, fra-
grance, dietary component (see Fig. 1), but were selected 
for their differing potentials to cause ED. The selection of 
the chemicals was first made according to their estrogenic 
affects, with the aim of including at least 5 known positive 
chemicals for ER agonism and/or antagonism according to 
the ToxCast outcome (with in vivo findings, if possible) 
and which had been tested in OECD Test Guideline assays. 
Terephthalic acid was included as a true negative control for 
all endpoints (according to the conclusion on the safety of 
this chemical by ECHA (ECHA 2017)). There was also one 
parent–metabolite pair of chemicals (BBP/MBP) selected to 
evaluate the impact of metabolism.

The in vitro assays evaluated were the YES/YAS assays 
(Routledge and Sumpter 1996; Sohoni and Sumpter 1998), 
ER and AR receptor-binding assays (Bowes et al. 2012), 
(anti)ER- and (anti)AR- “Chemically Activated LUciferase 
eXpression” (CALUX®) receptor transactivation assays 
(referred to from here as the “CALUX assay” OECD 2020, 
2021)), in vitro H295R steroidogenesis assay (OECD 2022), 
and a recombinant enzyme aromatase activity inhibition 
assay (Ji et al. 2014). Five of the chemicals were tested 
blinded in the CALUX assays (tamoxifen, mestanolone, 
daidzein, MBP and terephthalic acid). The methods were 
all conducted in the absence of a metabolic supplement to 
determine the ED potential of the parent test chemicals. 
However, metabolism can have a significant impact on the 
results of assays and can result in the formation of metab-
olites that may have a lower or greater ED potential than 
the parent compound. To address this, we also assessed the 
impact of liver S9 with cofactors for Phase 1 (NADPH) and 
Phase 2 (uridine 5'-diphosphoglucuronic acid (UDPGA), 
3′-phosphoadenosine-5′-phosphosulfate (PAPS) and glu-
tathione) on the outcome of the ER and AR transactivation 
assays for one chemical, BBP.

In silico prediction models were evaluated for their ability 
to detect binding, agonism and antagonism of the ER and 
AR, and aromatase inhibition. These included Derek, Vega, 
Case Ultra, Danish (Q)SAR, ADMETLab, Opera, ADMET 
Predictor and ProToxII (see Online Resource 1 Supplemen-
tary Table 1 for the list of models and associated references). 
These in silico models use a range of computational tech-
niques, such as molecular docking (i.e. Endocrine Disrup-
tome (Kolšek et al. 2014)), machine learning-based quan-
titative structure–activity relationships (QSAR), and expert 
rules-based systems to predict the potential of a chemical 
to interact with specific endocrine receptors and activate or 
inhibit their signalling pathways. Vega, ProToxII, Danish 
(Q)SAR, ADMETLab, ADMET predictor and Case Ultra all 
use QSARs to predict the potential ED effects of chemicals. 
Derek is a rules-based system that uses expert knowledge to 
predict potential toxicity of chemicals based on their struc-
ture (Aiba née Kaneko et al. 2015; Verheyen et al. 2017)). 
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ToxCast data have been implemented to build different pre-
diction models e.g. Opera is an open source platform that 
uses machine learning-based QSARs and integrated in the 
EPA’s CompTox Chemistry Dashboard (Mansouri et al. 
2018). In addition, (Browne et al. 2015 and Kleinstreuer 
et al. 2017) have a developed ToxCast Pathway Model that 

integrates ToxCast high-throughput screening assays into a 
computational model that can discriminate bioactivity from 
assay-specific interference and cytotoxicity. The ToxCast 
Pathway Model provides a value (range from 0 to 1) for AR 
and ER activity (agonism or antagonism). If any of these 
values exceed 0.1, then there is a significant interaction. 

Final "true" call (ToxCast)
Structure Name and 

CAS Use
ER AR Aromatase 

inhibition

Tamoxifen
(10540-29-

1)
Chemotherapeutic

Positive for 
agonism and 
antagonism

Inconclusive Positive

4-tert-
Octylphenol
(521-11-9)

Surfactant Positive for 
agonism

Positive for 
antagonism Inconclusive

Mestanolone
(140-66-9)

Anabolic steroid 
(discontinued)

Positive for 
agonism and 
antagonism

Positive for 
agonism Negative

Daidzein
(486-66-8)

Main component of 
soja beans

Positive for 
agonism and 
antagonism

Inconclusive Negative

Benzyl butyl 
phthalate
(85-68-7)

Plasticizer Positive for 
agonism Inconclusive Negative

mono 
benzyl 

phthalate
(2528-16-7)

Metabolite of benzyl 
butyl phthalate Negative Negative Negative

DEABA
(5809-23-4) Plasticizer Negative Negative Negative

DBABA
(54574-82-

2)
Plasticizer Inconclusive Negative Negative

Isoeugenol
(97-54-1)

Fragrance in 
cosmetics and 

household products
Inconclusive Negative Negative

Terephthalic 
acid

(100-21-0)
Plasticizer Negative Negative Negative

Fig. 1  Test chemicals included in the evaluation. The final call with 
respect to ER and AR effects and aromatase inhibition based on Tox-
Cast data are indicated, along with legacy in vivo data where avail-

able. Red denotes positive calls, orange demotes inconclusive calls 
and green denoted negative calls (color figure online)
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The model is based on the concept of the adverse outcome 
pathway (AOP), which describes the biological sequence of 
events that lead from chemical exposure to adverse effects. 
This model has been shown to be effective at predicting the 
potential toxicity of chemicals across multiple endpoints, 
including ED. In a recent study, the model was used to pre-
dict the estrogenic and androgenic activity of over 1,200 
chemicals, and the results were compared to experimental 
data. The study found that the model was able to accurately 
predict the estrogenic and androgenic activity of the chemi-
cals with a high degree of accuracy. The outcomes of the 
ToxCast Pathway Model were considered to derive the Tox-
Cast final call.

The performance of different in silico models for ED 
effects tends to be evaluated on single model for a single 
effect, such as ER or AR binding, agonism or antagonism 
(normally by the developer), or a limited number of mod-
els using multiple chemicals (Weyrich et al. 2022). Multi-
organisation collaborations have also evaluated multiple 
models for a specific effect e.g. ER (Mansouri et al. 2016) 
and AR (Mansouri et al. 2020) effects. Therefore, we have 
conducted a side-by-side comparison of multiple different 
in silico models covering three pathways in ED, namely ER, 
AR and aromatase inhibition and compared these with Tox-
Cast-derived final calls, as well as with results from in vitro 
assays. The efficiency of the in silico models was evaluated 
as a metric for the ability of the in silico model to generate 
concrete predictions. The efficiency (expressed as a % of 
the chemicals tested) excludes results which are out of the 
domain (OAD) of the model, as well as inconclusive results, 
whereby the more chemicals which are OAD or inconclu-
sive, the lower the efficiency. In vivo data were available 
for some but not all chemicals; therefore, an evaluation of 
the performance of the methods was made by comparing 
the derived overall calls from in silico models with those 
from the ToxCast database. The final call for each chemical 
evaluated in the ToxCast assays was made by considering 
the active-flagged assays and the corresponding cytotoxicity 
levels, the ToxCast Pathway Model (Browne et al. 2015) and 
the CERAPP Potency Level (Mansouri et al. 2016) for ER 
effects and the ToxCast Pathway Model (Kleinstreuer et al. 
2017) for AR effects (see Online Resource 1 Supplementary 
Tables 2, 4 and 6 for the outcome of the ER, AR and aro-
matase ToxCast assays, additional literature and final calls 
for each chemical and target).

Methods

Test chemicals

Tamoxifen, 4-tert-octylphenol (4-TO), benzyl butyl 
phthalate (BBP), mono-benzyl phthalate (MBP), 

2-[4-(dibutylamino)-2-hydroxybenzoyl]benzoic acid 
(DBABA), isoeugenol and terephthalic acid were from 
Sigma-Aldrich, Germany. Mestanolone was from TCI Co. 
Ltd., 2-(4-(diethylamino)-2-hydroxybenzoyl)benzoic acid 
(DEABA) was from AmBeed Inc., USA, and daidzein was 
from Cayman Chemicals, Germany.

In vitro measurements

Full details of the in vitro assay methods are given in Online 
Resource 3. The YES/YAS XL (Xtra Lyticase) assay kit 
from Xenometrix AG (Allschwil, Switzerland) was con-
ducted according to the Supplier’s instructions. Binding 
to ER and AR was conducted using standard methods for 
radioligand assays (Kurata et al. 2005; Zava et al. 1979). The 
CALUX Receptor Transactivation Assays were conducted as 
described previously (Sonneveld et al. 2005; van der Burg 
et al. 2013). An additional assay was conducted for BBP 
tested in the ER and AR CALUX assays with metabolic sup-
plements added (according to (van Vugt-Lussenburg et al. 
2018)). The inhibition of aromatase activity was measured 
using human recombinant CYP19A1 as described previ-
ously (Ji et al. 2014). The impact of test chemicals on steroi-
dogenesis was measured according to oestrogen and andro-
gen production by H295R cells, according to the OECD test 
guideline 456 (OECD 2022).

In silico prediction models

Multiple in silico tools were used to predict estrogenic, 
androgenic and steroidogenic effects of the test chemi-
cals, summarised in the Online Resource 1 Supplementary 
Table 1. The table describes the methods implemented, 
predicted endpoints (binding, activation: agonist or antag-
onist, or inhibition e.g. for aromatase), type (standalone or 
web app), available open-access platform, developer and 
the link together with the model publications. The tools 
for ER, AR and aromatase effects e.g. Endocrine Disrup-
tome, employ molecular docking to predict the binding 
affinity of a molecule of interest to the ER and AR, and 
being agonist or antagonist (Cheng et al. 2012; Yang et al. 
2018). The QSAR-based tools e.g. Vega, Opera, Danish 
(Q)SAR and ProtoxII can predict binding and activation. 
ADMET Predictor, developed by SimulationsPlus, pre-
dicts binding and the relative binding affinity (%RBA) to 
17-oestradiol or 7R-methyl-[3H]-methyltrienolone. Two 
hybrid models with QSAR and expert knowledge compo-
nents were also included: Derek Nexus and Case Ultra for 
binding, agonist and antagonist predictions. In addition, 
admetSAR was used for aromatase inhibition predictions 
only. Several of the models are standalone e.g. VEGA, 
Opera and Case Ultra or web applications e.g. ProtoxII and 
Endocrine Disruptome. In addition, a suite of open-access 
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models is available e.g. VEGA, Opera, ProToxII, Endo-
crine Disruptome and Danish (Q)SAR. Of note, some of 
the test chemicals in this study were parts of the training 
set for several of the in silico models (VEGA, Danish (Q)
SAR, Case Ultra and OPERA and these are denoted in the 
Online Resource 1 Supplementary Table 1). These in silico 
models enable the user to retrieve experimental data for 
the compounds of interest if available, as well as generat-
ing predictions for the corresponding endpoint. For the in 
silico protocol used here, we considered the predictions 
only and ignored the experimental data from the train-
ing set. In some cases, there were differences between the 
prediction and the experimental data in assignment in the 
training set.

A final call based on all the in silico models consid-
ered (a) whether models predicted a chemical to bind to 
a receptor together with a positive result for activation/
antagonism, since these are inherently linked (this pro-
vided a higher confidence in a positive result); and (b) 
concordance between models i.e. if the majority of models 
indicated a positive (or negative) result, it was given more 
weight.

Overall conduct of in silico and in vitro model data 
generation

The in silico and in  vitro model data were generated 
completely independently (and by different scientists), 
whereby the results from one model did not impact the 
interpretation of another. For the in vitro assays, the chem-
icals were tested blinded.

Results

In vitro measurements

YES/YAS assays

The concentration curves for the test chemicals with respect 
to ER agonism/antagonism and AR agonism/antagonism are 
shown in Online Resource 2 Supplementary Fig. 1 and a 
summary of the results is shown in Fig. 2. Of the chemicals 
tested, 5 were positive in the YES assay for ER agonism 
(tamoxifen, 4-TO mestanolone, daidzein and BBP). One of 
these, tamoxifen, was also positive in the YES assay for ER 
antagonism, along with MBP. The decrease in the signals 
observed in the YES assay for DEABA and DBABA does 
not show antagonistic effects since both chemicals were 
positive in both YES and YAS antagonistic assays (which 
is an indication for non-specific effects stipulated in the sup-
plier’s protocol). For this reason, the results for DEABA and 
DBABA were inconclusive.

Only one of the chemicals was positive in the YAS assay 
for AR agonism (mestanolone), whilst 2 were positive in 
the YAS antagonist assay (BBP and isoeugenol). Tamoxifen 
and 4-TO were negative in the YAS assay; however, these 
were toxic at the highest concentrations tested, evident as a 
decrease in the yeast cell growth.

ER and AR binding

In the single-dose screening (10 µM), there were 4 chemi-
cals which resulted in more than 50% inhibition of control 

Fig. 2  Heatmap of ER and AR 
agonism and antagonism by the 
10 chemicals tested in the YES 
and YAS assays. Results are 
from duplicates performed in 
two independent experiments. 
Test chemicals which were 
positive are denoted in light red, 
chemicals which were negative 
are denoted in green and chemi-
cals which were inconclusive 
are in yellow (color figure 
online)
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specific binding, indicating a significant binding to the ER 
(tamoxifen, 4-TO, mestanolone and daidzein, Fig. 3a). Low 
to moderate negative values (less than -25%) for DEABA, 
DBABA, isoeugenol and terephthalic acid were considered 
not to be biologically relevant and attributable to variabil-
ity of the signal around the control level. BBP exhibited 
weak binding (29% inhibition) and was therefore tested in 
a follow-up dose–response assay, along with mestanolone 
(to confirm the positive outcome) and DEABA and MBP 
(to confirm the negative outcomes) (Fig. 3b). Mestanolone 
was confirmed to bind to the ER, with  IC50 and  Ki values of 
1.6 and 0.52 µM, respectively. This assay also indicated that 
BBP exhibited significant binding to the ER, with  IC50 and 
 Ki values of 0.46 and 0.15 µM, respectively. BBP was there-
fore classified as positive for ER binding. Of note, the  IC50 

for BBP was lower than was expected from the initial test 
using 10 µM (Fig. 3a). This was partly attributed to the solu-
bility of this chemical, which is ~ 10 µM and accounts for the 
plateau reached at this concentration seen in Fig. 3b. Second, 
the  IC50 was derived using the concentration at which 50% 
of the maximum inhibition of BBP was achieved (and not 
the concentration at which 50% of the maximum inhibition 
of the positive control was measured, as was measured in 
the single-dose study). Therefore, fitting the BBP concen-
tration–response curve resulted in a maximum inhibition of 
69% (and not 100%) and an  IC50 of 0.46 µM.

In single-dose screening for binding to the AR, only 2 
chemicals (tamoxifen and mestanolone) resulted in more 
than 50% inhibition of control specific binding (Fig. 3c). 
All other chemicals did not exhibit significant inhibition of 

Fig. 3  Ligand binding to the ER (a and b) and AR (c and d) after 
incubation with test chemicals using a single (a and c) and a range 
of concentrations (b and d). In (b) mestanolone is denoted by black 

circles, DEABA is denoted by open circles and BBP is denoted by 
grey circles and MBP is denoted by open triangles. Individual repli-
cate values are shown
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AR binding of the control substance at 10 µM, with the high-
est inhibition exhibited by 4-TO of 10%. 4-TO, BBP and 
isoeugenol were tested in a follow-up dose–response assay, 
which indicated that 4-TO exhibited significant binding, 
albeit at higher concentrations  (IC50 and  Ki values of 27 and 
12 µM, respectively) and that BBP and isoeugenol exhibited 
moderate binding, although the  IC50 values were > 100 µM) 
(Fig. 3d).

Aromatase inhibition

None of the chemicals tested at 10 µM inhibited aromatase 
activity by more than 50% (Fig. 4a). High negative values 
(≥ 50%) that are sometimes obtained with high concentra-
tions of test compounds are generally attributable to non-spe-
cific effects of the test compounds in the assays; therefore, 
mestanolone and daidzein, in addition to isoeugenol, were 
tested in a follow-up dose–response assay (Fig. 4b). This 
confirmed the lack of binding of daidzein and mestanolone 
but indicated that isoeugenol inhibited this enzyme at higher 
concentrations (the  IC50 was 61 µM). Therefore, isoeugenol 
was classified as positive for aromatase inhibition.

CALUX assays

The concentration curves for the test chemicals with 
respect to cytotoxicity, ER agonism/antagonism and AR 
agonism/antagonism are shown in Online Resource 2 Sup-
plementary Fig. 2a, b and c, respectively, and a summary 
of the results is shown in Fig. 5. There were 4 chemi-
cals that were moderately to highly potent agonists of the 

ER (4-TO, mestanolone, daidzein and BBP, with Lowest 
Effective Concentration (LEC) values of 0.04, 0.028, 0.1 
and 0.69 µM, respectively) and one chemical which was 
a weak agonist of the ER (DEABA, LEC was 56 µM). 
Tamoxifen, which was tested blinded, was identified as a 
potent antagonist of the ER (LEC was 1.1 nM, as expected 
since it is the positive control for the assay).

There was only one chemical that was an AR agonist, 
namely mestanolone, which exhibited potent activation of 
the receptor (LEC was 1.6 pM). This was expected since 
it is the positive control for the assay (although it was 
tested blinded in this study). There were 3 AR antagonists 
with weak potency (BBP, LEC was 2.4 µM) to moderate 
potency (4-TO and isoeugenol with LEC values of 0.44 
and 0.29 µM, respectively).

H295R Steroidogenesis assay

The concentration curves for the test chemicals with 
respect to oestrogen and androgen production are shown in 
Online Resource 2 Supplementary Fig. 2d and a summary 
of the results is shown in Fig. 5 (right-hand columns). 
There were only two chemicals that affected hormone pro-
duction in H295R cells. Isoeugenol increased oestrogen 
production by the cells by 1.5-fold of control at the highest 
concentration tested (100 µM, the LEC was 10 µM) and 
daidzein decreased androgen production to 0.06-fold of 
control at the highest concentration tested (100 µM, LEC 
was 0.77 µM).

Fig. 4  Aromatase inhibition (a) by 10 test chemicals incubated at a 
single concentration of 10 µM and (b) by mestanolone (open circles), 
daidzein (open triangles) and isoeugenol (grey circles) tested in a fol-

low-up dose–response assay. Inhibition was calculated as a % inhibi-
tion of control enzyme activity. Individual replicate values are shown
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Impact of metabolism on the CALUX assay

The impact of including liver S9 and Phase 1 and 2 cofac-
tors on the outcome of the ER and AR CALUX assays was 
evaluated using BBP (Fig. 6), as MBP was the correspond-
ing metabolite tested in all assays. In the absence of S9, there 
was a concentration-dependent activation of ERα by BBP 
(Fig. 6a); however, activation was abolished in the presence 
of S9 with the phase 1 cofactor, NADPH, and in the pres-
ence of NADPH and phase 2 cofactors (reduced glutathione, 
PAPS and UDPGA). As for ERα activation, the AR antago-
nism exhibited by BBP in the absence of S9 and cofactors 
was abolished by co-incubating with S9 and both cofactor 
supplements (NADPH only or NADPH and Phase 2 cofac-
tors) (Fig. 6b).

In silico predictions

The outcomes of the individual in silico predictions of the 
effects of the test chemicals on the ER, AR and aromatase 
activities are shown in Online Resource 1 Supplementary 
Tables 3, 5 and 7, respectively. There were multiple in silico 
methods used to predict estrogenic effects (18 models) and 
androgenic (17 models) effects, whilst only 4 were used to 
predict effects on aromatase activities (as indication of ster-
oidogenic effects). The overall calls based on all in silico 
methods are listed in the tables, along with the final call 
from the ToxCast assays.

Estrogenic effects

The final call from the in silico predictions indicated that 
5 chemicals (tamoxifen, BBP, daidzein, 4-TO and mes-
tanolone) were classified as having estrogenic effects 
(Fig. 7). These chemicals were predicted to be positive by 
the majority of the 18 in silico models evaluated, regard-
less of whether the model predicted agonistic or antago-
nistic effects (Online Resource 1 Supplementary Tables 3). 
This provided high confidence in the in silico final call. 
A notable exception was with respect to Endocrine Dis-
ruptome models, which predicted 9 out of 10 chemicals 
to be negative (thus incorrectly predicting 4 out of 5 of 
the chemicals classified as positive). Of note, whilst daid-
zein is classified according to the ToxCast outcome as 
being an ER agonist and antagonist, 4-TO is classified as 
being an ER agonist only, indicating that the predictions 
by two models for ER antagonism, Case Ultra and Opera, 
were less precise with respect to the type of action on 
the ER. The Opera and Danish (Q)SAR models indicated 
that tamoxifen binds to the ER but did not activate and/or 
inhibit it. The same was true for the Vega model for BBP. 
The remaining 5 chemicals were classified as negative 
based on all in silico model predictions, with the majority 
of the models (10–15 out of 18 models) indicating a lack 
of ER effects. Several of the test chemicals were out of the 
domain of the models for ER effects (mestanolone for the 
Vega ER activation model, MBP for the Vega ER-binding 
model, DBABA for the ADMET prediction model and 

Fig. 5  Summary of ER and AR transactivation and steroidogenesis 
results presented as a heatmap. The LEC values are shown here in 
Log M; the colour indicates the potency (yellow < orange < red < pur-

ple). For comparison, the LEC values of the individual reference 
compounds of the assays are shown in the bottom row (color figure 
online)
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isoeugenol for the Vega activation, Danish (Q)SAR ER 
activation and Opera ER-binding models).

The efficiency and the predictivity of ER effects by the 
individual models compared to the final ToxCast classifica-
tion are shown in Table 1. Of note, the number of chemicals 
included in the calculations of the % of correct calls was 
lower when the ToxCast result was inconclusive (for ER 
effects by DBABA and isoeugenol the final calls were incon-
clusive) and when the outcome of the in silico model was 
inconclusive. Most of the models (13 out of 18) were 100% 
efficient in giving a distinct prediction on the ER effects of 
the 10 test chemicals studied. The remaining models also 
showed a high efficiency (75–88%) or a moderate efficiency 
(63% for ADMETLab ER). There were three models, Dan-
ish (Q)SAR ER binding, Opera ER binding and ProToxII 
LBD, which correctly predicted the outcome of 8 chemicals 
included in the analysis. ADMET predictor exhibited the 
lowest percentage of correct calls (50%) and the remaining 
models predicted between 63 and 88% of the calls.

Androgenic effects

The final call from the in silico predictions indicated that 4 
of the 5 chemicals causing ER effects were also classified 
as having androgenic agonistic and/or antagonistic effects 
(tamoxifen, 4-TO, mestanolone and daidzein) (Fig. 7). BBP, 
MBP, DEABA, DBABA, isoeugenol and terephthalic acid 
were negative for androgenic effects. In comparison with 
the ER predictions, there were more inconclusive outcomes 
from the in silico prediction of AR effects, with each chemi-
cal being inconclusive in 1–3 models.

The predictivity of AR effects by the individual models 
is shown in Table 1. There were 6 out of 17 models that 
were 100% efficient in giving a prediction on AR effects of 
all ten test chemicals (Derek, Vega activation, Case Ultra 
antagonist, ADMET predictor, ProToxII AR and ProToxII 
LBD). Several other models also showed a high efficiency 
between 71 and 86%, whilst three only returned distinct pre-
dictions for fewer than 60% of the test chemicals (Case Ultra 
agonist, Danish (Q)SAR binding, Danish (Q)SAR antagonist 
and Endocrine Disruptome. Predictions from several models 
(the three Danish (Q)SAR models, Opera agonist and Endo-
crine Disruptome) were correct in 100% of the cases for 
which they returned a distinct prediction. ADMET predictor, 
Opera and Vega correctly identified the outcome of a higher 
number of chemicals for AR effects (86%) compared to ER 
effects for which they returned a distinct prediction. The 
Endocrine Disruptome model exhibited the highest incon-
clusive results (i.e. the % efficiency was only 14%) and the 
lowest % of correct calls (none of the calls were correct).

Aromatase inhibition

The final call on the in silico predictions indicated that 2 
chemicals (tamoxifen and daidzein) were classified as inhib-
iting aromatase activity. There were conflicting results for 
mestanolone, with 2 models predicting a positive result 
and 2 predicting a negative result. The Vega model, which 
resulted in a positive prediction for mestanolone, used this 
chemical in its training set, whilst the admetSAR model pre-
dicted this chemical to be positive, with a good confidence 
of 87% but not using this chemical in its training set. Whilst 
the AdmetLab model predicted mestanolone to be negative 
with low confidence, the ProToxII model predicted a nega-
tive result with high confidence. As a result, the overall call 
for this chemical was inconclusive.

The predictivity of effects on aromatase by the individual 
models is shown in Table 1. Whilst the efficiency of all 4 
aromatase models was very good (89–100%), three of the 
four models exhibited a higher percentage of correct calls for 
the 9 chemicals, indicating that there is a high confidence in 
the results from these models. The admetSAR model showed 

Fig. 6  Impact of including liver S9 and Phase 1 and 2 cofactors on 
the outcome of the ER (a) and anti-AR (b) CALUX assays for BBP. 
Incubations were conducted in the absence of liver S9 (open circles), 
S9 + Phase 1 cofactors (grey circles) and S9 + Phase 1 + 2 cofactors 
(black circles), values are a mean ± SD, n = 6)
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oversensitivity that resulted in 6 incorrect calls which were 
false positives.

Discussion

EU regulations and others require the investigation of 
chemicals for potential ED properties to ensure the safety of 
human health and the environment. The conduct of a NGRA 
is an exposure-led, hypothesis-driven approach which is 
being implemented to enable the registration of cosmetic 
ingredients without the generation of new data in animals 
(Alexander-White et al. 2022; Dent et al. 2021). Whilst much 
progress has been made in recent years with respect to the 
development of in vitro and in silico approaches used in 
an NGRA, more effort is needed to demonstrate their use 
in a regulatory context (Dent et al. 2021). Therefore, this 
study evaluated a suite of in silico and in vitro methods for 
their potential to detect potential estrogenic, androgenic and 
steroidogenesis effects of 10 model chemicals, as part of 
the hypothesis forming and MoA investigation steps of an 
NGRA. Exposure was not considered since these models are 
intended for in initial screening; therefore, the concentra-
tions and the points of departure were not compared with 
predicted/measured internal exposures to obtain margins of 
safety (this would be conducted in the later tiers of the safety 
assessments. A summary of the outcome of all the results 

is shown in Fig. 7. It should be noted that, with one excep-
tion, all in vitro assays were conducted without a metabolic 
supplement; therefore, the ED potential of the test chemical 
themselves (and not their metabolites) was measured.

Comparison of results from in vitro assays

The YES/YAS assays are time- and cost-effective assays 
using a simple readout, which is used to detect both ago-
nistic and antagonist effects of test chemicals on the ER and 
AR. The YES assay correctly identified tamoxifen as both 
an agonist and antagonist of the ER (Dhingra 1999), whilst 
the CALUX ER assay only detected antagonism of this 
chemical. Four additional chemicals which were indicated 
to be ER agonists in the CALUX assay were also positive for 
ER agonism in the YES assay. Thus, there was a good con-
cordance of this assay with other in vitro (and in silico and 
in vivo for chemicals for which these data were available) 
models for these 5 chemicals, indicating that this can be used 
for screening early in an NGRA before moving to OECD test 
guideline assays, depending on the biological plausibility. 
There was only one false positive outcome in the YES assay 
(in which MBP was positive for ER antagonism) and indi-
cating that this assay can be over-sensitive. For isoeugenol, 
there was difference in the YAS assay outcome compared 
to the ToxCast classification for AR antagonism; however, 

Fig. 7  A summary of the results from in silico and in vitro methods 
to detect potential estrogenic, androgenic and steroidogenesis effects 
of 10 model chemicals. Results are colour-coded: light red indicates a 
positive result, pink indicates a weak positive result, yellow indicates 

an inconclusive result and green indicates a negative result. Ag = ago-
nist, Ant = antagonist, E ↑ = estrogenicity (increase in oestrogen pro-
duction) and T ↓ = androgenicity (decrease in testosterone produc-
tion) (color figure online)
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isoeugenol exhibited weak binding to the AR and was posi-
tive in the CALUX transactivation assay for AR antagonism, 
indicating the parent chemical exhibits AR antagonism (but 
potentially, the metabolites do not). This attribute can be 
considered beneficial in having confidence in a negative 
outcome, as well as representing a worst-case scenario dur-
ing the screening of many chemicals. Two chemicals were 
inconclusive in the antagonist YES/YAS assays, DEABA 
and DBABA due to non-specific effects; however, this result 
is easy to identify and can be followed up using an alterna-
tive assay. The negative results for tamoxifen and 4-TO YAS 
assay were due to cytotoxicity occurring at the highest con-
centrations tested (masking any ER or AR effects); therefore, 
we recommend a follow-up assay using a lower concentra-
tion range with closer spacing between the concentrations 
to determine whether a positive concentration-dependent 
response can be observed at non-cytotoxic levels.

The outcomes from the ER and AR binding assays cor-
related well with those from the ER and AR CALUX assays 
using this selection of chemicals. This was more apparent 

for the AR outcomes, which showed that AR binding was 
linked to AR agonism by mestanolone and AR antagonism 
by 4-TO, BBP and isoeugenol, whereas chemicals that did 
not bind to the AR (daidzein, MBP, DEABA, DBABA and 
terephthalic acid) were negative in the AR transactivation 
assay. Our study indicates that the inclusion of follow-up 
dose–response assays is recommended to confirm the out-
come of the single concentration screening of ER and AR 
binding using radio-ligands. This was demonstrated for the 
weak binding of BBP in the ER-binding assay and the sig-
nificant binding 4-TO and moderate binding of BBP and 
isoeugenol in the AR binding assays.

Aromatase represents only one enzyme involved in steroi-
dogenesis (the conversion of androgens to oestrogens); there-
fore, the aromatase assay detects effects on 17β-oestradiol 
production only. There were only two chemicals classified 
based on ToxCast data as positive (tamoxifen) or inconclu-
sive (4-TO) for aromatase inhibition, neither of which were 
positive in the aromatase inhibition or steroidogenesis assays 
performed in this study. The inconclusive result for 4-TO from 

Table 1  Evaluation of in silico models

Values are the percentages of correct calls for ER and AR agonism and/or antagonism and aromatase inhibition by different in silico models 
when compared to the final ToxCast call. There were 8, 7, and 9 chemicals included in the comparison of ER, AR, and aromatase effects, respec-
tively (chemicals with inconclusive calls from ToxCast were excluded). Models for which the chemicals were out of the applicability domain 
were given a value of zero in the calculation

In silico model ER AR Aromatase

% Correct calls % Efficiency % Correct calls % Efficiency % Correct calls % Efficiency

Derek 63 100 71 100 – –
Vega Binding 75 100 – – – –

Activation 86 88 86 – –
Aromatase – – – – 78 100

Case Ultra Binding 83 75 – – – –
Agonist 88 100 67 43 – –
Antagonist 75 100 57 100 – –

Danish Binding 100 100 100 57 – –
Activation/Agonist 88 100 100 86 – –
Antagonist – – 100 57 – –

ADMET Lab ER/AR 60 63 67 86 – –
LBD 88 100 83 86 – –
Aromatase – – – – 100 89

Opera Binding 100 100 80 71 – –
Agonist 75 100 100 86 – –
Antagonist 63 100 67 86 – –

ADMET predictor Binding 50 100 86 100 – –
Endocrine Disruptome Agonist 57 88 100 71 – –

Antagonist 71 88 0 14 –
ProToxII ER/AR 88 100 86 100 – –

LBD 100 100 86 100 –
Aromatase – – – 89 100

admetSAR Aromatase – – – 33 100
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the ToxCast panel indicated that the inhibition of aromatase 
was only borderline (the efficacy was 31.35%); therefore, the 
negative result from the aromatase inhibition and H295R 
steroidogenesis assays provides an additional WoE that this is 
negative for steroidogenesis. There are two possible reasons 
for the discrepancy between the ToxCast classification and 
the negative outcome of the aromatase inhibition assays for 
tamoxifen. First, investigations into the aromatase inhibitory 
action of tamoxifen using recombinant and placental micro-
somal preparations show that its metabolites, endoxifen and 
N-desmethyl-tamoxifen, are potent inhibitors, whilst tamoxifen 
itself exhibited no appreciable inhibition (Lu et al. 2012). Sec-
ond, the “TOX21_Aromatase_Inhibition” assay used to clas-
sify tamoxifen detects not only aromatase inhibition but also 
ER agonism or antagonism. It is a cell-based assay in which 
MCF-7 cells are incubated with the test chemical for 24 h 
before measuring aromatase activities indirectly via a lucif-
erase-based reporter endpoint which is dependent on the bind-
ing of the oestradiol–ER complex to the oestrogen response 
element. A decrease in luciferase activity can occur as a result 
of direct inhibition of aromatase (preventing the production 
of oestradiol) or by preventing oestradiol from binding to the 
ER and thus the binding to the oestrogen RE which initiates 
the production of luciferase (Lui et al. 2008). This means that 
a positive result from this cell-based assay for anti-oestrogens 
like tamoxifen is likely to be due to inhibition of oestradiol 
binding and not to direct aromatase inhibition. Therefore, the 
result from our study using recombinant enzymes is in accord-
ance with the reported lack of direct aromatase inhibition by 
the parent chemical, tamoxifen, and that additional incubations 
for this assay using recombinant enzyme should be conducted 
with a metabolic supplement to detect or rule out inhibitory 
potential of the metabolites of a test chemical.

Isoeugenol was the only chemical which was positive for 
estrogenicity and aromatase inhibition in the current study but 
classified as negative for these effects according to the ToxCast 
data. Isoeugenol is an isomer of eugenol, which is reported 
to cause cytotoxicity in MCF-7 cells via an ERα-dependent 
mechanism leading to apoptosis (Nafie et al. 2022); therefore, 
the two chemicals may share a common mechanism of action 
which is detected by the estrogenicity assay. Whilst isoeugenol 
inhibited aromatase, the potency was low, with an IC50 of 
61 µM, and it was negative in the single-dose screening assay. 
These findings suggest that the results for this chemical are 
perhaps specific to MCF-7 cells (not to healthy non-immor-
talised cells) and only occur at high concentrations.

Metabolism

There was a pair of test chemicals which represented a par-
ent and its corresponding metabolite, namely, BBP and 
MBP, respectively. ER and AR results from binding and 

transactivation assays showed that when BBP was positive 
in an assay, MBP was negative, indicating that metabolic 
conversion from BBP to MBP resulted in detoxification. 
This was also supported by additional incubations in which 
the ER agonism and AR antagonism of BBP were abolished 
when rat liver S9 was added to the CALUX assays. In this 
example, the presence of Phase 1 xenobiotic-metabolising 
enzymes was sufficient to decrease the potency of BBP, but 
there may be cases when phase 1 pathways lead to activa-
tion and subsequent phase 2 pathways lead to detoxifica-
tion. Therefore, phase 2 cofactors could be added to the 
incubation so that the assay can reflect both phase 1 and 
2 metabolism. The example shown here employed reduced 
glutathione, PAPS and UDPGA as Phase 2 cofactors; how-
ever, further studies are needed to optimise the cofactor 
mix to include other pathways e.g. N-acetyl transferases, 
and the best concentration of each to best reflect the bal-
ance of metabolism observed in intact hepatocytes (as used 
by others for metabolism studies Eilstein et al. 2020; Lester 
et al. 2021)).

Assessment of individual in silico models

One of the advantages of in silico prediction models is their 
speed, efficiency and cost-effectiveness, compared to tradi-
tional in vivo and in vitro methods (Valerio 2009). They can 
also be used to screen large numbers of chemicals quickly 
and identify potential ED chemicals before further testing. 
Therefore, this study also included a comparison of the per-
formance of individual models to determine whether one 
or two could be prioritised for use in a safety assessment. 
It is acknowledged that the number of chemicals used to 
reflect the predictive capacity is small; however, this enabled 
their evaluation in multiple in silico models and a side-by-
side comparison (also with in vitro data generated in this 
study). To evaluate the predictive capacity of individual in 
silico models, the results from these were compared with an 
overall call from ToxCast in vitro assays. This was because 
in vivo data are not available for all chemicals tested here; 
however, the ToxCast-based classifications were confirmed 
with legacy in vivo data where possible (denoted in Online 
Resource 1 Supplementary Table 2 for ER effects and Online 
Resource 1 Supplementary Table 4 for AR effects).

Based on these results, most of the in silico models evalu-
ated predicted ER and AR effects well, especially ER bind-
ing and agonism (compared to antagonistic effects). These 
findings are in accordance with those of the multi-model 
comparisons conducted by others, in which the average 
predictive accuracy of models for ER and AR effects (not 
used here) were 90% and 80%, respectively (Mansouri et al. 
2016, 2020). There were three models that correctly pre-
dicted ER effects of all 8 chemicals with distinct final call 
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from ToxCast (Danish (Q)SAR Binding, Opera Binding and 
ProToxII LBD), whereas efficiency of the 15 models used to 
predict AR effects was below 100% due to several inconclu-
sive calls. The minimum number of correct calls by a single 
model for ER and AR effects was 50% (by ADMET predic-
tor) and 57% (Case Ultra antagonist), respectively, and the 
mean number of correct calls for both ER and AR effects by 
all models was 78% and 79%, respectively. In general, mod-
els which predicted ER effects well also predicted AR effects 
well. When the number of correct calls for both ER and AR 
effects were combined (Online Resource 1 Supplementary 
Table 8), the Danish (Q)SAR (all 3 models), Opera (bind-
ing and agonist models), ADMET Lab LBD and ProToxII 
(all 3 models) models demonstrated the best overall perfor-
mance (with a combined correct call of 86–100%), whilst 
Endocrine Disruptome demonstrated the lowest perfor-
mance (with a combined correct call of 36%). With respect 
to aromatase inhibition, the admetSAR model resulted in 6 
incorrect calls which were false positives, indicating that this 
model is relatively oversensitive in detecting this endpoint 
in this chemical scenario.

In silico prediction models rely on accurate and reliable 
information on the chemical structures, biological endpoints 
and toxicological mechanisms. These models also reflect 
the quality and relevance of the training data sets used to 
develop them, which define their applicability and accuracy 
of the predictions. The underlying data sets should be large 
enough to expand the chemical space of interest and improve 
the performance of the model. In the current study, several 
of the chemicals of interest were also in the training set of 
a few of the models (denoted in Online Resource 1 Supple-
mentary Tables 3, 5 and 7). Whilst this could be perceived 
to add bias to the evaluation of a model, it didn’t necessarily 
lead to a better predictivity for that chemical. For example, 
BBP is an ER agonist but not an antagonist and was used 
in the training sets for the Case Ultra Agonist and Antago-
nist models. Whilst Case Ultra correctly identified it as an 
agonist, it incorrectly also identified BBP as an antagonist. 
Another notable observation was that all 16 models pre-
dicted 4-TO to be positive for ER effects, even though this is 
classified as being an ER agonist only. Whilst this suggests 
the two models for ER antagonism, Case Ultra and Opera, 
were less precise, the results using them would still indicate 
that this chemical has the potential to cause ER effects.

The efficiency was used as a metric to reflect the ability 
of the in silico model to generate concrete predictions. This 
is of importance since models that have a limited applica-
bility domain or result in multiple inconclusive results are 
limited in their practical applicability. The efficiency of ER 
and aromatase models was very good, with most models 
being able to generate concrete calls for 88–100% of chemi-
cals. The efficiency of the AR models was generally slightly 
lower than for ER models, but most were still between 71 

and 100% efficient. Notable outliers were the Case Ultra 
AR agonist model and the Endocrine Disruptome model, for 
which the efficiencies were only 43% and 14%, respectively. 
Inconclusive results were obtained for several chemicals for 
ER and AR effects and as such, would trigger follow-up 
investigations in a safety assessment. The results from the 
in silico models can then be used to guide follow-up in vitro 
experiments to complete the risk assessment (in silico-based 
hypothesis-driven testing) for ER, AR and steroidogenesis. 
The in vitro assays can be used to confirm the predicted 
activities and, if active, derive a potency value (IC50, IC10 
etc.) to be compared with predicted internal exposure (using 
PBPK modelling) to perform an exposure-driven risk assess-
ment, similar to those conducted by others (Alexander-White 
et al. 2022; Bury et al. 2021; Hewitt et al. 2022; Ouedraogo 
et al. 2022).

Overall call and comparison of in silico 
final calls and results from in vitro models 
with ToxCast classifications

The outcomes for the 10 chemicals from the panel of in 
silico and in vitro ER models in our study exhibited a good 
concordance (with the exception of MBP in the YES assay) 
and generally correlated with their classifications of ER 
effects based on ToxCast assays. For example, tamoxifen, 
4-TO, mestanolone, daidzein and BBP were all positive for 
ER effects based on the overall call from in silico models 
and the outcome of individual in vitro assays, moreover, all 
were in accordance with positive ER classification based 
on ToxCast assays. All outcomes based on the overall call 
from in silico models and most of the calls from the in vitro 
assays indicated MBP, DEABA, DBABA, isoeugenol and 
terephthalic acid to be negative. DEABA was a weak agonist 
in the ER CALUX assay and only reached the 10% threshold 
at the highest concentration tested, 100 µM, which would 
be unlikely to be observed in vivo. The ToxCast classifi-
cation for DBABA and isoeugenol were inconclusive but 
mainly due to borderline efficacy and weak agonist/antago-
nist effects in some but not all assays in the ToxCast assay 
panel. Based on all data, including ToxCast, these 5 chemi-
cals could be concluded to be negative for ER effects, espe-
cially if plasma concentrations were incorporated into the 
interpretation.

There was only one chemical that was classified as posi-
tive for AR effects by all models (specifically, an AR ago-
nist), namely, mestanolone. This could be expected since it 
is a known AR agonist (van der Ven et al. 2003; Zakár et al. 
1986)) and is used as reference chemical for the AR CALUX 
assay (OECD 2020). Inconclusive classifications of AR effects 
from ToxCast assays were reflected as both positive and nega-
tive outcomes from the in silico and in vitro methods. For 
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example, tamoxifen was positive based on the overall call from 
in silico predictions and AR binding assays but negative in the 
YAS and CALUX transactivation assays. Likewise, daidzein 
and BBP were classified as inconclusive from the ToxCast 
assays and exhibited mixed results from the panel of in silico 
and in vitro AR models.

An interesting finding was observed for isoeugenol, which 
was indicated to be negative for AR effects based on the over-
all call from the ToxCast data and in silico predictions but 
was positive for antagonism in all three in vitro AR assays. 
This chemical was also positive in one ToxCast assay but the 
effect was weak and only occurred at the highest concentration 
tested (which was also observed in the YAS assay). Accord-
ing to the ToxCast Pathway model, which considers the MoA 
in the interpretation of the assay that integrates 18 ToxCast 
high-throughput screening assays results were into a computa-
tional model that can discriminate bioactivity and cytotoxicity 
(Kleinstreuer et al. 2017), the interaction of isoeugenol with 
the AR is predicted to be insignificant, which is why the over-
all conclusion from the ToxCast assays for our evaluation was 
given as negative. This finding is supported by in vivo data 
from developmental toxicity studies in rats given isoeugenol 
at 250–1000 mg/kg/day, which showed some maternal toxicity 
at all does but no treatment-related effects on foetuses up to 
500 mg/kg/day (George et al. 2001). The difference between 
the results from ToxCast and in silico with those from the 
in vitro assays is likely to be due to the impact of metabolism, 
since OECD test guideline compliant in vitro assays indicated 
that isoeugenol exhibits AR antagonism which is decreased by 
metabolism (Park et al. 2021). This underlines the importance 
of considering metabolism in the ED screening assays.

There were 5 chemicals for which the final calls for 
steroidogenesis from ToxCast and all the in silico models, 
together with the in vitro assays were all negative (BBP, 
MBP, DEABA, DBABA and terephthalic acid). Therefore, 
there is a high confidence in the final negative call for these 
chemicals. The final overall call for steroidogenesis effects 
of 4-TO and mestanolone could also be concluded to be neg-
ative, since both in vitro assays were negative and either the 
ToxCast or in silico results were also negative. There were 
three chemicals with opposing outcomes using in silico and 
in vitro assays (tamoxifen, daidzein and isoeugenol); there-
fore, these would be considered to be inconclusive outcomes 
and would warrant follow-up investigations to understand 
the differences in the call and whether the effect would occur 
at human exposure levels.

Conclusions

This study highlights the importance of using a combina-
tion of in silico prediction models and in vitro assays to 
evaluate the ED potential of chemicals. In silico prediction 

models for ED have the potential to be valuable tools for 
risk assessment and chemical screening. This study dem-
onstrates that based on the 10 chemicals, the in silico mod-
els used predicted ER and AR effects well, especially ER 
binding and agonism, indicating that their use is a good 
start to an assessment of a new chemical in an NGRA. 
Danish (Q)SAR (all 3 models), Opera (binding and agonist 
models), ADMET Lab LBD and ProToxII (all 3 models) 
models demonstrated the best overall performance for ER 
and AR effects. Inhibition of aromatase was best predicted 
by the Vega, AdmetLab and ProToxII models.

In silico prediction models and YES/YAS assays can be 
used for initial screening and guidance for further inves-
tigation in the early tier of an NGRA, and depending on 
the level of biological plausibility that is needed, further 
testing can be conducted e.g. using receptor-binding or 
CALUX and H295R steroidogenesis assays. The results 
can then be complemented by other testing approaches, 
such as additional in vitro mechanistic assays and legacy 
data from in vivo studies, to ensure comprehensive and 
accurate assessments of ED potential. Factors, such as 
metabolism, pharmacokinetics and tissue distribution, may 
influence the potency and efficacy of chemicals and their 
interactions with receptors in vivo. Therefore, in addition 
to characterising ED effects, exposure-driven NGRAs 
according to the consumer use scenarios will help to refine 
the assessment further.

In conclusion, results using in vitro assays and in sil-
ico models for effects on ER and AR were comparable. 
The results from in vitro assays and in silico assessments 
should be used in combination and interpreted with other 
information sources to assess the potential ED effects of 
chemicals. As the ED system is more complex than is pos-
sible to cover using the available NAMs evaluated in this 
study, further studies with more chemicals and different 
assays (e.g. reflecting different pathways and mechanisms, 
such as the thyroid pathway) covering broader chemical 
and biological spaces may be necessary to detect and char-
acterise potential ED effects of chemicals.
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