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Abstract
Drug-induced intrahepatic cholestasis (DIC) is a main type of hepatic toxicity that is challenging to predict in early drug 
development stages. Preclinical animal studies often fail to detect DIC in humans. In vitro toxicogenomics assays using 
human liver cells have become a practical approach to predict human-relevant DIC. The present study was set up to identify 
transcriptomic signatures of DIC by applying machine learning algorithms to the Open TG-GATEs database. A total of 
nine DIC compounds and nine non-DIC compounds were selected, and supervised classification algorithms were applied 
to develop prediction models using differentially expressed features. Feature selection techniques identified 13 genes that 
achieved optimal prediction performance using logistic regression combined with a sequential backward selection method. 
The internal validation of the best-performing model showed accuracy of 0.958, sensitivity of 0.941, specificity of 0.978, 
and F1-score of 0.956. Applying the model to an external validation set resulted in an average prediction accuracy of 0.71. 
The identified genes were mechanistically linked to the adverse outcome pathway network of DIC, providing insights into 
cellular and molecular processes during response to chemical toxicity. Our findings provide valuable insights into toxicologi-
cal responses and enhance the predictive accuracy of DIC prediction, thereby advancing the application of transcriptome 
profiling in designing new approach methodologies for hazard identification.

Keywords  Drug-induced cholestasis · Feature selection · Machine learning · Supervised classification · Wrapper feature 
selection

Introduction

Drug-induced liver injury (DILI) accounts for over 50% of 
all cases of acute liver failure cases in Western countries 
(Vinken 2018). This clinical concern causes one in three 
market withdrawals during pre-marketing and post-market-
ing phases, resulting in significant costs for pharmaceutical 
companies (Dirven et al. 2021). Depending on the pathologi-
cal patterns of liver injury, DILI can be classified into three 
categories, namely cholestatic, hepatocellular, and a mixed 
type of injury (Kullak-Ublick 2013). Drug-induced intra-
hepatic cholestasis (DIC), characterized by bile acid (BA) 
accumulation in the liver, constitutes a major subgroup of 
total DILI cases (Gijbels et al. 2020). It occurs when a drug 
disturbs BA homeostasis, leading to an increase in hepato-
toxic effects of BAs (Shin et al. 2020).

Currently, preclinical drug toxicity testing relies heavily 
on animal models (Dirven et al. 2021). Despite posing a 
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serious ethical problem, these animal-based toxicity predic-
tions have shown limited relevance for humans, likely due 
to the significant interspecies-related differences in hepato-
cellular function, drug metabolism, and pharmacokinetics 
(Perez Santin et al. 2021). Preclinical animal studies indeed 
often fail to detect DIC due to substantial variances in tissue-
specific BA compositions and levels as well as in the subse-
quent cellular responses between these laboratory animals 
and humans (Thakare et al. 2018).

To address this issue, substantial efforts have been 
devoted to developing and implementing new approach 
methodologies aiming to move away from animal testing 
toward animal-free and human-relevant in vitro assays, in 
silico methods, and other biotechnological and computa-
tional approaches in chemical hazard assessment (Andersen 
et al. 2019). In vitro toxicogenomics, particularly those using 
human liver cells, have become a more convenient and prac-
tical approach to assess and predict human-relevant DILI. 
Transcriptomic analysis, providing information on global 
gene expression profiles in response to a compound expo-
sure, has facilitated our molecular understanding of toxi-
cological mechanisms and has shown potential in advanc-
ing drug safety assessment. For example, human in vitro 
transcriptomics-based tests have produced promising results 
in differentiating between genotoxic and non-genotoxic 
chemicals (Magkoufopoulou et al. 2012; Van den Hof et al. 
2014). Despite these positive developments, implementing 
transcriptomics measurements in large-scale risk assessment 
workflows still is challenging. In this respect, conventional 
differential expression analysis usually leads to outcomes 
consisting of hundreds or even thousands of genes, making 
it unsuitable for high-throughput laboratory testing (Smith 
et al. 2020). Machine learning (ML), a branch of artificial 
intelligence, enables computers to learn from data and make 
predictions with minimal human intervention (Wu and Wang 
2018). Applying ML approaches to transcriptomic profil-
ing in toxicity studies allows recognizing distinct molecular 
patterns associated with drug-induced toxicity. Moreover, 
feature elimination algorithms, which are techniques ena-
bling to identify key features that contribute to the disease of 
interest, can assist in reducing the feature size used in hazard 
prediction (Yang et al. 2015).

The goal of this study was to construct a classifier from 
high-dimensional microarray data to improve hepatotoxicity 
prediction and use feature elimination algorithms to iden-
tify key feature genes for DIC. In particular, we propose a 
hybrid approach leveraging (i) a wild list of DIC-associated 
genes identified by differential expression analysis, (ii) an 
optimal subset of differentially expressed genes (DEGs) 
with maximum relevance for predicting the target variable 
selected using supervised ML methods, and (iii) evaluation 
of the discriminatory power of the established model and the 
selected DIC signature. To this end, we mined the publicly 

available database Open Toxicogenomics Project-Genomics 
Assisted Toxicity Evaluation Systems (TG-GATEs) (Igar-
ashi et al. 2015), which contains microarray-based gene 
expression profiles of primary human hepatocytes (PHHs) 
in response to over 150 chemical compounds. The genes 
of interest were benchmarked against previously introduced 
adverse outcome pathway(AOP) network for DIC (Gijbels 
et al. 2020; Vinken et al. 2013) that have indicated that a 
number of molecular initiating events (MIEs) (i.e., trans-
porter changes, hepatocellular changes and bile canalicular 
alterations) and key events (KEs) (i.e., inflammation, mito-
chondrial impairment, oxidative stress, endoplasmic reticu-
lum (ER) stress and the simultaneously triggered adaptive 
response) driving the pathogenesis of DIC.

The overall workflow of this study is presented in Fig. 1.

Materials and methods

Compound selection and labeling

A total of 18 compounds, consisting of 9 DIC and 9 non-
DIC compounds, were utilized to create the training set, 
as they had transcriptome data accessible in the Open TG-
GATEs database. To assess the model’s generalizability, 
gene expression profiles from human hepatoma HepG2 cells 
treated with ten compounds (five DIC and five non-DIC) 
were retrieved from the GEO database to form an external 
test set.

Compounds in the training set were labeled DIC-positive 
when their cholestasis mechanisms in humans were rela-
tively clear. DIC-negative drugs met either of two criteria: 
(i) classified as ‘No-DILI concern’ in DILIrank, a database 
categorizing the DILI potential of over 1000 FDA-approved 
drugs (Chen et  al. 2016), or (ii) no hepatotoxicity and 
genotoxicity reports were found in the LiverTox database 
(Hoofnagle et al. 2013) and EURL ECVAM Ames-positives 
consolidated genotoxicity and carcinogenicity database 
(Madia et al. 2020).

To map the full mechanistic scenario of DIC, nine 
model cholestatic compounds were chosen for their 
known abilities to induce DIC in primary human hepato-
cytes through diverse toxic mechanisms. The positive 
compounds include (i) chlorpromazine (CPZ, an antipsy-
chotic medication), (ii) cyclosporine A (CSA, an immu-
nosuppressant medicine), (iii) erythromycin ethylsucci-
nate (EES, an antibiotic), (iv) glibenclamide (GBC, an 
oral anti-diabetic medication), (v) ketoconazole (KC, an 
antifungal medication), (vi) methyltestosterone (MTS, 
an anabolic–androgenic steroid), (vii) nifedipine (NFD, 
a calcium channel blocker), (viii) rifampicin (RIF, a mac-
rolide antibiotic), and (ix) ticlopidine (TCP, an antiplatelet 
medication). These compounds are known to cause liver 
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cholestasis via different pathophysiological mechanisms, 
indicating a number of molecular initiating events (MIEs) 
(i.e., transporter changes, hepatocellular changes and bile 
canalicular alterations) and key events (KEs) (i.e., inflam-
mation, mitochondrial impairment, oxidative stress, endo-
plasmic reticulum (ER) stress and the simultaneously trig-
gered adaptive response) driving the pathogenesis of DIC.

For the external test set retrieved from the National 
Center for Biotechnology Information Gene Expres-
sion Omnibus (GEO) (Barrett et al. 2013), less stringent 
criteria were applied. DIC-positive compounds were 
selected based on clinical case reports or peer-reviewed 
articles indicating cholestasis-inducing mechanisms. 
DIC-negative compounds included VITC, DMAN, RES, 
and the hepatoprotective QUE (Diabetes et  al. 2012). 

Additionally, acetaminophen (APAP), a well-known hepa-
totoxin with distinct liver injury mechanisms, was labeled 
DIC-negative.

Only one DIC-positive compound, CSA, was shared 
between the training and validation sets. The selected com-
pounds and their abbreviations are provided in Supplemen-
tary Table 1. The Supplementary Table 2 presents the mech-
anisms involved in the adverse effects of the DIC-positive 
compounds within the training set.

Data collection and normalization

The training set utilized gene expression data from the Open 
TG-GATEs database, containing microarray-based profiles 
from in vitro cultured primary human hepatocytes (PHHs) 

Fig. 1   Workflow of this study. 
Various machine learning 
algorithms and feature selection 
methods were employed. ADA 
AdaBoost, Gaussian Gaussian 
process classifier, GBC gradi-
ent boosting classifier, KNN 
K-nearest neighbors, LR logistic 
regression, NNMLPC neural 
network multilayer perceptron 
classifier, RF random forests, 
RFE recursive feature elimina-
tion, SBS sequential backward 
selection, SFS sequential 
forward selection, SVM sup-
port vector machine, XGBoost 
extreme gradient boosting
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and in vivo rat studies after treatment with over 150 com-
pounds (Igarashi et al. 2015). The selected 18 compounds’ 
in vitro gene expression profiles were retrieved from PHHs 
treated at 2 time points (8 and 24 h) with 3 concentrations. 
The highest concentration defined the maximally tolerated 
dose with an 80–90% relative survival ratio. The middle- and 
high-dose levels had a ratio of 1:5.

For the external test set, transcriptome expression pro-
files in human hepatoma HepG2 cells were retrieved from 
published data (GEO accession number: GSE28878) (Mag-
koufopoulou et al. 2012) after exposure to the selected ten 
compounds and solvents for 12 and 24 h.

Gene expression profiles were measured using the Affym-
etrix GeneChip in both sets, and data were normalized using 
the robust multi-array average (RMA) method (affy package 
from R Bioconductor https://​bioco​nduct​or.​org/).

Differential expression (DE) analysis

To identify DEGs upon treatment of PHHs with DIC or non-
DIC compounds at each time point, statistical analyses were 
performed on the batch-corrected gene expression data using 
the limma package from R/Bioconductor. DEGs at each time 
point were defined as those transcripts with a |fold change 
(FC)|≥ 1.2 and Benjamini–Hochberg adjusted p value ≤ 0.05 
in DIC-treated PHH relative to non-DIC-exposed cells. 
When analyzing the significance of the differential expres-
sion, two approaches were used, namely (i) directly com-
paring the differences of mean expression levels between 
the two groups using the batch-corrected gene expression 
values (rawExpression-derived DEGs: “DEGs”) and (ii) for 
each gene, the solvent controls were subtracted from the 
treated values. The batch-solvent-corrected gene expres-
sion values were used to investigate DEGs discriminating 
between DIC and non-DIC treatments (deltaChange-derived 
DEGs: “deltaDEGs”). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses of the two 
DEG subsets performed using KEGGgraph package in R and 
Bioconductor. A p value ≤ 0.05 was considered statistically 
significant. Both the DEGs and deltaDEGs were extracted 
from the batch-corrected and the batch-solvent-corrected 
expression data for the following analyses.

Machine learning models

We employed eight classification algorithms (logistic 
regression (LR), random forest (RF), Gaussian process 
(Gaussian), support vector machine (SVM), neural network 
multilayer perceptron classifier (NNMLPC), K-nearest 
neighbors (KNN), adaptive boosting (ADA), and extreme 
gradient boosting (XGBoost)) programmed in Python using 
the scikit-learn (sklearn) package (Pedregosa et al. 2011). 
Hyperparameter optimization and model training were 

performed on the training set (70% of the data) (Supplemen-
tary Table 3) using a fivefold grid-search cross-validation 
strategy. Feature importance was estimated using permuta-
tion-based feature selection.

To select features that are important for a model, per-
mutation feature importance (PFI) scores for the full set of 
features were calculated. Features with nonzero positive per-
mutation-based importance scores were selected and used in 
the following analysis. To further select the most significant 
features related to a compound’s potential to induce DIC, 
three wrapping algorithms available in sklearn, including 
two sequential search approaches (i.e., sequential forward 
(SFS) and backward (SBS) selection) (Rodriguez-Galiano 
et al. 2018) and RFE (Youssef et al. 2019), were adopted to 
select the optimal feature subsets containing the minimum 
number of genes.

To assess the models’ performance, we conducted 100-
round, 5-fold cross-validation in the training sets and evalu-
ated accuracy, area under the curve (AUC), sensitivity, spec-
ificity, positive predictive value (PPV), negative predictive 
value (NPV), and F1-scores. The feature subset with the 
least number of genes and the highest mean value across all 
evaluation metrics was considered the optimal feature set.

External validation

The developed prediction model and DIC feature genes 
were tested on an external validation set with nine out of 
ten unseen compounds (Supplementary Table 1). The Gauss-
ian and LR models, along with the identified relevant genes, 
were applied to the batch-corrected and batch-solvent-cor-
rected validation sets, respectively. Accuracy, AUC, sensitiv-
ity, specificity, PPV, NPV, and F1-scores were calculated.

Results

Batch effect evaluation and removal

Technical variables in microarray-based gene expression 
studies, such as sample preparation and labeling, can intro-
duce artifacts that obscure biological effects (Coppola 2011). 
The TG-GATEs dataset, containing data from multiple 
research organizations, may be affected by non-biological 
variables.

To address this, we built models using integrated tran-
scriptional profiles derived from 18 compounds. These 
profiles were measured using six different lots of PHHs 
(CELL0020, 0030, 0040, 0050, 0060, and 0080) (Igar-
ashi et al. 2015), and differences between the lots were 
considered a batch effect. Supplementary Fig. 1a reveals a 
batch effect associated with the cell lot number, with the 
CELL0030 array samples clearly separated from the rest. 

https://bioconductor.org/
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This effect was also evident in the hierarchical clustering 
dendrogram (Supplementary Fig. 2a). However, after apply-
ing batch correction, the effect was no longer present in the 
PCA (Supplementary Fig. 1b–f) or the hierarchical cluster-
ing outcome (Supplementary Fig. 2b). After correction, time 
point emerged as the most significant factor contributing to 
the expression data segregation. (Supplementary Fig. 1b).

Outcomes of the DE analyses

Limma package (Ritchie et al. 2015) was used to obtain 
DEGs (FC ≥ 1.2; Benjamini–Hochberg adjusted p-value 
of ≤ 0.05) between DIC and non-DIC treatments. As time 
point became the variable capturing maximal variance in the 
batch-effect-corrected data, the DE analysis was conducted 
at the different time points.

Using the batch-corrected but solvent-uncorrected data, 
133 and 69 genes were differentially expressed at 8 h and 
24 h, respectively. The batch and solvent-corrected data 
yielded 66 and 209 DEGs at the 2 time points. Combining 
the results of the 2 time points, the rawExpression and del-
taChange datasets, respectively, generated 174 (the “DEG” 
set) and 209 (the “deltaDEG” set) unique genes, with a 
total overlap of 46 between the 2 gene sets (Supplementary 
Fig. 3).

To gain further insight into the 2 sets of identified genes 
at the functional level, KEGG pathway analyses were 
performed for time-point-specific gene lists derived from 
both datasets (Supplementary Table 4). In total, the DEGs 
derived from the 8-h dataset resulted in 21 significant path-
ways, where the “Drug metabolism-cytochrome P450” (p 
value = 0.0082), “Metabolism of xenobiotics by cytochrome 
P450” (p value = 0.0114), and “Taurine and hypotaurine 
metabolism” (p value = 0.0126) related pathways appeared 
in the top 10 highest ranked KEGG results. It is worth 
mentioning that “Bile secretion” and “ABC transporters”-
related pathways were also enriched, but the results were 
not significant (p value = 0.0723 and 0.3826, respectively). 
At 24 h, the DIC-associated DEGs only resulted in four sig-
nificantly enriched KEGG pathways (“Protein processing in 
endoplasmic reticulum” with p value = 2.01E-07, “Influenza 
A” with p value = 0.0059, “Longevity regulating pathway-
multiple species” with p value = 0.0348 and “Hepatitis C” 
with p value = 0.04229). Notably, “p53 signaling pathway” 
and “Bile secretion” were also enriched with marginally sig-
nificant p values (p value = 0.061 and 0.065, respectively).

At the early time point, the genes on the deltaDEG list 
yielded fewer significant results than the DEG-produced 
results. At 8 h, four pathways (“Terpenoid backbone bio-
synthesis”, “Legionellosis”, “FoxO signaling pathway”, and 
“Biosynthesis of amino acids”) were significantly enriched 
as the deltaDEGs. Although the “Bile secretion” was also 
enriched, the result was not significant (p value = 0.3175). 

At the later time point, the deltaDEGs resulted in 12 sig-
nificantly enriched pathways, including the “Porphyrin 
metabolism”, an activity that, once disrupted, could lead to 
cholestatic phenotype and oxidative stress that contribute to 
the development of hepatobiliary disease in patients (Casa-
nova-Gonzalez et al. 2010; Smith and Foster 2018). Besides, 
a marginally significant enrichment in “Primary bile acid 
biosynthesis” has also been observed (p value = 0.069). In 
addition, two other cholestasis-relevant pathways, “Bile 
secretion” and “ABC transporters”, appeared, whereas the 
results were not significant (p value = 0.171 and 0.510, 
respectively).

Model performance using PFI‑selected features

The KNN method using 92 PFI-selected features achieved 
the highest mean predictive value (0.959) for the DEG set 
(Supplementary Table 5, section A). XGBoost and Gaussian 
with 18 and 39 features, respectively, also showed promis-
ing results with mean predictive values of 0.950 and 0.935, 
respectively. However, the ADA and RF models with 9 and 
15 features, respectively, had suboptimal performance with 
mean predictive values below 0.9 and were not used in the 
following feature reduction steps. Although the NNMLPC 
model demonstrated good performance, it required over 100 
features and was, therefore, not continued in the study due 
to the high computational demands of running the program.

For the deltaDEG set (Supplementary Table 5, section B), 
the SVMlinear model using 76 PFI-selected features had the 
highest mean predictive value (0.978), while LR and SVM-
linear with 17 and 15 features, respectively, also showed 
promising results with mean predictive values of 0.959 and 
0.906, respectively. Based on these results, three models 
established using DEGs (KNN, XGBoost, and Gaussian) 
or the deltaDEG set (LR, SVMlinear, and NNMLPC) were 
continued with the further feature reduction steps.

Enhancing model performance through feature 
subset optimization via wrapper methods

When comparing the DEG-generated results (Supplemen-
tary Table 6, section A), Gaussian model performed best 
(SFS = 0.961, SBS = 0.96, RFE = 0.934) among KNN and 
XGBoost models for each feature subset (KNN: SFS = 0.961, 
SBS = 0.95 and RFE = 0.923; and XGBoost: SFS = 0.926, 
SBS = 0.919 and RFE = 0.917). The Gaussian model con-
structed using 17 features selected using the SBS method 
showed an optimal overall predictive performance (mean 
predictive value = 0.960). Although this combination gave a 
slightly lower result than the prediction outcomes produced 
using the Gaussian model and SFS-selected 30 features 
(mean predictive value = 0.961) and the KNN together with 
SFS-identified 24 features (mean predictive value = 0.960), 
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the differences were not significant (Student’s t test p 
value = 0.318 and 0.814, respectively).

DeltaDEG results (Supplementary Table 6, section B) 
showed SVMlinear had the best performance for predict-
ing DIC, but with a larger number of features. LR with a 
similarly small number of features outperformed NNMLPC 
(LR: SFS = 0.959, SBS = 0.962, RFE = 0.959, NNMLPC: 
SFS = 0.916, SBS = 0.915, RFE = 0.916). Gaussian model 
with 17 genes and LR with 13 features from feature elimina-
tion were further assessed using external test set.

Results of external validation

To further evaluate generalizability, we assessed the per-
formance of the two model-feature combinations using an 
external test set, including nine drugs previously unseen by 
the models. The Gaussian model with 17 selected features 
performed poorly with a mean predictive value of 0.471 
(accuracy: 0.475, AUC: 0.487, sensitivity: 0.400, specific-
ity: 0.550, PPV: 0.471, NPV: 0.478 and F1-score: 0.432). 
Out of 120 samples in the batch-corrected external test set, 
28 and 35 were incorrectly predicted at 12-h and 24-h time 
points, respectively.

Using the batch- and solvent-corrected external data (60 
samples), the LR model with deltaDEG-derived 13 genes 
yielded an over 0.706 mean predictive value (accuracy: 
0.700, AUC: 0.716, sensitivity: 0.767, specificity: 0.633, 
PPV: 0.676, NPV: 0.731, and F1-score: 0.719). However, 
18 of the 60 samples were classified as having a toxicity 
level different from the expected ground truth, including 9 
samples each measured at 12-h and 24-h time points. Nota-
bly, the LR model accurately predicted samples generated 

from 3 of the 5 DIC-positive compounds after 12-h expo-
sures and correctly recognized 3 DIC-positive and 1 DIC-
negative drugs among all the 24-h cases, implying that the 
13 deltaDEG-derived features contain common information 
shared by cholestasis-inducing compounds.

The biological interpretation of the identified DIC 
signature

The previously published AOP network on DIC offers a 
conceptual framework that consolidate existing knowledge 
and research findings related to the molecular mechanisms 
that contribute to the development of intrahepatic cholestasis 
(Gijbels et al. 2020; Vinken et al. 2013). To identify poten-
tial targets for hazard characterization, we analyzed the bio-
logical functions and the direction of expression changes of 
the genes that were significantly differentially expressed in 
DIC-treated samples compared to non-DIC-treated samples, 
and were selected by the LR model to distinguish between 
the two groups.

Table 1 summarizes the general functions of these genes, 
which were grouped into various biological activities. We 
found that 9 of 13 genes were associated with KEs known to 
be associated with the development of cholestasis, including 
BA synthesis, bile flow disruption, oxidative stress, inflam-
mation, ER stress, and apoptosis. In addition to genes asso-
ciated with deteriorative response-related key events, this 
DIC signature also includes genes linked to the adaptive 
response initiated to counteract the BA accumulation (i.e., 
TSKU and ALAS1). The putative functions of two less inves-
tigated genes (i.e., SLC16A3 and VSIG10L) were found to 
correlate with previously discovered key events involved in 

Table 1   General functions of genes identified using the machine learning strategy developed in this study

BA bile acid, ER endoplasmic reticulum
*Biological activity that overlaps with the known key event associated with the development of chemical-induced cholestasis, italic general 
function: putative function

Gene symbol Gene name General function

ALAS1 5'-aminolevulinate synthase 1 Adaptive response*
LMAN1 Lectin, mannose binding 1 ER stress*
MMP3 Matrix metallopeptidase 3 ECM remodeling
NDUFA4L2 NDUFA4 mitochondrial complex associated like 2 Oxidative stress*; Apoptosis*
PMP22 Peripheral myelin protein 22 Apoptosis*
PPDPF Pancreatic progenitor cell differentiation and proliferation Apoptosis*
SEMA6C Semaphorin 6C Apoptosis*
SLC16A3 Solute carrier family 16 member 3 Bile flow disruption
SLC9A3R2 NHERF family PDZ scaffold protein 2 BA synthesis*
TM4SF1 Transmembrane 4 L six family member 1 Apoptosis*
TMPRSS11D Transmembrane serine protease 11D Inflammation*
TSKU Tsukushi, small leucine rich proteoglycan Adaptive response*; BA synthesis*
VSIG10L V-Set and immunoglobulin domain containing 10 like Oxidative stress; autophagy
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the development of cholestasis, specifically bile flow disrup-
tion, and autophagy.

To determine the direction of expression changes for indi-
vidual genes, we used the training dataset and established 
the expression levels following 8 h of solvent treatment as 
the baseline values, and plotted time-course transcriptome 
changes for genes identified by the LR model as impor-
tant for distinguishing between DIC and non-DIC-treated 
samples (Fig. 2). Out of the 13 identified genes, 4 (ALAS1, 
TMPRSS11D, LMAN1, and TSKU) consistently showed ele-
vated expression levels in DIC-treated samples compared 
to non-DIC-exposed specimens. Conversely, the other nine 
genes had higher expressions in non-DIC-treated samples. 
PMP22, VSIG10L, TM4SF1, and SEMA6C were induced 
after high-dose non-DIC treatments, but suppressed over 
time after exposure to DIC compounds. PPDPF, SLC16A3, 
NDVFA4L2, and SLC9A3R2 showed continued increases in 
expression in non-DIC-treated cells, whereas their expres-
sion was first inhibited at the early time point but then upreg-
ulated in DIC-treated cells. MMP3 showed a similar declin-
ing trend in expression after treatment with both DIC and 
non-DIC compounds, with a more intense drop in expression 
in DIC-exposed cells.

Discussion

Predicting drug-induced cholestasis (DIC) based solely 
on bile acid transporter malfunctions has had limited suc-
cess. Identifying a DIC signature using microarray data and 
machine-learning-based feature selection approaches can 
offer a data-driven method to distinguish toxicants (Mahen-
dran et al. 2020). This study aimed to build a prediction 
model using high-dimensional microarray data and ML-
based feature selection approaches to improve dimensional-
ity reduction and identify a translatable DIC signature. Such 
a signature could aid in in vitro DIC prediction, facilitating 
early detection of this chemical-induced toxicity.

DE analysis identified genes revealing the mechanisms 
underlying DIC in PHHs by comparing transcriptomic pat-
terns of cells exposed to DIC and non-DIC compounds using 
batch-corrected and solvent-corrected training data. Each 
comparison yielded distinct subsets of DEGs (174 and 256 
genes). The DEG set showed more significant pathways 
related to toxic responses and DILI development, especially 
at early time points, while the deltaDEG set yielded fewer 
significant results and limited hepatotoxicity-relevant path-
ways. However, the optimized Gaussian model on DEGs did 
not perform as well as the LR model on deltaDEGs in the 
external validation set. A possible explanation for this dis-
crepancy could be that, in addition to the size of the gene set, 
gene set composition might influence enrichment analysis 
sensitivity. Each individual gene may have varying degrees 

of association with the specified trait that the set is designed 
to encapsulate, and the sensitivity of the analysis can be 
affected by the mixture of strongly associated and weakly 
associated genes in the set (Davies et al. 2010). These find-
ings suggest that, while the removeBatchEffect function cor-
rected the batch effect in the training set, other factors such 
as the solvent factor may still introduce noise into the data. 
Additional solvent correction may reduce noise and enhance 
transcriptomic accuracy. Therefore, this study highlights that 
a careful gene set selection is crucial for robust enrichment 
analysis.

DE analysis often generates numerous correlated candi-
date genes, leading to redundant information and reduced 
translatability for laboratory testing (Abbas and El-Manza-
lawy 2020) and lowered translatability of the DE findings 
for high-throughput laboratory testing. To address this, a 
permutation-based approach was employed to refine the 
results that estimate feature relevance by measuring changes 
in model performance upon permuting feature vectors (Alt-
mann et al. 2010). This method avoids bias introduced by 
Gini importance and coefficient-based approaches, which 
may overlook feature interactions or be affected by multicol-
linearity and outliers in the data (Altmann et al. 2010) (Midi 
et al. 2010; Strobl et al. 2007) (Park and Liu 2011).

ML models were assessed for predicting outcomes based 
on transcriptomic data. Internal validation yielded promis-
ing results for DEG and deltaDEG sets, but the Gaussian 
model performed poorly on the batch-corrected external 
set. Despite the related 17 features showing mechanistically 
plausible functions (Supplementary Table 7), poor perfor-
mance of the Gaussian model might be due to the structural 
differences between the training and external sets. However, 
the LR model, using 13 genes, achieved a mean predictive 
value of 0.71 in the batch- and solvent-corrected external 
validation dataset. The identified DIC 13-gene signature 
exhibited mechanistically plausible functions related to key 
events within the cholestasis AOP network (Gijbels et al. 
2020; Vinken et al. 2013), such as bile flow disruption, 
inflammation, ER stress, oxidative stress, autophagy, apop-
tosis, and adaptive response. These findings suggest that 
removing solvent controls improved the generalizability of 
the model, producing less noisy transcriptomic profiles and a 
structurally similar external set. The 13-gene signature dem-
onstrated a broad functional impact in DIC-related pathways.

In detail, we observed a significant decrease in the expres-
sion of SLC9A3R2, a member of the Na + /H + exchanger 
family and a PDZ scaffolding protein, in PHHs exposed to 
DIC at an early time point. SLC9A3R2 is involved in vari-
ous physiological activities, such as transepithelial Na + and 
water absorption, acid–base and fluid volume homeostasis, 
and regulation of membrane receptors and transport proteins 
(Xu et al. 2018). One of the transport proteins regulated by 
SLC9A3R2 is the scavenger receptor class B type 1 (SR-B1), 
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which is responsible for converting hepatic HDL-cholesteryl 
ester to BAs (Lu et al. 2017). Previous studies have shown 
that SLC9A3R2, together with NHERF1, regulates SR-B1 
protein levels by promoting its degradation (Lu et al. 2017).
For this reason, the decreased expression of SLC9A3R2 due 
to DIC exposure may inhibit the degradation of SR-B1, lead-
ing to increased production of BAs in PHHs. In contrast to 
the upregulation observed in non-DIC samples, DIC expo-
sure downregulated expression of SLC16A3, a gene that 
encodes monocarboxylate transporter 4 (MCT4), a proton-
coupled transmembrane protein responsible for transport-
ing BAs and organic acids across cell plasma membranes 
(Schumann et al. 2020). Although the relationship between 
SLC16A3 and cholestasis pathogenesis is unclear, recent 
research has identified this gene as a potential prognostic 
biomarker related to intrahepatic cholangiocarcinoma cell 
reprogramming (Dong et al. 2022). Hence, we speculate that 
the reduced SLC16A3 expression induced by DIC exposure, 
at least in early time points, may lead to altered BA metabo-
lism or transport in PHHs, potentially resulting in disrupted 
BA homeostasis and the accumulation of noxious BAs in 
liver cells. The observed changes in the expression of the 
two genes in response to DIC exposure may have affected 
BA metabolism and transport, resulting in the accumulation 
of noxious BAs and activation of a deteriorative response 
in the liver.

The initial stages of the deteriorative response to DIC 
involve inflammation and mitochondrial impairment, which 
can result in oxidative stress and in turn trigger ER stress in 
the liver 4. The expression of TMPRSS11D showed a dose-
dependent and/or time-dependent increase in response to 
DIC exposure. The protein product of this gene, also known 
as human airway trypsin-like protease (HAT), has been 
reported to promote pro-inflammatory responses in epithe-
lial cells by enhancing cytokine production and recruiting 
inflammatory cells (Menou et al. 2017). This suggests that 
the induction of TMPRSS11D may play a role in amplify-
ing the inflammatory response in PHHs exposed to chole-
static compounds. NDUFA4L2 encodes an electron trans-
port chain complex I subunit located in mitochondria, which 
acts as an antioxidant to regulate cell survival by restraining 
reactive oxygen species (ROS)-mediated apoptosis (Meng 
et al. 2019). After DIC treatment, NDUFA4L2 expression 
declined early on and remained lower compared to non-DIC 

samples. Previous studies have shown that inactivation of 
NDUFA4L2 led to ROS accumulation and increased apopto-
sis in hepatocellular carcinoma cells (Lai et al. 2016), while 
upregulation of NDUFA4L2 attenuated oxidative stress 
associated with intervertebral disc degeneration (Liu et al. 
2021). The observed decrease in NDUFA4L2 expression in 
response to DIC exposure, therefore, may result in enhanced 
oxidative stress and increased apoptosis in treated cells. In 
addition to the changes in the expression of genes of interest, 
DIC treatment also induced a significant increase in LMAN1 
expression, which encodes ERGIC-53, a protein located in 
the ER-Golgi intermediate compartment. It has been shown 
that ER stress can regulate the transcriptional expression of 
LMAN1, which carries out functions in the post-ER compart-
ments of the secretory pathway (Renna et al. 2007). Thus, 
the increase in LMAN1 expression observed after the DIC 
exposure could indicate the possibility of ER stress activa-
tion. Our findings imply that DIC-exposure-induced changes 
in the expression of TMPRSS11D, NDUFA4L2 and LMAN1 
genes may contribute to inflammatory response amplifica-
tion, oxidative stress enhancement, and ER stress activation 
during initial stages of cholestasis, which can lead to cell 
death, another KE in the AOP network for DIC.

In addition to NDUFA4L2, the expression of four other 
apoptosis regulators was affected by the DIC compound 
exposure, which could potentially contribute to cell death 
during the initial stages of cholestatic liver injury. Spe-
cifically, the expression of TM4SF1, a gene encoding a 
transmembrane protein, was found to be repressed in a 
time- and dose-dependent manner by DIC treatment. Previ-
ous studies have demonstrated that TM4SF1 exerts an anti-
apoptotic effect on cells, such as human hepatoma HepG2 
cells (Huang et al. 2016) and human gastric cancer cells 
(Wei et al. 2018). Consequently, the suppressed expres-
sion of TM4SF1 after exposure to DIC compounds could 
promote apoptosis in PHHs, contributing to the observed 
adverse effect. SEMA6C expression was elevated in non-
DIC-treated cells after high-dose treatments but decreased 
in cholestatic compound-exposed cells. SEMA6C encodes an 
axon guidance factor that may function as a tumor suppres-
sor by inhibiting the AKT/GSK3 signaling pathway, which 
in turn activates the intrinsic mitochondrial apoptotic event 
through the PI3K/Akt signaling axis (Hung et al. 2022). The 
increased expression of SEMA6C after non-DIC treatments 
could, therefore, potentially prevent cells from undergoing 
apoptosis in response to different stimuli, but this protec-
tive effect may not be present in DIC-treated cells. Further-
more, our study revealed upregulated expression of PMP22 
and PPDPF in non-DIC-treated PHHs in a time- and dose-
dependent manner, but their expression was relatively low-
ered in DIC-exposed cells. PMP22 and PPDPF, which are 
highly expressed in bile canaliculi (Notterpek et al. 2001) 
and human hepatocytes (Ma et al. 2021), have been shown 

Fig. 2   Time-course changes of the differentially expressed genes. 
Gene expression levels were measured at different time points after 
treatment, and the changes in expression levels were compared to the 
baseline values, which were defined as the average expression levels 
in the 8-h solvent control samples. The expression levels are shown in 
relative units, with higher values indicating higher expression levels. 
The expression levels in the DIC-treated samples are shown in red, 
while those in the non-DIC-treated samples are shown in green (color 
figure onlie)

◂
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to have anti-apoptotic effects in various cell types, such as 
lung (Yun et al. 2022), gastric (Hou et al. 2021), and neural 
cells (Sancho et al. 2001). As a result, the relatively low-
ered expression of these two genes in DIC-exposed cells 
may contribute to increased apoptosis. It is interesting to 
note that peroxisomal membrane protein encoded by PMP22 
(Fan et al. 1996) is considered a constituent of intercellu-
lar junctions in epithelia (Notterpek et al. 2001), suggest-
ing a potential role in maintaining tight junction integrity 
in hepatocytes.

Alongside the deteriorative response, an adaptive 
response is triggered to counteract the accumulation of 
BAs by activating nuclear receptors, such as the constitu-
tive androstane receptor (CAR) and farnesoid X receptor 
(FXR), which regulate the expression of genes involved 
in BA homeostasis to alleviate cholestasis 4. We observed 
that exposure to DIC compounds induced the expression 
of the TSKU and ALAS1 genes in a dose-dependent and/or 
time-dependent manner. As a target gene of CAR, TSKU 
plays a crucial role in BA synthesis (Zollner and Trauner 
2009). Its protein product can reduce cholesterol efflux and 
negatively regulate cholesterol conversion to BAs in rodents' 
livers (Mouchiroud et al. 2019). Increased TSKU expression 
after high-dose DIC treatments may mitigate BA toxicity via 
CAR-mediated adaptive responses. Similarly, FXR, another 
BA-activated nuclear receptor, is a direct regulator of human 
hepatic ALAS1 (Zollner and Trauner 2009). ALAS1 encodes 
a mitochondrial enzyme that catalyzes the rate-limiting step 
in heme synthesis in the liver (Maestro et al. 2021) and is 
critical in facilitating BA detoxification by providing suf-
ficient heme for newly synthesized apocytochromes (Peyer 
et al. 2007). The induction of ALAS1 expression after high-
dose DIC exposure may, therefore, suggest an adaptive 
response to cope with BA accumulation in PHHs.

Our analysis also revealed distinct expression patterns 
for MMP3 and VSIG10L in DIC and non-DIC compound 
treatments. Among these genes, MMP3 showed a remark-
able reduction in expression levels in both DIC and non-
DIC treatments, with a more pronounced repression in 
DIC-exposed cells. MMP3 encodes a matrix metalloprotein-
ase, which is known to play a critical role in maintaining 
extracellular matrix (ECM) homeostasis by breaking down 
MMP3-sensitive ECM components in physiological and 
pathological processes, such as liver fibrosis (Juran et al. 
2011; Miyahara et al. 2000). Interestingly, elevated MMP3 
expression has been observed in patients with primary bil-
iary cholangitis (PBC), a chronic cholestatic liver disease 
that often progresses to cholestasis, fibrosis, cirrhosis, and 
liver failure (Bauer and Habior 2022). This suggests that 
strong suppression of MMP3 expression induced by DIC 
exposure may lead to an imbalance between ECM produc-
tion and degradation, thereby increasing the risk of disease 
progression and exacerbating liver injury over prolonged 

treatment. This finding provide new insights into the bio-
logical mechanisms underlying the development of DIC 
and highlight the importance of MMP3 in maintaining liver 
homeostasis. VSIG10L is a poorly characterized gene, but 
studies have indicated a dual nature of its expression in rela-
tion to cancer development. While downregulated in esopha-
geal adenocarcinoma, it was upregulated in lung squamous 
cell carcinoma (Zhou et al. 2022). VSIG10L shares struc-
tural similarity with VSIG10 (Zhou et al. 2022), a gene regu-
lated by NFE2 like BZIP transcription factor 2 (NFE2L2) 
(Qian et al. 2015), which protects against oxidative stress 
(Wolf et al. 2016) and activates autophagy in epithelial cells 
(Chang et al. 2022). As such, VSIG10L may also have anti-
oxidant properties, which may explain its upregulation in 
non-DIC-treated cells. However, the exact role of VSIG10L 
in cancer development or other diseases and its transcrip-
tional changes remains unclear.

Overall, the feature selection pipeline presented in our 
research has great potential for improving the accuracy and 
reliability of transcriptomic profiling and gene set enrich-
ment analysis. The gene signature identified using the pipe-
line sheds new light onto the biological mechanisms of 
cholestasis development and identifies potential targets for 
intervention and hazard characterization.

In this study, we developed a data-driven approach for 
identifying a transcriptomic signature that can predict DIC. 
The results underscore the importance of validating predic-
tion models on independent datasets, as models that perform 
well during internal validation may not generalize well to 
different datasets that use unique compounds or measure-
ment techniques. Applying a solvent-correction step to tran-
scriptomic data can reduce bias and confounding effects, 
making the data more reliable and translatable to other 
data sets. By selecting model compounds that induce DIC 
through diverse toxic mechanisms, we identified a gene sig-
nature that has potential applications beyond the compounds 
used in this study. The identified features have biologically 
interpretable functions, mechanistically anchored in an AOP 
network, and provide new insights into molecular and cel-
lular behavior processes during DIC development, making 
them valuable tools for understanding and predicting toxi-
cological responses.
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