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Abstract

Pharmaceuticals and environmental contaminants contribute to hypercholesterolemia. Several chemicals known to cause
hypercholesterolemia, activate pregnane X receptor (PXR). PXR is a nuclear receptor, classically identified as a sensor of
chemical environment and regulator of detoxification processes. Later, PXR activation has been shown to disrupt metabolic
functions such as lipid metabolism and recent findings have shown PXR activation to promote hypercholesterolemia through
multiple mechanisms. Hypercholesterolemia is a major causative risk factor for atherosclerosis and greatly promotes global
health burden. Metabolic disruption by PXR activating chemicals leading to hypercholesterolemia represents a novel toxicity
pathway of concern and requires further attention. Therefore, we constructed an adverse outcome pathway (AOP) by col-
lecting the available knowledge considering the molecular mechanisms for PXR-mediated hypercholesterolemia. AOPs are
tools of modern toxicology for systematizing mechanistic knowledge to assist health risk assessment of chemicals. AOPs are
formalized and structured linear concepts describing a link between molecular initiating event (MIE) and adverse outcome
(AO). MIE and AO are connected via key events (KE) through key event relationships (KER). We present a plausible route
of how PXR activation (MIE) leads to hypercholesterolemia (AO) through direct regulation of cholesterol synthesis and via
activation of sterol regulatory element binding protein 2-pathway.
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Background

Hypercholesterolemia is a lipid metabolism disorder, defined
by high level of low-density lipoprotein (LDL) cholesterol
in the blood. Hypercholesterolemia is a major contributor
to the development of atherosclerosis, the leading cause of
mortality in developed countries (Ziegler et al. 2020). The
risk factors for hypercholesterolemia include sedentary life-
style, western diet, obesity as well as genetic predisposition
(Garg and Simha 2007; Ziegler et al. 2020). In addition,
pharmaceuticals and environmental chemicals elevate lipid
levels and in fact more than hundred drugs increasing total
cholesterol levels have been identified (Karpale et al. 2022).
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However, the mechanisms underlying chemical-induced
hypercholesterolemia remain poorly understood. Interest-
ingly, several drugs, which increase lipid levels, are known
to activate pregnane X receptor (PXR, NR112) (Karpale
et al. 2022).

PXR is a sensor of xenobiotics, detecting fluctuations
in chemical environment (Blumberg et al. 1998; Kliewer
et al. 1998). PXR recognizes various structurally diverse
endogenous and exogenous substances as ligands in a spe-
cies-specific manner (Kliewer et al. 1998). Known ligands
for PXR include pharmaceuticals (e.g., rifampicin, pheno-
barbital, clotrimazole) (Lehmann et al. 1998), pesticides
(e.g., metolachlor, propiconazole, permethrin pyrethroid)
and environmental contaminants such as polychlorinated
biphenyls (Lemaire et al. 2006). In addition to the originally
identified function as a regulator of detoxification functions,
PXR activation has been found to disturb cardiometabolic
functions such as glucose tolerance, lipid metabolism and
regulation of blood pressure (Hukkanen and Hakkola 2020).

Cholesterol homeostasis in mammalian cells is main-
tained by a feedback system depending on cholesterol level
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and modulating the transcription of genes responsible for
cholesterol synthesis and uptake (Brown and Goldstein
1997). A family of transcription factors called sterol regu-
latory element binding proteins (SREBPs) are the master
regulators of the feedback system. SREBP pathway activity
is regulated by cellular sterol level. In the condition of high
sterol level, SREBPs remain inactive, the expression of the
target genes is low, and consequently cholesterol synthesis is
repressed. Recently, PXR was shown to increase lipid levels
by SREBP-mediated mechanism inducing genes participat-
ing in cholesterol synthesis and uptake (Karpale et al. 2021).
Furthermore, PXR has been shown to directly regulate at
least one of the cholesterol synthesis genes (Gwag et al.
2019).

We applied an adverse outcome pathway (AOP) frame-
work to elucidate the mechanisms linking PXR activation to
increased level of plasma LDL cholesterol. AOPs are for-
malized and structured linear concepts connecting a molecu-
lar initiating event (MIE) to an adverse outcome (AO) via
key events (KE) and key event relationships (KER) (Ankley
et al. 2010). AOP summarizes existing knowledge to support
health risk assessment of chemicals. AOPs do not describe
complex cellular or molecular mechanisms but rather are
simplified versions of toxicity pathways focusing on essen-
tial events (Svingen et al. 2021). Based on AOP-wiki data-
base (https://aopwiki.org/events/245 accessed 25 Nov 2022),
PXR activation has been proposed as an MIE in two AOPs,
but neither of them links PXR activation to hypercholester-
olemia. Here, we describe strategy of AOP development,
which aims to explain the observed AO in terms of a MIE
and KEs (Villeneuve et al. 2014). The AOP was developed
according to the “Users' Handbook supplement to the Guid-
ance Document for developing and assessing Adverse Out-
come Pathways”, issued by the Organisation for Economic
Co-operation and Development the users’ handbook (OECD
2018).

Proposed mechanism for PXR-induced
hypercholesterolemia

Binding of a suitable ligand activates PXR, being the MIE
of the AOP (Fig. 1.). PXR activation leads to destabilized
structure of insulin-induced gene 1 (INSIG1) protein, the
first KE. Unstable structure of INSIG1 allows cholesterol-
independent activation of sterol regulatory element binding
protein 2 (SREBP2) which is the second KE in the path-
way. This further increases the transcription of SREBP2
target genes, leading to increased synthesis and activation
of proprotein convertase subtilisin kexin type 9 (PCSK9)
(KE3) and enzymes participating in cholesterol synthesis
(KE4). Moreover, PXR is able to directly activate squalene
epoxidase (SQLE) (KES), the rate-limiting enzyme of
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cholesterol synthesis. Increased level of PCSK9 in serum
leads to decreased amount of LDL receptors (LDLR) in
hepatocyte plasma membrane, causing diminished uptake
of LDL from circulation by liver. Simultaneously, activa-
tion of cholesterol synthesis enzymes enhances cholesterol
synthesis. Together these mechanisms lead to increased level
of plasma LDL cholesterol, which is the adverse outcome
(AO) of the pathway.

MIE: PXR activation (KE:245)
Key event description

The MIE, activation of PXR (NR112), is already described
in AOP-Wiki as a KE (KE:245, Activation PXR/SXR https://
aopwiki.org/events/245 accessed 25 Nov 2022). PXR recog-
nizes various structurally divergent endogenous and exog-
enous ligands (di Masi et al. 2009) due to its large, flexible,
and hydrophobic ligand binding domain (Zhou et al. 2009b).
Upon ligand binding, PXR forms a heterodimer with another
nuclear receptor, retinoid X receptor. The heterodimer then
binds to specific promoter sequences regulating transcription
of various genes involved in cellular metabolism and clear-
ance of xenobiotics and endotoxins in the liver and intes-
tine such as genes encoding cytochrome P450 enzymes and
transporter proteins (Kliewer et al. 1998; Zhou et al. 2009b;
Hakkola et al. 2016). PXR also interacts with other tran-
scription factors, which increases the complexity of regula-
tory networks (Hakkola et al. 2016).

Domain of applicability

PXR expression is well established in humans and rodents,
and PXR gene has been characterized in several verte-
brate species including zebrafish, frog, chicken, dog, pig,
and rhesus monkey (Jones et al. 2000; Moore et al. 2002).
PXR is expressed mainly in liver and intestine, and in low
levels in lungs, stomach, peripheral blood monocytes, the
blood-brain barrier, uterus, ovary, placenta, breast, osteo-
clasts, heart, adrenal gland, bone marrow, and certain
regions of the brain (Kliewer et al. 1998; Lamba et al. 2004;
Daujat-Chavanieu and Gerbal-Chaloin 2020). Expression of
PXR increases through life stages starting with low expres-
sion level during fetal and neonatal stages and reaching the
highest expression level in the adulthood (Daujat-Chavanieu
and Gerbal-Chaloin 2020). Despite the low expression level
during fetal development, the activity of PXR is induced
by PXR ligands in fetal liver (Xiang et al. 2020; Dai et al.
2021).

The DNA-binding domain of PXR is highly conserved,
but the ligand-binding domain differs between species (Jones
et al. 2000). Consequently, the ligand preference of PXR
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Fig. 1 Graphic representation of the adverse outcome pathway from
PXR activation to increased level of plasma LDL cholesterol. The
molecular initiating event (MIE) is activation of pregnane X recep-
tor (PXR), which leads to the first key event (KE), unstabilized
structure of insulin-induced gene (INSIGI1). Unstable structure of
INSIGI allows activation of sterol regulatory element binding protein
2 (SREBP2), the second KE in the pathway. Activation of SREBP2
increases the transcription of its target genes, leading to increased
synthesis and activation of proprotein convertase subtilisin kexin type
9 (PCSK9) (KE3) and enzymes participating in cholesterol synthesis

differs significantly between species (Kliewer et al. 1998).
Additionally, circadian variation and sex dimorphism of
PXR have been observed in murine models (Wolbold et al.
2003; Lu et al. 2013; Xiang et al. 2020; Dai et al. 2021). Sex-
specific activation of PXR has also been detected in human
hepatic cell lines, whereas the findings of sex-dependent
expression of PXR mRNA in human liver samples are incon-
sistent (Wolbold et al. 2003; Lamba et al. 2004; Xiang et al.
2020).

KER1 between PXR activation and stability
of INSIG1
Key event relationship description

Recently, PXR activation was suggested to destabilize
the structure of INSIG1 protein (Karpale et al. 2021).

(KE4). PXR directly activates squalene epoxidase (SQLE) (KES),
rate-limiting enzyme of cholesterol synthesis. Increased serum level
of PCSK9 leads to decreased amount of low-density lipoprotein
(LDL) receptors, causing diminished uptake of LDL from circulation
by liver. Simultaneously, activation of cholesterol synthesis enzymes
enhances cholesterol synthesis. These mechanisms lead to increased
level of plasma LDL cholesterol, the adverse outcome (AO) of the
pathway. Arrows represent direct key event relationships (KERs) that
link the KEs

Previously, PXR activation has been shown to alter the
expression of Insigl in vivo and in vitro (Roth et al. 2008;
Zhou et al. 2009a; Farmahin et al. 2019; Knebel et al. 2019).
Insulin-induced genes (INSIGI and INSIG2) code endoplas-
mic reticulum (ER) membrane proteins with similar func-
tions (Yang et al. 2002; Yabe et al. 2002). INSIG1 maintains
the intracellular lipid metabolism homeostasis in hepato-
cytes and adipocytes by regulating de novo synthesis and
uptake of cholesterol and fatty acids (Ouyang et al. 2020).
Therefore, deviation in expression or function of INSIGI is
linked with the pathogenesis of lipid disorders. Due to its
crucial role in lipid metabolism, INSIGI is highly expressed
in hepatocytes and adipocytes (Diamond et al. 1993; Peng
et al. 1997). In humans and rodents, INSIG1 is mostly
expressed in the liver, but at low levels also in other tissues
(Peng et al. 1997; Uhlén et al. 2015). The conservation of
INSIG1 sequence varies among vertebrate species (mouse,
hamster, zebrafish) between 70 and 92% compared to human
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(Yabe et al. 2002). The variation is mostly exerted in the
hydrophilic NH,- and COOH-terminal sequences. INSIG1
is expressed already during development (Iritani et al. 1993;
Lou et al. 2014).

Biological plausibility

Biological plausibility for PXR activation leading to altered
function of INSIG1 is moderate. PXR is shown to bind to
DR-4 site in the upstream promoter region of INSIG1 and
induce INSIGI mRNA expression (Roth et al. 2008). The
mechanism causing destabilization of INSIG1 protein is cur-
rently unknown.

Empirical evidence

The ability of PXR to increase (Roth et al. 2008; Zhou et al.
2009a; Knebel et al. 2019) or decrease (Farmahin et al.
2019) Insigl mRNA expression is described in few stud-
ies characterizing the effects of PXR on INSIG1 in rodents
and hepatic cells in vitro. Recently, Karpale et al. (2021)
reported increased Insig! mRNA expression after PXR acti-
vation in livers of obese male C57BL/6 N mice treated with
arodent PXR ligand, pregnenolone 16a-carbonitrile (PCN);
this induction was not seen in Pxr knockout mice (Karpale
et al. 2021). On the contrary, PXR did not affect the protein
level of INSIG1, despite cholesterol accumulation, which

Table 1 Quality of evidence rating for KERs

should enhance INSIG1 production and stabilize the protein
structure. The authors concluded that PXR may alter the
proteolytic machinery controlling INSIGI stability (Karpale
et al. 2021). Alternatively, the INSIG1 translation could be
repressed.

Uncertainties and inconsistencies

Even though activation of PXR is observed to alter Insigl/
expression on mRNA level, there is only one study determin-
ing the effects on protein level or further on INSIG1 stability
(Table 1). In addition, the mechanism by which PXR would
alter the stability of INSIG1 is unknown.

KER2 between INSIG1 stability and SREBP2
activation

Key event relationship description

INSIG1 controls cholesterol synthesis and uptake via regu-
lating the activation of SREBP2 in a cholesterol-dependent
fashion by binding to SREBP cleavage-activating protein
(SCAP) (Brown and Goldstein 1999). Binding of INSIGI to
SCAP promotes the retention of SREBP2 in ER and inhibits
transfer to Golgi and activation of SREBP2.

Observations Model organ- Level of obser- Type  Citation
ism vation of
study
Hu Mo Ha mRNA Protein 1 2
PXR activation leads to instability of INSIG1 X X X X (Karpale et al. 2021)
(KER1)
Degradation of INSIG1 leads to SREBP2 activa- X X X X X X X (Yangetal. 2002; Yabe et al. 2002; Engelking
tion (KER2) et al. 2005; McFarlane et al. 2014)
SREBP?2 activation leads to increased level of X X X X X X (Horton et al. 2003; Maxwell et al. 2003; Hyun
PCSK9 (KER3) et al. 2008; Karpale et al. 2021)
SREBP?2 activation leads to increased level of X X X X X X (Horton et al. 2003; Maxwell et al. 2003; Howe
cholesterol synthesis enzymes et al. 2017; Karpale et al. 2021)
(KER4)
PXR activation leads to increased activity of X X X X X X (Gwagetal. 2019; Jiang et al. 2021; Karpale et al.
SQLE 2021)
(KERS5)
Increased level of PCSK?9 leads to increased X X X X X X (Benjannet et al. 2004; Lalanne et al. 2005;

level of plasma LDL cholesterol (KER6)

Increased level of cholesterol synthesis enzymes X X X
leads to increased level of plasma LDL choles-
terol (KER7)

Lambert et al. 2006, 2008; Grefhorst et al. 2008;
Dong et al. 2010)

X X X (Engelking et al. 2005; McFarlane et al. 2014;
Gwag et al. 2019)

Hu human; Mo mouse; Ha Hamster; / in vitro; 2 in vivo; PXR pregnane X receptor; INSIG/ insulin-induced gene 1; SREBP2 sterol regulatory
element binding protein 2; PCSK9 proprotein convertase subtilisin kexin type 9; SOLE squalene epoxidase; LDL low-density lipoprotein
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The SREBP family of membrane-bound transcription
factors consists of three members, SREBP1a, SREBPIc,
and SREBP2 (Brown and Goldstein 1997). Cholesterol
metabolism is regulated especially by SREBP2. The three
members of SREBPs are expressed ubiquitously in several
mammalian species and are detected in all tissues (Horton
et al. 2002; Eberlé et al. 2004). SREBP1a and SREBP2
are the predominant isoforms in majority of cell lines,
whereas SREBP1c and SREBP2 are the most abundant
isoforms in the liver of mice and human (Shimomura
etal. 1997). SREBP1a and -1c are produced by SREBPF I
and SREBP2 by SREBPF?2 genes, respectively (Hua et al.
1995; Miserez et al. 1997) and share 47% homology with
each other (Eberlé et al. 2004). SREBP2 seems to have a
crucial role already in the early stages of development,
since deletion of Srebpf2 gene is observed to be lethal in
animal models (Shimano et al. 1997).

Biological plausibility

Activation of SREBP2 is controlled by a cholesterol-
dependent transport system between ER and Golgi (Fig. 2).
SREBPs locate in the ER as heterodimers with another ER
membrane protein, SCAP, which has as a sterol-sensing
domain regulating the transport from ER to Golgi (Brown
and Goldstein 1999). SCAP functions as an escort protein
for SREBP and is essential for SREBP stability (Sever
et al. 2003). In a case of sterol depletion, the SCAP/SREBP
complex locates to the Golgi apparatus in the coat protein
complex II (COP2) coated vesicles (Goldstein et al. 2006).
In Golgi, SREBP goes through proteolytic processing by
two cleavage enzymes: membrane-bound transcription fac-
tor site-1-protease (S1P) and site-2-protease (S2P) (Brown
and Goldstein 1999). As a result, an active, soluble N-ter-
minal-cleaved transcription factor of the basic helix-loop-
helix leucine zipper family is created (Brown and Goldstein
1997; Goldstein et al. 2006). This structural change allows
SREBPs to enter the nucleus as homodimers, bind to sterol

Golgi
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et

COPII

ER

% N-SREBP2
‘ &% N y

Nucleus

M

INSIG1
Cholesterol
biosynthesis and
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Fig.2 Graphical illustration of sterol regulatory element binding pro-
tein 2 (SREBP2) activation pathway. After the complex formed by
SREBP2 and SREBP cleavage activating protein (SCAP) detaches
from insulin-induced gene 1(INSIG1) the complex locates from
endoplasmic reticulum (ER) to Golgi in the Coat Protein Complex
II (COP2) coated vesicles. In Golgi, SREBP2 goes through a proteo-

lytic processing by two cleavage enzymes known as membrane-bound
transcription factor site-1-protease (S1P) and site-2-protease (S2P).
Consequently, the active transcription factor (N-SREBP2) is released,
and translocates to the nucleus where it binds to sterol regulating ele-
ment (SRE) sequences and induces transcription of genes participat-
ing in cholesterol biosynthesis and uptake
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regulating element (SRE) sequences and induce gene tran-
scription. On the contrary, when sterol level is high, S1P
reaction is blocked and the SCAP/SREBP complex remains
in ER.

Empirical evidence

The ability of INSIGI to control SREBP2 activity is widely
established (Brown and Goldstein 1997; Ouyang et al.
2020). Under normal conditions, increased cholesterol level
and SREBP2 processing induce /NSIGI mRNA expression,
which abolishes SREBP2 activity. PXR activation may alter
INSIG1 stability as described in KER1. Karpale et al. (2021)
observed that activation of SREBP2 was independent from
cholesterol level, indicating a perturbation in the normal
regulation of SREBP2 pathway possibly mediated by altered
INSIG1 function. Similar results have been observed in the
liver and intestine of Insig knockout mice, where nuclear
SREBP and mRNA level of SREBP target genes remain
elevated despite overaccumulation of sterols, which should
downregulate SREBP activity (Engelking et al. 2005;
McFarlane et al. 2014). When INSIGI1 proteins are absent,
SREBPs are resistant to cholesterol-dependent suppression
(McFarlane et al. 2014). In vitro studies have revealed that
SREBP transport to nucleus is inhibited by binding of SCAP
to INSIG when ER cholesterol level reaches above 5% of
total ER lipid level (Radhakrishnan et al. 2008). INSIG
depletion allows cleaving of SREBPs despite high choles-
terol levels by increasing the threshold that should initiate
the negative feedback (McFarlane et al. 2014). Similarly,
the excess of cholesterol fails to stabilize INSIG1 in SCAP-
deficient cells (Gong et al. 2006). Furthermore, saturation
of INSIG1 allows remaining unbound SCAP to transport
SREBP?2 to Golgi and is also, therefore, resistant to sterol-
mediated inhibition of proteolytic processing of SREBP
(Yang et al. 2002).

Known feedback loops influencing KER2

Transcription of INSIG1 is dependent on cholesterol level
and activation of SREBPs (Goldstein et al. 2006). INSIG1
mRNA production is enhanced when cells are sterol depleted
or if cleaved SREBP occurs in the nucleus and is prevented
when cholesterol accumulates or if inactive SREBP is
retained in ER. Quite the opposite, the INSIGI protein is
ubiquitinated and degraded rapidly when cells are sterol
depleted. In sterol-accumulated cells, INSIG1 structure is
stabilized by SCAP. Moreover, the expression of INSIG1
is reliant on SREBP1c, whose transcription is controlled
by insulin (Chen et al. 2004; Goldstein et al. 2006). Low
insulin level during fasting leads to repression of SREBP1c
and suppression of Insigl mRNA. When insulin level
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increases, SREBP1c processing and Insig] mRNA increases
concordantly.

Two classes of sterols, cholesterol, and oxysterols, regu-
late SREBP?2 activity by inhibiting the proteolytic process-
ing of SREBP2, which reduces the level of active transcrip-
tion factor in the nucleus (Goldstein et al. 1979). To inhibit
the translocation of SREBP2 to be processed in Golgi, cho-
lesterol binds to SCAP and oxysterols bind to INSIGs, which
triggers INSIG to bind to SCAP (Sun et al. 2007). These
mechanisms result in conformational changes in SCAP pre-
venting clustering of SREBP with COP2 vesicles that are
responsible of the translocation of SREBP to Golgi.

High-fat diet seems to dysregulate SREBP2 activation.
Upregulated expression of SREBP2 mRNA and protein has
been observed in the livers of mice exposed to high-fat diet
(Wu et al. 2013). In accordance with Karpale et al. (2021),
increased Insig] mRNA level was also observed. On the
other hand, in the study by Karpale and colleagues (2021),
high-fat diet alone did not induce the expression of SREBP2,
but the activation was shown to be PXR dependent.

KER3 between SREBP2 activation
and increased level of PCSK9

Key event relationship description

PCSKO9 is a circulating hepatic protein and has a crucial role
in regulating cholesterol level (Seidah et al. 2003; Poirier
et al. 2008). The transcription of PCSK9 is controlled by
SREBP2. PCSKO is expressed mainly in liver, especially
during development and it is also present in small intestine,
kidney, and brain (Seidah et al. 2003).

Biological plausibility

SREBP2 acts as a main regulator of PCSK9 transcription
(Horton et al. 2007) via functional sterol regulatory ele-
ment (SRE) in proximal promoter of PCSK9 (Li et al. 2009).
PCSKO is secreted by the liver as a zymogen precursor and is
autocatalytically cleaved in the ER, releasing the N-terminal
prodomain of PCSK9, which further forms a noncovalent
bond with the catalytic or C-terminal domain (Seidah 2013).
N-terminal prodomain prevents PCSK9 function and to acti-
vate, catalytic domain of PCSK9 needs to be released from
the prodomain.

Empirical evidence

The role of SREBP2 as the main transcriptional regulator of
Pcsk9 expression is well established in transgenic and Srebp
knockout mice as well as in vitro studies (Horton et al. 2003;
Maxwell et al. 2003; Hyun et al. 2008). As mentioned above,
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SREBP?2 level is highly correlated with plasma cholesterol
level, which further reflects to PCSK9 transcription (Lagace
2014). PCSK9 expression is also increased after PXR activa-
tion both in mice and humans and in mouse this was shown to
be associated with increased nuclear SREBP2 level (Karpale
et al. 2021).

KER4 between SREBP2 activation
and increased level of cholesterol synthesis
enzymes

Key event relationship description

The genes induced by SREBP2 encode enzymes that are
involved in different phases of the mevalonate pathway of
cholesterol synthesis including 3-hydroxy-3-methylglutaryl-
coenzyme (HMGCR) (Hua et al. 1993). HMGCR is the first
rate-limiting enzyme in the mevalonate pathway emphasiz-
ing its role as a main target for regulation (DeBose-Boyd
2008). HMGCR is localized in ER of all mammalian species
studied including human, mouse, rat, and hamster.

Biological plausibility

SREBP2 induces the expression of several genes involved
in cholesterol synthesis and uptake by binding to SREs in
the regulatory regions (Horton et al. 2002). Only few SREs
in the promoters of these genes are characterized in humans
and in some extent in other species (Sharpe and Brown
2013). However, SREs might not be conserved among
species.

Empirical evidence

HMGCR is directly regulated by SREBP2 via gene tran-
scription (Howe et al. 2017). This is supported by the finding
that decreased amount of active SREBP2 leads to reduc-
tion of mRNA levels of Hmgcr both in vivo and in vitro
(Konig et al. 2007). SREBP2-regulated inhibition of meva-
lonate pathway is a target for cancer therapy and several
preclinical studies have shown that modulating SREBP2
activity reflects to the activity of the mevalonate pathway, as
reviewed by Xue and coworkers (Xue et al. 2020). Moreover,
PXR activation in obese mice yielded in increased expres-
sion level of nearly all genes participating in cholesterol syn-
thesis and the effect is predicted to be SREBP2 mediated.
(Karpale et al. 2021).

Known feedforward/feedback loops influencing
KER4

In addition to rather slow SREBP2 mediated regulation,
HMGCR is more rapidly regulated post-translationally

by INSIG1 (Sharpe and Brown 2013). INSIG1 acceler-
ates degradation of HMGCR in ER by combining to the
sterol sensing domain of HMGCR (Ouyang et al. 2020).
In cellular cholesterol depletion, INSIG1 protein is unsta-
ble and unable to bind HMGCR, but when the choles-
terol level increases, the structure stabilizes and binds
to HMGCR causing the degradation and preventing the
further increase of cholesterol level. INSIG1 dysfunc-
tion, possibly caused by PXR, induces perturbations in
the INSIG1-mediated regulation of HMGCR (Karpale
et al. 2021). The effect was observed in obese mice, where
HMGCR mRNA and protein levels were increased, despite
cholesterol accumulation.

KERS5 between PXR activation and increased
activity of SQLE

Key event relationship description

SQLE, encoded by SOLE gene, is the second rate-limiting
enzyme in the mevalonate pathway (Hidaka et al. 1990;
Nagai et al. 1997; Gill et al. 2011). SQLE is a vital enzyme
among eukaryotes (Chua et al. 2020), but it serves as a con-
troller of cholesterol synthesis only in mammals. SQLE is
expressed ubiquitously in mammals, yet is the most abun-
dant in esophagus, testis, and liver, the latest serving as the
main organ for cholesterol synthesis (Uhlén et al. 2015;
Chua et al. 2020). Activation of PXR has been shown to
directly activate SQLE (Gwag et al. 2019).

Biological plausibility

The ability of PXR to bind DR-2 site in Sgle gene promoter
region was recently identified, indicating that Sqle is a direct
transcriptional target of PXR (Gwag et al. 2019). Addition-
ally, PXR activation has been observed to increase both
mRNA and protein level of SQLE (Gwag et al. 2019; Kar-
pale et al. 2021). On the other hand, Sgle is a target gene for
SREBP2, which activity is also shown to be controlled by
PXR, as described above.

Empirical evidence

Increased Sqgle mRNA expression after PXR activation has
been observed in few studies (Table 1.) (Gwag et al. 2019;
Jiang et al. 2021; Karpale et al. 2021). In addition to mRNA
level, Gwag et al. (2019) discovered increased protein level
of SQLE both in vivo and in vitro. SQLE was also identified
as a direct transcriptional target of PXR (Gwag et al. 2019).
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Known feedforward/feedback loops influencing
KER5

SQLE activity is controlled by cholesterol via direct feed-
back mechanism, abundance of cholesterol causing degrada-
tion of SQLE enzyme (Chua et al. 2020). The activation of
SQLE transcription is controlled by SREBP2 and its cofac-
tors, and transcriptional activity increases in sterol-depleted
conditions. The regulation of SQLE activity is thought to
be independent from the rest of the cholesterol synthesis
pathway, since the SQLE enzyme adjusts the cholesterol
synthesis within the pathway, making it suitable for fast and
flexible adapting of cholesterol levels (Gill et al. 2011; Chua
et al. 2020).

Uncertainties and inconsistencies

Long-term treatment with a PXR agonist PCN does not
seem to induce Sqle mRNA level in male C57BL/6 mice
(Zhang et al. 2022). However, the liver samples from PCN-
treated mice were collected after 7 days of the last dose,
which might cause reversal of PXR activation. Also, long-
term treatment may cause alterations in the status of the
receptor due to adaptation of liver to external stimuli (Zhang
et al. 2022). In accordance with Zhang & co-workers, Ann
Barretto et al. (2019) did not observe any changes in Sgle
regulation in male C57BL/6 mice after 4-day administration
of PCN regardless of PXR activation. Increase in cholesterol
biosynthesis was not observed either, but previous studies
had shown that mice on normal chow diet are resistant to
changes in lipid profile, which might be the case in this study
as well (Ann Barretto et al. 2019; Hassani-Nezhad-Gashti
et al. 2019). On the other hand, effect of PXR activation on
SQLE activation and lipid level has been observed in mice
on a regular diet in other studies (Gwag et al. 2019; Jiang
et al. 2021).

KER6 between increased level of PCSK9
and increased level of plasma LDL
cholesterol

Key event relationship description

Liver is the main organ clearing LDL from plasma and
excreting cholesterol from the body (Spady et al. 1985).
Fluctuations in the regulation of the efflux pathway lead to
unbalanced homeostasis of sterols. Sufficient hepatic uptake
of LDL cholesterol by LDLRs is crucial for regulation of
circulating LDL cholesterol level. Decreased LDL uptake
by liver caused by downregulated number of LDLRs in
plasma membrane of hepatocytes leads to inadequate hepatic
clearance of cholesterol. This results in increased level of
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circulating LDL cholesterol. PCSK9 controls the amount of
LDLRs in hepatocytes (Seidah et al. 2014).

Biological plausibility

In the bloodstream, activated PCSK9 binds to hepatic
LDLRs enhancing the lysosomal degradation of the recep-
tors (Seidah 2013). Two different pathways of PCSK9 medi-
ated LDLR degradation have been identified (Lagace 2014).
PCSKO9 binds to LDLR intracellularly and escorts it from
trans-Golgi to lysosomal degradation. Secondly, secreted
PCSK9 may bind to the first epidermal-growth factor-like
repeat of LDLR on the cell surface leading to internalization
of the PCSK9-LDLR-complex in endocytic vesicles.

Empirical evidence

The role of PCSK9 as a regulator of LDLRs and in develop-
ment of hypercholesterolemia is well described (Grefhorst
et al. 2008; Lambert et al. 2008; Seidah 2013) and over-
expression of PCSK9 accumulates LDL in the circulation
(Benjannet et al. 2004; Lalanne et al. 2005; Lambert et al.
2006). Enhanced excretion of PCSK9 from liver causes
degradation of LDLRs and is resulted in increased plasma
LDL levels (Seidah 2013). Discovery of the mechanism has
resulted in the development of pharmacological applications
and nowadays PCSK9 inhibitors are a common treatment for
hypercholesterolemia (Seidah et al. 2014).

Known feedback loops influencing KER6

In addition to post-transcriptional regulation of LDLRs by
PCSKD9, transcription of LDLRs is regulated by SREBP2
(Horton et al. 2002). SREBP2 activation increases the
expression of LDLRs thereby increasing cholesterol uptake
from plasma. Since SREBP2 regulates Pcsk9 at transcrip-
tional level, it induces simultaneous opposite effects on
LDLRs by regulating the amount of LDLRs at both tran-
scriptional and post-transcriptional levels. (Rashid et al.
2005).

KER7 between increased level of cholesterol
synthesis enzymes and increased level
of plasma LDL cholesterol

Key event relationship description

In addition to LDL clearance, regulation of cholesterol
synthesis is critical in maintaining cholesterol homeostasis
(Spady et al. 1985). In mammals, almost all cells synthe-
size cholesterol (Brown and Sharpe 2016). However, level of
plasma cholesterol is dictated by liver cholesterol synthesis.
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Cholesterol synthesis is a complex process, and it is highly
regulated by negative feedback mechanism to avoid cho-
lesterol depletion or excess. Therefore, in cases where the
cholesterol synthesis pathway is dysregulated, the process
of cholesterol synthesis may persist even in the presence
of cholesterol accumulation. This is in contrast to the feed-
back mechanism, as the accumulation of cholesterol should
typically impede the function of the enzymes responsible for
maintaining cholesterol homeostasis (Engelking et al. 2005).

Biological plausibility

As described above, cholesterol regulates several pro-
teins by enhancing or inhibiting their function depend-
ing on the needs of a cell. The first step in the mevalonate
pathway of cholesterol synthesis (Fig. 3) is conversion of

acetyl coenzyme A to acetoacetyl coenzyme A by thiolase
2 (Brown and Sharpe 2016). Methylglutaryl-coenzyme A
synthase is the second enzyme condensing acetyl coen-
zyme A with acetoacetyl coenzyme A to form 3-hydroxy-
3-methylglutaryl coenzyme A. Next, HMGCR reduces the
synthetized 3-hydroxy-3-methylglutaryl coenzyme A to
mevalonic acid. Mevalonic acid is phosphorylated to meva-
lonate-P by mevalonate kinase and mevalonate-P is further
produced to mevalonate-PP by phosphomevalonate kinase.
Next, diphosphomevalonate decarboxylase catalyzes the
reaction of mevalonate-PP to isopentenyl-PP, followed by
isomerization to dimethylallyl-PP by isopentenyl-diphos-
phate A-isomerase. These isoprenoid-pyrophosphates are
then condensed to isoprenoid geranyl-PP by farnesyl diphos-
phate synthase or to farnesyl-PP by geranylgeranyl pyroph-
osphate synthase and finally, squalene synthase converts

Acetyl CoA ' Mevalonate-P
l Thiolase 2 l PMK
Acetoacetyl-CoA Mevalonate-PP
l HMGCS MK l MVD
HMG-CoA Isopentenyl-PP
l HMGCR l IDI1/IDI2
Mevalonic acid Dimethylallyl-PP
l FPPS/GGPPS
Geranlyl-PP/Farnesyl-PP
SQLE ! sas
l Squalene
Bloch
——»  7-dehydrodesmosterol
(S)-2,3-epoxysqualene ——»  Lanosterol
K-R
LS —_— 7-dehydrocholesterol

Fig.3 Mevalonate pathway of cholesterol synthesis. First, acetyl-
CoA is converted to acetoacetyl-CoA by thiolase 2. Secondly, meth-
ylglutaryl-coenzyme A synthase (HMGCS) condenses acetyl-CoA
with acetoacetyl-CoA to form HMG-CoA (Brown and Sharpe 2016).
Next, HMGCR reduces HMG-CoA to mevalonic acid. Mevalonic
acid is phosphorylated to mevalonate-P by mevalonate kinase (MK)
and mevalonate-P is further produced to mevalonate-PP by phospho-
mevalonate kinase (PMK). This is followed by catalyzation of meva-
lonate-PP to isopentenyl-PP by diphosphomevalonate decarboxylase.
Next, dimethylallyl-PP is isomerized by isopentenyl-diphosphate

A-isomerase (IDI1/IDI2). The isoprenoid-pyrophosphates are con-
densed to isoprenoid geranyl-PP by farnesyl diphosphate synthase
(FPPS) or to farnesyl-PP by geranylgeranyl pyrophosphate synthase
(GGPPS) and finally, squalene synthase (SQS) converts farnesyl-
PP to squalene. Squalene is converted to (S)-2, 3-epoxysqualene
by squalene epoxidase (SQLE) and (S)-2,3-epoxysqualene is fur-
ther converted to lanosterol and finally to 7-dehydrodesmosterol or
7-dehydrocholesterol via Bloch or Kandutch-Russel (K-R) pathways,
respectively
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farnesyl-PP to squalene. Then squalene is converted to (S)-
2,3-epoxysqualene by SQLE and (S)-2,3-epoxysqualene is
further converted to lanosterol and finally to cholesterol via
Bloch or Kandutch—Russel pathways. Furthermore, surplus
cholesterol undergoes esterification through acyl coenzyme
A, resulting in the formation of cholesteryl esters (Luo et al.
2019). These esters serve as a cholesterol reserve within
cytosolic lipid droplets or are released as prominent con-
stituents of plasma lipoproteins, such as chylomicrons, very
low-density lipoproteins (VLDLs), LDLs, and high-density
lipoproteins (HDLs). PXR may induce enzymes participat-
ing in hydrolysis of cholesterol esters in the intestine (Hels-
ley et al. 2013).

Due to the criticalness of the enzymes involved in the
cholesterol synthesis pathway, their inhibition has yielded
several pharmacological applications. For example, the
mechanism of action of common LDL cholesterol-lowering
drugs, statins, is based on inhibition of HMGCR, which
prevents further processing of cholesterol precursors in the
mevalonate pathway and therefore decreases plasma choles-
terol levels (Sirtori 2014).

Empirical evidence

In Insig knockout mice, the degradation of the rate-limiting
enzyme HMGCR, is prevented, allowing the prolonged con-
tinuation of cholesterol synthesis resistant to cholesterol-
dependent regulation (Engelking et al. 2005; McFarlane
et al. 2014). On the contrary, in Hmgcr knockout mice,
hepatic cholesterol synthesis is decreased (Nagashima et al.
2012). In addition, increased expression of the second rate-
limiting enzyme of cholesterol synthesis, SQLE, results
in elevated plasma, total, LDL, and HDL cholesterol in
C57BL/6 wild-type, liver-specific Pxr-flox allele-carrying,
and PXR-humanized C57BL/6 mice (Gwag et al. 2019).

Known feedforward/feedback loops influencing
KER7

Cholesterol synthesis pathway is highly regulated to avoid
fluctuations in cholesterol level. The feedback inhibition
pathways controlling SREBP2 and HMGCR activity (KER2
& KER4), lead to downregulation of most of the enzymes in
cholesterol synthesis pathway and degradation of HMGCR,
respectively (Goldstein et al. 1979; DeBose-Boyd 2008). As
a result, cholesterol synthesis decreases.

Modulating factors
Generally, squalene, an intermediate of cholesterol synthe-
sis, tends to accumulate in the liver in the presence of high

cholesterol level due to downregulation of SQLE (Gill et al.
2011). However, decreased squalene level has been observed

@ Springer

in mice with PXR-induced hypercholesterolemia (Karpale
et al. 2021). The authors suggest that this indicates enhanced
squalene metabolism caused by increased SQLE activity
mediated by PXR.

Interestingly, Karpale et al. (2021) also showed that
PXR activation induces the activation of Kandutsch—Rus-
sel pathway in both humans and mice, but the mechanism
is unknown. Increased level of plasma and hepatic markers
of the pathway and induction of the 24-dehydrocholesterol
reductase enzyme was described, leading cholesterol syn-
thesis towards Kandutsch—Russel pathway (Karpale et al.
2021).

AO: increased plasma LDL cholesterol
Key event description

The main function of LDL is to provide cholesterol to the
cells and, therefore, it has a major role in cholesterol transfer
and metabolism (Hevonoja et al. 2000). The LDL particle
consists of a core formed of triglycerides and cholesteryl
esters and of a surface comprised of phospholipids and a
copy of a ApoB-100 lipoprotein. As a consequence of
decreased hepatic clearance and overproduction of LDL,
the concentration of circulating LDL increases. Next, LDL
penetrates the vascular wall, especially on the parts with
existing dysfunction or reduced blood flow and accumulates
within the intima of arteries (Ziegler et al. 2020). Accumu-
lated LDL particles are oxidized via reactive oxygen species,
which triggers an inflammatory response and foam cell for-
mation by macrophages further promoting the inflammatory
state in the artery (Huff et al. 2016). Hypercholesterolemia is
the most common atherogenic dyslipidemia, and ultimately
leads to atherosclerosis characterized by formation of cal-
cified and prone to rupture plaques in arteries, leading to
complete obstruction of the artery.

Modulating factors

Development of hypercholesterolemia involves not only
hepatic cholesterol synthesis but also the absorption of bil-
iary and dietary cholesterol in the intestine (Jia et al. 2011).
Niemann-Pick C1 Like 1 (NPC1L1) and ATP-binding cas-
sette transporters G5 and G8 (ABCGS5/GS8) play crucial roles
in regulating cholesterol uptake and efflux not only in the
intestine but also in the liver and PXR and SREBP2 may
contribute to their regulation (Alrefai et al. 2007; Trem-
blay et al. 2011; Sui et al. 2015; Meng et al. 2019). On
the contrary, in obese mice PXR strongly induced hepatic
cholesterol synthesis but had no effect on Npcl1ll expres-
sion but prompted Abcg5 expression (Karpale et al. 2021).
Additionally, PXR activation led to elevated serum hepatic
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apolipoprotein B levels, reduced intestinal apolipoprotein
B48 levels, and did not affect intestinal Apob expression
in humans. These findings provide evidence for the repres-
sion of intestinal cholesterol absorption and propose that
the PXR-induced increase in serum cholesterol occurs inde-
pendently of intestinal cholesterol absorption and synthesis
(Karpale et al. 2021). However, there is other evidence sug-
gesting that also intestinal processes may play a role (Meng
et al. 2019; Sui et al. 2021).

Overall assessment of AOP

Hypercholesterolemia is a major risk factor for vascular
damage, cardiovascular diseases, and a critical contributor
to global health burden. Several intrinsic and external factors
such as environmental pollutants contribute to hypercho-
lesterolemia. To elucidate the unclear mechanism behind
chemical-induced hypercholesterolemia we applied an AOP
framework for PXR activation leading to hypercholester-
olemia. Essentiality of KEs, the biological plausibility and
empirical evidence of KERs are described thoroughly in
respective KER chapters and summarized in Table 2. Addi-
tionally, the quality of evidence rating is summarized in
Table 1.

The first KER focuses on the effect of PXR activation on
INSIG1 function. As INSIG1 controls cholesterol synthe-
sis and uptake, an aberration in expression or function of
INSIGI is causal to lipid disorders (Ouyang et al. 2020).
Even though PXR has been shown to bind the DR-4 site in
the upstream promoter region of Insigl (Roth et al. 2008)
and the recent results suggest that PXR may regulate the
translation or protein stability of INSIG1 (Karpale et al.
2021), further research is needed to determine the underly-
ing mechanism.

Disturbed function of INSIG1 is a critical key point in
the cholesterol synthesis pathway, since INSIG1 controls
the activation of SREBP2. Activation of SREBP-pathway
activates enzymes participating in cholesterol synthesis as
well as the PCKS9 enzyme. In addition to PXR-mediated
activation of SREBP-pathway, PXR affects directly on cho-
lesterol synthesis pathway by regulating SOLE transcription.
Together these mechanisms lead to increased cholesterol
synthesis and decreased uptake of LDL by liver and finally
to increased plasma LDL cholesterol (AO).

This AOP is a plausible description of the link between
PXR activation and hypercholesterolemia and combines
information from reviews and published data from in vivo
and in vitro studies. Evidence regarding KERs 1 and 5 is
scarce, and more studies are needed to better understand the

relationships. On the other hand, the rest of the KERs are
well established and supported by solid background of bio-
logical knowledge and empirical evidence. It must be noted
that AOPs aim to simplify the toxicity pathways and focus
merely on the essential events, as done in the current AOP.
We acknowledge that all the KEs and KERs are also affected
by other mechanism not described in the AOP.

Even though most of the described molecular interac-
tions occur in various tissues and the KEs are applicable
in both sexes through all life stages across taxa, we choose
to limit the AOP to consider liver due to its criticalness in
cholesterol metabolism and in chemical-induced hypercho-
lesterolemia. This also reflects the predominant expression
of PXR in the liver.

As a conclusion, the AOP illustrates how PXR potentially
disturbs the regulation of cholesterol synthesis and LDL
metabolism. The AOP was developed to offer an insight
into the molecular mechanism of PXR mediated hypercho-
lesterolemia, since the mechanisms of drug- and chemical-
induced hypercholesterolemia are poorly understood. In the
future, the AOP can be elaborated and possibly be included
in the AOP-Wiki, which could promote safety assessment.
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