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Abstract
Omics techniques have been increasingly recognized as promising tools for Next Generation Risk Assessment. Targeted 
metabolomics offer the advantage of providing readily interpretable mechanistic information about perturbed biological 
pathways. In this study, a high-throughput LC–MS/MS-based broad targeted metabolomics system was applied to study 
nitrofurantoin metabolic dynamics over time and concentration and to provide a mechanistic-anchored approach for point 
of departure (PoD) derivation. Upon nitrofurantoin exposure at five concentrations (7.5 µM, 15 µM, 20 µM, 30 µM and 
120 µM) and four time points (3, 6, 24 and 48 h), the intracellular metabolome of HepG2 cells was evaluated. In total, 256 
uniquely identified metabolites were measured, annotated, and allocated in 13 different metabolite classes. Principal com-
ponent analysis (PCA) and univariate statistical analysis showed clear metabolome-based time and concentration effects. 
Mechanistic information evidenced the differential activation of cellular pathways indicative of early adaptive and hepatotoxic 
response. At low concentrations, effects were seen mainly in the energy and lipid metabolism, in the mid concentration range, 
the activation of the antioxidant cellular response was evidenced by increased levels of glutathione (GSH) and metabolites 
from the de novo GSH synthesis pathway. At the highest concentrations, the depletion of GSH, together with alternations 
reflective of mitochondrial impairments, were indicative of a hepatotoxic response. Finally, a metabolomics-based PoD was 
derived by multivariate PCA using the whole set of measured metabolites. This approach allows using the entire dataset and 
derive PoD that can be mechanistically anchored to established key events. Our results show the suitability of high throughput 
targeted metabolomics to investigate mechanisms of hepatoxicity and derive point of departures that can be linked to existing 
adverse outcome pathways and contribute to the development of new ones.

Keywords  Metabolomics in vitro · High throughput · Nitrofurantoin · Hepatotoxicity · New approach methodologies · Next 
generation risk assessment · Point of departure

Introduction

The realization of the vision of “toxicity in the twenty-first 
century” has significantly progressed since the publication of 
the NRC report in 2007 (National Research Council 2007). 
Scientific and technical advances of the last decades have 
fostered the development of numerous cell-based methods, 
high throughput systems and in silico models as alternative 
approaches to in vivo animal testing. These new approach 

methodologies (NAMs) have contributed to the understand-
ing of mechanisms of toxicity and have played an important 
role in the development of adverse outcome pathways (AOP) 
(Krewski et al. 2020; Vinken 2013). While the development 
of these new methods has been instrumental for the evolu-
tion of toxicology, the number of chemicals in the market for 
which there are insufficient toxicological data are evidencing 
the pressing need to increase the implementation of NAMs 
in human and environmental risk assessment (Stucki et al. 
2022).
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Conventional toxicological in vitro testing relies largely 
on the evaluation of single endpoints, which in most cases 
is not sufficient for a comprehensive risk assessment and 
not always translates well to the in vivo situation (Ball et al. 
2022; Dix et al. 2007). The implementation of Omics tech-
nologies enable the simultaneous measurement of multiple 
cellular endpoints, providing a multiparametric and compre-
hensive assessment of different biochemical pathways in a 
single sample (García-Cañaveras et al. 2016). In particular 
metabolomics, described as the systematic study of small 
endogenous molecules known as metabolites, represents 
the last step in the Omics cascade and as such provides an 
insight into the current physiological state of an organism 
including biological responses to external factors such as 
xenobiotics and therapeutic agents (Guijas et al. 2018). 
Thus, metabolomics is the “omics” technology that closest 
represents the phenotype and for this reason has been con-
sidered to be closer to classical toxicology than other Omics 
techniques (Ramirez et al. 2013). Metabolomics approaches 
have been successfully employed in toxicity assessment for 
identifying mechanisms of toxicity and characterizing key 
molecular events (Birk et al. 2021; Cuykx et al. 2018; Kamp 
et al. 2012; Mattes et al. 2014; Van Ravenzwaay et al. 2007, 
2015). For cell-based metabolomics, however, requirements 
for large biomass quantities have previously restricted the 
throughput scalability, limiting the testing to few concen-
trations and single (static) time points (Cuykx et al. 2018; 
García-Cañaveras et al. 2016; Ramirez et al. 2018). These 
factors reduce the potential of dose and time-based calcula-
tion of dose–response metrics, hampering the applicability 
of in vitro metabolomics systems in risk assessment (Olesti 
et al. 2021). In addition, such information may also contrib-
ute to discriminate between adaptive and adverse changes.

Given that the liver is one of the main target organs, early 
mechanistic-based identification of potential hepatotoxins is 
a highly relevant issue for the pharmaceutical and chemical 
industry. Recently, in vitro liver models have been employed 
to derive metabolomics-based points of departure (PoDs) 
via benchmark concentration modeling (Crizer et al. 2021; 
Malinowska et al. 2023).

We have previously developed and standardized a high 
throughput, targeted LC–MS-based in vitro metabolomics 
platform for the identification and differentiation of liver 
toxicity Modes of Action (MoAs) in HepG2 cells (Ramirez-
Hincapie et al. 2023). Importantly, this assay measures a set 
of pre-identified metabolites representative of main cellular 
pathways. Due to its high throughput nature, a broad range 
of concentrations, covering key points of the dose–response 
curve can be assessed, offering the possibility of studying 
substance effect dynamics and allowing accurate and mecha-
nistic anchored metabolome-based PoD estimations.

The aim of this study was to generate metabolome-based 
dose–response and time series analysis which can be useful 

to derive dose response metrics from metabolomics data. For 
this aim, we have selected nitrofurantoin as a model com-
pound. Nitrofurantoin is an antibiotic employed in clinical 
practice to treat urinary infections. For humans, nitrofuran-
toin presents a significant drug induced liver injury (DILI) 
concern, classified as a well-known cause of liver injury 
(Serrano 2014). The activation of cellular oxidative stress 
response pathways by nitrofurantoin has been previously 
demonstrated (Wijaya et al. 2021). At low doses, nitrofuran-
toin has been shown to activate the endogenous antioxidant 
machinery by being a potent stimulator of intracellular glu-
tathione synthesis (Wijaya et al. 2022), at high concentra-
tions however, it has been linked to oxidative stress-related 
hepatotoxicity (Wang et al. 2008). Because of its charac-
teristic dose-related biological responses nitrofurantoin was 
considered as a suitable compound to assess the applicability 
of the high throughput targeted metabolomics to provide a 
basis for a mechanistic-grounded PoD determination.

Materials and methods

Cell culture

HepG2 cells (ECACC, UK, maximum passage number 9) 
were maintained and grown on Dulbecco’s MEM media 
supplemented with 1 v/v% of penicillin/streptomycin, l-glu-
tamine (200 mM, 1% v/v), non-essential amino acids (1% 
v/v) and 10% FBS (PAN-Biotech, Aidenbach, Germany) in 
75 cm2 culture flasks (TPP, Switzerland). For cell passag-
ing (~ 80% confluency) media was removed and cells were 
washed twice with pre-warmed calcium and magnesium 
free Dulbecco’s PBS (PAN-Biotech, Aidenbach, Germany). 
Trypsin was used for cell detachment. A fraction of the cell 
suspension was then transferred to a new culture vessel. 
For experiments, 15.000 cells per well (passage 5–9) were 
seeded in 96-well flat-bottom plates (TPP, Switzerland) and 
incubated for 24 h for cell attachment (37 °C and 5% CO2). 
After 24 h, culture media were exchanged, and the test sub-
stance was added in five concentrations (0.5% DMSO) and 
incubated in a corresponding 96-well-plate per time point for 
3, 6, 24 and 48 h at 37 °C and 5% CO2. 72 h post seeding, the 
assay was stopped by quenching all plates with isopropanol 
80% and freezing at − 80 °C. See “Metabolomics Experi-
ments” for more details.

Test substances

Nitrofurantoin (≥ 98%) and bezafibrate (≥ 98%), used as 
a positive/quality control in each experiment, were pur-
chased from Sigma Aldrich (Buchs, Switzerland). DMSO 
(+ 99.8%,) was used as a solvent and vehicle control at a 
final concentration of 0.5% Thermo Fisher (Geel, Belgium).
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Cytotoxicity and cell viability testing

Commercially available cytotoxicity (CellTox™ Green) 
and ATP content based (CellTiter-Glo®) assays (Promega 
GmbH, Walldorf, Germany) were multiplexed in a single 
96 well-plate following the manufacturer’s instructions. 
For positive controls, lysis solution 25× was added in wells 
containing vehicle control treated cells (0.5% DMSO). Fluo-
rescence was measured at λex = 485–500 nm/λem = 520–53
0 nm in the GloMax®-Multi Detection System (Promega). 
Luminescence was measured in the GloMax®-Multi Detec-
tion System (Promega) and was normalized to the values 
of the vehicle control. Cytotoxicity and ATP cell viability 
analysis were carried out for range finder pre-tests and in 
parallel with metabolomics experiments in plates handled 
and treated exactly as the ones used for metabolite profiling.

Range finder experiments for concentrations 
selection

Concentration levels for the metabolomics experiments 
were based on range finder experiments. Nitrofurantoin was 
administered to HepG2 cells in 14 concentrations ranging 
from 0.234 to 1920 µM to following two-fold serial dilu-
tions and incubated for 48 h (6 replicates per concentration). 
Viability and cytotoxicity tests were performed as described 
previously. Luminescence values resulting from ATP meas-
urement (CellTiter-Glo® assay) were used to build dose 
response curves. Curve fitting and effective concentrations 

(ECs) values were calculated in R using four-parameter 
Weibull model (W2.4). Calculated EC values were rounded 
to the nearest integer number for dose selection.

Live‑cell imaging

To monitor cell proliferation, total well confluence was 
obtained by real time cell imaging analysis using IncuCyte 
S3 device placed in a normal incubator at 37 °C with 5% 
CO2. Whole-well scans were taken every 1.5 h during the 
duration of the assay and evaluated using automated phase-
contrast analysis (phase mask).

Metabolomics experiments

After 24 h of cell attachment, substances were administered 
in 0.5% DMSO (final concentration) to HepG2 cells in five 
concentrations [EC1(ATP), EC115(ATP), EC25(ATP) EC50(ATP), 
EC85(ATP)] in a corresponding 96-well-plate per time point. 
To harvest all plates simultaneously, aiming to achieve same 
final cell number, treatment was applied by reverse applica-
tion. (1) 24 h post seeding (48 h substance exposure), (2) 
48 h post seeding (24 h substance exposure), (3) 66 h post 
seeding (6 h substance exposure) and 4) 69 h post seeding 
(3 h substance exposure) (Fig. 1).

After 72 h post seeding, the assays were stopped simulta-
neously by first removing the media with a multi-well aspi-
rator and then washing the wells once with 100 µl of 0.9% 
NaCl followed by snap freezing the plates on liquid nitrogen 

Fig. 1   Nitrofurantoin administration for metabolomics experiment. 
15,000 HepG2 cells were seeded per well in 96-well plates and incu-
bated for 24  h for initial cell attachment. 24  h post seeding, nitro-
furantoin was administered in 5 concentrations (EC1(ATP): 7.5  µM, 
EC115(ATP): 15  µM, EC25(ATP): 30  µM, EC50(ATP): 60  µM, EC85(ATP): 
120 µM) in a corresponding 96-well-plate per time point by reverse 

application. After 72 h post seeding, the assays were stopped simul-
taneously by washing the wells once with 100 µl of 0.9% NaCl fol-
lowed by snap freezing the plates on liquid nitrogen for 5 s. Metab-
olomics plates were placed immediately on dry ice and stored at 
−  80  °C until LC–MS/MS analysis while cytotoxicity plates were 
used for ATP content and membrane integrity multiplexed assays
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for 5 s. Plates were placed immediately on dry ice and stored 
at − 80 °C until LC–MS/ MS analysis.

For each time point, one 96 well-plate was set up with 6 
replicates per concentration, 12 replicates for vehicle con-
trols (0.5% DMSO), 6 replicates for positive controls (Bezaf-
ibrate 1000 µM) and 6 replicates for blank controls (media 
without cells). Bezafibrate has been shown to provide a clear 
and consistent metabolic response (BASF, unpublished 
results) that is used to confirm the quality of the cell batch 
used in the analysis. To minimize potential evaporation, the 
outer rows and columns of the plate were omitted for seed-
ing cells samples and were instead filled with PBS. These 
plate positions were later on used for technical and linear-
ity checkups during the metabolome analysis (see LC–MS/
MS metabolomics section and suppl. Fig. 1 for details on 
plate set up). Reference samples prepared from lyophilized 
untreated HepG2 cells were measured in parallel through-
out the entire analytical process (QC technical replicates). 
Data from each metabolite in each sample were normalized 
against the median of the same metabolite in all reference 
samples on the same plate to give normalized ratios. Lyophi-
lized HepG2 cells reference samples were used to account 
for variability between plates (inter- and intra-instrumental 
variation) and in concentration series (0%, 25%, 50%, 75%, 
100%, 125%, 150%, 200%) for linearity checks.

LC–MS/MS metabolomics

Metabolite profiling of cells was performed directly in the 
96-well plate according to a standardized protocol described 
below.

For quenching and extraction 120 µl of isopropanol 80%, 
containing internal standards (quality control only, not used 
for normalization) were added to each well of the frozen 
samples plate. Afterwards, plates were shaken for 5 min, 
750 rpm at 20 °C and placed for 30 s in the ultrasonic device. 
Then, the plates were centrifugated for 10 min, at 5485 g, 
15 °C. 2.5 µl of the extract were injected each for reversed-
phase and hydrophilic interaction liquid chromatography 
followed by MS/MS detection (AB Sciex QTrap 6500+) 
using the positive and negative ionization mode. For reverse-
phase high performance liquid chromatography (RP-HPLC, 
Ascentis Express C18, 5 cm × 2.1 mm, 2.7 µm. Supelco), 
gradient elution was performed with mobile phase A, water/
methanol/0.1 M ammonium formate (1:1:0.02, w/w), and B, 
methyl-tert-butylether/2-propanol/methanol/0.1 M ammo-
nium formate/formic acid (4:2:1:0.07:0.035, w/w) (linear 
gradients, 0 min 100% A, 0.5 min 75% A, 5.9 min 10% A, 
600 µl/min). HILIC (ZIC-HILIC, 10 cm × 2.1 mm, 3.5 µm, 
Merck) gradient elution was performed with mobile phase 
C, acetonitrile/water (99:1, v/v) with 0.2% (v) acetic acid, 
and D, 7 mM ammonium acetate with 0.2% (v) acetic acid 
(linear gradients, 0 min 100% C, 5 min 10% C, 600 µl/min).

Due to the high sample number, the analysis was per-
formed in batches with each batch comprising one 96-well 
plate. To ensure that the analytical system was suitable 
for measurement, for each analysis batch a solvent (80% 
isopropanol) and two external standard calibration samples 
(covering 213 lipid and polar metabolites) followed by 
another solvent sample were run at the start of the analysis. 
The border wells of the 96-well plate were used for lin-
earity samples (resulting in 4 replicates per concentration 
(except 100% with 5 replicates − the latter samples are 
used for normalization as described below). This setup 
ensured that data can be compared across analysis batches. 
Each 96-well plate was analyzed row-wise starting from 
well A1. This way one replicate from each treatment was 
run followed by two linearity samples (in column A and 
H) before moving to the next treatment replicate.

For bioanalytical quality control, the linearity samples 
were evaluated regarding coverage (signal in > 80% of lin-
earity samples), linearity (R2 > 0.64), variability (RSD < 0.6 
for the 100% linearity samples) and blank contribution 
(blank signal < 40% of the 100% linearity samples). When 
a metabolite failed the quality control check, data for this 
metabolite were excluded (Ramirez-Hincapie et al. 2023).

Metabolomics data analysis

To correct for small differences in cell numbers within and 
between different treatment groups, data were also normal-
ized to the within sample median, as described in detail 
by Ramirez et al. (2018). For intracellular metabolomic 
analysis, the median of each sample was calculated across 
all the 256 measured metabolites.

To generate metabolic profiles for the different concen-
trations and time points, heteroscedastic t test (Welch test) 
was applied to log-transformed normalized metabolite data 
to compare treated groups with their respective controls.

To investigate the experimental variability, the variance 
of every log-transformed metabolite for both pooled sam-
ples (technical replicates) and control samples was cal-
culated. These variances were back-transformed to linear 
scale, yielding a relative standard deviation (RSD) using 
the following formula:

Principal component analysis (PCA) analyses were per-
formed using R software environment (https://​www.r-​proje​
ct.​org/) using the ropls package (Thévenot et al. 2015) 
with log10-transformed input data and standard scaling. 
The input data were normalized to the median of each 
metabolite in the control samples on each 96-well plate to 
compensate for differences between plates.

RSD = 1 − 10−SDlog.

https://www.r-project.org/)
https://www.r-project.org/)
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The binomial distribution enrichment analysis was per-
formed using Excel. For this purpose, the number of signifi-
cant changes (s) at p value < 0.05 were counted per treatment 
and ontology class. The binomial distribution test is used to 
indicate the probability of a specific number of successes 
(the number of significant changes) occurring from a spe-
cific number of independent evaluations (total metabolites 
number in the given ontology class). The resulting p value 
for this enrichment is indicated (as category) by color in the 
tables (grey, light yellow or intense yellow).

Point of departure derivation

A concentration-dependent response was modeled based on 
PC1 values obtained from the PCAs. PC1 values for each 
sample were plotted against the test concentration and a 
3-parameter log-logistic model was fitted through the data, 
using ‘drc’ package (Ritz and Streibig 2005). A confidence 
interval of 95% was used for the dose–response curve and 
the control variability was described by the 2.5% and 97.5% 
quantiles, which correspond to 95% spread of the controls. 
The PoD marks the concentration at which the confidence 
interval of the curve surpasses the corresponding quantile of 
the controls, i.e., the curve with its 95% confidence interval 
has crossed the 95% spread of the controls.

Results and discussion

Range finder pre‑test for concentration selection

Initial range-finding experiments were conducted to guide 
the concentration selection for the metabolomics experi-
ments. After administering increasing concentrations of 
nitrofurantoin following two-fold serial dilutions (from 
0.234 to 1.920 µM), cytotoxicity and cell viability were 
assessed in parallel upon 48 h of exposure (Suppl Fig. 2). 
CellToxGreen, a cell impermeable DNA-binding dye 
which measures membrane integrity was used to identify 
concentrations that caused overt cell death. ATP produc-
tion, a more sensitive endpoint expected to reflect earlier 
alterations in cellular metabolism, was used to generate 
a dose response curve and derive effective concentration 
values (EC). Based on ATP content viability pretest, five 
nitrofurantoin concentrations [C1:EC1(ATP), C2; EC15 (ATP), 
C3:EC25(ATP), C4:EC50 (ATP), C5:EC85(ATP)] were selected 
for the following metabolome experiment (Fig. 2). The 
concentration selection aimed to cover important aspects 
of the concentration response dynamics from no and mild 
effects to hepatotoxic-related effects. EC1(ATP) was selected 
to evaluate non-toxic but potentially mild metabolic effects, 
EC15(ATP) and EC25(ATP) was selected to obtain a moderate 

substance effect, however, within a low cytotoxicity range 
and EC50(ATP) and EC85(ATP) were chosen to identify hepato-
toxic related metabolite patterns.

Experimental cytotoxicity and cell viability 
of selected test concentrations

A critical factor of metabolomics experiments is to distin-
guish substance-specific effects from unspecific effects pro-
duced by overt cytotoxicity. To experimentally assess the 
effect of the selected test concentrations on both cell viabil-
ity and cytotoxicity, ATP content (CellTiterGlo) and cell 
death (CellToxGreen) assays were multiplexed and meas-
ured in parallel with the metabolomics experiment in plates 
handled and treated exactly as the ones used for metabo-
lomics (Suppl. Figure 3).

The estimated ECs calculated in the pre-test from ATP 
values after 48 h of exposure corresponded closely to the 
experimentally obtained values in the low [EC1(ATP)] and 
high effect area [EC50(ATP), EC85(ATP)] of the dose response 
curve. In comparison to the vehicle treated cells, the 

Fig. 2   Nitrofurantoin concentration selection for metabolomics 
experiments. ATP values obtained from the viability pre-test were 
used to build a dose–response curve. Five concentrations (indicated 
by the dotted lines) were selected. Upper panel; dose–response curve. 
Lower panel; corresponding estimated EC concentrations. ECs were 
estimated based on the computationally fitted ATP dose response 
curves generated in the range finder experiments upon 48 h of expo-
sure. Five test concentration levels (indicated by the dotted lines) 
were set based on the dose–response curve generated from ATP 
measurement (CellTiterGlo®) pre-test (Suppl Fig.  2). Values were 
approximated to the nearest integer number
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estimated EC15ATP resulted in a mild experimental reduction 
of ATP (down to 94%) while the EC25ATP caused a higher-
than-anticipated reduction in ATP levels (down 63%), sug-
gesting a steep slope in the dose response curve.

At the three highest concentrations [EC25(ATP), EC50(ATP) 
and EC85(ATP)] and the last time point (48 h), ATP levels 
were markedly affected when compared to untreated con-
trols, suggesting significant impairments in the cellular 
energy generation. However, this apparent drastic “loss” in 
viability failed to induce significant cell death measured by 
means of membrane integrity, suggesting a cytostatic rather 
than a cytotoxic effect of the highest nitrofurantoin concen-
trations. Cell growth was monitored by real time imaging 
during the duration of the assay. After 48 h of exposure, 
the concentrations corresponding to EC25(ATP), EC50(ATP) 
and EC85(ATP) had a clear impact on the cellular growth 
rate (Suppl. Figure 4), confirming the cytostatic effect that 
resulted in lower cell numbers and consequently produced an 
apparent reduction in viability when compared to untreated 
cells. These findings point out that experimental concentra-
tion selection based only on viability markers such as ATP, 
could potentially overestimate the substance cytotoxic effect 
missing important markers of potential adversity and result-
ing in an incomplete coverage of the substance response 
effect. Our results indicate that including additional param-
eters such as the parallel assessment of two different end-
points in cytotoxicity readouts is important for proper con-
centration selection and data interpretation.

Metabolomics experiments

The HepG2 cell line was selected due to its unlimited lifes-
pan, stable phenotype, availability, reproducibility, easy han-
dling, and low cost. Although the limited drug metabolizing 
and transport capabilities of HepG2 cells are well acknowl-
edged, a comparable stimulation of de novo synthesis of glu-
tathione and gene expression profiles were found in primary 
human hepatocytes (PHH) and HepG2 when exposed to 
different nitrofurantoin concentrations (Wijaya et al. 2022) 
indicating the suitability of the HepG2 cells to investigate 
nitrofurantoin dynamics.

To study the metabolite dynamics upon nitrofurantoin 
exposure, HepG2 cells were treated with five different con-
centrations (C1:7.5 µM, C2:15 µM, C3:30 µM, C4:60 µM, 
C5:120 µM) at four time points (3, 6, 24, 48 h). A total of 
256 unique metabolites was measured of which 181 were 
annotated and 75 remained unknown. Annotated metabo-
lites were allocated in 13 different metabolite classes such 
as amino acids, carbohydrates, energy metabolism, nucle-
obases, vitamins and cofactors and diverse lipid classes 
(Suppl. Figure 5).

Relative standard deviation (RSD) values of the indi-
vidual metabolites in the control samples ranged from 

8.7% (1st quartile) to 18.7% (3rd quartile) with a median of 
13.1% after control normalization (to compensate for dif-
ferences between plates). The median RSD values of the 
individual metabolites in the control samples on individual 
plates ranged from 10.6 to 13.3%. The median RSD values 
of the individual metabolites in the technical replicates on 
the individual plates were between 9.2 and 10.3% (Suppl 
Fig. 6). The experimental variability of the technical (QC 
samples) and biological (vehicle) controls in our study was 
thus well below the recommended threshold of 30% (Viant 
et al. 2019).

Metabolome analysis of nitrofurantoin‑treated cells 
shows concentration and time response effects

Metabolite profiles of cells treated with five difference con-
centrations of nitrofurantoin (C1–C5) for 3 h, 6 h, 24 h or 
48 h were first analyzed by PCA (Fig. 3). Both concentra-
tion- and time-dependent responses to the nitrofurantoin 
treatment were observed. To minimize time-related effects 
that are not connected to the nitrofurantoin exposure, all 
cells were quenched at the same time point (72 h after seed-
ing), and nitrofurantoin was applied at a respective earlier 
time point (69 h, 66 h, 48 h, and 24 h after seeding). After 
3 h of exposure, none of the tested concentrations induced a 
visible effect. At the lowest tested concentration (C1), sig-
nificant effects were observed only after 48 h of exposure 
(Fig. 4A). From the C2 onwards, clear treatment effects were 
evident already after 24 h of exposure (Fig. 4B–D). The 
strongest treatment effect and highest resolution of concen-
tration and time effects was observed at the highest concen-
tration (C5) and latest time point (48 h) (Fig. 4E, F). Our 

Fig. 3   PCA of nitrofurantoin metabolic profiles show time and con-
centration response effects. PCA analysis of the metabolic profiles 
of HepG2 cells upon nitrofurantoin treatment. Bezafibrate was used 
as a positive control. C1:7.5 µM, C2:15 µM, C3:30 µM, C4:60 µM, 
C5:120 µM
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findings suggest that at low concentrations, nitrofurantoin 
exposure times below 6 h are not sufficient to produce an 
identifiable effect on the metabolome, while at higher con-
centrations, effects can already be identified after shorter 
exposure times. In line with our observations, Malinowska 
and coworkers evaluated the variability of the HepaRG 

cellular baseline metabolome at different time points, sug-
gesting that a reliable detection of metabolic changes upon 
a toxicant exposure is achieved after a minimum exposure 
time of 6 h (Malinowska et al. 2022), which is largely in line 
without our observations. It is conceivable that the suscepti-
bility of HepG2 cells changes with the degree of confluency 

Fig. 4   PCAs of metabolomics time-response effect for each tested concentration. a C1: 7.5 µM, b C2: 15 µM, c C3: 30 µM, d C4: 60 µM, C5: 
120 µM and f metabolic profiles of the five tested concentrations: C1–C2, upon 48 h of exposure
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of the culture (time after seeding). It is formally possible 
that the effects of shorter nitrofurantoin exposure times on 
the metabolome are smaller just because nitrofurantoin was 
applied at a higher confluency (later time after seeding), 
when the cells were less metabolically active and poten-
tially less susceptible to nitrofurantoin. Investigating such 
interactions would require a different experimental setup 
than in the present study, which was designed to minimize 
time-related effects on the metabolome (irrespective of treat-
ment) by quenching all samples at the same time point after 
seeding. We consider it unlikely, however, that the marginal 
difference in physiological age would have had a significant 
influence on the nitrofurantoin mediated chemical effect. In 
a previous paper, in which we reported on the development 
of this metabolomics in vitro system, we demonstrated that 
even different cell passage numbers had no effect on base 
line metabolomics (Ramirez-Hincapie et al. 2023).

Following the PCA evaluation, metabolic profiles of 
nitrofurantoin-treated cells were subjected to univariate 
statistics to identify changes in individual metabolites. A 
univariate enrichment analysis was carried out to evaluate 
the number of significantly changed metabolites per ontol-
ogy class (Suppl. Figure 7). The data revealed dose and time 
dependency, with increasing number of altered metabolites 
at higher concentrations and later time points. These results 
demonstrate that the high throughput in vitro metabolomics 
assay presented here is able to distinguish the effects at dif-
ferent concentrations and time points and therefore is suit-
able to perform metabolome-based time and dose responses 
analysis.

The implementation of tools such as the one presented 
here allows to integrate a temporal dimension in the assess-
ment of compound metabolic dynamics. This type of infor-
mation not only provides mechanistic temporal insights but 
is also valuable for the selection of relevant in vitro sampling 
time points for risk assessment.

Metabolite dynamics over time and concentrations 
show differential profiles as potential indicators 
of initial, adaptive, and toxic responses

Heatmaps of metabolite changes per class were generated in 
order to assess the metabolic dynamics over concentration 
and time (Suppl Fig. 8). This type of analysis allows the 
identification of key metabolites or metabolite class dynam-
ics useful to follow up on the development and progression 
of a hepatotoxic phenotype. Suppl Fig. 8A shows metabolite 
changes by class over the different exposure times while 
Suppl Fig. 8B depicts the metabolite changes per class as a 
function of the applied compound concentration.

Predicting adversity from omics data remains an impor-
tant limitation for the use of these technologies in risk 
assessment (Olesti et al. 2021). Therefore, the investigation 

of multiple endpoints at various time-points is fundamental 
to understand the progression of different key events along 
an adverse outcome pathway (AOP). By evaluating consist-
ent metabolite changes in low, medium, and high concentra-
tions at different time points, we generated a dataset which 
closely captured the previously reported nitrofurantoin effect 
evolution and allowed to identify differential pathway activa-
tion and metabolic markers potentially indicative of a transi-
tion from adaptive to adverse effects (Table. 1).

Metabolic profile of cells exposed to low concentrations

Low concentrations (C1 and C2), corresponding to 7.5 µM 
and 15 µM, showed no significant reduction in viability, 
as well as no cell death or detrimental effects on the cell 
growth. Metabolic profiles of cells treated with these con-
centrations exhibited alterations mainly in the energy and 
lipid metabolism as well as in antioxidant molecules as an 
early response to nitrofurantoin exposure. Concentrations 
of TCA cycle metabolites (fumarate and malate), glyco-
lysis intermediates (glucose-6-phosphate) and acetyl-CoA 
donors (N-acetyl aspartate), decreased consistently from the 
lowest concentrations onwards in a time and dose response 
manner. Pantothenic acid, a precursor to CoA and a part of 
the anchoring system of the fatty acid synthase complex, 
increased in the lowest concentrations and shifted to an 
increase in the highest (C4–C5). Levels of glycerol-3-phos-
phate decreased in the lower and middle concentrations 
(C1–C3) but increased in the highest concentration. Changes 
in metabolites from the fatty acid oxidation pathway were as 
well observed in the low concentrations.

O-Acetlylcarnitine, the acetylated derivative of carni-
tine, which facilitates the movement of acetyl-CoA into 
the mitochondrial matrix during fatty acid oxidation was 
reduced from the C1 onwards while levels of short and long 
chain acylcarnitines (propionyl carnitine and hexadecanoyl 
carnitine), increased consistently from C1–C2 to C4. The 
observed decreased levels of glycolysis and TCA intermedi-
ates together with increased concentrations of acylcarnitines 
and the ketone 3-hydroxybutyrate, suggest a shift towards 
β-oxidation for energy production.

Decreased concentrations of the cofactor nicotinamide 
adenine dinucleotide (NAD), the amino acid taurine and the 
glutathione analogue ophthalmic acid, indicated the pres-
ence of reactive oxygen species (ROS). Through its action 
as an antioxidant, taurine has been shown to play a role in 
counterbalancing oxidative stress attenuating the develop-
ment of liver steatosis in vitro and in vivo (Murakami et al. 
2018). In line with our observations of decreased antioxidant 
molecules, it has been demonstrated that the redox cycling 
during nitrofurantoin metabolization generates different 
ROS such as superoxide anion, hydrogen peroxide, and 
hydroxyl radicals (Wang et al. 2008). In addition, metabolic 
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profiles of cells treated with the lowest nitrofurantoin con-
centrations, showed that precursors of glutathione such as 
glutamine, glutamate, cysteinylglycine and 2-methylserine 
started to increase while S-adenosylhomocysteine decreased 
possibly as an early indicator of the stimulation of de novo 
glutathione synthesis as it became evident in the middle con-
centration (C3).

Some of the earliest metabolic changes with respect 
to both concentration and time were observed in the lipid 
metabolism. Decreased levels of triacylglycerols (TAGs) 
were evident already in the lowest concentration (C1) and 
from an early time point (6 h onwards). Phosphatidylcholine 
levels were found reduced across the low and mid doses 
(C1–C3) while lysophosphatidylcholine concentrations 

Table 1   Characteristic 
metabolite changes of early, 
adaptive and hepatotoxic 
nitrofurantoin response

Consistent metabolite changes in metabolic profiles of HepG2 cells treated with low (C1: 7.5 µM, C2: 
15  µM) middle (C3: 30  µM) and high (C4: 60  µM, C5: 120  µM) nitrofurantoin concentrations. Red 
arrows represent elevated levels and blue arrows represent reduced levels. Changes are calculated relative 
to the controls. Consistent time response changes are depicted; the majority of consistent changes were 
evident upon 24 h of exposure. In the the highest concentrations, some consistent changes were evident 
already upon 6 h of exposure
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increased in all C1–C5 concentrations. Phosphatidyletha-
nolamine levels decreased in all five tested concentrations 
while cholesteryl esters showed increased levels from the D2 
onwards. Our data evidence that nitrofurantoin exerts signifi-
cant effects on different lipids species even at low concen-
trations. These types of alterations in the lipid metabolism 
have, so far, not been reported in the literature as a direct 
consequence of nitrofurantoin exposure. These findings add 
to the current knowledge of nitrofurantoin mechanisms and 
represent an avenue for future research.

Metabolic profile of cells exposed to the middle 
concentrations

The mid concentration (C3), corresponding to 20  µM, 
caused a moderate effect on ATP production and cell growth 
but failed to induce significant cell death. At this concentra-
tion, differential changes mainly in metabolites involved in 
the cellular antioxidant response, the de novo glutathione 
synthesis and amino acids were observed. Levels of coen-
zyme Q10 decreased in a concentration and time response 
manner starting from the middle concentration while glu-
tathione (GSH) increased consistently after 24 h of exposure 
to the C3. Following the observed GSH dynamics, levels of 
proline (amino acid synthesized from glutamate) started to 
decrease from the C3 consistently. Metabolite changes in 
the middle nitrofurantoin concentration are reflective of a 
higher utilization of antioxidant molecules and are in line 
with the reported stimulation of intracellular GSH synthesis 
by nitrofurantoin (Wijaya et al. 2022).

Levels of essential amino acids (phenylalanine, isoleu-
cine, leucine, tyrosine, threonine, and valine) were signifi-
cantly increased starting at the C3 concentration onwards 
resulting in high levels in the highest concentrations. High 
intracellular levels of amino acids suggest a reduced amino 
acid utilization. Reduction of protein synthesis has been 
reported as a common consequence of stress response path-
way activation, resulting in increased intracellular amino 
acids concentrations and reduced cell growth to conserve 
amino acids and energy and decrease the cellular protein 
load as one adaptive measure to overcome stresses (San-
tiago-Díaz et al. 2023). Attenuation of protein translation 
is characteristic of the unfolded protein response (UPR) 
pathway activation. UPR-activating compounds are mostly 
classified as the severe DILI compounds. Nitrofurantoin 
has been shown to significantly active the UPR pathway in 
HepG2 cells (Wijaya et al. 2021). Importantly, it has been 
proposed that UPR response could represent a key predictor 
for adverse cellular outcomes for DILI compounds (Wijaya 
et al. 2021).

Through the activation of adaptive cellular stress response 
pathways, oxidative stress, and endoplasmic reticulum stress 
(resulting in unfolded proteins) are typically counteracted. 

Reactive metabolites generated from nitrofurantoin metabo-
lization can be inactivated by the cellular antioxidant defense 
system (e.g., GSH). The UPR pathway responds to an accu-
mulation of misfolded proteins in the endoplasmic reticu-
lum by restoring the normal function via decreasing protein 
translation, degrading misfolded proteins, and activating the 
signaling pathways that lead to increasing the synthesis of 
molecular chaperones involved in protein folding (Hetz and 
Papa 2018). Thus, the metabolic profiles at this concentra-
tion are potentially reflective of an adaptive phenotype.

Metabolic profile of cells exposed to high concentrations

The highest tested concentrations, particularly C5 corre-
sponding to 120 µM, showed significant impairments on cell 
growth and ATP production which correlated with the strong 
effect observed in the metabolome. Therefore, metabolites 
that were differentially altered in the profiles of cells treated 
with the two highest nitrofurantoin concentrations (C4, C5) 
were used to identify hepatotoxic responses. GSH concentra-
tions were significantly reduced upon 48 h of exposure to the 
highest concentration (C5). Alongside GSH reduction, levels 
of its precursors glutamate cysteinyl glycine and S-adeno-
sylhomocysteine decreased. An excess of reactive metabo-
lites, beyond homeostasis, can modify cellular macromol-
ecules leading to cellular dysfunction. Intracellular levels 
of antioxidants have been suggested as important regulators 
of nitrofurantoin-induced cytotoxicity which has been cor-
related to hepatitis and tissue necrosis observations in vivo 
(Wang et al. 2008). Particularly, GSH plays an important 
role in nitrofurantoin detoxification; nitrofurantoin metabo-
lites have been shown to produce a dose-dependent depletion 
of total cellular glutathione content, likely due to conjuga-
tion of drug metabolites with GSH (Spielberg and Gordon 
1981). Our results indicate that at the highest concentration, 
the capacity of cells to synthesize GSH was compromised, 
leading to the final depletion of GSH rendering the cells 
vulnerable for ROS damage.

Glycerol-3-phosphate levels increased in the two highest 
concentrations. This metabolite is involved in transporting 
reducing equivalents across the mitochondrial membrane via 
the glycerol phosphate shuttle for oxidative phosphorylation 
(Liu et al. 2021). Metabolites from the fatty acid oxidation 
pathway were also changed in the highest concentrations.

Long chain acylcarnitines (tetradecanoylcarnitine) 
switched from reduced levels in in the low and mid con-
centrations, to an upregulation at C5. Propionylcarnitine 
switched from a consistent increase in the lower concen-
trations to an increase in the highest concentration while 
tetradecanoylcarnitine changed from decreased levels in the 
C3 to increased levels at the C5. Alterations in octadecenoyl-
carnitine (increase) and hexanoylcarnitine (decrease) were 
uniquely observed at the highest concentrations. Noteworthy, 
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concentrations of TAGs switched from consistently lower 
levels in C1–C4 to highly increased concentrations in C5.

The high concentrations of glycerol-3-phosphate, long 
chain acylcarnitines and TAGs together with lower levels of 
short chain acylcarnitines are reflective of an impairment of 
the mitochondrial activity and fatty acid β-oxidation path-
way. In agreement with our findings, it has been shown that 
cell viability decreases significantly at nitrofurantoin con-
centrations higher than 100 μM, accompanied by impaired 
mitochondrial respiration (Wijaya et al. 2022). In our study, 
an inhibition of β-oxidation in the highest nitrofurantoin 
concentrations is evidenced by reduced free carnitine, and 
an increase in the fatty acid pool. Free fatty acids can incor-
porate in lipid species such as TAG and ceramides. In our 
study, the concentrations of both lipid species were highly 
elevated. Higher levels of TAGs and ceramides are typical 
findings in liver toxicity studies (Beyoglu and Idle 2013). 
Accumulation of TAGs is the hallmark of steatosis while 
high ceramides levels have been implicated in the impair-
ment of different metabolic processes, being considered 
as lipotoxic species (Kawano and Cohen 2013; Kurz et al. 
2019).

Finally, levels of pipecolic acid were increased only at 
the highest concentration and latest time point (48 h). Sig-
nificantly elevated levels of pipecolic acid have been found 
in plasma of patients with chronic liver disease (Fujita et al. 
1999).

In summary, the observed metabolomics alterations 
matched thoroughly with the nitrofurantoin toxicological 
mechanisms described in literature such as the de novo 
stimulation of GSH synthesis and the activation of oxidative 
stress and unfolded protein response pathways in low and 
middle concentrations, and the mitochondrial impairment 
and GSH depletion in the high concentrations. Metabolic 
profiles of cells exposed to low concentrations (C1, C2) 
revealed initial responses in metabolite changes upon nitro-
furantoin exposure. The middle concentration (C3) reflected 
changes potentially indicative of an adaptive phenotype 
which progressed into a more severe hepatotoxic metabolic 
phenotype in the highest concentrations (C4, C5).

Point of departure determination based 
on metabolomics data

The establishment of human health reference values is 
a key outcome of chemical risk assessment. For in vitro 
data, the starting point for the determination of such val-
ues includes the derivation of a point of departure (POD) 
from dose–response modelling followed by an In Vitro–In 
Vivo Extrapolation (IVIVE) analysis to link an in vitro effect 
concentration with its in vivo counterpart. The successful 
application of IVIVE to transform in vitro concentrations 
into doses expressed in mg/kg bw, as derived in in vivo 

studies has been demonstrated in various publications 
(Abdullah et al. 2016; Louisse et al. 2017; Ning et al. 2019; 
Shi et al. 2020). This approach was also proposed recently 
by Ball et al., in which a more generalised framework for 
the transition from in vivo to NAM-based approaches was 
presented (Ball et al. 2022). Due to their multiparametric 
nature, Omics technologies allow to measure multiple end-
points and pathways simultaneously, representing a more 
informative alternative than traditional in vitro studies. Here 
we explore a PCA-based approach using the complete set of 
previously annotated metabolites to derive a PoD at each of 
the different tested time points (Suppl. Figure 9). As the PC1 
accounts for the strongest response in metabolome changes 
for the different test concentrations, PC1 values for each 
replicate were plotted against the concentration tested. Then, 
a concentration response curve was fitted and the 95% con-
fidence interval for the curve was determined represented 
by the grey ribbon (Suppl. Figure 9, Fig. 5). To account for 
the variability of the controls, the 2.5% and 97.5% quantiles 
were used, covering 95% of the data (dotted line in Suppl. 
Figure 9, Fig. 5). The PoD was defined as the point where 
the 95% confidence interval of the curve diverges from the 
corresponding quantile of the controls for the first time. 
The PoD represented the onset of a global change in the 
metabolome. Above this concentration, early changes in the 
novo GSH synthesis pathway, energy and lipid metabolism 
become evident which increased at higher concentrations. 
The 48 h’ time point showed the most pronounced concen-
tration response resolution, and such it could be presumed 
that is the most conservative. After exploring the PoD esti-
mations with the different time points, it was observed that, 
numerically, the PoD from 24 and 48 h is very similar (24 h: 
13.7 µM, 48 h: 14.7). The 48 h’ time point showed the most 
pronounced concentration response resolution; the doses 
C1–C4 are further apart in the vertical direction (PC1), and 
therefore, it was assumed to be the most conservative. After 
exploring the PoD estimations based on the different time 
points, it was observed that, numerically, the PoD from 24 
and 48 h is very similar (24 h: 13.7 µM, 48 h: 14.7 µM). This 
observation is likely related to the shape of the dose response 
curve and the data variability, which ended up causing a very 
similar PoD. However, since the strongest PC1 response was 
observed after 48 h (D4 and D5 higher in the 48 h than in 
the 24 h time point), and this time point exhibits a better 
dose response curve fit and less data variability compared 
to the 24 h timepoint. If the experiment were to be repeated, 
48 h exposure time may give a slightly more conservative 
PoD estimate since the doses C1–C4 are further apart in 
the vertical direction (PC1) and will therefore, give a better 
resolution of the concentration response. Thus, our recom-
mendation is to use the 48 h exposure time for further risk 
assessment (Fig. 5).
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Recent studies have used untargeted metabolomics data 
to derive PoD via benchmark dose (BMD) (Crizer et al. 
2021; Malinowska et  al. 2023). These approaches have 
been based on BMD calculation for single features and lack 

comprehensive metabolite annotations which could ham-
per data interpretation. Here we propose an alternative way 
on how to derive mechanistic-anchored PoD based on the 
complete set of biological data obtained from metabolomics 

Fig. 5   Point of departure (PoD) derivation from metabolomics data. 
a PoD derivation workflow, b nitrofurantoin PoD. Global metabo-
lite changes as estimated by principal component analysis (PCA) 
exhibit exposure concentration dependency. For the PoD derivation, 
a concentration-dependent response was fitted based on PC1 values 
obtained from the PCAs of 48  h nitrofurantoin treated cells at five 
concentrations. PC1 values for each sample were plotted against 
the test concentration and a 3-parameter log-logistic model was fit-

ted through the data. A confidence interval of 95% was used for the 
dose–response curve (denoted by the grey ribbon). The spread of 
controls is marked by the horizontal dashed lines, which represent the 
2.5% and 97.5% quantiles; the mean is represented as horizontal solid 
line. The point of departure (PoD), marked by a vertical solid line, 
marks the concentration at which the confidence interval of the curve 
surpasses the corresponding quantile of the controls for the first time
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experiments. Both methods provide a biologically based 
starting point that can be used to transform the PoD con-
centration by means of IVIVE into a reference value in 
expressed in mg/kg bw for human health risk assessment. 
The advantage of using a broad targeted approach with anno-
tated metabolites is that only with this knowledge adverse 
outcome pathways can be identified and that an attempt 
can be made to discriminate between non adverse (adap-
tive) responses and adverse effects. Differentiation between 
adverse effects and adaptive responses are a critical con-
sideration for the broad implementation of NAMs and in 
particular for multiparametric Omics data. Recently, ECE-
TOC has published a paper on their workshop about Omics 
threshold on non-adversity with particular emphasis on the 
determination of PoD (Gant et al. 2023).

Adverse responses are considered changes that likely 
result in impairments of functional capacity, impairments of 
the capacity to compensate for additional stress or increase 
the susceptibility to other influences (Keller et al. 2012). 
Although it is not the purpose of this paper to derive such 
a value for nitrofurantoin, we believe that using a PC1 
approach, takes into account the multiparameter nature of 
Omics data and is considered more robust than single param-
eter data. However, further research is needed to identify 
(groups of) metabolites that are representative of an adverse 
effect, so that these can be used to derive a PoD for adverse 
effects and to extrapolate this value into relevant in vivo con-
centrations for risk assessment.

Recovery studies, for example, can be introduced to fur-
ther characterize adversity in in vitro studies. It is acknowl-
edged that approaches solely based on biological responses 
will be conservative, and as such will not underestimate 
the characterization of hazard and can be used in a tiered 
approach.

Conclusion

Recent investigations have shown the potential of apply-
ing high throughput untargeted metabolomics approaches 
to derive hepatotoxicity-related PoD. However, lack of 
metabolite identification, a characteristic of untargeted 
methods, challenges the biological interpretations of the 
results hampering the assessment of the relevance and 
applicability of these data in safety assessment. In the 
present study, we have implemented a high-throughput tar-
geted metabolomics platform (covering metabolites from 
relevant biological pathways) and showed the suitability of 
the system to elucidate metabolic dynamics over time and 
concentration to provide a mechanistic-anchored approach 
to derive and interpret dose and time response metrics 
from metabolomics data. Both PCA and univariate analysis 
evidenced clear metabolome-based time and concentration 

response effects. Mechanistic information allowed to track 
the differential activation of cellular pathways indicative 
of early adaptive and hepatotoxic response. At low con-
centrations, effects were seen mainly in the energy and 
lipid metabolism, in the mid concentration the activation 
of the antioxidant cellular response was evidenced by 
increased levels of GSH and metabolites from the de novo 
GSH synthesis pathway. At the highest concentrations, the 
depletion of GSH, accumulation of essential amino acids, 
ceramides and pipecolic acid together with alternations 
reflective of mitochondrial impairments, were indicative 
of a hepatotoxic response. Our results were in line with the 
broad range of reported concentration-dependent effects of 
nitrofurantoin. In addition, effects of nitrofurantoin expo-
sure on the lipid metabolism, which to our knowledge have 
not yet been documented in the literature, were observed. 
After confirming the mechanistic relevance of the data, we 
proposed an alternative way to derive metabolomics-based 
PoD by PCA using the whole set of measured metabolite 
profiles at each concentration. This approach allows to 
obtain values from the entire dataset and to derive PoDs 
that can be mechanistically anchored to established key 
events. This study demonstrates a very good sensitivity 
of the high throughput in vitro metabolomics method to 
explore mechanisms of hepatoxicity, and dynamics pro-
gression to potential adversity. However, further studies 
are needed to define solid parameters for adversity in vitro. 
Importantly, our work proposes a workflow for PoD deri-
vation that offers the possibility of obtaining mechanistic 
information and therefore serves to build trust in imple-
menting metabolomics data in risk assessment. Follow up 
investigations on the integration of these data into in vitro 
to in vivo extrapolations models (IVIVE) and on the char-
acterization of adaptive vs adverse responses are granted. 
In the absence of clear guidance to discriminate between 
adaptive/non-adverse changes and adverse effects, using 
initial biological responses is a conservative approach 
which can be used in a tiered system.

This method can be extended to further cell lines and 
iPSCs for the investigation of different organ toxicities and 
is suitable for a wide range of next generation risk assess-
ment applications such as MoA investigation, read across 
and PoD derivation that demand rapid, cost effective and 
multiparametric high throughput analysis.
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