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Abstract
The analysis of dose–response, concentration–response, and time–response relationships is a central component of toxico-
logical research. A major decision with respect to the statistical analysis is whether to consider only the actually measured 
concentrations or to assume an underlying (parametric) model that allows extrapolation. Recent research suggests the appli-
cation of modelling approaches for various types of toxicological assays. However, there is a discrepancy between the state 
of the art in statistical methodological research and published analyses in the toxicological literature. The extent of this gap 
is quantified in this work using an extensive literature review that considered all dose–response analyses published in three 
major toxicological journals in 2021. The aspects of the review include biological considerations (type of assay and of expo-
sure), statistical design considerations (number of measured conditions, design, and sample sizes), and statistical analysis 
considerations (display, analysis goal, statistical testing or modelling method, and alert concentration). Based on the results 
of this review and the critical assessment of three selected issues in the context of statistical research, concrete guidance for 
planning, execution, and analysis of dose–response studies from a statistical viewpoint is proposed.
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Introduction

In toxicological research, learning about the properties 
of compounds regarding their effects on humans, ani-
mals, or cells is one of the main goals. This often requires 
dose–response (or concentration–response, time–response, 
etc.) experiments, where multiple increasing doses of the 
compound of interest are administered to individual groups 
of experimental units. The analysis of these experiments 
can then be targeted at a comparison of the different doses 
against a negative control, or at the comparison of sev-
eral treatments or several endpoint targets (e.g., genes) all 

receiving the same treatment, or at calculating alert con-
centrations. A central decision is whether to consider only 
the actually measured doses (e.g., in a display via barplots, 
with pairwise comparisons against the negative control), 
or whether an underlying (parametric) model is assumed 
and fitted to the data, allowing an interpolation between the 
measured doses.

When considering pairwise comparisons of the measured 
doses against a negative control, popular methods are given 
by the Dunnett test (Dunnett 1955), the Williams test (Wil-
liams 1971), and further extensions (Tamhane et al. 1996). 
In terms of alert concentrations, the lowest observed effec-
tive concentration (LOEC, Delignette-Muller et al. (2011)) 
or the no-observed adverse effect level (NOAEL, Dorato and 
Engelhardt (2005)) are potential approaches.

An alert concentration in general is defined as the con-
centration where the measured response value attains or 
exceeds a certain pre-specified threshold. This threshold 
can be based on absolute or relative values, and it may also 
contain significance statements (Kappenberg et al. 2021). 
Assuming an underlying model allows the calculation 
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of alert concentrations that are not only restricted to the 
measured condition values, but also any value in between 
is possible. While the calculation of ED values (effective 
doses, Ritz et al. (2019)) is a frequent goal for viability 
assays, recently, the calculation of different model-based 
alert concentration has also been explicitly recommended 
for gene expression assays (Jiang 2013; Kappenberg et al. 
2021; Möllenhoff et al. 2022).

Generally, the setup and analysis of a dose–response 
experiment consists of the three areas biological consid-
erations, statistical design, and statistical analysis. In each 
area, before conducting or analysing the experiment, cer-
tain decisions need to be made. With respect to the first 
aspect, the biological considerations, based on the under-
lying toxicological question, the type of assay, and the 
corresponding type of exposure (e.g., dose, concentration, 
time) need to be specified. The second part concerns the 
(statistical) design of the experiment. Several decisions, 
also supported by statistics, have to be made here, such as 
the number of considered doses, the actual dose values, 
and the respective sample sizes. As the third step, statisti-
cal analyses are performed. These include the display of 
the results, the choice of aspects to be analysed, the test or 
modelling method to be used, and, if applicable, the alert 
concentration to be calculated. Also, regarding statistical 
analyses, decisions about the appropriate approaches need 
to be made.

Hothorn (2014), Hothorn (2016) give an overview over 
the statistical considerations when analysing dose–response 
experiments. This includes the aspects about the display of 
the data, the discussion about how to report results of data 
analyses (p-values versus confidence intervals), an overview 
of tests for specific scenarios, and modelling considerations. 
A comparison of different model-based alert concentrations 
is given in Jensen et al. (2019).

However, there is a discrepancy between the state of the 
art in statistical methodological research and published 
analyses in the toxicological literature. To provide tar-
geted recommendations for potential improvements of the 
published analyses, there is a need to quantify the extent 
of this discrepancy with respect to the different aspects of 
dose–response experiments. Thus, in this paper, an exten-
sive literature review in three major toxicological journals 
(‘Archives of Toxicology’, ‘Cell Biology and Toxicology’, 
and ‘Toxicological Sciences’) is presented. All publications 
from 2021 were screened for dose–response analyses, and 
the identified analyses were evaluated. The review was per-
formed in terms of the relevant questions about the deci-
sions in the three areas biological considerations, statistical 
design, and statistical analysis. Specific aspects as described 
above represent the relevant questions, the answers to which 
provide a comprehensive picture of the current state of the 
art in the published literature.

The remainder of this paper is structured as follows. 
First, the literature review and how it was conducted is 
presented in detail. All variables collected and the possi-
ble expressions are explained in context. Then, the results 
of the literature review are presented, both by extensive 
univariate analyses of all variables, and by some bivariate 
considerations. Selected results of the literature review 
are critically discussed and placed in the state of the art 
of statistical research. Based on the results from the lit-
erature review, concrete guidance is offered for planning, 
executing, and analysing a dose–response experiment from 
a statistical point of view.

Throughout the paper, the analyses are often referred 
to as ‘dose-response analyses’, and the alerts are often 
referred to as ‘alert concentrations’. From a statistical 
viewpoint, the different types of exposures are equiva-
lent. Therefore, whenever it is not explicitly specified, 
‘dose-response’ or ‘alert concentration’ also refers to all 
other types of exposures, respectively. Additionally, in this 
work, the word ‘condition’ is used as a general term. This 
term includes all types of exposures such as concentra-
tions, doses, times, frequencies, and intensities.

Literature review

For the literature review, three high-ranking journals with 
a rather broad scope and a clear relevance to toxicological 
research were chosen. The three journals are ‘Archives of 
Toxicology’, ‘Cell Biology and Toxicology’, and ‘Toxi-
cological Sciences’. All publications from 2021 from 
these three journals were considered and screened for 
dose–response (concentration–response, time–response, 
etc.) analyses. Only published figures were considered in 
this screening, and not dose–response analyses that are 
summarized only in tables or presented only in supplemen-
tal figures. An analysis was only included in the review 
when at least three conditions plus a negative control, or 
at least four conditions if no control was available, were 
shown. Differential equation-based plots [e.g., physiologi-
cally based pharmacokinetic (PBPK) modelling] were not 
considered. If a figure displayed several dose–response 
analyses, e.g., different compounds or the effect of one 
compound on different biomarkers, each analysis was con-
sidered individually.

The review was performed by several reviewers. To unify 
the results, a comprehensive catalogue of variables was 
prepared in advance, together with their respective possible 
expressions and some additional explanations and remarks. 
The potential problem of inter-reviewer variability was 
addressed by holding frequent meetings and discussions, as 
well as extensive sample checks and unifying efforts.
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Considered variables

In this section, the variables collected and the possible val-
ues they can take are explained in detail. Additionally, a 
summarized overview over these variables, their possible 
values, and some comments is presented in Table 1.

The variables can be categorized into groups, depend-
ing on the subject area (biology or statistics) and the stage 
(design or analysis) of the experiment. The two variables 
considering the type of assay and the type of exposure are 
biological considerations in a dose–response experiment, 
motivated by the toxicological research question. The 

number of conditions, the overall design, and the sample 
sizes belong to the statistical area of design of experiments, 
where the overall goal of the analysis must also be consid-
ered when decisions are made. Finally, the types of display, 
the analysis goal with regard to the decision for an analysis 
strategy, the testing method, the modelling method, and the 
alert concentration are statistical analysis considerations.

Type of assay

The type of assay can take one of the categories ‘Viability’, 
‘Enzyme Activity’, ‘In Vivo’, ‘Proliferation’, ‘Mutagenicity’, 

Table 1  Overview of all variables considered in the literature review, together with possible values they can take and further details and com-
ments as appropriate

Variables Possible values Comments

Biology
Type of assay − Viability

− Enzyme activity
− In Vivo
− Proliferation
− Mutagenicity
− Gene expression
− Protein
− Other

Type of exposure − Concentration or Dose
− Time
− Frequency or Intensity
− Other

Statistical design
Number of conditions Number of conditions (e.g., doses or time points) dis-

played, without counting the control
Information whether a control is available was also collected

Design Design information was obtained from author statements 
and own evaluations of measured condition values

Sample size Number of replicates for the control and for the non-con-
trol conditions, counted separately

Statistical analysis
Type of display − Barplot

− Curve-Interpolated
− Scatter
− Boxplot
− Curve-Modelled

In addition, it was evaluated if significance was assessed via 
stars or via a compact letter display

Analysis goal − Comparison-Cond0
− Comparison-Treat
− Comparison-Tukey
− AlertConc
− Entire Curve

Multiple goals per analysis were possible. The ‘comparison’ 
goals always refer to some kind of statistical testing

Testing method Statistical testing method(s) that were used Global pre-tests and post hoc tests were both considered, if 
applicable

Modelling method Method for modelling the curve, including linear and 
non-linear interpolation, as well as different parametric 
models

Alert concentration − ED value
− BMD
− NOAEL
− ALEC

Software Software used for data analysis
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‘Gene Expression’, ‘Protein’, and ‘Other’. Some assays based 
on enzymes (e.g., the LDH assay) are used for indication of 
cytotoxicity, so they would fit in both categories ‘Viabil-
ity’ and ‘Enzyme Activity’. Here, a distinction was made, 
whether the assay considers only one enzyme, in which case 
it was assigned to the ‘Enzyme Activity’ category, or several 
enzymes, in which case it was assigned to the ‘Viability’ 
category. In cases, where, e.g., protein or gene expression 
measurements from cells after an in vivo treatment (e.g., 
giving a compound to rats or mice and then harvesting 
their cells after sacrificing them) were considered, they 
were assigned to the respective category ‘Protein’ or ‘Gene 
Expression’, but not to the category ‘In Vivo’. The ‘In Vivo’ 
category only refers to measurements directly taken from the 
animals, e.g., body weight, heights, or diameters of organs.

Type of exposure

The types of exposure are divided into the four categories 
‘Concentration or Dose’, ‘Time’, ‘Frequency or Intensity’, 
and ‘Other’. Typically, ‘Dose’ refers to the total amount of a 
compound that is administered (to, e.g., tissue or animals), 
while ‘Concentration’ describes the amount of a compound 
in a mixture that is applied to, e.g., cells. Regarding the 
‘Time’ category, no difference was made between the expo-
sure time and the time between the administration of a treat-
ment and the measurement of the outcome variable. In terms 
of statistical modelling, the different types of exposures are 
considered to be equivalent.

Number of conditions

The number of conditions were counted, where the control 
itself did not count. However, it was additionally recorded, 
whether a control was present. Here, it has to be noted that 
for some dose–response analyses, some normalization with 
respect to the controls is typically conducted, and the control 
is not displayed in each case. In the review conducted here, 
this was considered as if no control was present, since only 
the data actually shown in the figures were considered.

For some figures, e.g., with the display on logarith-
mic axes, the exact number of conditions could not or not 
exactly be retrieved. In cases where some reasonable range 
for the number of conditions could be determined, spanning 
maximally three numbers (e.g., ‘6 to 8’), for the analysis, 
the smallest respective value was selected (i.e., 6 in this 
example).

Design

For the design, several aspects were considered. First, it 
was checked whether the authors of the respective paper 
stated anything specific about the choice of design of the 

experiment. In a second step, wherever possible, the actu-
ally measured condition values were retrieved from the 
data. Typical designs in toxicology are additive (‘equidis-
tant’) designs and multiplicative (‘log-equidistant’) designs 
in which, starting from some initial condition value, the 
remaining condition values are obtained by adding a fixed 
value or multiplying with a fixed value.

To assess the retrieved values in terms of equidistance 
or log-equidistance, successive differences and ratios of the 
condition values, excluding the control, were calculated. 
These successive differences and ratios were then assessed 
with respect to their arithmetic complexity, i.e., the number 
of different values occurring in these successive differences. 
An arithmetic complexity of 1 for the successive differences 
thus corresponds to an equidistant design; an arithmetic 
complexity of 1 for the successive ratios corresponds to a 
log-equidistant design.

A dose–response analysis consisting of only three condi-
tion values (and a negative control) always leads to arithme-
tic complexities of at most two for both the differences and 
the ratios. Thus, the analyses with three condition values that 
did not follow an exactly equidistant or exactly log-equidis-
tant design (i.e., that did not have an arithmetic complexity 
of 1) were counted separately in the category ‘unstructured 3 
conditions’. All analyses that resulted in an arithmetic com-
plexity of 2 for the successive differences and a value higher 
than 2 for the successive ratios were assumed to be ‘almost 
equidistant’, and all analyses in which this relationship was 
reversed were assumed to be ‘almost log-equidistant’.

The remaining dose–response analyses were considered 
to follow a different or more complex design and were ana-
lysed in more detail.

Sample size

The sample sizes, i.e., the number of replicates per con-
dition, were collected separately for the control and the 
non-control conditions. Especially, for the non-control 
conditions, sample sizes can vary between conditions, or 
are stated as ranges across several experiments. In the case 
where ranges did not extend over more than four numbers 
(e.g., ‘3 to 6’ replicates), for the analysis, the value was set 
to the respective smallest value (i.e. 3 in this example). Some 
ranges that spanned more than four numbers but were within 
the range of 1 to 10 were summarized into an own category, 
and so were all other ranges that did not fit the above men-
tioned summarizing criteria.

Type of display

For the types of display, five different categories were con-
sidered. The first category is given by barplots, where no 
differentiation was made between pure barplots and such 
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barplots that additionally provided information about 
standard errors or standard deviations. The next category is 
called ‘Curve-Interpolated’. Here, both linear and non-linear 
interpolation, i.e., the joining of dose-wise mean response 
values, were considered. The category ‘Scatter’ describes 
situations where only the data points were shown. In the 
category ‘Boxplots’, both boxplots alone and boxplots with 
superimposed individual data points were considered. The 
final category is called ‘Curve-Modelled’, where an underly-
ing parametric or non-parametric model was assumed and 
fitted to the data.

In addition to these five categories, it was evaluated 
whether some significance statement was included in the fig-
ure. Here, it was distinguished between stars and between the 
so-called ‘(compact) letter display’ (CLD) (Piepho 2004). 
Stars indicate significant differences between the response 
values for a specific condition value and the response values 
for the control or another clearly specified condition value. 
The CLD assigns letters to treatment groups in such a way 
that if two or more groups share the same letter, no signifi-
cant difference can be found between them. The CLD thus 
requires significance statements for all pairwise compari-
sons between the considered doses, while stars are typically 
provided for individual comparisons against the (negative) 
control.

Analysis goal

The next variable is the analysis goal, which was identified 
from the figure and the corresponding caption. It was pos-
sible to identify several analysis goals for one dose–response 
analysis. The possible goals include ‘Comparison-Cond0’, 
i.e., a comparison against the lowest tested condition value 
(often the control), ‘Comparison-Treat’, i.e., a comparison 
between different dose levels / treatments, or between dif-
ferent biomarkers all treated with the same compounds, and 
‘Comparison-Tukey’, i.e., all pairwise comparisons between 
doses. These comparisons all require some kind of statisti-
cal testing. In addition, possible analysis goals were ‘Alert-
Conc’, i.e., the explicit calculation of an alert concentration 
(see also the variable about alert concentrations), and the 
category ‘Entire Curve’, which refers to general observations 
about the shape of the dose–response analysis. No actual 
dose–response modelling was required for assignments 
within this category.

Testing method

For evaluation of the testing method, information about 
a global testing procedure (e.g., analysis of variance) and 
about a local testing procedure (e.g., pairwise compari-
son with the negative control) was collected. The testing 
method was identified as described in the corresponding 

paper and later categorized into the groups ‘ANOVA / 
Kruskal-Wallis / Friedman (only)’ (i.e., only a global test 
was performed), ‘t-test / multiple comparison / Bonferroni’, 
‘t-test or ANOVA’, ‘Dunn / Dunnett / Steel / Sidak’, ‘Holm 
/ Holm-Sidak’, ‘Least Significant Differences’, ‘Mann Whit-
ney U / Wilcoxon’, ‘Tukey / Tukey-Kramer’, and ‘Duncan 
/ Newman-Keuls’. For the local testing procedures, it was 
additionally evaluated whether the local tests were preceded 
by a global test, i.e., whether the overall testing procedure 
was performed in a two-step way.

ANOVA here refers to the analysis of variance, a statis-
tical method to test for global differences between means 
of response values for different groups, where the response 
is assumed to follow a normal distribution (Chambers and 
Tibshirani 1992, e.g.). The Kruskal–Wallis test is a non-
parametric, rank-based alternative for the same analysis goal 
(Kruskal and Wallis 1952), and the Friedman test is another 
non-parametric alternative, for which paired samples are 
assumed (Friedman 1937).

Student’s t-test is used for comparing the means of two 
groups while assuming a normal distributed response. The 
Bonferroni method is a very simple commonly used method 
for adjusting p-values from multiple tests to avoid an infla-
tion of the type I error and to control the familywise error 
rate (FWER) (Bonferroni 1936).

The Dunnett procedure is used for multiple comparisons 
against, in this context, a (negative) control, by taking the 
correlation between the comparisons into account and thus 
increasing the power of the overall testing procedure while 
still controlling the FWER (Dunnett 1955). It is a parametric 
procedure. The Dunn procedure, which is also parametric, 
has a similar goal, but it is not restricted to testing against 
a negative control, but testing for differences between any 
pre-defined subset of all possible pairs of conditions (Dunn 
1961). Steel’s test is a non-parametric procedure for simul-
taneously comparing different conditions against a negative 
control (Steel 1959). The Šidák (or Dunn–Šidák) test proce-
dure is a method to control the FWER for independent tests 
using a modified significance level � (Šidák 1967).

The Holm (step-down) procedure is a more powerful 
alternative to the Bonferroni procedure, also controlling the 
FWER, but generally leading to fewer type II errors by pur-
suing a sequential strategy (Holm 1979). The Holm–Šidák 
method is a modification of the Holm method, also proposed 
by Holm (1979), where the respective critical value is calcu-
lated in a different way, also pursuing the goal of increasing 
the power of the procedure while controlling the FWER.

The least significant differences procedure works by cal-
culating the smallest difference for which a comparison of 
means in the specific scenario is significant, based on normal 
distribution assumptions. All actually observed differences 
with a larger value than the initially determined smallest 
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value then correspond to rejections of the respective null 
hypotheses (Fisher 1935).

The Mann–Whitney U test and the Wilcoxon test are 
two equivalent tests for comparing the means of two groups 
based on ranks, i.e., with a non-parametric procedure (Mann 
and Whitney 1947; Wilcoxon 1945).

The Tukey test is an approach for simultaneously deter-
mining the significance of all pairwise comparisons. Similar 
to the simple t-test, standardized differences of means are 
compared to some quantile, but the quantiles stem from the 
studentized range distribution and thereby the procedure 
controls the FWER (Tukey 1949). The Tukey–Kramer pro-
cedure is a modification of the Tukey procedure that also 
allows unbalanced sample sizes in the groups (Kramer 1956, 
1957).

The Newman–Keuls method is a multiple comparison 
procedure similar to the Tukey procedure. However, it aims 
at having a higher power by choosing different critical val-
ues, which may result in not keeping the specified level � 
(Newman 1939; Keuls 1952). Duncan’s new multiple range 
test is a further modification of the Newman–Keuls method, 
aiming at an even higher power (Duncan 1955).

Modelling method

The variable modelling method captures both interpola-
tion-based modelling and parametric or non-parametric 
modelling of a curve. The category ‘Linear Interpolation’ 
describes the joining of mean response values of the dif-
ferent doses via a piecewise linear function (Encyclopedia 
of Mathematics, a). ‘Nonlinear Interpolation’ also refers to 
a joining of the dose-wise mean response values, however 
here, not via a linear function, but via some non-linear func-
tion, e.g., via splines (Encyclopedia of Mathematics, b).

In terms of parametric models, the first category is the 
‘Log-logistic/Hill/(sig)Emax’ model. All three names refer 
to equivalent parameterizations of the same family of mod-
els. The curve has a monotonous sigmoidal shape with, 
depending on the choice of the number of parameters, flex-
ibly estimated values for the asymptotes, the inflection point, 
and the slope (Ritz et al. 2019; Ritz 2010; Fang and Zhou 
2023). The category ‘Nonlinear Curve’ refers to all modelled 
curves for which the exact model name was not given. In 
comparison to the log-logistic model, for the ‘Exponential 
model’, the curve does not become saturated for high doses, 
but it always increases in an exponential way (Bretz et al. 
2005). The category ‘Linear Model’ refers to the classical 
linear regression approach, and ‘Model selection’ means that 
several models were considered, and one model was chosen 
according to some criterion.

In contrast to the multiple comparison procedures, 
where the dose values are considered as qualitative (some-
times ordinal) observations, the condition values are always 

considered on a quantitative scale in modelling approaches. 
Modelling allows both interpolation between and extrapola-
tion beyond the actually measured condition values.

Alert concentration

For analyses with some kind of dose–response modelling, 
the considered alert concentrations were grouped into four 
categories: The first category, ‘ED-Value’, considered effec-
tive doses/concentrations. An effective dose is defined as 
the dose for which a pre-specified (relative) effect can be 
observed in the response variable, e.g., the ED10 refers to 
the dose where 10% of the overall effect can be seen (Ritz 
et al. 2019; Sebaugh 2011, e.g.). This category also includes 
inhibitory concentrations, which are defined analogously, but 
refer to the inhibition of a biological process by a compound 
(Sebaugh 2011). The benchmark dose (BMD) approach 
gives an estimate of the ‘point of departure’, i.e., the lowest 
dose for which a response different from the background 
risk is observed (Jensen et al. 2019). ‘NOAEL’ describes 
the no-observed adverse effect level, also sometimes referred 
to as the ‘NOEC’ (no-observed effect concentration), which 
is the highest concentration for which no significant or rel-
evant effect in comparison to the control can be seen (Dorato 
and Engelhardt 2005; Delignette-Muller et al. 2011). The 
‘ALEC’ (absolute lowest effective concentration) is a model-
based alert and is calculated as the concentration where the 
modelled curve intersects with a pre-specified effect level 
(Jiang 2013; Kappenberg et al. 2021).

Software

It was assessed which statistical software was used for the 
data analysis. This was only possible if explicitly stated by 
the authors, and was evaluated purely per paper, i.e., for 
each paper, only one software (or a combination of several 
softwares) was considered.

Analysis strategy

Barplots are generally used to display the results of the 
literature review. For several variables, two presentations 
of the results are shown, one in which each dose–response 
analysis was considered individually, and one in which 
results were analysed on a per-paper basis. This per-paper 
approach means that for a variable, e.g., ‘Type of Expo-
sure’, each possible value, in this example Conc/Dose, Time, 
Frequency/Intensity, and Other, was counted only once per 
paper. Therefore, if, in one paper, three curves with concen-
tration as exposure, and ten curves with time as exposure 
were considered, both Conc/Dose and Time were counted 
once only for that particular paper. In the approach where 
each analysis was considered individually, the three and ten 
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curves counted three and ten times, respectively. The per-
paper approach helps avoiding structural bias in the results, 
when for example one paper considered an unusually high 
number of analyses of the same type of condition, which 
would result in a very high increase of observations for that 
specific type, but this would not necessarily reflect what 
is done typically in publications. However, this per-paper 
analysis was not conducted for all variables, since many of 
them (e.g., analysis goals, used statistical methods) are not 
based on decisions that are made solely by experimenters, 
but based on the goals and general situations of the different 
experiments.

Results of the literature review

In this section, the results from the literature review are 
presented. First, univariate analyses for each variable are 
presented, followed by some selected bivariate relationships. 
Finally, the main results of the analysis are critically evalu-
ated and discussed.

The analysis of the literature review was conducted in the 
statistical programming software R, version 4.2.2 (R Core 
Team 2022). For the graphical display of results, the package 
ggplot2 (Wickham 2016) was used, with the additional 
packages ggmosaic (Jeppson et al. 2021) and gridEx-
tra (Auguie 2017).

General situation

In the three considered journals, a total of 1644 papers were 
published in 2021. Out of these 1644 papers, 250 contained 
at least one dose–response analysis fitting the selection 

criteria. In total, 5670 dose–response analyses were consid-
ered for the review. The number of dose–response analyses 
per paper is summarized in Fig. 1. While for the majority of 
papers, 1–15 dose–response analyses were performed, with 
a peak in the plot at 6–10 analyses, there exist some papers 
with a higher number of analyses: The range between 30 and 
45 analyses was still frequently observed, and only slightly 
lower numbers could be found for the range from 50 to 70. 
Some papers even contained more than 100 analyses, these 
were summarized to one category in the displayed plot. The 
average (arithmetic mean) of considered analyses per paper 
is 22.7, the median is 14, and the quartiles are 6 and 31.

Type of assay

First, the type of assay is evaluated. Figure 2 shows the fre-
quency of occurrence for each type of assay, both on a per-
analysis level (left) and on a per-paper level (right), with 
each assay counted only once per paper. This per-paper 
approach yields 403 observations. Both distributions are 
similar: Not considering those analyses that are categorized 
as ‘Other’, the class of ‘In Vivo’ assays was observed most 
often, followed by viability assays. ‘Gene expression’ and 
‘Protein’ assays occurred similarly often, with still relatively 
high frequency, followed by the ‘enzyme activity’ assay. 
Finally, ‘proliferation’ and ‘mutagenicity’ assays were the 
ones with the lowest frequency.

Type of exposure

The numbers of occurrences for each type of exposure 
are shown in Fig. 3, both on an individual level (left) and 
summarized per paper (right). On a per-paper level, 278 

Fig. 1  Number of considered 
dose–response analyses per 
paper, summarized to groups 
of five numbers, respectively. 
All numbers higher than 100 
were summarized to the same 
category
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observations were made. With 250 papers considered in 
total, this means that, in the vast majority of papers, only one 
type of exposure according these four categories was con-
sidered. Dose–response or concentration–response analyses 
were the most common ones, followed by time–response 
analyses. Frequencies, intensities, and other exposures 
occurred only rarely.

Number of conditions

The numbers of conditions per analysis, not counting the 
control, are displayed in Fig. 4. The blue parts of the barplots 
indicate analyses for which a control was shown in addition 
to the stated number of conditions, and the red parts indi-
cate analyses for which no control was shown. Due to the 
inclusion criteria for the literature review, no analyses with 
fewer than three conditions and additional control or fewer 
than four conditions without control are shown in this plot.

Measuring and displaying a control was more common 
than the lack of a control. Still, no control was shown for 
1431 of the considered analyses. Three conditions was 
the most frequent case, followed by four and five condi-
tions. Higher numbers were observed only in a few cases, 

but also more than 10 or even 20 conditions were some-
times observed. For some analyses, e.g., due to logarith-
mic axes that were difficult to read or due to overlapping 
dose–response analyses displayed in the same figure, no 
number could be retrieved.

Three doses in addition to a negative control is a very 
typical design, consisting of a ‘low’, a ‘medium’ and a ‘high’ 
dose (Hothorn 2016). This was also the minimal number of 
conditions for the respective dose–response analyses to be 
included in this review. Whenever a modelling approach is 
used for the analysis of the dose–response data, more condi-
tions generally lead to better model fits due to more available 
information, but at least as many conditions (including the 
controls) as parameters in the fitted model are required to 
ensure identifiability.

Design

The first step regarding the analysis of the designs that 
were used was to find out whether the authors of the papers 
explicitly referred to some statistical consideration about the 
chosen design. However, such information was not found 
in any of the papers. Thus, as a second step, wherever this 

Fig. 2  The types of assays 
considered in the dose–response 
analyses were counted. On the 
left, the display is given per 
individual analysis; on the right, 
each assay was counted only 
once per paper

Fig. 3  The types of exposures 
considered in the analyses are 
counted. On the left, the display 
is given per individual analysis; 
on the right, each exposure was 
only counted once per paper
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was possible, the actual condition values were retrieved and 
the arithmetic complexity of resulting successive differences 
and ratios, as explained above, was used to obtain informa-
tion about the underlying design.

The condition values could be retrieved for 4747 out of 
all 5670 analyses. For 36 analyses, the successive ratios 
were not calculated, due to the zeros in the corresponding 
series of condition values −28, 0, 0.92, 2, 3, 28 (no obvious 
design, 3 occurrences) and −3, 0, 3, 6, 9 (equidistant design, 
33 occurrences). Figure 5 shows the results for the differ-
ent designs, as obtained from an analysis of the arithmetic 
complexities.

Out of all categories, an equidistant design (i.e., addi-
tive condition values) occurred most often, followed by 
a log-equidistant (i.e., multiplicative) design. When also 

considering almost equidistant and almost log-equidistant 
designs, the two types additive and multiplicative were 
observed similarly often.

A class of designs in the category ‘other/more complex’ 
are designs that are in principle multiplicative (log-equidis-
tant), but have one additional condition value in between 
that does not fit to the log-equidistance profile. One such 
example are condition values 0.1, 1, 5, 10, with three log-
equidistant values and one additional condition value in 
between. Generally, many of the analyses in the ‘other/more 
complex’ category visually seem to be close to equidistant 
or log-equidistant designs, but with more than one additive 
or multiplicative factor.

The role of the negative control, especially in modelling 
approaches, is to estimate the left-sided asymptote of the 

Fig. 4  Number of conditions 
considered for each dose–
response analysis, not counting 
the control. Those analyses for 
which a control was additionally 
shown are displayed in blue, 
the others are displayed in red. 
Numbers larger than ten were 
summarized in three categories 
(color figure online)

Fig. 5  Analysis of the differ-
ent designs for the condition 
values as they result from the 
calculation of the arithmetic 
complexities of successive dif-
ferences and ratios of the actual 
condition values
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response values. Similarly, a very high value could be added 
to the design to approximate a value of ‘infinity’, and thus 
help estimating the right-sided asymptote of a fitted model. 
Based on the retrieved condition values from the reviewed 
papers, an unusually extreme value for the highest condition 
was only observed in one paper, where the time in hours was 
measured for the time points 0.1, 1, 2, 3, 4, 5, 6, 20. How-
ever, the authors did not give specific reasoning for this, and 
the response values were displayed via barplots and not via a 
modelled curve, such that in all considered publications very 
high dose levels were never used for the improved estimation 
of the right-sided asymptote.

More details on the properties and advantages of suitable 
statistical designs are given in Section “Evaluation”.

Sample size (number of replicates)

For the sample size, the control (if available) and the non-
control conditions were considered separately. Figure 6 
shows the number of replicates per concentration for the 
control (left) and the non-control conditions (right). If 
applicable, ranges were summarized as explained in Sec-
tion “Analysis strategy”. In both plots, the by far largest peak 
can be seen for the common number of three replicates per 
condition. Six, five, and four replicates follow in that order. 
Only very few analyses used less than three or more than 
six replicates. For a notable number of analyses, no exact 
information about the sample sizes could be found in the 
respective publication.

A very small sample size, due to ethical or cost-related 
reasons, is one of the main challenges of toxicological data 
(Hothorn 2016). In general, it is recommended that the sam-
ple size for the negative control should be a certain factor 
higher than the sample size for the other conditions. One 

possible choice for this factor is the square root of the num-
ber of conditions. Reducing the sample size as much as 
possible, while keeping the power of statistical testing at 
a reasonable level, has been a relevant topic in research for 
a long time (Schütz and Fuchs 1982), and often goes hand 
in hand with the optimization of the statistical design of 
experiments. Research is also conducted in the direction of 
incorporating historical control data into new experiments, 
to increase the sample size for the negative control (Kluxen 
et al. 2021; Hayashi et al. 2011).

When directly comparing the sample sizes in the litera-
ture review, for 3259 out of the 5670 analyses, the sam-
ple sizes for the control and the other conditions were the 
same or stated to be at least in the same range. For 804 
analyses, no information was given for either the control 
or the other conditions, and for 1431 analyses, no control 
was shown. Only for 66 analyses, the control had a larger 
sample size than the other conditions, and for 18 analyses, 
it was the other way around. For the remaining analyses, 
no comparison could be performed due to missing values 
for either the control or the other conditions. For modelling 
via the commonly used four-parametric log-logistic model, 
Wang and Yang (2014) proved that the locally D-optimal 
design, i.e., the design minimizing the simultaneous con-
fidence region for all four parameters, consists of four dif-
ferent support points. Li and Majumdar (2008) derived that 
one of these support points corresponds to the condition 
value 0. The sample size should be equal at all four support 
points, such that overall 25% of all samples should be allo-
cated to the control (Silvey 1980). Although only few of the 
reviewed papers actually fitted a log-logistic model to the 
dose–response relationship, in general, the sample size in 
the control seems to be rather too low.

Fig. 6  Sample sizes per condition for the control (left) and the other 
conditions (right). Small ranges (e.g., 2–3) were summarized to the 
respective smaller value (2 in this example), other ranges were either 

assigned to the category ‘range: 1 to 10’ or ‘other ranges’, depending 
on the values
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One challenge that has not been directly addressed here 
is the different approaches to dealing with technical and 
biological replicates. Sometimes, a first processing step is 
to calculate the mean values of all technical replicates per 
dose and then proceed, making use only of the biological 
replicates for estimation of the variability per dose. How-
ever, this leads to a loss of information and should thus be 
avoided (Ritz et al. 2019). Another challenge not addressed 
here, but nevertheless important, is the consideration of 
batch effects that can occur when combining data. These 
can be of biological nature, such as inter-donor differences 
in primary human cells, but also of technical origin, such as 
the use of different lots of a test substance. Possible influ-
ences on the variability of the data should be known on the 
experimental side to avoid or minimize them as well as on 
the statistical side to be able to take them into account in the 
statistical analysis.

Display

For the display of the respective dose–response analysis, 
both the overall type of display, and, if applicable, the dis-
play of significance were assessed. Overall, for 3076 of all 
5670 analyses, information about the significance was given, 
in the vast majority of cases using stars. Figure 7 summa-
rizes the type of display, once per individual analysis with 
additional information on significance statements (left), and 
once with counts per paper only, resulting in 333 observa-
tions (right).

Barplots and interpolated curves, i.e., mostly linearly 
joined data points (see Section “Modelling methods” for 
more details on the interpolation methods), clearly domi-
nate the chosen displays. Barplots were almost always com-
bined with some significance statements, almost exclusively 

making use of stars, but rarely also by making use of the 
compact letter display (CLD). Generally, a mean response 
value is displayed by barplots, often with error bars indicat-
ing standard deviations or standard errors.

Boxplots display the median, the two quartiles and, 
depending on the specific choice of the whiskers, the range 
of the data and the extreme values (‘outliers’). Although they 
generally convey far more information than barplots, box-
plots were only very rarely used, even though some toxico-
logical papers explicitly recommend using boxplots (Elmore 
and Peddada 2009; Pallmann and Hothorn 2016). Barplots 
and boxplots share the problem that the relative differences 
between the actual values of the variable on the x-axis are 
not displayed and thus do not allow an intuitive assessment 
of the overall dose–response relationship. For very small 
sample sizes, boxplots are hard to interpret. However, box-
plots still comprise far more information than barplots which 
also implicitly assume normally distributed data (Hothorn 
2016; Pallmann and Hothorn 2016).

For modelled curves (i.e., with underlying models, mostly 
parametric models), basically never was significance infor-
mation provided. Significance typically refers only to the 
actually measured doses, whereas parametric modelling 
additionally allows interpolation between the doses.

When counting each display only once per paper (Fig. 7, 
right plot), the proportion of boxplots was larger, but, gener-
ally, the results are very similar to the individual analysis.

Analysis goal

In this review, it was possible to assign more than one 
analysis goal to an analysis, such that for the 5670 analy-
ses, in total, 5917 analysis goals were evaluated. The fre-
quency distribution of the different goals is displayed in 

Fig. 7  Number of times each type of display was used for the presen-
tation of dose–response analyses, both on a per-analysis level (left), 
and when considering each display only once per paper (right). For 

the individual display, it is additionally indicated whether statements 
of significance were made in the figure, either via stars (blue) or via 
the CLD (red) (color figure online)
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Fig. 8. All goals that refer to some kind of ‘comparison’ 
indicate that some statistical testing has been performed in 
the analysis. By far the most commonly observed analysis 
goal was the comparison against the lowest considered 
condition, which is often the control. This was followed 
by the consideration of the dose–response relationship 
in its entirety, without any explicitly tested comparisons, 
e.g., by describing a generally increasing or decreasing 
shape of the profile. The comparison between different 
dose–response relationships was the third most frequent 
goal, followed by the calculation of an alert concentra-
tion. Pairwise comparisons between all considered doses 

were only very rarely the goal of a dose–response analysis. 
Details on the used testing and modelling methods, and 
on the calculated alert concentrations, are given in the 
subsequent sections.

Testing methods

An overview of the testing methods used in the papers is 
given in Fig. 9. For 2217 of the displayed 3623 analyses, a 
two-step procedure was carried out, with an initial global 
test and a subsequent post hoc procedure. This is indicated 
by purple color in the bars. For 346 analyses, only a global 
test was performed, which does not allow statements about 
the individual doses.

The category Dunn/Dunnett/Stell/Sidak was most fre-
quently observed, also in the majority of cases as part of a 
two-step procedure. These procedures mostly aim at simul-
taneously comparing the response values for each condi-
tion against the negative control. This is followed by the 
category t-test/multiple comparison/Bonferroni, which is 
a relatively broad category, since the multiple comparison 
method is not further specified. In this category, the two-step 
approach was chosen notably less often. All other catego-
ries occurred much less frequently. Among these, the Tukey/
Tukey–Kramer method (i.e., considering all pairwise com-
parisons) is the one that was chosen most often, followed in 
that order by the method of least significant differences and 
the Duncan/Newman–Keuls test. The remaining methods 
were chosen only very seldom.

Fig. 8  Frequency of occurrence for the different analysis goals. All 
goals that refer to ‘comparisons’ indicate some statistical testing

Fig. 9  Overview of the differ-
ent testing methods. Colors 
indicate the type of procedure, 
i.e., if only a global test was 
performed, or only multiple 
comparisons were performed 
(single-step), or the multiple 
comparison was performed as a 
post hoc test after some global 
procedure (two-step)
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The still relatively large number of occurrences of the 
Duncan and the Newman–Keuls method is a bit surprising, 
since for these tests, it is known that the increase in power 
comes at the cost of not keeping the significance level. In 
the very popular software GraphPad Prism (see Section 
“Software”), the use of the Newman–Keuls test is explicitly 
discouraged,1 and the Duncan test is not even implemented 
due to its poor performance.2

While the two-step approaches are obviously very popular 
in published dose–response analyses, their usage is often 
discouraged based on statistical considerations. This is dis-
cussed in more detail in Section “Evaluation”.

Modelling methods

In contrast to testing methods as discussed above, model-
ling approaches allow to interpolate the dose–response 
relationship to arbitrary dose values. Figure 10 displays the 
number of times each modelling method was used. Here, a 
visual differentiation is made between interpolation-based 
approaches and approaches with an underlying model func-
tion. Linear interpolation was the by far most frequently 
used approach; see also Fig. 7. Among the not interpolated 
model approaches, the family of the log-logistic model (also 
called Hill or (sig)Emax model) was the most popular one. 

For a notable number of analyses, the specific model func-
tion could not be retrieved from the paper. Other models, 
or a model selection approach taking several models into 
account, were only used negligibly often.

A more detailed discussion on the advantages and chal-
lenges when using model fits to analyse dose–response data 
is given in Section “Evaluation”.

Alert concentration

The calculation of an alert concentration is based on a curve 
describing the dose–response relationship. Figure 11 dis-
plays the frequency of the different alert concentrations, 
evaluated per individual analysis. ED values were the by far 
most commonly calculated alert concentrations, with a fre-
quency of over 500 out of all 626 analyses for which an alert 
concentration was calculated. The second most considered 
alert concentrations was the BMD, while the occurrences of 
NOAEL and ALEC were negligible.

Technically, whenever a comparison against the negative 
control is performed (as often indicated by the stars for the 
barplots), a special case of the lowest observed effective 
concentration [LOEC, (Kappenberg et al. 2021)], where 
only statistical significance and no biological relevance is of 
interest, is calculated. Generally, the LOEC is defined as the 
lowest concentration where the difference in mean response 
values significantly exceeds some pre-defined threshold, so 
the multiple comparisons against the control in the default 
correspond to a threshold of 0. In this review, however, the 
emphasis with respect to alert concentrations was put on 
those values that were calculated with the explicitly formu-
lated goal of finding a pre-specified alert concentration, such 
as ED values or BMD, and not on those analyses where just 
some comparison against the control was performed.

Fig. 10  Number of times each modelling method was used, shown on 
a per-analysis level. The plot is divided by a line into the interpolation 
approaches (left) and the approaches with an underlying model func-
tion (right)
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Fig. 11  Number of times each alert concentration was calculated, all 
based on a modelled or interpolated dose–response curve

1 https:// www. graph pad. com/ guides/ prism/ latest/ stati stics/ stat_ new-
man- keuls_ method. htm, last accessed on 22.5.2023.
2 https:// www. graph pad. com/ suppo rt/ faq/ does- graph pad- prism- 
or- graph pad- instat- offer- dunca ns- multi ple- compa rison- test/ last 
accessed on 22.5.2023.

https://www.graphpad.com/guides/prism/latest/statistics/stat_newman-keuls_method.htm
https://www.graphpad.com/guides/prism/latest/statistics/stat_newman-keuls_method.htm
https://www.graphpad.com/support/faq/does-graphpad-prism-or-graphpad-instat-offer-duncans-multiple-comparison-test/
https://www.graphpad.com/support/faq/does-graphpad-prism-or-graphpad-instat-offer-duncans-multiple-comparison-test/
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The typical usage of the NOAEL is problematic and also 
often criticized. The general definition of this alert concen-
tration is that it is the highest condition for which no signifi-
cant difference in comparison to the control can be observed. 
In the framework of statistical relevance testing, not being 
able to reject the null hypothesis does not necessarily cor-
respond to the absence of an effect (Dorato and Engelhardt 
2005; Delignette-Muller et al. 2011). To correctly assume 
the absence of an effect, the statistical framework of equiva-
lence testing would be required, but, generally, the use of 
other measures such as the BMD—which, in addition, makes 
use of the entire data, while the NOAEL only considers the 
respective condition levels—should be preferred (Jensen 
et al. 2019; OECD 2014)

Most of the calculated alert concentrations were based 
on fitting a (parametric) curve. However, for a small num-
ber of dose–response relationships that are displayed by a 
linear interpolation, ED values were calculated as the con-
centration where the interpolated curve intersects with a 
pre-defined percentage value. These ED values thus only 
depend on the response values of two neighboring condi-
tions and do not exploit the possibility of making use of the 
entire data for the fitting of a model. Such ED values should 
be interpreted with caution, as they are strongly influenced 
by random variation.

Software

The final variable of the univariate analysis is the used 
software program. This is considered purely on a per-paper 
basis, i.e., for 250 observations (papers). Figure 12 shows 
the softwares used for analysing dose–response data and the 
respective frequencies of their occurrence.

For more than 60 out of the 250 papers with 
dose–response analyses, the information about the soft-
ware used could not be retrieved. For the remaining papers, 
GraphPad Prism (www. graph pad. com) was used in more 
than half of the cases, sometimes in combination with other 
programs. The statistical programming language R, IBM’s 
software for statistical data analysis SPSS, and the software 
for scientific graphing and data analysis SigmaPlot were 
used comparatively often. Other programs were mentioned 
comparatively rarely, and sometimes also in combinations 
of several softwares.

Bivariate displays

In addition to the univariate analyses presented in the previ-
ous sections, interesting combinations of the variables are 
now considered in a bivariate way. Results are presented 
via mosaic plots. Not all possible combinations are shown, 
but five pairings are chosen based on the additional infor-
mation they convey. The bivariate analyses are shown on a 
per-analysis level only (i.e., not on a per-paper level), since 
the plots for the univariate analyses show very similar results 
for both approaches.

The first pairing, consisting of the type of assay and 
the type of display, is shown in Fig. 13. One observation 
here is that the display via ‘Curve-Modelled’, i.e., with an 
underlying (parametric) model, was used vastly more often 
for viability assays than for the other assays. The results 
from in vivo assays and proliferation assays were displayed 
via some interpolation in the majority of cases, and the 
proportion via interpolation was also highest for these 

Fig. 12  Overview over the different softwares that were used for ana-
lysing dose–response data and the respective frequencies of occur-
rence

Fig. 13  Bivariate plot of the type of assay and the type of display for 
each considered dose-response analysis

http://www.graphpad.com
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types of assay, compared to other types. For mutagenicity, 
gene expression, and protein assays, barplots were used 
most often as a method of display. Overall, notable differ-
ences between the type of assays with respect to the types 
of displays can be seen.

Figure 14 shows the bivariate relation between the type 
of assay and the corresponding analysis goal. Since, for 
some dose–response analyses, more than one analysis goal 
could be identified, the associated assays were duplicated 
correspondingly often. Across assay types, the analysis 
goal of calculating an alert concentration was most com-
mon for the viability assays, which in principle fits to 
the previous observation that modelling was performed 
more often for this type of assay. In vivo, proliferation, 
and also viability assays corresponded to the general goal 
of considering the (fitted) curve in its entirety compara-
tively often. The comparison against the lowest considered 
condition value was a very common goal especially for 
mutagenicity, gene expression, and protein assays.

A bivariate plot of the type of display and the num-
ber of conditions is shown in Fig. 15. In comparison to 
the previous (univariate) plot in Fig. 4, the number of 
conditions was summarized in fewer categories, i.e., the 
numbers 6–10 form only one category, as do the numbers 
11–20. It can clearly be seen that when the results were 
displayed via barplots, scatter plots, or boxplots, the num-
ber of conditions was generally smaller, with only three 
conditions being the largest category, respectively. For the 
display via some interpolation or even via the modelling of 
a curve, the number of conditions was very often higher. 

Especially, for the display via a modelled curve, only three 
conditions occurred very seldom, with the most frequent 
category being 6–10 conditions.

The next bivariate analysis, shown in Fig. 16, consid-
ers the type of display and the analysis goal. As before, 
since more than one analysis goal was possible for each 
dose–response analysis, the associated type of display was 
duplicated correspondingly often. Overall, the results are 
in line with the previous findings. For the display of results 
via barplots, the most frequent corresponding analysis goal 
was the comparison against the lowest condition value. The 
calculation of alert concentrations was the most frequent 
analysis goal when displaying the results via a modelled 
curve. For other displays, alert concentrations were rarely 
the analysis goal, only in few cases for the display via a 
curve that was based on some interpolation. For modelled 
and for interpolated curves, often also the entire curve was 
the analysis goal of interest. Only for the display via barplots 
or boxplots, the consideration of all pairwise comparisons 
was a relatively often selected analysis goal.

In conclusion, differences between the types of assays 
and the corresponding choice of statistical methods, both 
for the display of the results and for the analysis goal, could 
be observed. The different types of displays were also asso-
ciated with different types of analysis goals, and, possibly 
due to the different requirements for the respective statistical 

Fig. 14  Bivariate plot of the type of assay and the corresponding 
analysis goal for each dose–response analysis. Some analyses had 
more than one goal; in such cases, they were counted multiple times 
in this plot

Fig. 15  Bivariate plot of the different types of displays against the 
number of conditions. These numbers were further summarized in 
comparison to the Fig. 4
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method, also corresponded to different numbers of measured 
conditions.

While from a statistical point of view, in principle all 
types of condition values (concentrations, doses, times, etc.) 
are equivalent, the differences in their experimental handling 
can affect certain aspects of the statistical consideration, 
such as the design: From an experimental point of view, con-
centrations are often administered in dilution series, and thus 
on a multiplicative scale, while the measurement of time 
points can be arbitrary. The relationship between the type of 
exposure and the corresponding design is shown in Fig. 17. 
Here, it can be seen that equidistant or almost equidistant 
designs were far more common for time–response relation-
ships than for concentration– or dose–response relationships, 
where log-equidistant and almost log-equidistant designs 
(i.e., designs on a multiplicative scale) were observed more 
often. In addition, the case that no condition values could be 
retrieved from the respective plot is present more often for 
concentration and dose as exposure. Since missing condi-
tion values were often due to the display of the analyses on 
a logarithmic axis, this could also hint at in principle more 
designs on a multiplicative scale. For the very few cases of 
a frequency or intensity as exposure, the designs were either 
equidistant, or in the category other/more complex.

Evaluation

In this section, three aspects of the analysis of dose–response 
relationships are discussed in more detail, particularly with 
respect to statistical properties. These three aspects are the 
choice of statistical design, the use of two-step procedures in 
a multiple testing context, and the advantages of modelling 
dose–response relationships.

The first aspect considers the advantages of deciding on a 
suitable design based on statistical considerations. As shown 
in Fig. 17, the chosen design is dependent on the type of 
the exposure within the experiment. Nevertheless, from the 
statistical point of view, the type of exposure is less relevant 
for the design of the experiment than its actual analysis goal.

If a multiple testing for the comparison of effects at dif-
ferent conditions is planned, it is appropriate to fix the con-
ditions to the values of interest. Moreover, the number of 
observations at each of these conditions should be equal 
to maximize the power of the later used multiple testing 
procedure, as shown in Wu and Hamada (2011). However, 
the performance of multiple testing methods, especially 
ANOVA, decreases if the number of different conditions 
of interest increases beyond five (Bornkamp et al. 2007). 
As a consequence, the modelling of the condition–response 
relationship should be preferred, as soon as the effects of 
more than five different conditions are of interest (further 
advantages of modelling are discussed below).

If modelling is planned, the usage of the frequently 
occurring equidistant and log-equidistant designs (cf. 
Fig. 5) might be inappropriate: These designs might con-
tain conditions whose observations do not describe the 

Fig. 16  Bivariate plot of the different types of display and the cor-
responding analysis goal. Some analyses had more than one goal; in 
that case, they appear several times in this plot

Fig. 17  Bivariate plot of the different types of exposures and the cor-
responding chosen design for each considered dose–response analysis
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relevant part of the parametric model and will, therefore, 
result in a bad fit. Instead model-specific optimal design 
strategies (like the usage of D-optimality or compound 
optimality criteria) result in allocations of conditions 
which optimize the quality of the resulting parametric 
model in terms of variance substantially (Pinheiro and 
Bornkamp 2017).

The second important point is about the use of two-step 
procedures when applying pairwise tests or simultaneous 
tests against a negative control. As can be seen in Fig. 9, 
applying first a global test (e.g., ANOVA) and then some so-
called ‘post hoc’ test is a popular approach. This procedure 
is also required by some of the softwares used for analysing 
data, and it is the convention in certain fields of research. 
However, this might lead to results that are too conservative, 
meaning that group-wise differences might exist that are not 
identified via this procedure, in cases when the global test 
does not reject the global null hypothesis, and pairwise com-
parisons would only be considered after a rejection of the 
global null hypothesis (Hothorn 2016; Midway et al. 2020). 
The choice of appropriate models for the multiple compari-
sons themselves is another challenge, where Midway et al. 
(2020) gives some practical guidance.

The third and final aspect to be discussed in more detail 
refers to the advantages of modelling dose–response rela-
tionships by some underlying (parametric) model instead 
of considering only the actually measured condition values. 
Especially, with respect to the calculation of alert concentra-
tions or the analysis of the overall shape of a curve, fitting a 
model to the data points has the advantage that it makes use 
of all data points simultaneously. In contrast, for interpola-
tion approaches and for pairwise testing, typically only two 
conditions are used, respectively. The precise determination 
of an alert concentration from an interpolated curve depends 
on only two neighboring data points.

However, a major challenge in modelling is the choice of 
an appropriate model function. Some applications allow the 
selection of a model based on previous knowledge about typ-
ical dose–response relationships, such as a general sigmoidal 
shape (captured by the family of log-logistic functions) for 
viability assays (Krebs et al. 2020, e.g.). For other applica-
tions, the model selection needs to be performed in a data-
driven way. A direct approach would be to compare several 
potential models in terms of some information criterion, or 
to use a two-step procedures such as the multiple compari-
son and modelling (MCP-Mod) approach (Bretz et al. 2005). 
This approach has also been applied to gene expression data 
and it has shown reasonable results (Duda et al. 2022).

While analysing viability assays with modelled 
dose–response curves and, if applicable, calculating ED 
values based on these curves is already quite common (see 
Fig. 13), recent research also considers gene expression data 
and the possibility to calculate the alert concentration ‘LEC’ 

(lowest effective concentration), which is a model-based 
alternative to the popular ‘LOEC’ (Kappenberg et al. 2021; 
Möllenhoff et al. 2022). One advantage of model-based 
alerts is that they do not depend on the design of the experi-
ments; in that, they can take any value in between actually 
considered condition values.

Guidance for statistical design and analysis

The results from Chapter 3 show that various aspects of 
dose–response experiments must be evaluated from a sta-
tistical point of view. The three phases planning, execut-
ing, and analysing a dose-response experiment each include 
several steps that should be considered as an entire analysis 
process with strong relations between the different steps. As 
a specific example, in the two-step procedure ‘MCP-Mod’ 
(Bretz et al. 2005), parametric modelling of dose-response 
curves comprises two steps: the application of multiple com-
parison procedures against the negative control (‘MCP’) and 
the final fitting of a curve (‘Mod’).

In the next section, a specific guidance strategy for plan-
ning, executing and analysing a dose–response experiment 
from a statistical point of view is proposed. In Section 
“Available software”, some software tools for facilitating 
the individual steps are suggested.

Guidance: DENMAR

The first step of a toxicological dose–response experiment, 
after deciding on the biological assay and the type of expo-
sure, is the design. This concerns both the choice of the 
condition values and the respective allocation of the sample 
sizes. While a lot of these considerations are based on avail-
able biological knowledge, the respective analysis goal of 
the experiment must also be considered when deciding on 
an optimal design. After that, the actual experiment can be 
conducted and data are obtained.

Depending on the type of experiment, the next step con-
sists of the pre-processing and the normalization of the 
data. Examples for pre-processing are, e.g., for gene expres-
sion data, given by the robust multiarray average (RMA) 
algorithm (Irizarry et al. 2003), or for some viability assays 
by translating fluorescence intensities to numbers, or by 
removing background noise by some standardized proce-
dures. The normalization then requires additional steps, such 
as converting numbers to percentages or removing possible 
batch effects by taking the difference of condition values 
and control values. However, the specific choice of pre-pro-
cessing and normalization steps should always be tailored 
to the type of assay and the statistical approach of analys-
ing it, since in some cases [e.g., when analysing RNA-Seq 
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data with the DESeq2 approach (Love et al. 2014)], pre-
processed, but unnormalized data are required.

In the actual statistical analysis, the dose–response data 
are analysed as a whole, which can be considered as the 
modelling of the relationship between dose and response. 
Results from the literature review show that currently most 
emphasis is still on comparing the actually measured condi-
tions with the negative control or on performing linear inter-
polation for easier visualization of the data. Specifically, the 
fitting of a (parametric) model to the data to better capture 
the dose–response relationship should be considered, due 
to the advantages discussed in Section “Results of the lit-
erature review”. Here, it is important to think about suitable 
models in advance, based on prior biological or statistical 
knowledge, or to take model selection or model averaging 
approaches into account.

As a frequent goal of toxicological research, the calcu-
lation of an alert concentration is of interest. This could 
both mean to analyse the results of multiple comparison pro-
cedures against a negative control (i.e., Dunnett-type tests, 
‘LOEC’), or to actually calculate a specific alert concentra-
tion (ED value, BMD, ALEC, ...) based on a fitted model.

The final and very important step is to report all results 
in a way that the analysis could be completely reproduced. 
This reporting should include all relevant information about 
the experimental setup (choice of design, sample sizes), the 
execution of the experiment (often by referring to some 
standard operating procedures), the pre-processing and 
normalization, and the choice of the analysis method (the 
specific testing method used, or the specific type of model 
used, and the type of alert concentration). In the literature, 
often not all of this information could be retrieved from the 
published dose–response analyses, but it is crucial to keep 
completeness and reproducibility in mind when reporting 
results of dose–response experiments.

The previously discussed steps are summarized in 
Table 2, which proposes the six steps as a minimal require-
ment for an analysis pipeline via the newly introduced 
‘DENMAR’ (design, experiment, normalize, modelling, 
alert concentration, report) approach.

Available software

In addition to the previously discussed software solutions 
for analysing dose–response data (see Section “Software”), 
some specific software solutions are pointed out here that 
help with certain aspects of the recommended steps for plan-
ning, executing, and analysing a dose–response analysis.

The R shiny app DoseResponseDesigns (https:// 
biost atist ics. dkfz. de/ DoseR espon seDes igns/, Holland-
Letz and Kopp-Schneider (2021)) allows the calculation of 
optimal designs when assuming underlying log-logistic or 
Weibull functions, as well as comparing a specific design to 
the respective optimal design. This also extends to combina-
tion experiments with two compounds.

Two software solutions for fitting parametric 
dose–response curves and for calculating estimates for the 
BMD alerts based on these fits are given by BMCeasy 
(http:// invit rotox. uni- konst anz. de/ BMCea sy/, Krebs et al. 
(2020)), which is specifically aimed at viability data, and 
BMDExpress2 (https:// www. sciome. com/ bmdex press/, 
Phillips et al. (2018)), which is aimed at analysing genomic 
data.

Discussion and conclusion

There is a discrepancy between the state of the art in statisti-
cal methodological research and the methods used for ana-
lysing dose–response experiments in toxicological research. 
In this paper, the extent of this discrepancy is quantified 
via a comprehensive literature review in all publications of 
the year 2021 from the three major toxicological journals 
‘Archives of Toxicology’, ‘Cell Biology and Toxicology’, 
and ‘Toxicological Sciences’. This review addressed various 
aspects of dose–response analyses in terms of underlying 
biological considerations, statistical design considerations, 
and statistical analysis considerations.

Three major results are discussed in detail. The first result 
is that there is a lack in using statistical design theory for the 
determination of the dose values and the respective alloca-
tion of sample sizes. The second aspect considers the testing 

Table 2  Summarized steps 
for planning, executing, and 
analysing a dose–response 
analysis

D Design Plan the design of the experiment, considering the analysis plan
E Experiment Conduct the toxicological experiment
N Normalize Perform normalization, tailored to the type of assay

(e.g., remove batch effects, convert to percentages, etc.)
M Modelling Model the dose–response relationship;

if possible consider fitting a parametric model
A Alert concentration Calculate the alert concentration of interest

(e.g., ED values, NOAEL, BMD, LOEC (Dunnett-type test))
R Report Report precisely all applied methods (testing/modelling)

and the resulting conclusions

https://biostatistics.dkfz.de/DoseResponseDesigns/
https://biostatistics.dkfz.de/DoseResponseDesigns/
http://invitrotox.uni-konstanz.de/BMCeasy/
https://www.sciome.com/bmdexpress/
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procedure in pairwise comparisons, or multiple comparisons 
against a negative control. It was found that a global test 
often preceded the actual individual comparisons of inter-
est, which can lead to an increase of false-negative results. 
The third aspect is that often only the actually measured 
concentrations were considered for further analyses or only 
linear interpolation was conducted. Instead, the choice of 
an underlying (parametric) model is beneficial in many 
applications, and allows interpolation between the actually 
measured doses. Based on the overall results of the literature 
review, guidance for planning, executing, and analysing a 
dose–response experiment is proposed. The steps are abbre-
viated as ‘DENMAR’, which stands for the aspects design, 
experiment, normalize, modelling, alert concentration, and 
report.

The two-step testing approach, where individual compari-
sons are only tested after obtaining a significant global test 
result, is still often encouraged by several software solutions 
for analysing dose–response data. In the review conducted 
here, it was not evaluated how often statistical analyses were 
stopped after non-significant results of a global test, i.e., 
how often a global test, e.g., ANOVA, was performed and 
the result was not significant, and therefore, no post hoc test 
was conducted afterwards.

For many specific toxicological assays conducted in pre-
clinical research, the Organisation for Economic Co-oper-
ation and Development (OECD) has issued several guide-
lines, e.g., for the Ames assay (OECD 2020), for the Comet 
assay (OECD 2016) or, more general, for carcinogenicity 
studies (OECD 2018a), chronic toxicity studies (OECD 
2018b), or the combination of both (OECD 2018c).

In a current guideline published by the European Food 
Safety Authority (EFSA), the BMD approach to calculating 
alert concentrations is clearly preferred over the NOAEL 
(EFSA Scientific Committee et al. 2022). Further, the recom-
mendation is to perform model averaging of the BMD values 
that are based on the Bayesian fitting of a dose–response 
model.

In this work, however, the focus was not on such guide-
lines, but on general observations about the current prac-
tices in published toxicological research. For more details 
about the current state of the art in published toxicological 
research in connection with available guidelines, the reader 
is referred to Hothorn (2014).

In particular, also statistical researchers must be aware 
that only providing theoretical results about the best prac-
tices in designing and analysing dose–response data is not 
enough. The methodological research needs to be made 
available to practitioners via user-friendly software solu-
tions. One way to achieve this are graphical user interfaces, 
as provided by the shiny package in R, which allows an 
easy creation of apps that can be hosted via websites (Chang 
et al. 2022). A very important aspect for software solutions 

also is to guide the user with respect to the correct reporting, 
such that also in more complex methodological situations, it 
is clear which method was used by the respective program. 
This ultimately enables reporting of methods and results in 
a reproducible way.
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