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Abstract
In silico methods can be used for an early assessment of arrhythmogenic properties of drug candidates. However, their use 
for decision-making is conditioned by the possibility to estimate the predictions’ uncertainty. This work describes our efforts 
to develop uncertainty quantification methods for the predictions produced by multi-level proarrhythmia models. In silico 
models used in this field usually start with experimental or predicted IC50 values that describe drug-induced ion channel 
blockade. Using such inputs, an electrophysiological model computes how the ion channel inhibition, exerted by a drug in a 
certain concentration, translates to an altered shape and duration of the action potential in cardiac cells, which can be repre-
sented as arrhythmogenic risk biomarkers such as the APD90. Using this framework, we identify the main sources of aleatory 
and epistemic uncertainties and propose a method based on probabilistic simulations that replaces single-point estimates 
predicted using multiple input values, including the IC50s and the electrophysiological parameters, by distributions of values. 
Two selected variability types associated with these inputs are then propagated through the multi-level model to estimate 
their impact on the uncertainty levels in the output, expressed by means of intervals. The proposed approach yields single 
predictions of arrhythmogenic risk biomarkers together with value intervals, providing a more comprehensive and realistic 
description of drug effects on a human population. The methodology was tested by predicting arrhythmogenic biomarkers 
on a series of twelve well-characterised marketed drugs, belonging to different arrhythmogenic risk classes.
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Introduction

Ventricular arrhythmias, especially polymorphic ventricular 
tachycardia known as Torsade de Pointes (TdP), are very 
serious and feared adverse drug effects. The early estima-
tion of the potential of drug candidates to induce ventricular 

arrhythmias is therefore of the highest interest to all stake-
holders in healthcare (Gintant et al. 2016). The main mecha-
nism of drug-induced ventricular arrhythmia involves the 
inhibition of one or multiple ion channels present in the 
membrane of ventricular myocytes. Such inhibitory effects 
prolong the action potential (AP) duration of ventricular 
cells triggering effects at the organ level. These prolonga-
tion effects can be observed at the patient level as changes in 
the duration and shape of QT-intervals on the surface ECG 
(Roden 2004; Yap and Camm 2003).

Since 2005, proarrhythmia assessment of pharmaceuti-
cals for human use has been carried out according to the 
guidelines ICH S7b and ICH E14. In the non-clinical phase 
(ICH s7b 2005), the risk is estimated by combining results 
from in vitro inhibition assays of the rapid delayed rectifier 
potassium current (IKr) encoded by the human ether-a-go-go-
related gene (hERG) and an in vivo animal QT-prolongation 
studies, while in clinical phases (ICH E14 2005), drug proar-
rhythmia is assessed by measuring in vivo human QT/QTc 
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interval prolongation. A decade later, the comprehensive 
in vitro proarrhythmia assay (CiPA) initiative enriched the 
mechanistic description of proarrhythmia and complemented 
the assessment by incorporating in silico methodologies 
(Fermini et al. 2016; Sager et al. 2014). The four-stage CiPA 
paradigm highlights the value of considering drug effects on 
a set of ion currents (INa, INaL, IKr, Ito, ICaL, IK1, and IKs) as 
independent factors involved in arrhythmogenesis, instead 
of relying on IKr, only (Li et al. 2017; Sager et al. 2014). 
The potency of drug-mediated inhibition of those ion chan-
nels, usually measured as the half-maximal inhibitory con-
centration (IC50), serves as input for electrophysiological 
models, which translate this information into proarrhythmia 
biomarkers (Li et al. 2019a, b; Park et al. 2019).

In the last decade, several efforts have been undertaken 
to enhance the assessment of proarrhythmia by introducing 
meta-models. Such meta-models are trained using larger 
series of simulation results, which allows for instantaneous 
predictions of selected proarrhythmia biomarkers. In particu-
lar, Mirams et al. (2014) described a meta-model built from 
simulated APD data for a series of different combinations 
variating the level of ion channel inhibition between 0 and 
100% for five ionic transporters, including hERG, CaV1.2, 
NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. Moreover, 
our groups also developed a multi-level in silico tool for 
the prediction of drug-induced action potential duration at 
90% of repolarization (APD90) and QT-interval prolonga-
tion (Obiol-Pardo et al. 2011; Lucia Romero et al. 2018). 
The core of this tool was a large 3D data array containing a 
large number of simulated APD90 prolongation effects gen-
erated by the inhibition of three relevant ion channels (IKr, 
IKs, and ICaL). Since these values were pre-computed for a 
wide range of inhibition values, the method can provide an 
instantaneous estimate of the APD90 duration in ventricular 
cardiomyocytes, using as inputs the values of IC50s for these 
channels, and the plasma concentration of the drug. In a 
recent work, this approach was optimised by replacing the 
3D data array with a Machine Learning (ML) model trained 
using only a small fraction of these costly computational 
simulations, leading to a significant reduction of the number 
of simulations required to obtain reliable APD90 estimates 
(Rodríguez-Belenguer et al. 2023).

Although computational approaches are a valuable com-
plement to purely experimental methods, a detailed assess-
ment of the variability and uncertainty associated with the 
predictions is required to increase the reliability of in silico 
methods (Gosling 2019). Quantification of variability and 
uncertainty in computational modelling systems and their 
predictions has been the objective of previous works in the 
cardiac safety field (Mirams et al. 2016; Mirams et al. 2020).

Several different methodologies have been described for 
the characterisation of variability observed when in vitro 
experiments are conducted to measure ion channel blockade 

produced by chemicals. Mirams et al. (2014) described the 
use of a meta-model for the characterisation of uncertainty 
in ion channel block and to further propagate these uncer-
tainties considering a combination of channels. Chang et al. 
(2017) analysed the uncertainty and variability in drug-bind-
ing and drug ionic current block for TdP-risk assessment 
using the non-parametric bootstrap method and a Bayesian 
inference approach. Elkins et al. (2013) assessed the amount 
of between-experiment variability in drug-blockade of IKr 
(hERG), INa (NaV1.5), ICaL (CaV1.2), IKs (KCNQ1/3ink), 
and Ito (Kv4.3/KchIP2.2) channels using concentration-
effect curves fitted for positive control compounds from 
high-throughput-screening experiments performed at 
Glaxo Smith Kline and Astra Zeneca. Kramer et al. (2020) 
performed an extensive analysis of variability in results 
obtained from automated patch-clamp measurements across 
analysis sites and experimental platforms, thereby pointing 
out the importance of following the principles of Good Lab-
oratory Practice (GLP) to minimise variability.

Another important source of variability is inter-individual 
differences among patients receiving the same drug treat-
ment. When applying in silico approaches, the electrophysi-
ological models that integrate ion channel-specific IC50 
into ventricular arrhythmia biomarkers make use of a large 
number of parameters that were adjusted to fit experimental 
results. However, humans are not physiologically identical, 
and no single electrophysiological model can produce results 
suitable for representing all patients, nor accurately explain 
the observed differences between patients (Wisniowska et al. 
2017). Population-based approaches have been described as 
a useful strategy to consider the inter-individual variability 
in the parameters of in silico models. Britton et al. (2013) 
analysed the inter-subject variability by generating a popu-
lation of cellular AP models, each of which exerted small 
differences in parameters. These models were consequently 
filtered following physiologically based criteria and using 
acceptance–rejection criteria, as shown by Llopis-Lorente 
et al. (2022). Such populations of models can serve for the 
estimation of variability in the responses of a human popula-
tion. Another approach for the analysis of biological vari-
ability was proposed by Johnstone et al. (2016), who used 
Bayesian statistics to infer distributions of inputs and param-
eters, such as current maximal conductance. Pathmanathan 
et al. (2015) performed an extensive analysis of uncertainty 
in the steady-state inactivation of the fast sodium current 
using an individual-based statistical method, the non-linear 
mixed effects (NLME) modelling, to analyse voltage clamp 
data taken from a population of cells.

Once diverse sources of variability and uncertainty in 
model inputs and parameters are identified, Uncertainty 
Quantification (UQ) analysis should be conducted to charac-
terise and quantify their impact on models’ final outcomes. 
When input uncertainties are expressed using probabilistic 



2723Archives of Toxicology (2023) 97:2721–2740	

1 3

terms, UQ is typically performed by applying sampling-
based techniques to propagate them through the model, 
generating a distribution of model outputs. Monte Carlo 
(MC) simulations and Latin Hypercube Sampling (LHS) 
are the most popular methods for sampling-based uncer-
tainty propagation (Clayton et al. 2020), but the applica-
tion of other propagation approaches has been reported. For 
example, Sobie (2009) used multivariate regression for the 
assessment of the impact of variabilities in channel conduct-
ance, time constants, and steady-state voltage offsets. In the 
second case study described by Johnstone et al. (2016), they 
demonstrated the use of the Gaussian Process (GP) emulator 
to assess the effects of the uncertainties in AP model param-
eters once they are propagated to the output (Johnstone et al. 
2016). Lately, Hu et al. (2018) described the use of polyno-
mial chaos for the propagation of uncertainties and global 
sensitivity analysis within a multi-level cardiac electrophysi-
ology prediction framework. In most published works, the 
UQ was performed only on a subset of model parameters. 
Pathmanathan et al. (2019) followed a different approach, 
suggesting that simpler models with a robust and complete 
UQ may be more useful than complex models without a 
full UQ. They performed the UQ on a canine cardiac cell 
model, which was reduced to relatively few parameters to 
which they assigned input distributions, controlled by a user-
dependent hyperparameter.

In this work, we extend our multi-level in silico proar-
rhythmia model by integrating a comprehensive analysis of 
uncertainty. We start by identifying all sources of aleatory 
and epistemic uncertainty typically present in cardiac safety 
models. Focusing exclusively on aleatory uncertainty, we 
then investigate which of the identified sources affect the 
inputs of our model. We develop methods for the charac-
terisation and propagation of the selected uncertainty types 

through the model, using applicable approaches and sim-
ple simulation methods, respectively. These methods aim 
to provide a more realistic representation of proarrhythmia 
biomarker predictions and allow for studying the individual 
and combined effect of different aleatory uncertainty sources 
on proarrhythmia biomarker predictions.

Methods

Multi‑level in silico proarrhythmia model

In 2011 and 2018, we published two works (Obiol-Pardo 
et al. 2011; Lucia Romero et al. 2018) describing the devel-
opment and refinement of a multi-level in silico method for 
predicting cardiac safety biomarkers (APD90 and QT-inter-
val duration). This prediction method, shown in Fig. 1, uses 
pre-computed simulations for estimating how compounds 
with different inhibitory effects on selected ionic currents 
can affect the ventricular tissue at certain concentrations. 
The inputs include IC50 values, obtained either in patch-
clamp assays or predicted by in silico Quantitative Struc-
ture–Activity Relationship (QSAR) models, for three cur-
rents (here: IKr, INaL, ICaL), the drug concentration, and a 
set of electrophysiological simulation parameters. Recently, 
we developed an optimised version of this method in which 
the high number of pre-computed simulations was signifi-
cantly reduced through the application of Machine Learning 
(Rodríguez-Belenguer et al. 2023).

Electrophysiological simulations

In silico action potential (AP) modelling of the healthy 
human endocardial cardiomyocyte and APD90 measurements 

Fig. 1   A simplified schema 
of our multi-level in silico 
proarrhythmia model. For a 
single compound, the input 
comprises a set of IC50 values 
for the currents IKr, INaL, ICaL, a 
drug concentration, and a set of 
electrophysiological simulation 
parameters. The model trans-
lates these inputs to an APD90 
prediction
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were done using the widely known model published by 
O’Hara et  al. (2011), modified as described by Llopis-
Lorente et al. (2020). Here, we considered drug effects on 
APD90 as a function of the three selected currents; IKr, INaL, 
and ICaL, which are considered particularly relevant for drug-
induced occurrence of ventricular arrhythmias and are usu-
ally included in the pre-clinical ion channel screening panel 
at pharmaceutical companies (Chang et al. 2017).

Electrophysiological Machine Learning model

We ran a set of electrophysiological simulations covering a 
wide range of combination of values for the ratio  

(

D

IC50,i

)h

  
for IKr, INaL, and ICaL. These ratios values were used to cal-
culate channel inhibition via the simple pore block model 
(Eq. 1)

where gi, drug represents the maximal conductance of chan-
nel i in the presence of the drug, D is the drug concentra-
tion, IC50, i is the half-maximal inhibitory concentration for 
that drug, and channel i and h is the Hill coefficient.

The results obtained from the simulations (APD90) were 
stored in an array, consisting of three input values (IV) cor-
responding to IKr, INaL, and ICaL channels. Each IV was cal-
culated by taking the logarithm of the ratio 

(

D

IC50,i

)h

 , as 
described in Eq. 2. For each channel (IKr, INaL, ICaL), the 
input value ranged from − 3 to 2.5, with a step increment of 
0.1

The standard utilisation of this array was as follows: for 
a given compound at a concentration D, Eq. 2 was applied 
independently for the three ionic channels (IKr, INaL, ICaL). 
The resulting values were rounded to the first decimal and 
constrained between − 3 and 2.5, i.e., if an input value was 
lower than − 3 or higher than 2.5, the value was then trans-
formed to − 3 or 2.5, respectively. For each combination of 
the three calculated IV, the corresponding output (APD90) 
was retrieved from the array. For example, a drug with the 
following IC50s: 1 nM for IKr, 1000 nM for INaL, and 10 nM 
for ICaL at a concentration of 1 nM yielded the data point 
[0, − 3, − 1], which led to an APD90 of 369.06 ms.

The results of these simulations (APD90) were used to 
build an SVM model, as described in Rodríguez-Belenguer 
et al. (2023). This model can be effectively used to pre-
dict APD90 for any compound with an IV within the range 

(1)gi,drug = gi

[

1 +

(

D

IC50,i

)h
]−1

(2)IV = log10

(

[

D

IC50

]h
)

covered by the model training series. Indeed, this range 
expands from − 3 to 2.5 and is wide enough to represent the 
values found in most drugs and drug candidates. To limit 
the prediction space of this model, any IV minor than the 
minimum or superior to the maximum acceptable threshold 
is rounded accordingly. Hence, no values below − 3 or above 
2.5 are used to predict the APD90 values.

Uncertainty assessment protocol

According to EFSA’s “Guidance on Uncertainty Analysis 
in Scientific Assessments” (Benford et al. 2018a, b), UQ 
should commence with a comprehensive identification of 
all sources of uncertainty that have the potential to alter 
the assessment conclusion. In addition, the ECHA and the 
WHO recommend a complete and transparent characterisa-
tion of uncertainty in model inputs and the methodology 
by conducting a probabilistic analysis (European Chemicals 
Agency 2012; Organization and on Chemical Safety 2018).

In our protocol, the assessment question was defined as 
follows: “What is the APD90 that a certain drug will pro-
duce in an individual of a healthy population considering 
the compound’s potency of inhibition of the considered ion 
channels at a specific concentration?” As a first step, we 
identified all aleatory and epistemic factors that contribute to 
the uncertainty in the output used to answer the assessment 
question, when using the in silico proarrhythmia multi-level 
model. The next step was to investigate which sources of 
uncertainty affect the inputs of our model, thereby focusing 
specifically on the aleatory ones. Monte Carlo simulation 
was used to study how their effect on the input propagates 
through our model and is reflected on its output. Results of 
these simulations were expressed as values and intervals. 
The values can be interpreted as the most probable estimates 
of APD90 and the intervals as ranges of values within which 
the prediction could fall, given a certain level of credibility.

Identification of the main sources of variability 
and uncertainty in cardiac safety models

To correctly identify different sources of uncertainty, it is 
particularly important to distinguish between their aleatory 
or epistemic character (Benford et al. 2018a, b). To make a 
clear distinction, an overview of the most important sources 
of aleatory and epistemic uncertainties is presented in Fig. 2, 
adapted from Shamsi et al. (2020). The uncertainty types 
and the examples provided below apply to cardiac physiome 
models as previously described by Mirams et al. (2016).

The term aleatory uncertainty, which is used interchange-
ably with variability, refers to the indispensable heterogene-
ity and diversity that occurs within biological populations; 
let them be biological samples or human individuals. Vari-
ability, which can be controlled and measured but never 
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completely removed, is reflected in multiple values that a 
quantity of interest can take on. Generally, variability can be 
subdivided based on the criteria, whether the differences are 
observed within the same subject (e.g., the same cell or the 
same person) or among different subjects (e.g., a collection 
of cells or a specific human population). These types are 
referred to as intrinsic or extrinsic variability, respectively. 
Aleatory uncertainty can also be classified considering the 
biological levels of organisation at which differences can be 
observed. Both, intrinsic and extrinsic variability can have 
their onset at the genetic (DNA of an organism), physiologi-
cal (an organism), the environmental (population of organ-
isms) levels, as well as at all intermediate levels that connect 
them.

On the contrary to aleatory uncertainty, when a parameter 
can only have a single true value but the knowledge to define 
it is lacking, it is described as epistemic uncertainty, shortly 
called uncertainty (Johnstone et al. 2016). In the context 
of computational modelling, epistemic uncertainty can be 
attributed to the model either through its inputs or through 
the underlying methodology. As for epistemic uncertainty in 
the inputs, it results mainly from incomplete data-gathering 
steps or the sparseness of the collected information. Con-
cerning the methodology, uncertainty can have its origin in 
the structure of the model, in the selected algorithms and 
parameters or the introduced interpolation or extrapolation 
factors. The overall methodological process, including steps 
that proceed or succeed in the actual prediction, is also sub-
ject to epistemic uncertainty. These encompass all assump-
tions, simplifications, or statistical approximations made to 
develop the model or to interpret its results. Uncertainty 
can also arise as a result of coding errors or the failure to 

consider the dependency between sources of the required 
information.

Despite the theoretical differences, variability and uncer-
tainty are tightly connected, since the epistemic uncertainty 
about a quantity of interest is often expressed based on a 
summary of aleatory uncertainty. More specifically, when 
the knowledge to define parameters for the characterisation 
of variability is generally incomplete, or the assumptions 
made to do so are incorrect, there is uncertainty about varia-
bility (Benford et al. 2018a, b). There are further cases when 
the separation between aleatory and epistemic uncertainty 
is not clear. A very well-known example is the occurrence 
of measurement errors that combine both the imprecision 
resulting from inevitable fluctuations in the measurement 
process and intrinsic and extrinsic variability between meas-
urements of the same quantity (Johnstone et al. 2016).

Sources of variability considered in this work

Computational models can simultaneously be affected by 
more than one source of uncertainty. In this work, aleatory 
uncertainty, which as mentioned above is mainly referred 
to as variability, was the only characterised and quantified 
subtype of uncertainty. Particularly, umbrella terms were 
used to group the variability sources that affect each specific 
input of our multi-level proarrhythmia model. The associa-
tions between model inputs and variability types were addi-
tionally marked within the basic structure of our model, as 
shown in Fig. 3. There are several epistemic factors associ-
ated with the inputs and the methodology, each of which 
can be reduced or even removed by filling the knowledge 
gaps. However, even if we acknowledge its importance, the 

Fig. 2   Identified sources of 
aleatory and epistemic uncer-
tainty affecting elements of in 
silico multi-level proarrhythmia 
models
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quantification of epistemic uncertainty is out of the scope 
of this publication.

In our model, the inhibitory effects of drugs targeting 
ion channels are introduced as IC50 values. These values 
can either be measured experimentally or predicted using 
QSAR models for each considered ion channel. For IC50s 
measured experimentally, we assumed that the differences 
arising from intrinsic and extrinsic properties of analysed 
cellular systems can be summarised as experimental vari-
ability (Δ-IC50s). Here, we also account for the imprecision 
of repeated laboratory experiments, since this factor cannot 
be separated from the measured values. Indeed, experimen-
tal variability could also be considered in the case of the 
Hill coefficient, which is a constant required to calculate 
the IVs for the model. Nevertheless, this constant is equal to 
one for many drugs, and even in a different case, the impact 
of a numeric change of h when computing IV (Eq. 2) is 
rather small (Parikh et al. 2017; Lucia Romero et al. 2018). 
Assuming that the consideration of one more source of vari-
ability with a minimal impact on the predictions could intro-
duce additional complexity and potentially complicate the 
interpretation of results for those variability sources whose 
impact on the prediction outcome is more significant, experi-
mental variability associated with the Hill coefficient was 
not considered in this work.

The second model input affected by variability is the 
parameters defined to conduct electrophysiological cel-
lular simulations. Here, we talk about the inter-individual 
variability (Δ-Parameters) that refers to the differences 
between individuals in the population. To be more spe-
cific, in the context of this publication the umbrella term 
inter-individual variability unites practically all sources of 

aleatory uncertainty shown in Fig. 2. These include intrinsic 
and extrinsic differences between different cells within one 
human body and between several individuals, respectively. It 
also counts in genetic heterogeneity as well as environmen-
tal fluctuations, which together trigger different epigenetic 
modifications and, hence, physiological diversity between 
people and their hearts. Finally, when cardiac activity is 
measured experimentally, random and measurement errors 
may also be taken into account.

Another important model input affected by the pres-
ence of variability is the drug concentration (Δ-[D]). When 
assessing the arrhythmogenic properties of a compound, it is 
common to use the Effective Free Therapeutic Plasma Con-
centration (EFTPC) to describe the protein unbound drug 
concentration present in the blood of patients treated with 
therapeutic doses. However, the intrinsic and extrinsic vari-
ability also affects the pharmacokinetic (PK) processes of 
absorption, distribution, metabolism, and excretion, shortly 
ADME. Methods to address variability in drug concentra-
tion will be discussed later but will not be applied in our 
approach.

Quantitative characterisation of selected types 
of variability

Different guidelines recommend to derive measures of vari-
ability from representative observation data containing mul-
tiple instances of the quantities of interest that follow a cer-
tain distribution of frequencies and their spread (Hastie et al. 
2009; Shikano et al. 2012). Hence, the frequentist approach 
to probability was applied to characterise variability associ-
ated with the inputs of the multi-level proarrhythmia model. 

Fig. 3   Structure of our multi-level APD90 prediction model showing 
the sources of variability that affect model inputs addressed in this 
work. Δ-IC50s represents the variability in the determined inhibitory 
drug effects on ion channels involved in physiological action poten-
tial generation. Δ-Parameters describes the variability in the electro-
physiological model parameters due to inter-individual differences. 

Δ-[D] is the variability of the drug concentration obtained after the 
administration of the drug at therapeutic dosage due to inter-individ-
ual pharmacokinetic differences. Each of the input variability sources 
contributes to the overall level of output variability, indicated as 
(Δ-Prediction)
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Incorporating pragmatic approximations based on different 
approaches described in detail below, it was assumed that 
experimental and inter-individual variability can be quantita-
tively described using normal probability distributions. The 
standard deviation (sd) was used to describe data spread.

Experimental variability in IC50

Variability in experimentally measured pIC50 (− log10(IC50)) 
was characterised by Elkins et al. (2013), who assumed that 
both the pIC50 and sd parameter are the same as, or very 
proximate to the one in control assays when the number of 
repeated measurements is high enough. The sd of the val-
ues measured in their study varied between ion channels, 
control compounds, and the number of repeats, reaching the 
minimum and maximum values of 0.08 and 0.2, respectively. 
Moreover, they showed that the pIC50 values collected in 
reiterated control assays on the same compound follow a 
logistic distribution.

We integrated these assumptions and represented the 
variability by considering that the experimental value is at 
the centre of a normal distribution, with an sd of 0.5. We 
chose a normal distribution for simplicity, due to its simi-
larity with logistic distribution (similar in shape but with 
slightly higher kurtosis) (Hosmer Jr et al. 2013). The use of 
0.5 is an approximation under the assumption that laboratory 
requirements stated in the GLP principles and stable testing 
conditions were not met during the measurement of IC50 
values used in this work.

Inter‑individual variability

To characterise the inter-individual variability, we applied 
the population-based approach previously described (Brit-
ton et al. 2013; Llopis-Lorente et al. 2022; Muszkiewicz 
et al. 2016; Sobie 2009). A modified version of the widely 

used AP endocardial model developed by O’Hara et al. 
(2011) (O’Hara et al. 2011) was used as the baseline model. 
Assuming the baseline model represents the “averaged” 
model, an initial population of 1000 models was generated 
by randomly and simultaneously applying a scaling factor to 
the 15 channel conductances of the AP model. These scale 
factors modifying the channel conductances were randomly 
sampled from a normal distribution with mean 1 and stand-
ard deviation 0.2, and thus, assuring most of the population 
(> 99%) was in a range between ± 60% with respect to the 
baseline model. This range covers the natural variability 
reported experimentally in human ventricular tissues (Fink 
et al. 2008; Lucía Romero et al. 2009; Volders et al. 2000).

The 1,000 models were simulated at 37ºC and at the 
following extracellular concentrations: [Na+] = 140 nM, 
[Ca2+] = 1.8 nM and [K+] = 5.4 nM. Then, a calibration 
was performed. Plausible electrophysiological properties 
were defined according to experimental measurements for 
15 biomarkers related to AP duration, amplitude of mem-
brane potential, and calcium dynamics. Limits of acceptance 
for the 15 electrophysiological properties were taken from 
Table 1 in (Llopis-Lorente et al. 2022). These ranges were 
obtained from a variety of experiments conducted on differ-
ent hearts and cardiac regions (Britton et al. 2017; Coppini 
et al. 2013; Grandi et al. 2010; O’Hara et al. 2011; Pieske 
et al. 2002; Sampedro 2020; Schmidt et al. 1998). After cali-
bration, 860 models presented a plausible electrophysiologi-
cal behavior according to experimental data. Sacling factors 
of the final population are available in “ORdmD scaling fac-
tors.xlsx” at https://​riunet.​upv.​es/​handle/​10251/​182593.

Population of input value combinations

The population of 860 models was used to generate a dis-
tribution of APD90 predictions for a given set of 125 input 
value combinations, selected to represent properties similar 

Table 1   Compounds belonging 
to the CiPA training and 
calibration set and their main 
characteristics including the 
EFTPC in nM, IC50 values in 
nM, the h, and the TdP and 
proarrhythmia risk class

Name EFTPC (nM) IKr INaL ICaL Risk class

IC50 (nM) h IC50 (nM) h IC50 (nM) h

Bepridil 33 144 1 339 1.9 638,000 4.6 High
Dofetilide 2 75 1 837,000 4.6 2,300,000 5.4 High
Quinidine 3,237 971 1 2,360 0.91 5,100,000 4.7 High
Sotalol 14,690 290,000 1 134,000,000 5.9 58,000,000 5.5 High
Chlorpromazine 38 650 1 673 1.8 6,350 2 Intermediate
Cisapride 2.6 72 1 421 2.2 4,050,000 5.6 Intermediate
Ondansetron 139 1,200 1 6,870 1.2 9,310,000 0.2 Intermediate
Terfenadine 4 129 1 98.3 1.1 1,220,000 5.2 Intermediate
Diltiazem 122 7,900 1 3,040 1.1 31,600 1.2 Low
Mexiletine 4,129 53,000 1 4,690 0.99 164,000 0.96 Low
Ranolazine 1,948.2 8,300 1 5,950 0.99 6,540,000 3.8 Low
Verapamil 81 460 1 982 1.2 11,200 0.8 Low

https://riunet.upv.es/handle/10251/182593


2728	 Archives of Toxicology (2023) 97:2721–2740

1 3

to those of real compounds. These values spread regularly 
along all dimensions in the 3D array covering all possible 
combinations (53) of the five following values: − 3, − 1, − 0.5, 
0, 1 for the three channels IKr, INaL, ICaL). Whether these dis-
tributions have the same shape and dispersion for diverse 
input values was first evaluated visually by plotting the value 
distributions as individual histograms.

The example histograms in Fig. 4 represent the distribu-
tion of APD90 values obtained for three of these input value 
combinations. Left graphic, obtained using the input value 
combination (− 3, − 3, − 3), shows an APD90 distribution 
generated assuming no inhibition of the selected channels. 
The remaining two distributions illustrate distributions of 
output values produced for different input values combina-
tions where inhibition was accounted for. The shape of the 
distributions is approximately normal (as checked using 
quantile–quantile plots) and for the 125 conditions tested, 
the average sd is of 35.4 ms, even if the dispersion is not 
homogeneous and different sd values were obtained for dif-
ferent input values.

The data table composed of 860 APD90 predictions gener-
ated for 125 input value combinations was used to build a 
model for predicting the dispersion (sd) of the distributions 
for a given set of input values. When generating predic-
tions, this model produces an estimate of the dispersion of 
an APD90 distribution, for any drug with a combination of 
input values within the range covered by the models’ training 
series. This predicted dispersion can be seen as an approxi-
mation of variability associated with APD90 prediction due 
to the inter-individual differences in the electrophysiological 
parameters. The models were built using a method simi-
lar to the one described extensively in our previous work 
Rodríguez-Belenguer et al. (2023). SVM algorithm was 
used for the dispersion model, and the following hyperpa-
rameters were selected after optimising the model: C = 1, 
kernel = Radial Basis Function (RBF), gamma = Scale. The 

goodness of fit was assessed as per mean absolute error 
(MAE = 0.35) computed for the test set.

Propagation and quantitative expression 
of variability in model outputs

Variability was propagated applying the forward Monte 
Carlo (MC) simulation approach (Kitagawa and Sato 2001). 
The MC technique belongs to a broader group of stochastic 
simulation methods that allow for the generation of random 
numbers to solve problems of non-deterministic nature. The 
advantage of such a method is that no assumptions about the 
model must be made. Moreover, the simplicity and simul-
taneous correctness of the methodology are very conveni-
ent. In the context of variability assessment, MC requires 
the identification of all random components of a model and 
defining their interactions with other elements. It is impor-
tant to consider the correlation between the level of ran-
domness, or variability, and the number of samples needed 
to propagate such variability, thereby maintaining the reli-
ability of the result. In other words, the greater the spread 
parameter describing the variability, the more samples must 
be drawn from the probability distribution. Moreover, as the 
result is highly dependent on the assumed distribution to be 
sampled with the MC method, the preparatory work to make 
correct assumptions with regard to the random variables is 
particularly important (Kroese and Rubinstein 2012).

The simulations were run considering only experimental 
variability (Simulation A), only the variability due to inter-
individual differences (Simulation B), or a combination of 
both variability types (Simulation C), as shown in Fig. 5.

In all instances, the multi-level model described in Fig. 1 
was applied 1000 times. In each simulation run, normally 
distributed random values were added up to specific ele-
ments of the model, using the random.normal(mu, sigma) 
function provided by the numpy library with a mu value 

Fig. 4   Distributions of APD90 values generated by the population of 860 electrophysiological models for input values #0 (left), #3 (middle), and 
#60 (right), from the input value combinations shown in the graphics
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of 0.0 and a sigma equal to the standard deviation of the 
variability represented, as described in the previous section.

In Simulation A, conducted to represent experimental 
variability in pIC50 values, the random value was added to 
the pIC50 used to compute the input values of the model. In 
Simulation B, aiming to represent the inter-individual vari-
ability, the model was run in the standard way, and once the 
prediction was generated, the random values were added to 
the APD90 results using the sd computed by the dispersion 
model. In either case, the procedure is equivalent to drawing 
the values from a normal distribution with the centre located 
in the original value and a standard deviation similar to the 
one obtained in the characterisation step. To analyse the 
combined effects of both types of variability, in Simulation 
C, both approaches were merged; prior to the application of 
the model, the pIC50 values were modified with the random 
values as in Simulation A and, after generating each APD90 
prediction, the output values were modified by adding the 
random values as in Simulation B.

In all three cases, the simulations generate output dis-
tributions of slightly different APD90 values. The centre of 
these distributions (median or 50th percentile) was used as 
the point prediction, while the value range between the 10th 

and the 90th percentile was used as an interval representing 
the prediction variability, which can be interpreted as the 
80% confidence interval.

An example case study using CiPA compounds

To evaluate the practical application of our methodology, 
we applied it on a set of 12 CiPA compounds. These com-
pounds, officially selected as the CiPA training and cali-
bration set, were chosen in this study, because they belong 
to three risk classes (low, medium, and high) and are well 
characterised in terms of their arrhythmogenic mode of 
action. Moreover, these are real drugs, each of which inhibits 
the selected ion currents IKr, INaL, and ICaL with a different 
potency at different therapeutic concentrations, resulting in 
a different combination of model input values. An overview 
of some important properties of the selected drugs extracted 
from Colatsky et al. (2016); Li et al. (2019a, b); Llopis-
Lorente et al. (2020) is provided in Table 1.

To obtain biomarker predictions that correspond with the 
arrhythmogenic potential of the drugs in clinical practice, 
the IVs were calculated using experimental IC50 values for 
IKr, INaL, and ICaL channels and the EFTPC. As the starting 

Fig. 5   Schema of the three simulation types carried out in this work. 
Simulation A—propagation of experimental variability associated 
with pIC50 values, Simulation B—propagation of inter-individual var-

iability arising at the level of electrophysiological model parameters, 
and Simulation C—propagation of combined experimental and inter-
individual variability
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point, a single APD90 biomarker prediction was generated 
using our default model for each of the 12 compounds. 
Then, experimental variability and inter-individual vari-
ability were characterised for these compounds and propa-
gated through the model using the three different simulation 
types described above (Fig. 5). For each drug, this procedure 
yielded a single biomarker prediction and an interval inter-
pretable as an 80% confidence interval. These results were 
analysed in detail and critically discussed to evaluate the 
advantages of assessing the impact of input variability on 
the uncertainty in the output of the model, which contrasts 
with relying on single model predictions.

Software

The electrophysiological simulations and the generation of 
the APD90 array were carried out using MATLAB version 
R2021b. These results are available online on the public 
repository of the Universitat Politècnica de València (https://​
riunet.​upv.​es/​handle/​10251/​191820). The simulations were 
carried out using scripts written in Python 3.8. Machine 
learning models were built and evaluated using Scikit-learn 
version 0.24.2 (Pedregosa et  al. 2011), NumPy version 
1.19.5 (Harris et al. 2020), Pandas version 1.1.5 (McKin-
ney 2010), and Statsmodels version 0.12.2 (Seabold and 
Perktold 2010). Graphics were generated with Matplotlib 
version 3.3.4 (Hunter 2007). All utilised data tables as well 
as the source code of the python scripts, models, and meth-
ods described here are freely accessible at GitHub (https://​
github.​com/​phi-​grib/​Cardi​otox_​uncer​tainty) and usable 
under GNU GPL v3 open source license.

Results

Overview

The main aim of this work was to develop methods for 
the assessment of uncertainty, mainly of aleatory type, in 
prediction results provided by the previously described in 
silico multi-level proarrhythmia model (Fig. 1). This model 
predicts the proarrhythmia biomarker APD90 of a certain 
compound from the experimentally measured or predicted 
inhibition potency of three ion currents (IKr, INaL, ICaL) 
for a given drug concentration and channel-specific Hill 
coefficient.

The protocol for uncertainty assessment and quantifica-
tion involved three steps:

1.	 Identification of the main sources of variability and 
uncertainty in cardiac safety models

2.	 Quantitative characterisation of selected types of vari-
ability

3.	 Propagation and quantitative expression of variability in 
model outputs.

Independently of the type or source, we recognised that 
all uncertainty types identified (point 1) are interconnected 
and to some extent affect each other and the output of the 
model. Nevertheless, for this work, we attempted to group 
them based on their association with the model inputs. Later, 
we characterised and quantified the individual and the com-
bined effect of two selected variability types (points 2 & 3) 
on the predictions generated by our model.

This method was applied to a set of 12 CiPA drugs. The 
results of this use case were analysed, considering the ben-
efits that such output could provide for drug developers and 
decision-makers.

Step 1: identification of the main sources 
of variability and uncertainty in cardiac safety 
models

Figure 2 presented in the section “Methods” provides an 
overview of the most important sources of aleatory and epis-
temic uncertainty generally associated with cardiac safety 
models.

The origin of aleatory uncertainty was identified as intrin-
sic and extrinsic variability, as well as measurement errors. 
These aleatory elements were used to find associations with 
the inputs of our model. As a result, we summarised them 
under the umbrella terms “experimental variability” and 
“inter-individual variability”, affecting the input IC50 val-
ues and the parameters predefined in the electrophysiologi-
cal action potential simulations models, respectively. The 
experimental variability of the Hill coefficient required to 
compute the input values of our model was not considered in 
this work, due to its minor impact (see “Methods” section for 
details). Additionally, the drug concentration is also subject 
to aleatory uncertainty, mainly due to intrinsic and extrinsic 
heterogeneity among subjects of the same population, lead-
ing to differences in pharmacokinetic responses. Compared 
to the Hill coefficient, the impact of drug concentration on 
the numeric outcome of Eq. 2 computing the input values 
of the proarrhythmia model is larger. However, due to some 
limitations of this protocol, the impact of variability in drug 
concentration on the overall uncertainty levels in the predic-
tion of the model was not quantified here.

With regard to epistemic uncertainty, the two main 
affected model components are the inputs from which the 
predictions are generated and the methodology underlying 
the prediction system. Experimental inputs are subject to 
epistemic uncertainty due to multiple unknown values and 
approximations introduced during laboratory measurements 
and in the consequent data processing. Some degree of 
epistemic uncertainty also accompanies all methodological 

https://riunet.upv.es/handle/10251/191820
https://riunet.upv.es/handle/10251/191820
https://github.com/phi-grib/Cardiotox_uncertainty
https://github.com/phi-grib/Cardiotox_uncertainty
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steps, starting with the selection of models or algorithms, 
through the definition of their parameters and to the subjec-
tive expert judgements informing the model, to simplifica-
tions and assumptions accompanying the interpretation of 
the prediction results.

Step 2: quantitative characterisation of selected 
types of variability

Experimental variability

Experimental variability was characterised based on assump-
tions and results previously published by Elkins et al. (2013). 
Here, we assumed that IC50 values measured for different 
cardiac ion currents and different compounds are naturally 
associated with levels of deviation of similar magnitude as 
those of control compounds in the published literature. In the 
simulations, this subtype of aleatory uncertainty was intro-
duced by adding to the experimental pIC50 values a random 
value following a normal distribution with mean 0.0 and an 
sd of 0.5, as explained in the section “Methods”.

Inter‑individual variability

Inter-individual variability was characterised following a 
multi-step approach based on a population of models. This 
model population, consisting of a total of 860 models, was 
generated by introducing variations into the default electro-
physiological model used in this work as described in the 
section “Methods”. In particular, the parameters for every 
single model belonging to the population were equalled to 
those expected from a healthy population of patients. The 
population of models was then applied to predict APD90 val-
ues from a set of 125 input value combinations. The result-
ing 3D array served as training data to build a predictive 
model that can provide approximate estimates of the vari-
ability that can be attributed to the single APD90 prediction. 
This variability is expressed as predicted sd, as explained in 
the section “Methods”.

Step 3: propagation and quantitative expression 
of variability in model outputs

The variability characterised in Step 2 was propagated 
through the model by running MC simulations, as shown in 
Methods in Fig. 5. The MC simulations conducted in this 
work incorporate only the experimental variability into the 
input values (Simulation A), add up inter-individual variabil-
ity into the APD90 predictions (Simulation B) or combine 
both types of simulations (Simulation C). See the section 
“Methods” for details. In all instances, these simulations 
turned single inputs into a collection of 1000 differently dis-
tributed output values. These distributions can be seen as a 

means to complement single predictions provided by our ini-
tial model by an informative value interval. Being a product 
of each prediction, the centre of such interval corresponds to 
the centre of the APD90 distribution (median or percentile 
50th) and ranges from the 10th to the 90th percentile. These 
intervals can informally be referred to as the 80% confidence 
intervals and represent the central range of values which the 
model would produce 80% of the times.

An example case study using selected CiPA 
compounds

Value distributions resulting from variability propagation

To assess the practical value of the developed methodology, 
the above-described steps 1–3 were applied to a collection 
of 12 compounds with well-defined cardiac electrophysiol-
ogy and proarrhythmia risk classes defining the severity of 
clinical effects, as previously characterised and published by 
the CiPA initiative (Colatsky et al. 2016). The use of these 
drugs was further justified in the “Methods” section.

Application of the methodology on the example of the 
CiPA compound set yielded a collection of 1000 APD90 val-
ues for each CiPA drug and the considered simulation type. 
Figure 6 shows three sections of violin plots, each represent-
ing results from the simulations A-C.

When comparing the distributions presented in Fig. 6, 
obtained by propagating experimental variability (Simula-
tion A) with those where inter-individual variability was 
considered (Simulations B and C), there are remarkable 
differences in the width and skewness. As described in the 
section “Methods”, in Simulation A, random numbers were 
added to the pIC50 values used to generate the model IVs. 
Hence, the shape and width of the output distributions do 
not depend directly on the assumptions made to characterise 
this variability type.

Conversely, the dispersion and the form of the output 
distributions essentially depend on how sensitive the output 
values are to small IVs changes in a certain region of the 
training series space. To understand this concept, the model 
describing the non-linear relationship between the APD90s 
and the IVs can be visualised as a hyperplane. In some 
regions, this hyperplane is rather flat and, therefore, small 
changes on the IVs produce rather similar APD90 predic-
tions. In other regions, this hyperplane is steeper wherefore 
small IV changes (e.g., due to a pIC50 increase for a highly 
relevant channel) produce significant APD90 variations. For 
the analysed drugs, most of the distributions generated in 
Simulation A are right skewed, with the maximum value 
far from the distribution centre. This can be explained by 
the non-linear relationship between the IVs and the APD90s: 
even if the IVs used in this simulation follow a normal distri-
bution, the output values will not. Therefore, the propagation 
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of experimental variability resulted in a condensation of 
APD90 predictions in a narrow area of around 275 ms and 
a great right skew of the distribution for the majority of 
the drugs included in this analysis. In the case of Bepridil, 
Ranolazine, and Verapamil introducing variability into the 
pIC50 values yielded IVs that fell within a sloped region of 
the prediction function, resulting in wider output distribu-
tions and minor right skew. The IVs computed for Quinidine, 
however, were spread differently producing a wide distribu-
tion of APD90 values with no notable skew.

As opposed to Simulation A, the dispersion and the 
form of distributions generated in Simulation B, shown in 
Fig. 6, are a consequence of the assumptions made about 
the inter-individual variability. Since they were generated 
by adding normally distributed random numbers to the 

output values, all APD90 distributions shown in Simulation 
B show a normal shape and exhibit no visible differences 
concerning the width. The minimal discrepancies in the 
width of the distributions can be justified with similarly 
minimal spread parameters predicted for these drugs as 
sd by the dispersion model (see the section “Methods”). 
As the minimum and maximum sd values in the training 
series of the dispersion model were 26.93 and 55.18 ms, 
respectively, these values marked the possible prediction 
range for any kind of input combination. But, since the 
IV combinations of the CiPA drugs did not reach these 
range limits, the predicted sd values to be considered 
as measures of the spread of each of these compounds 
varied between 31.64 and 37.21 ms. As this difference is 
quite a small relative to the predicted APD90 values, the 

Fig. 6   Violin plots showing 
distributions of APD90 values 
obtained in different runs of 
Monte Carlo simulations intro-
ducing the following variability 
types. Simulation A: Experi-
mental variability (Δ-pIC50); 
Simulation B: Inter-individual 
variability (Δ-Parameters); 
Simulation C: Combination of 
experimental and inter-individ-
ual variability
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observable differences between the width of the simulated 
distributions are minimal.

When combining both types of variability in one simula-
tion run, we obtained the distributions shown in Fig. 6C. 
In general, they are rather similar to the ones obtained in 
Simulation B, but with a slightly larger dispersion and a 
little skew. Importantly, the effect of considering both kinds 
of variability simultaneously is not additive, and the effect 
depends on the drug studied. For example, these effects were 
particularly noticeable for Bepridil, Quinidine, Ondansetron, 
Ranolazine, and Verapamil.

When comparing all three approaches, an additional dif-
ference between the plots is the sudden cut-off observed 
for the results of simulation A, where only experimental 
variability was considered. This cut-off is absent in distribu-
tions resulting from Simulations B and C. This difference 
can be explained by the limited range of IVs used in the 
model describing their associations with the pre-computed 
APD90s (see the section “Methods”). This means that any 
variation of the IVs resulting in a decrease below the mini-
mum value considered in the model (− 3.0) generally does 
not result in any change of the output. As a consequence, 
many of the 1000 IVs generated during the simulation 
were simply converted into the cut-off values and produced 
exactly the same APD90 output. For many drugs, this effect 
was observed for the ICaL channel, the inhibition of which 
usually requires the drug to be administered at higher con-
centrations. In comparison, the inhibition of the IKr channel 
at the EFTPCs of the CiPA drugs is more common, due to 
which the IVs computed for hERG channel had the greatest 
impact on the predicted APD90. Conversely, the propagation 
of inter-individual variability in Simulation B added random 
numbers to the output values and was therefore not affected 
by these IV cut-offs.

In other words, in the case of Simulation A, after ran-
dom values were added to the model inputs, these values 
were further processed by the model. In Simulation B, how-
ever, just one single value was predicted, and the distribu-
tion of values was simulated from the expected distribution 
parameters.

Value intervals as a quantitative expression 
of uncertainty in the output

The distributions of the predicted APD90 values were used to 
obtain intervals between the 10th and 90th percentiles for the 
12 CiPA compounds, yielding the results shown in Fig. 7.

The bar plots in Fig. 7 show no remarkable differences 
in the APD90 predictions generated in three different sim-
ulations conducted for the same drug. This observation 
allows concluding that the actual prediction, computed as 
the median value of the APD90 distributions produced in 
simulation A–C, is barely affected by the simulation type 

and the biomarker prediction can be expected to remain 
unchanged. On the contrary, important differences can be 
observed in the widths of the intervals obtained by the 
different simulations. For Simulation A, these intervals 
vary between 4.3 and 216.6 ms, with a maximum differ-
ence exceeding 200 ms. In contrast, the intervals obtained 
for Simulation B are relatively similar for all tested com-
pounds and range from 79.3 and 92.9 ms, approximately, 
thereby showing a maximum difference between two 
compounds of 13 ms. An overall increase in the intervals’ 
width is noticeable when combining both types of variabil-
ity. However, combining two sources of variability does 
not lead to additive results, meaning that the combined 
result is not the sum of the two sources. Considering that 
the predicted numeric values could be potentially used to 
assign compounds into different risk classes (of TdP or 
arrythmia), it is possible that the interval ranges cross the 
boundaries of different classes, making then difficult to 
assign the compound to one of them.

To illustrate this situation, we have shown in Fig. 8 the 
prediction intervals for Quinidine, Ondansetron, and Mexi-
letine belonging to the high-, intermediate-, and low-risk 
class of TdP, respectively, as defined by the CiPA initiative 
(Colatsky et al. 2016).

It can be seen that the intervals computed for high-risk 
and low-risk drugs using any of the presented approaches do 
not overlap and would allow a clear class assignment. On the 
contrary, the APD90 interval computed for the intermediate-
risk compound overlaps the interval of the low-risk class 
using all three simulation scenarios as well as the high-risk 
class when the most conservative scenario is used. In gen-
eral, the use of APD90 predictions intervals, compared with 
appropriately selected critical values, would allow for a more 
conservative classification approach, which incorporates into 
the prediction both the effects of the experimental and inter-
individual variability.

Discussion

Obtaining a reliable risk evaluation for new drug candidates 
is one of the primary responsibilities of safety pharmacol-
ogy. Regarding arrhythmogenic risk, the CiPA paradigm 
provided a standardised way for performing in  vitro/in 
silico-based cardiac safety assessment using proarrhythmia 
models (Hwang et al. 2020). Despite the availability of a 
wide range of cardiac safety models stemming from the 
CiPA work, uncertainty analysis has been one of the last 
missing pieces to be addressed within this paradigm. Is in 
that context that this work proposes a protocol for the assess-
ment of uncertainty and variability applicable to multi-level 
in silico proarrhythmia models.
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A critical view on the developed methodology

Experimental variability

The central hypothesis behind this work is that there is a 
“true” pIC50 value when one specific ion channel is exposed 
to a certain concentration of a drug in one specific moment 
in time. However, the notion of a “true” pIC50 is relatively 
idealistic and therefore does not correspond to what can be 
expected in practical situations. This is because in the pro-
posed “Uncertainty assessment protocol”, the arrhythmo-
genic potential of drugs is assessed using a specific com-
putational model and a combination of input values which 
are affected by multiple aleatory factors contributing to 
the overall levels of experimental variability. Hence, the 

consideration of experimental variability in cardiac safety 
model inputs is a step toward increased credibility of the 
predictions obtained from such models.

In this work, we assumed the same spread measure and 
the normality of the distributions describing the variability 
in the inhibition of each considered channel by each analysed 
drug. Even though the introduced assumptions were rather 
simple, they allowed to test the effect of this variability in 
the final prediction, at a proof of concept level. In practice, 
since each pharmaceutical company has individual methods 
to perform the inhibition tests the standard deviation con-
sidered could be adjusted to match the characteristics of the 
analytical platform, as well as the structure and properties of 
the tested compounds. Importantly, in this study, we consid-
ered the overall variability arising during the experiments, 

Fig. 7   Bar plots showing the 
median of the APD90 predic-
tions obtained for the 12 
CIPA compounds, using three 
simulation types. Simulation 
A: Experimental variability 
(Δ-pIC50); Simulation B: 
Inter-individual variability 
(Δ-Parameters); Simulation C: 
Combination of experimental 
and inter-individual variability. 
The intervals represent the 10th 
and 90th percentiles obtained 
from the distributions shown in 
Fig. 6



2735Archives of Toxicology (2023) 97:2721–2740	

1 3

thereby combining the experimental errors with the biologi-
cal properties of the samples. In the study performed by Lei 
et al. (2020), the authors demonstrated that the extent to 
which the artefacts in patch-clamp experiments affect the 
overall levels of experimental variability is much greater 
than the cell–cell or between-cell differences. Indeed, add-
ing this additional layer of detail to separate experimental 
errors from intrinsic/extrinsic variability would contribute to 
a better understanding of the toxicodynamic effects of drugs 
in the context of cardiac safety assessment.

Inter‑individual variability

As for experimental variability, the consideration of inter-
individual variability in cardiac model inputs can be seen 
as a step in the direction of realistic cardiac safety assess-
ment. As described by Wisniowska et al. (2017), “Humans 
vary, so cardiac models should account for that too…”. The 
importance of considering inter-individual differences with 
regard to drug effects is particularly important if it comes to 
the protection of individuals who are more prone to develop 
cardiac arrhythmias or TdP. The use of a population of mod-
els to account for such differences allows to obtain different 
AP responses under the same pharmacological intervention. 
As compared to classical simulation methods based on an 

averaged model producing unique values, another advan-
tage of populational approaches is that they provide novel 
insights into physiological and pathophysiological variabili-
ties (Ni et al. 2018). In addition, this approach has shown 
that TdP-risk assessment improves when taking into account 
the electrophysiological variability between cells (Llopis-
Lorente et al. 2022), therefore, increasing evidence points to 
the crucial role of variability in cardiac electrophysiological 
function.

Important to consider, however, are the characteristics of 
the population of interest. In this work, the electrophysiolog-
ical model parameters, as well as the pre-processing of the 
simulated data, were based on criteria reflecting the attrib-
utes of a healthy population. Hence, to predict outcomes for 
a population with any type of underlying conditions, the first 
calibration step of the population of models would need to 
be modified accordingly to account for specific characteris-
tics of this population.

It is worth noting that the described approach for rep-
resenting inter-individual variability was based on the 
assumption that variability equally impacts all the 15 chan-
nel conductances and that this variability is independent for 
each parameter of the electrophysiological model. These 
assumptions were based on a series of results presented in 
the available literature on this topic. Nevertheless, further 

Fig. 8   Predicted APD90 values and their corresponding 80% inter-
vals for three selected CiPA compounds assigned to the following 
arrhythmogenic risk classes: Quinidine as a high-risk drug (red); 

Ondansetron as an intermediate-risk drug (orange); Mexiletine as 
a low-risk drug (green). Intervals shown here were obtained in MC 
Simulations A–C as described in Fig. 4. (color figure online)
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modifications of the proposed methodology allowing to 
assign unequal measures representing the variability in the 
conductances of different ion channels and to consider pos-
sible dependency between these measures could add addi-
tional value.

In the context of this work, however, establishing iden-
tifiability of the true ion channel conductance values was 
not the aim. For interested readers, different strategies for 
the identifiability of the parameters of the AP model are 
presented in the review by Whittaker and colleagues (Whit-
taker et al. 2020).

Combination of variability

When combining experimental and inter-individual variabil-
ity to produce a reasonable representation of proarrhythmia 
predictions, the emphasis should lie on appropriate interpre-
tation of such results. From the theoretical perspective, the 
consideration of experimental variability is not necessary in 
clinical settings. Therefore, results obtained by combining 
these two variability sources do not intend to represent the 
variability in biomarker response that would be observed 
in a healthy human population. Nevertheless, when using 
computational proarrhythmia models which integrate 
some experimental values to produce estimates of human 
responses, the consideration of experimental variability is 
essential. In the latter case, the produced range of values 
aims to represent the variability in predictions, given the 
limited ability to define the “true” pIC50 values together with 
inter-individual differences among subjects of a population.

As shown in this work, combining variability, or other 
types of types or uncertainty, does not mean that the effects 
of each source on the final prediction will sum up. Never-
theless, as the current methodology for combining different 
variability types affects the shape of the obtained distribu-
tions, the methodology could be adjusted to account for this 
dependency. To do so, an additional analysis of the depend-
encies between each of the input sources, as well as of their 
associated variabilities, could be included in future work.

Representation of results

Another important question is whether representing simu-
lation results as a biomarker prediction with a correspond-
ing 80% confidence interval has an advantage over standard 
methods yielding point estimates, only. As concluded by 
Sahlin (2015) “… a confidence interval is just an inter-
val. It does not provide enough information to calculate an 
expected value or conservative value, which is important 
in rational decision making”. However, a confidence inter-
val provided together with the expected value is very use-
ful for communicating uncertain results in a simple way. 
Such intervals allow for the inspection of values that would 

be produced in experiments or for individuals that do not 
represent the exact centre of the distribution from which 
they were drawn. Since variability is an innate element of 
all-natural and investigational processes, assuming that a 
fixed prediction is the exact centre of a specific distribution 
is rather ingenious. However, when intervals are provided 
together with single values to interpret the predictions, the 
scientific conclusion derived based on them automatically is 
considerate of the variation among biological samples or the 
physiology of patients. Another factor impacting the cred-
ibility of confidence intervals is an adequate identification of 
all the sources of uncertainty and a correct characterisation 
and propagation of those, that indeed affect the prediction 
outcome. To know which sources should be prioritised for 
the UQ exercise, a prior sensitivity analysis is recommend-
able (Eck et al. 2016).

Suggestions for future work

Consideration of epistemic uncertainty

In this publication, although different sources of aleatory and 
epistemic uncertainty were identified, the described methods 
were mainly focused on the characterisation and propaga-
tion of two sources of variability. The protocol integrated 
only principles of the frequentist approach to probability. 
Indeed, when quantifying only variability reflecting the 
natural variability and randomness, the selection of normal 
distribution with standard deviation as the representation of 
sample spread was a reasonable decision. This is because 
real-valued random variables whose distributions are unde-
fined are usually represented using normal distributions. As 
stated in the Central Limit Theorem, under some conditions, 
when a large series of random numbers are sampled from 
any population with a defined mean and sd, the initial dis-
tribution converges to a normal distribution as the number 
of samples increases (Devore and Berk 2012).

However, epistemic uncertainty, also identified in this 
work, should not be expressed nor modelled using frequen-
tist methods. Instead, the correct way to assess epistemic 
problems involves the application of the subjective prob-
ability theory, the most common application of which is the 
Bayesian theorem (van de Schoot et al. 2021). This involves 
starting with an initial belief, known as the prior probability, 
and updating it when new information becomes available 
yielding the posterior distribution. Nevertheless, applying 
Bayesian statistics to estimate the impact of purely epistemic 
factors (shown in yellow in Fig. 2) on the APD90 predictions 
would require major modifications of the developed uncer-
tainty quantification protocol. But particularly important 
for this work and more feasible to implement would be the 
consideration of epistemic uncertainty about the aleatory 
uncertainties summarised as variability types. This would 



2737Archives of Toxicology (2023) 97:2721–2740	

1 3

lead to a quantitative expression of the level of unknown in 
the metrics defined to characterise specific variability types, 
for instance, the constant sd value of 0.5 that was assumed 
to characterise experimental variability. Degrees of belief 
about the true parameters for this quantity could be derived 
using either objective measurements or subjective expert 
judgements. To propagate the uncertainty about variability 
in the quantity of interest, sampling of the resulting prior dis-
tributions could be integrated as part of a two-dimensional 
Monte Carlo simulation. A result of such a simulation would 
not be a single distribution of values, but multiple distribu-
tions representing the uncertainty about variability (Benford 
et al. 2018a, b). Coming back to the previous example, the 
uncertainty about the level of experimental variability would 
be expressed as several distributions, each of which with a 
different centre (median or mean) and measure of spread.

Computational model inputs

There is a high interest in transforming the mixed-platform 
pre-clinical cardiac safety assessment of novel pharmaceuti-
cal products into purely in silico-based methods without the 
need for extensive experimental testing. Therefore, the struc-
ture of our multi-level cardiotoxicity models allows both, 
experimental as well as predicted inputs. Since computa-
tional models, such as the PBPK or QSAR models, are built 
using experimental data, experimental variability, which 
was extensively described in this work, is also retained in 
the training series used for building these models. However, 
when the plasma drug concentration or the channel-specific 
IC50 are generated computationally, the level of epistemic 
uncertainty increases due to further limitations in the train-
ing data coverage or a high level of subjectivity impacting 
the parametrisation of the respective source models that 
predicts them.

For instance, if the intention is to predict proarrhythmic 
properties of a compound available in a public domain, such 
as the ChEMBL database (Gaulton et al. 2012), multiples 
datapoints would be available for the same compound, each 
of which is produced in a separate experiment following a 
specific protocol. These data points would first need to be 
extensively filtered to select the experimental parameters of 
interest and aggregated using statistical measures such as a 
mean or the median. This process, together with multiple 
unconsidered originating from differences in laboratory con-
ditions, experimental design, and other factors, would con-
tribute to the level of epistemic uncertainty. Despite of these 
factors, the predictive performance of purely computational 
proarrhythmia prediction systems highly depends on the 
selected biomarker. As shown by (Beattie et al. 2013), the 
use of QSAR-derived data to simulate QT-interval shorten-
ing may yield nearly as good predictions as those produced 
using experimental data inputs. Conversely, utilising QSAR 

data to predict QT-interval prolongation significantly wors-
ens the predictive performance. These two examples show 
the importance of comprehensive definition of the endpoint 
being modelled which should always precede the process 
of uncertainty analysis to ensure a correct determination of 
model limitations, variability sources, and epistemic factors.

QSAR

The most widely accepted standard method for the quantifi-
cation of reliability and uncertainty associated with QSAR 
model predictions are methods based on the concept of 
applicability domain (AD) (Sahlin et al. 2014). Predictions 
generated for compounds having structurally or physio-
chemically similar counterparts in the training set are gener-
ally considered reliable. Standard AD methods can be com-
plemented by placing the model within a framework that can 
estimate the uncertainty levels in every single prediction. An 
example is the conformal prediction framework which guar-
antees the maximum allowed frequency of errors which will 
be committed by the conformal predictor (Alvarsson et al. 
2021; Norinder et al. 2014; Svensson et al. 2018). Uncer-
tainty resulting from lack of knowledge (e.g., insufficient 
training data or anomalous samples in test data), that is pre-
dominant in model predictions, is most commonly addressed 
by applying Bayesian inference, shortly introduced above 
(Sahlin 2015).

PBPK

The arrhythmogenic potential of drug candidates is typi-
cally assessed at early stages of drug development when 
the compound can still be removed from the development 
pipeline without much economic harm. At these stages, the 
therapeutic concentration and other PK parameters required 
to compute the EFTPC are still unknown, but the use of 
currently described methodologies to estimate point-of-
departure concentrations is an interesting approach. These 
could be compared with the experimental results produced 
at pre-clinical stages using physiologically based pharma-
cokinetic (PBPK) modelling to obtain plasma concentra-
tions from the administered doses. PBPK models are math-
ematical algorithms based on ordinal differential equations 
(ODEs) describing physiological processes involved in the 
absorption, distribution, metabolism, and excretion of the 
drug (Piñero et al. 2018). Variability and uncertainty quan-
tification in PBPK models is often initiated by a parametric 
sensitivity analysis to identify the PK parameters that are 
most susceptible. Since PK parameters are subject to inter-
individual differences and PK simulations are often liable to 
lack of full information about the constants and parameters 
in the ODEs, the UQ methods require combining the fre-
quentist and conditional probabilistic approaches (Kuepfer 
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et al. 2016). Consideration of uncertainty in PBPK simula-
tions would allow to explore a range of clinically relevant 
drug concentrations, especially at the site of the pharmaco-
logical or toxicological action of the drug (e.g., drug-binding 
site at the ion channel protein in the membrane of ventricular 
myocytes) (Li et al. 2019a, b).

Conclusions

In this study, we developed and tested methods for the 
quantification of the impact of selected variability types 
on the uncertainty of APD90 predictions generated by an in 
silico multi-level proarrhythmia model. The aim was first 
to explore the effects of different types of variability, sepa-
rately and in combination, by quantitatively characterising 
and propagating them throughout our complex model, and 
second to replace point predictions with value ranges that 
can be computed for predefined credibility levels (e.g., 80%) 
and interpreted as confidence intervals.

The propagation of “experimental variability”, associ-
ated with the input IC50 values, yielded distributions whose 
characteristics were defined by the location of the IVs within 
the hyperplane-like structure of model training data. This 
contrasts with the distributions resulting from the propaga-
tion of “inter-individual variability”, linked with the param-
eters specified in the AP simulation models, whose shape 
and width were a direct consequence of the methodological 
assumptions and the predicted spread parameters, respec-
tively. After a simultaneous propagation of both types, the 
distributions showed a combined effect of both, the non-lin-
ear relationship between the IVs and APD90 and the assump-
tion of normality applied to model outputs. Importantly, 
combining two sources of variability did not lead to additive 
results, meaning that the combined result is not their sum.

Further, we showed how such distributions can be used to 
compute the proarrhythmia biomarker predictions together 
with value intervals of certain credibility. One of the main 
conclusions arising from this analysis was that the actual 
biomarker prediction remains nearly unchanged when the 
simulations are performed, as compared to the initial method 
without UQ. Although we do not claim the undoubtful accu-
racy of these results, we consider that such representation 
of the predictions has excellent advantages over single-point 
estimates. These mainly include the possibility to inspect 
values that would be produced in experiments or for indi-
viduals that do not represent the exact centre of the dis-
tribution from which they were drawn. Hence, it allows to 
protect individuals who are more prone to develop cardiac 
arrhythmias or TdP, since interval ranges may cross the 
boundaries of different risk classes. Moreover, they provide 
a more realistic view on predictions in the context of drug 
candidate prioritisation and validation of clinical results, 

since the presence of uncertainty resulting from variability 
is usually neglected at these assessment stages.
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