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Abstract
Statins represent the cornerstone of pharmacotherapy for the prevention of atherosclerotic cardiovascular disease. These 
medications not only reduce low-density lipoprotein cholesterol (LDL-C) via inhibition of 3-hydroxy-3-methylglutarate 
attached to CoA reductase, the key rate-limiting step in the cholesterol biosynthetic pathway, but also upregulate expression 
of the low-density lipoprotein receptor, improving serum clearance. Given LDL-C is a causal risk factor for the develop-
ment of atherosclerosis, these complementary mechanisms largely explain why statin therapy leads to reductions in major 
adverse cardiovascular events. However, decades of basic and clinical research have suggested that statins may exert other 
effects independent of LDL-C lowering, termed pleiotropic effects, which have become a topic of debate among the scien-
tific community. While some literature suggests statins may improve plaque stability, reduce inflammation and thrombosis, 
decrease oxidative stress, and improve endothelial function and vascular tone, other studies have suggested potential harmful 
pleiotropic effects related to increased risk of muscle-related side effects, diabetes, hemorrhagic stroke, and cognitive decline. 
Furthermore, the introduction of newer, non-statin LDL-C lowering therapies, including ezetimibe, proprotein convertase 
subtilisin/Kexin Type 9, and bempedoic acid, have challenged the statin pleiotropy theory. This review aims to provide a 
historical background on the development of statins, explore the mechanistic underpinnings of statin pleiotropy, review the 
available literature, and provide up to date examples that suggest statins may exert effects outside of LDL-C lowering and 
the cardiovascular system.
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Introduction

Atherosclerotic cardiovascular disease (ASCVD) is the 
leading cause of death and disability in the United States, 
regardless of sex and race/ethnicity (Arnett et al. 2019; Tsao 
et al. 2022). However, tremendous advances in our under-
standing and management of atherosclerosis over the prior 
decades have led to significant improvements in morbidity 
and mortality from cardiovascular disease, with death rates 
from ASCVD declining since the early 1980s largely due to 
risk factor control and implementation of low-density lipo-
protein cholesterol (LDL-C) lowering statin therapy (Tsao 
et al. 2022). However, data from several large studies have 

uncovered other potential beneficial cardiovascular aspects 
independent of LDL-C lowering, referred to as statin ‘pleio-
tropic’ effects. The purpose of this document is to explore 
potential pleiotropic effects of statin therapy in the context 
of the present literature.

Atherogenesis and the fatty streak

The accumulation of atherogenic lipoproteins into the 
arterial wall initiates a series of specific cell reactions 
resulting in atherosclerosis. When triggered, activated 
endothelial cells that line the arterial lumen guide the 
recruitment of blood leukocytes. When exposed to an 
atherogenic environment, endothelial cells express leuko-
cyte adhesion molecules and chemokines that facilitate the 
attachment of monocytes and lymphocytes to the intimal 
surface. Mononuclear phagocytes can multiply at the site 
of lesion initiation, and engulf lipids to become foam cells, 
the trademark of atherosclerotic lesions (Libby 2021). This 
leads to an inflammatory cascade inducing smooth muscle 
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proliferation and migration into the intima, forming the 
earliest stages of atherosclerotic plaque, which constitutes 
a Type I lesion (Stary et al. 1994).

Type II lesions consist of layers of lipid-laden foam 
cells and smooth muscle cells that aggregate forming 
the first grossly visible sign of atherosclerosis, the fatty 
streak (Stary et al. 1994). Evidence of aortic fatty streaks 
dates back to World War I and the Korean War, uncovered 
from autopsy studies of young men that died in the field. 
These observations stimulated the medical community and 
prompted our understanding that atherosclerosis begins in 
childhood (Berenson et al. 1998; Mönckeberg 1915). The 
revolutionary Bogalusa Heart Study, which assessed young 
individuals 2–39 years of age that had an autopsy, found 
that all individuals studied had evidence of fatty streaks in 
the aorta, and half of children 2–15 years of age had fatty 
streaks in their coronary arteries (Berenson et al. 1998).

Total and LDL‑cholesterol

The relationship between cholesterol and heart disease 
was proposed as early as 1938, when Norwegian physi-
cian Carl Muller described families with high plasma 
cholesterol levels that were transmitted in an autosomal 
dominant fashion, leading to early cardiovascular disease 
and death (Müller 1938). This disease was named familial 
hypercholesterolemia (FH). These individuals carried a 
20-fold increase in heart attack risk by middle age. Then, 
in 1951, cardiologists from Massachusetts General Hos-
pital made the observation that heart attacks were more 
common among individuals with high blood cholesterol, 
among other now well regarded risk factors (Gertler et al. 
1951). A few years later, Ancel Keys launched one of the 
earliest large epidemiological cohorts called the Seven 
Countries Study, which demonstrated that serum choles-
terol increased in proportion to total dietary fat intake and 
saturated fatty acid intake, and that heart attack incidence 
was associated with serum cholesterol levels in a linear 
fashion (Feinleib 1981; Goldstein and Brown 2015). This 
concept was then cemented in the landmark Framingham 
Heart Study, which firmly established the relationship 
between high serum cholesterol and incident coronary 
heart disease (Kannel et al. 1961).

The invention of the ultracentrifuge ignited the era of 
LDL-C, when John Gofman utilized this technology in 1955 
to separate lipoproteins according to density (Gofman et al. 
2007). LDL-C and high-density lipoprotein cholesterol 
(HDL-C) were identified, and Gofman went on to discover 
that heart attacks were more common among individuals 
with high LDL-C, and less common among individuals with 
high HDL-C.

Cholesterol biosynthesis and statin therapy

Once the connection between LDL-C and ASCVD was 
solidified in the 1950s, an intense effort was undertaken 
by a group of biochemists to understand cholesterol bio-
synthesis. The identification of the 6-carbon compound 
3-hydroxy-3-methylglutarate attached to CoA (HMG 
CoA) as an important compound committed entirely to 
the synthesis of cholesterol and other isoprenoids led to 
the discovery of HMG CoA reductase as the rate-limiting 
step in the cholesterol pathway (Bucher et al. 1960). Then, 
in 1972, Michael Brown and Joseph Goldstein began to 
study mediators of the synthetic cholesterol pathway after 
meeting young siblings found to have homozygous familial 
hypercholesterolemia (FH) (Goldstein and Brown 2015). 
They obtained skin biopsies from patients with homozy-
gous FH and controls and cultured fibroblasts to better 
understand how these cells utilize cholesterol to main-
tain the integrity of their cell membranes. In the controls, 
they discovered that cholesterol was obtained from two 
sources: endogenous synthesis from the aforementioned 
biosynthetic pathway, and from receptor mediated uptake 
and lysosomal hydrolysis of LDL particles. Additionally, 
these two processes worked in harmony. When cellular 
levels of cholesterol were high, LDL receptors and HMG 
CoA reductase levels decreased. When cholesterol levels 
were low, LDL receptors and HMG CoA reductase levels 
increased (Brown and Goldstein 1986). This was in sharp 
contrast to the fibroblasts cultured from homozygous FH 
patients, which were found to have defective LDL recep-
tors and HMG CoA reductase activity 100-fold above nor-
mal (Goldstein and Brown 1973).

Akira Endo, a Japanese biochemist working at the 
Sankyo Company in Tokyo, was the first to identify an 
inhibitor of HMG CoA reductase. This compound, named 
compactin, was isolated from Penicillium citrinum mold, 
and is widely regarded as the first statin (Endo 2010). 
Soon afterwards, Alfred Alberts and colleagues discovered 
mevinolin (later named Mevacor or lovastatin) (Alberts 
et al. 1980), another fungal HMG CoA reductase inhibi-
tor, which was shown to increase LDL receptor activity 
and decrease plasma LDL in dogs treated with this com-
pound (Kovanen et al. 1981). Human studies demonstrat-
ing similar LDL-C lowering followed (Vega and Grundy 
1991), which led to the commercialization of the first sta-
tin approved for human use in 1987, lovastatin, produced 
by Merck. Finally, in 1994, Merck’s second-generation 
statin, simvastatin, was studied in the Scandinavian Sim-
vastatin Survival Study (4S), which established that this 
medication reduced heart attacks and prolonged life in a 
population at high risk of ASCVD, when compared with 
placebo (Group 1994).
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Table 1  Randomized-controlled trials demonstrating potential pleiotropic effects

*Among participants with a history of cerebrovascular disease
**p not significant for equivalence; p 0.005 for superiority
***nonsignificant trend towards incident diabetes

Name of trial Year Statin Control Total (n) Primary outcome Potential pleiotropic effect

4S 1994 Simvastatin 20–40 mg Placebo 4444 Mortality, 11.5% versus 
8.2%. p < 0.01

↓ Stroke

AFCAPS/TEXCAPS 1995 Lovastatin 20-40 mg Placebo 6605 Fatal or nonfatal MI, UA, 
or sudden cardiac death, 
6.8% versus 10.9%, 
p < 0.01

↓ Incident melanoma

CARE 1996 Pravastatin 40 mg Placebo 4159 Fatal or nonfatal MI, 13.2% 
versus 10.2%, p < 0.01

↓ Stroke

LIPID 1998 Pravastatin 40 mg Placebo 9014 CHD death, 6.4% versus 
8.3%, p < 0.01

↓ Stroke

WOSCOPS 1998 Pravastatin 40 mg Placebo 6595 Nonfatal MI and CHD 
death, 5.5% versus 7.9%, 
p < 0.01

↑ Time to benefit

MIRACL 2001 Atorvastatin 80 mg Placebo 3086 Mortality, nonfatal MI, 
cardiac arrest, or ACS 
rehospitalization, 14.8% 
versus 17.4%, p = 0.048 ↑

Time to benefit

HPS 2002 Simvastatin 40 mg Placebo 20,536 Mortality, 12.9% versus 
14.7%, p < 0.01

↓Overall stroke, ↑ Hemor-
rhagic stroke*

PROVE IT-TIMI 22 2004 Atorvastatin 80 mg Pravastatin 40 mg 4162 Mortality, MI, UA rehospi-
talization, revasculariza-
tion in 30 days, or stroke, 
22.4% versus 26.3%, 
p < 0.01**

↑ Time to benefit

TNT 2005 Atorvastatin 80 mg Atorvastatin 10 mg 10,001 CAD mortality, nonfatal 
MI, cardiac arrest, or fatal 
or nonfatal stroke, 10.9% 
versus 8.7%,p < 0.01

↓ Stroke

SPARCL 2006 Atorvastatin 80 mg Placebo 4731 Fatal or nonfatal stroke, 
11.2% versus 13.1%, 
p = 0.03

↓ Overall stroke,↑ Hemor-
rhagic stroke

ARMYDA-3 2006 Atorvastatin 40 mg Placebo 200 Postoperative AF, 35% 
versus 57%, p =  < 0.01

↓ Atrial fibrillation

CORONA 2007 Rosuvastatin 10 mg Placebo 5011 CV death, nonfatal MI, or 
nonfatal stroke, 12.3% 
versus 11.4%, p = 0.12

↑ Diabetes***

JUPITER 2008 Rosuvastatin 20 mg Placebo 17,802 Nonfatal MI, stroke, UA 
hospitalization, arterial 
revascularization, or CV 
death, 0.77 and 1.36 per 
100 person-years, p < 0.01

↓ Cancer mortality, VTE, 
hsCRP, ↑ Diabetes

IMPROVE-IT 2015 Simvastatin 40-80 mg Simvastatin 40 mg 18,144 CV death, major CV event, 
or nonfatal stroke, 34.7% 
versus 32.7%, p = 0.02

↓ Ischemic Stroke

HOPE-3 2016 Rosuvastatin 10 mg Placebo 12,705 CV death, MI, stroke, 
cardiac arrest, HF, revas-
cularization, 4.8% versus 
6.2%, p < 0.01

↑ Cataract surgery

STICS 2016 Rosuvastatin 20 mg Placebo 1922 Post-op AF and peri-op MI, 
21% versus 20%, p = 0.72, 
between-group difference 
1%, p = 0.08

↑ Acute Kidney Injury
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Randomized control trial evidence for statin 
pleiotropy

Several randomized-controlled trials have offered cre-
dence to the statin pleiotropy hypothesis, as summarized 
in Table 1. As mentioned, the 4S program was one of the 
first large trials to demonstrate a linear relationship between 
LDL-C reduction and cardiovascular event rates (Group 
1994) This relationship was further promoted in the Choles-
terol Treatment Trialists meta-analysis, which suggests that a 
1 mmol/L reduction in LDL-C (roughly equivalent to 39 mg/
dL) is associated with a 21% decrease in 5-year incidence of 
major adverse cardiovascular events (Baigent et al. 2005). 
Several other large studies, including cholesterol and recur-
rent events (CARE) (Sacks et al. 1996), heart progression 
study (HPS) (Heart Protection Study Collaborative Group 
2002), long-term intervention with pravastatin in ischemic 
disease (LIPID) (Tonkin et al. 1998), and treating to new 
targets (TNT) (LaRosa et al. 2005), helped firmly establish 
the widely held notion that the magnitude of clinical benefit 
observed with statin therapy is proportional to the absolute 
reduction in LDL-C.

The mechanistic properties of statin therapy may not 
exclusively explain the outcomes observed in many large 
randomized-controlled trials. For example, a meta-analysis 
of 33 trials demonstrated that several non-statin therapies 
that increase LDL receptor activity have similar LDL-C 
lowering and cardiovascular benefits when compared with 
statins (Silverman et al. 2016). Trials with non-statin thera-
pies often require more time to derive cardiovascular ben-
efits. While the time to benefit is largely within 5 years for 
the majority of statin trials, the lipid research clinic-coronary 
primary prevention trial (LRC-CPPT; cholestyramine), (The 
Lipid Metabolism-Atherosclerosis Brach NHLBI 1984) pro-
gram on the surgical control of hyperlipidemias (POSCH; 
partial ileal loop bypass surgery) (Buchwald et al. 1990), 
and ezetimibe added to statin therapy after acute coronary 
syndromes (IMPROVE-IT; ezetimibe in addition to simvas-
tatin) trial (Cannon et al. 2015) demonstrated benefit within 
7.4, 9.7, and 7.0 years, respectively. In fact, the Myocardial 
Ischemia Reduction with Aggressive Cholesterol Lowering 
(MIRACL) study demonstrated measurable clinical benefit 
at 16 weeks (Schwartz et al. 2001), while the Pravastatin 
or Atorvastatin Evaluation and Infection Therapy–Throm-
bolysis in Myocardial Infarction 22 (PROVE IT–TIMI 22) 
trial (Cannon et al. 2004) demonstrated benefit at 30 days. 
This rapid time to cardiovascular benefit may not be fully 
explained by the LDL-C lowering properties of statin 
therapy.

Further pleiotropic effects may be mediated by changes 
in inflammation of the cardiovascular system. A large 
body of clinical research indicates that inflammation is a 

fundamental component of atherogenesis and develop-
ment of ischemic cardiovascular disease (Libby and Hans-
son 2019). The inflammatory cytokine C-reactive protein 
(CRP) is a sensitive biomarker of risk for CVD (Ridker et al. 
2018), now serving as a risk enhancer in American College 
of Cardiology/American Heart Association (ACC/AHA) 
guidelines (Grundy et al. 2018), and can be modulated by 
statin therapy. In the Pravastatin Inflammation/CRP Evalu-
ation (PRINCE) trial, pravastatin lowered CRP at 12 and 
24 weeks from drug initiation, in a largely LDL-C independ-
ent fashion (Albert et al. 2001). These results were con-
sistent with data from the CARE trial (Ridker et al. 1998), 
and MIRACL trial (Schwartz et al. 2001), which used ator-
vastatin. Then, the rosuvastatin to prevent vascular events 
in men and women with elevated C-reactive protein (CRP) 
(JUPITER) trial found that rosuvastatin reduced LDL-C and 
high-sensitivity CRP by 50% and 37%, respectively (Rid-
ker et al. 2008). This translated to significant reductions 
in the primary composite cardiovascular endpoint and all 
cause-mortality, despite baseline LDL-C levels that were 
relatively well controlled (mean LDL-C 108 mg/dL in both 
rosuvastatin and placebo arms) (Ridker et al. 2008). Other 
large randomized-controlled trials have been undertaken 
to understand if targeted anti-inflammatory medications 
reduce CVD, with mixed results. While the Canakinumab 
Anti-inflammatory Thrombosis Outcome Study (CANTOS) 
(Ridker et al. 2017), Low-Dose Colchicine (LoDoCo) trial 
(Nidorf et al. 2020), and Colchicine Cardiovascular Out-
comes (COLCOT) Trial (Tardif et al. 2019) demonstrated 
reductions in cardiovascular outcomes, the Cardiovascular 
Inflammation Reduction Trial (CIRT) failed to reduce car-
diovascular events among patients treated with methotrexate 
(Ridker et al. 2019). While some postulate that CIRT was a 
negative trial, because it failed to show a reduction in CRP, 
Mendelian randomization studies have shown that CRP may 
not be a causal factor in the development of CVD (Col-
laboration et al. 2011). These disparate findings highlight 
the lack of clarity that remains on the complex relationship 
between statin therapy, CRP, inflammation, and ASCVD.

Several of the aforementioned large randomized-con-
trolled trials also found that statins reduce the primary 
incidence of stroke (2002; Group 1994; LaRosa et al. 2005; 
Sacks et al. 1996), suggesting pleiotropic effects beyond 
coronary heart disease. This is particularly noteworthy given 
data from observational studies have not shown an associa-
tion between LDL-C and stroke (Bots et al. 2002; Leppälä 
et al. 1999; Shahar et al. 2003). The Stroke Prevention by 
Aggressive Reduction in Cholesterol Levels (SPARCL) 
trial confirmed this relationship in a secondary prevention 
of stroke population, which demonstrated a 16% reduction 
in stroke among patients in the atorvastatin arm (Amarenco 
et al. 2006).
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Furthermore, evidence from the Atorvastatin for Reduc-
tion of MYocardial Dysrhythmia After cardiac surgery 
(ARMYDA-3) clinical trial showed that treatment with 
atorvastatin initiated 7 days prior to surgery lowers the risk 
of post-operative atrial fibrillation, and subsequently short-
ens hospital stay when compared with placebo (Patti et al. 
2006). However, these results were not substantiated in the 
Statin Therapy in Cardiac Surgery (STICS) trial, which dem-
onstrated that patients taking perioperative statin therapy 
did not prevent post-operative atrial fibrillation among those 
undergoing elective surgery (Zheng et al. 2016). Given these 
disparate results, one cannot conclude with certainty that 
statins are beneficial in preventing atrial fibrillation after car-
diac surgery, though we cannot exclude the possibility of sta-
tin pleiotropy either. Thus, further investigation is warranted.

Possible mechanisms of statin pleiotropy

Given the multitude of clinical trials that suggested health 
benefits of statins beyond LDL-C lowering, scientists have 
sought to better understand the mechanistic underpinnings 
to better explain trial results (Fig. 1).

Improved endothelial function and vascular tone

Endothelial injury, which can occur in the setting of hyper-
cholesterolemia, constitutes one of the earliest step in the 
development of atherosclerotic cardiovascular disease. 

When the endothelium is injured and becomes dysfunc-
tional, endothelium-derived nitric oxide (NO) is released, 
which mediates not only vasodilation, but also inhibits leu-
kocyte adhesion and platelet aggregation, and decreases 
vascular smooth muscle proliferation (Janssens et al. 1998). 
Thus, NO is protective, and low levels of NO predict an 
increased risk of cardiovascular events (Liao et al. 1991).

Statins upregulate endothelial NO synthase (eNOS) and 
therefore increase NO bioavailability, through a variety of 
mechanisms and pathways (Oesterle and Liao 2019). For 
example, statins increase eNOS expression by prolonging 
eNOS mRNA half-life. This is mediated by inhibition of 
RhoA geranylgeranylation, modification of the cytoskeleton, 
and localization of the eNOS mRNA (Laufs and Liao 1998). 
Statins also reduce caveolin-1, an integral membrane protein 
which binds eNOS inhibiting its ability to NO (Plenz et al. 
2004). There is also evidence that statin therapy can acti-
vate the phosphatidylinositol 3-kinase (PI3K)/protein kinase 
Akt pathway (Kureishi et al. 2000), which leads to increased 
eNOS and plays a role in the regulation of cellular survival, 
growth, and proliferation (Simoncini et al. 2000).

Statins also modulate the fibrinolytic system of vascular 
smooth muscle and endothelial cells (Bourcier and Libby 
2000). In a rat model, statin therapy increased the expres-
sion of tissue-type plasminogen activator and inhibited the 
expression of PAI-1 (Essig et al. 1998), an endogenous 
inhibitor of tissue plasminogen activator, mediated in part 
through the (PI3K)/protein kinase Akt pathway (Mukai 
et al. 2007). Statins also inhibit the expression of prepro 
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Fig. 1  Mechanisms of statin pleiotropic effects
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endothelin-1(Hernández-Perera et  al. 2000) and reduce 
endoethelin and angiotensin subtype I receptor expression 
(Ichiki et al. 2001; Xu et al. 2002). These vasoconstricting 
agents, which may be elevated in patients with severe athero-
sclerosis (Lerman et al. 1991), counteract the vasodilation 
effects of NO and may contribute towards the development 
of atherosclerotic plaque.

Plaque stabilization

Several clinical trials using intravascular ultrasound (IVUS) 
technology helped establish the notion that statin therapy, 
particularly high-intensity statin therapy, may result in 
plaque stabilization and regression. In the Reversal of Ath-
erosclerosis with Aggressive Lipid-Lowering (REVEAL) 
trial published in 2004, Nissen et al. showed that patients 
with coronary heart disease taking 80 mg of atorvastatin had 
no progression of atheroma volume at 18 months, though 
patients taking 40 mg of pravastatin showed progression of 
atherosclerosis (Nissen et al. 2004). Two years later, A Study 
to Evaluate the Effect of Rosuvastatin on Intravascular Ultra-
sound-Derived Coronary Atheroma Burden (ASTEROID) 
showed that 40 mg of rosuvastatin resulted in modest athero-
sclerotic plaque regression at 24 months of therapy (Nissen 
et al. 2006). These studies demonstrated the efficacy of high-
intensity statin therapy on atheroma volume. Then, in 2011, 
Nicholls et al. published The Study of Coronary Atheroma 
by Intravascular Ultrasound: Effect of Rosuvastatin versus 
Atorvastatin (SATURN) trial, which sought to investigate 
which high-intensity statin achieved greater plaque stabil-
ity. After 2 years of therapy, patients taking 40 mg of rosu-
vastatin had lower LDL-C compared with patients taking 
80 mg of atorvastatin (62.6 vs. 70.2 mg/dL, respectively), a 
similar degree of plaque atheroma regression was observed 
(Nicholls et al. 2011).

Newer technology, including optical coherence tomogra-
phy (OCT), has enabled researchers the ability to utilize high 
resolution imaging for characterization of atherosclerotic 
plaque. The Effect of Atorvastatin Therapy on Fibrous Cap 
Thickness in Coronary Atherosclerotic Plaque as Assessed 
by Optical Coherence Tomography (EASY-FIT) Study 
utilized OCT to show that atorvastatin 20 mg resulted in 
a greater increase in fibrous cap thickness compared with 
atorvastatin 5 mg (Komukai et  al. 2014). The Progres-
sion of AtheRosclerotic PlAque DetermIned by Computed 
TomoGraphic Angiography Imaging (PARADIGM) study 
used a non-invasive imaging technique, coronary computed 
tomography angiography, to demonstrate that individuals 
on statins had a slower rate of percent atheroma volume 
progression, increased plaque calcification, and reductions in 
other high-risk plaque features when compared with statin-
naïve patients. Importantly, despite increases in calcification, 

there was no increase in stenosis severity among patients on 
statin therapy (Lee et al. 2018).

Anti‑inflammatory

In addition to the clinical trial evidence suggesting a pos-
sible CRP mediated anti-inflammatory role on the relation-
ship between statins and CVD, observations also align with 
in vitro and basic science evidence as well. In one study, 
simvastatin, atorvastatin, and lovastatin were shown to 
downregulate nuclear factor-kappa B (NF-kappaB), activator 
protein-1, and hypoxia-inducible factor-1alpha in endothelial 
and arterial smooth muscle cells, which play a role in down-
stream activity of pro-inflammatory cytokines, chemokines, 
adhesion molecules, and growth factors (Dichtl et al. 2003).

Statins also may play a role in the regulation of T-cell 
phenotype by blunting pro-inflammatory IL-17 helper 
T-cell differentiation (Kagami et al. 2009), and promot-
ing the expression of FoxP3 regulatory T cells that induce 
immune tolerance (Kagami et al. 2009). Antigen presenting 
cells express major histocompatibility complex II, which is 
propagated in the presence of interferon-γ. Statins have been 
shown to reduce the expression of major histocompatibility 
complex II on antigen presenting cells, ultimately leading 
to decreased activation of T cells (Kavalipati et al. 2015). 
Moreover, statins also can bind to an allosteric site within β2-
integrin function-associated antigen-1 protein, leading to its 
inhibition, which then decreases lymphocyte adhesion and 
impairs T-cell co-stimulation (Weitz-Schmidt et al. 2001).

Anti‑thrombotic

During an acute coronary syndrome, intracoronary plaque 
ruptures leading to platelet aggregation and partial or com-
plete occlusion of the artery, which then leads to ischemia 
and acute myocardial infarction. Interestingly, hypercho-
lesterolemia is associated with increased platelet reactivity 
(Opper et al. 1995), potentially mediated by increases in 
platelet cytosolic calcium (Le Quan Sang et al. 1995), plate-
let α2-adrenergic receptor density (Baldassarre et al. 1997), 
and thromboxane  A2 biosynthesis (Notarbartolo et al. 1995). 
Therefore, lowering LDL-C via statin therapy may lessen 
these pro-thrombotic characteristics.

In mice, atorvastatin therapy led to a reduction in platelet 
factor 4 and β-thromboglobulin, which are upregulated in 
states of platelet reactivity (Kaplan and Owen 1981; Laufs 
et al. 2000). Studies of fluvastatin, acting through PPARα 
and PPAR-γ, have demonstrated reduced platelet aggrega-
tion when compared with colestimide (Ali et al. 2009; Hara-
maki et al. 2007). Similarly, atorvastatin acutely decreases 
Nox2, Rac1, platelet phospholipase A2, protein kinase C, 
thromboxane A2, while increasing nitric oxide levels (Pig-
natelli et al. 2012). Another study utilizing several different 
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statins demonstrated augmentation of Kruppel-like factor 
2 activity, promotion of thrombomodulin expression, and 
enhancement of the protein C anticoagulation pathway (Sen-
Banerjee et al. 2005).

These effects were corroborated clinically in obser-
vational studies and randomized-controlled trials. In the 
Heart and Estrogen/progestin Replacement Study, the risks 
for thromboembolic events were decreased by 50% among 
participants taking statins (Grady et al. 2000). Another study 
showed that statin use was associated with a 22% relative 
risk reduction in the risk of deep vein thrombosis (Ray et al. 
2001). In the JUPITER trial, patients taking rosuvastatin 
experienced less thromboembolism compared with the con-
trol group (Glynn et al. 2009). Given hypercholesterolemia 
is not a particularly strong risk factor for venous thrombo-
embolism, it remains unlikely this outcome was driven by 
LDL-C reduction alone (Oesterle et al. 2017).

Decreased oxidative stress

Oxidation of LDL particles in the vascular endothelium 
constitute one of the key initial drivers of atherosclerotic 
plaque formation. Both in vitro and ex vivo evidence sug-
gests that statins have direct antioxidant properties (Aviram 
et al. 1998a; Suzumura et al. 1999). Atorvastatin hydroxy-
metabolites, for example, inhibit oxidation of LDL, HDL, 
and VLDL particles, which suggests an antioxidant effect 
may also contribute to halt progression of atherosclerosis, 
independent of LDL-C lowering (Aviram et al. 1998b). 
These metabolites, which represent roughly 70% of active 
atorvastatin, accomplish this by scavenging free radicals. 
Another possible mechanism may be attributable to statins 
capacity to decrease the ability of macrophages to oxidize 
lipoproteins (Giroux et al. 1993), via decreasing the activity 

of macrophage CD36, a receptor for oxidized LDL (Fuhr-
man et al. 2002).

Additionally, the ability of statins to inhibit the produc-
tion L-Mevalonate from 3-hydoxy-3-methylglutaryl-CoA 
in the cholesterol biosynthetic pathway also leads to inhi-
bition of downstream production of Rac1 (Oesterle et al. 
2017). This G protein member of the Rho GTPase subfam-
ily activates nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase and also mediates the production of reac-
tive oxygen species (ROS) (Takemoto et al. 2001), which 
can contribute to endothelial dysfunction, inflammation, and 
oxidation of LDL particles, which all contribute towards the 
development of atherosclerosis (Miller et al. 2010; Nowak 
et al. 2017). Irrespective of ROS, statins have demonstrated 
an ability to attenuate downstream deleterious effects of 
Rac1 and NADPH oxidase activity which may partially 
explain how these mediates decrease oxidative stress and 
inhibit atherosclerosis.

Potential negative non‑cardiovascular 
pleiotropic effects

Statin‑associated muscle symptoms

Several off-target, negative side effects have commonly 
been associated with statin therapy, which also contributes 
to the notion of statin pleiotropy (Fig. 2). Statin intoler-
ance, a clinical syndrome comprising a variety of statin-
associated muscle symptoms (SAMS) and signs pertaining 
to multiple organ systems, is common and can lead to dis-
continuation in up to 53% of patients (Lin et al. 2016). The 
most frequent side effects pertain to skeletal muscle-related 
symptoms (myalgia) which commonly include muscle 
aches, soreness, and cramping, though myopathy, myositis, 

PPootteennttiiaall NNeeggaattiivvee PPlleeiioottrrooppiicc EEffffeeccttss

Sta�n-Associated Muscle Symptoms Diabetes Mellitus
Cogni�ve Impairment and 
Hemorrhagic Stroke

Fig. 2  Potential negative statin pleiotropic effects
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and rhabdomyolysis may also occur in rare cases (Cheeley 
et al. 2022). The diagnosis of SAMS is subjective; how-
ever, organizations like the National Lipid Association have 
proposed a scoring system based on regional distribution, 
temporal patterns, and symptoms related to initiation and 
withdrawal of the medication (Rosenson et al. 2014).

Risk factors for SAMS include female sex, advanced age, 
lower body mass index, hypothyroidism, vitamin D defi-
ciency, physical disability, and high statin doses (Schech 
et al. 2007). Roughly 75% of statins are metabolized by 
the cytochrome P450 (CYP) system in the liver; atorvasta-
tin, simvastatin, and lovastatin use the 3A4 isoenzyme for 
metabolism (Guengerich 2008). Thus, medications that also 
use CYP3A4 can increase statin concentrations by compet-
ing for catabolism, thereby precipitating SAMS. Grapefruit 
juice and other tropical juices such as pomegranate and star-
fruit contain CYP3A4 as well, which may lead to increased 
systemic statin concentrations (Sorokin et al. 2006). Alterna-
tively, fluvastatin, pitavastatin, and rosuvastatin are metabo-
lized predominantly by CYP2C9, with lesser contributions 
from CYP3A4 (fluvastatin), CYP2C8 (fluvastatin, pitavas-
tatin), and CYP2C19 (rosuvastatin) (Thompson Paul et al. 
2016). Given fewer medications depend on non-CYP3A4 
metabolism, there is less risk of drug interactions and sub-
sequent SAMS.

Although the exact pathophysiology SAMS is poorly 
understood, in vitro studies suggest that reductions in intra-
cellular cholesterol may facilitate cell membrane instabil-
ity and lysis (Bouitbir et al. 2020). Statins also adversely 
impact sarcoplasmic reticulum calcium handling (Lotteau 
et al. 2019), and genetic variants with a missense muta-
tion of leukocyte immunoglobulin-like receptor subfam-
ily B and T521C polymorphism of organic anion transport 
protein 1B1 can predispose certain individuals to SAMS 
(Link et al. 2008; Siddiqui et al. 2017). Statin therapy also 
inhibit the ubiquinone pathway involved in mitochondrial 
electron transport, thereby decreasing energy production 
and increasing intracellular levels of reactive oxygen species 
(Baigent et al. 2010). Interestingly, studies have suggested 
that supplementation with coenzyme Q10 (i.e., ubiquinone) 
can reverse mitochondrial dysfunction induced by statins 
in mice (Muraki et al. 2012). This observation, which has 
been substantiated in human studies (Qu et al. 2018), led to 
the notion that coenzyme Q10 may be a viable therapy for 
SAMS. However, the data have been inconsistent (Banach 
et al. 2015; Schaefer et al. 2004), and no convincing evi-
dence has emerged on the ability of coenzyme Q10 to miti-
gate SAMS.

Managing patients with SAMS can be challenging, 
though several strategies may help facilitate adherence. 
When symptoms arise, the medication should be stopped 
until symptom resolution. Measurement of creatinine kinase 
and liver function tests should be obtained to exclude end 

organ damage. Patients can then be re-challenged with a 
lower dose of the same statin, or alternative statins can be 
trialed. Statins with longer half-lives, such as rosuvastatin, 
atorvastatin, and pitavastatin, can also be given every other 
day or less frequently (Keating et al. 2013; Thompson Paul 
et al. 2016). Data suggest that ≤ 10 mg rosuvastatin given 
twice weekly reduces LDL-C by 26%. Contributing factors, 
such as vitamin D deficiency and hypothyroidism, should 
be excluded and treated, and a thorough medication recon-
ciliation should be done to identify medications with sig-
nificant statin interactions. Furthermore, it is possible that a 
considerable proportion of patients that experience SAMS 
may be due to the “nocebo effect,” a phenomenon in which 
negative expectations about medicine or a treatment mani-
fest as real symptoms, which is associated with early discon-
tinuation (Nielsen and Nordestgaard 2015). The innovative 
Self-Assessment Method for Statin Side-effects Or Nocebo 
(SAMPSON) trial was designed to test the nocebo effect of 
SAMS among statin users, and found that in participants 
who had discontinued statin therapy because of side effects, 
90% of the symptom burden elicited by the statin was also 
elicited by placebo. With this knowledge in hand, 50% of 
participants previously diagnosed with SAMS were able to 
re-start their statin 6 months after the conclusion of the trial 
(Howard et al. 2021). Thus, similar strategies could be uti-
lized in clinical practice to mitigate SAMS.

Cognitive impairment and hemorrhagic stroke

In 2012, the US Food and Drug Administration issued a 
black box warning regarding an association between statin 
use and cognitive impairment, based on several small studies 
conducted in the 1990s and early 2000s (Schultz et al. 2018). 
These side effects may have been driven by the ability of 
some statins (i.e., lipophilic statins) to cross the blood–brain 
barrier, leading to the potential for neurotoxicity and cogni-
tive impairment. Additionally, genes encoding cytochrome 
P450 enzymes, mitochondrial enzymes, and influx and 
efflux transporters may explain differential cognitive side 
effects among individuals on statins (Canestaro et al. 2014). 
Conversely, statins also have been shown to reduce neuro-
inflammation and amyloid β in animal models of Alzhei-
mer’s disease, which support the concept that statins may 
also have beneficial effects on cognitive function.

Despite early concerns, contemporary data from ran-
domized-controlled trials and meta-analyses found no 
clear, consistent association between statins and cognitive 
side effects (Adhikari et al. 2021; Giugliano et al. 2017; 
Zhou et al. 2021). In fact, the Heart and Estrogen/proges-
tin Replacement Study and Cardiovascular Health Study 
both showed that statin use was associated with a reduc-
tion in cognitive decline among older adults (Bernick et al. 
2005; Yaffe et al. 2002). Beneficial cognitive effects were 
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also observed in a meta-analysis of 7 observational studies, 
concluding that statin use not only reduced the risk of cog-
nitive decline, but also Alzheimer’s disease (Etminan et al. 
2003; Sparks et al. 2008). Given significant heterogeneity in 
study results, the 2013 ACC/AHA Cholesterol Guidelines 
concluded that the evidence suggests no adverse effect on 
cognitive changes or risk of dementia among individuals 
on statin therapy (Stone et al. 2014). At present, 2 large 
ongoing randomized-controlled trials are underway to assess 
the cognitive effects of statin use, specifically among older 
adults. The Pragmatic Evaluation of Events and Benefits 
of Lipid-Lowering in Older Adults (PREVENTABLE) trial 
aims to enroll 20,000 primary prevention patients ≥ 75 years 
of age, and will be randomized to atorvastatin 40 mg daily 
or placebo. The primary outcome is incident dementia and 
physical disability. The Clinical Trial of Statin Therapy for 
Reducing Events in the Elderly (STAREE) trial will assess 
the efficacy of atorvastatin 40 mg versus placebo among 
18,000 patients ≥ 70 years of age, and will assess incident 
death or development of dementia as well as cardiovascular 
events. These trials should help provide clarity to important 
questions surrounding the cognitive effects related to statin 
use among older adults.

Another neurological concern was unearthed from the 
SPARCL trial, mentioned previously. Despite atorvastatin 
lowering the incidence of overall stroke and cardiovascular 
events, there was a small increase in incident hemorrhagic 
stroke (Amarenco et al. 2006). Some hypothesized that this 
may have been driven by statin’s antithrombotic, fibrinolytic 
pleiotropic effects (Violi et al. 2013). However, a study by 
Ribe et al. used data from a large Danish registry of > 55,000 
individuals found no evidence that statins increase the risk of 
intracerebral hemorrhage over 10 years of follow-up (Ribe 
et al. 2020). Current ACC/AHA cholesterol guidelines note 
that this potential side effect is “unfounded” (Grundy et al. 
2018).

Diabetes mellitus

Diabetes mellitus is a potent risk factor for the development 
of ASCVD, such that guidelines suggest at least a moder-
ate intensity statin among individuals 40–75 years of age, 
regardless of their 10-year ASCVD risk score (Grundy et al. 
2018). However, both clinical trial and observational data 
have suggested a link between statin use and incident diabe-
tes, causing concern among both clinicians and patients. In 
the JUPITER trial, glycated hemoglobin concentrations were 
higher among those on rosuvastatin, and a small increase 
in incident diabetes mellitus was observed (3.0% vs 2.4%, 
p = 0.01) when compared with placebo (Ridker et al. 2008, 
2012). Several other large-scale cardiovascular clinical tri-
als have either demonstrated a null or modest positive asso-
ciation with statin use, with meta-analyses suggesting a 

statistically significant increased risk (Rajpathak et al. 2009; 
Sattar et al. 2010a). These relationships appear to be time 
and dose dependent, with both cumulative dosing and higher 
potency statins showing stronger relationships (Ko et al. 
2019). Additionally, incident diabetes was also more com-
mon among those with other risk factors, including over-
weight and obesity, impaired fasting glucose, and metabolic 
syndrome (Waters et al. 2011, 2013). Although mechanisms 
remain unclear, it is possible that individuals already predis-
posed to diabetes may cross the threshold to overt disease. 
However, the annual risk of new onset diabetes among those 
treated with statins is roughly 0.1% (Sattar et al. 2010b), 
and the absolute risk reduction in major adverse cardiovas-
cular events is roughly 0.42% annually (Cholesterol Treat-
ment Trialists 2012). Therefore, the cardiovascular benefits 
far outweigh the risk of incident diabetes, and this concern 
should not be considered a contraindication to statin therapy 
and should not lead to statin discontinuation (Grundy et al. 
2018).

Challenges to the hypothesis: non‑statin 
lipid lowering therapy

Although statins remain first line in reducing LDL-C and 
cardiovascular events among those at risk, several non-statin 
lipid lowering agents have become increasing common in 
clinical care. The IMPROVE-IT trial helped cement the 
“lower is better” LDL-C hypothesis, which demonstrated 
that ezetimibe added to simvastatin further reduced major 
adverse cardiovascular events compared with simvastatin 
alone (Cannon et al. 2015). Once the efficacy of ezetimibe 
was established, investigators sought to compare ezetimibe 
with statins to evaluate if comparable pleiotropic effects 
could be uncovered. Landmesser et al. showed that simvas-
tatin improves endothelial function independent of LDL-C 
lowering, though this benefit was not observed among 
patients treated with ezetimibe (Landmesser et al. 2005). 
Several other small studies have also documented similar 
findings (Fichtlscherer et al. 2006; Liu et al. 2009; Matsue 
et al. 2013). However, results have not been completely 
uniform. Pesaro et al. showed no difference in markers of 
inflammation when comparing individuals on ezetimibe/
simvastatin vs simvastatin monotherapy (Pesaro et al. 2012). 
A similar study showed no difference in endothelial func-
tion with the addition of ezetimibe to simvastatin (Westerink 
et al. 2013). While these two studies suggest that non-LDL-
C dependent effects can be achieved with ezetimibe, hetero-
geneous groups with small sample sizes limit interpretability 
and comparison.

The discovery of proprotein convertase subtilisin/kexin 9 
(PCSK9) and its role in cholesterol metabolism have led to 
the development of 2 monoclonal antibodies directed against 
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this protein, with evidence demonstrating these medications 
not only reduce LDL-C, but also major adverse cardiovas-
cular events with added to statin therapy (Sabatine et al. 
2017; Schwartz et al. 2018). PCSK9 inhibitors are now 
FDA approved to reduce risk among patients with estab-
lished ASCVD and familial hypercholesterolemia, when 
added to a maximally tolerated statin. Interestingly, multi-
ple preclinical studies have uncovered a myriad of potential 
pleiotropic anti-atherosclerotic effects of PCSK9i. Mount-
ing evidence indicates that PCSK9 inhibition blunts pro-
inflammatory pathways, attenuates cholesterol plaque oxida-
tive stress and inflammation, and reduces platelet reactivity 
possibly decreasing thromboses (Karagiannis et al. 2018). 
When evaluating effects of PCSK9 inhibitors in larger rand-
omized-controlled clinical outcomes trials, features of statin 
efficacy including time to benefit, plaque regression, and 
stroke reduction were comparable with the statin trials (Yu 
and Liao 2022). Thus, the literature suggests that PCSK9 
inhibitors may also exhibit pleiotropic effects via multiple 
pathways outside of LDL-C lowering.

Bempedoic acid is a non-statin LDL-C lowering therapy 
that targets cholesterol biosynthesis in hepatocytes. While 
statins inhibits HMG CoA reductase, bempedoic acid inhib-
its ATP-citrate lyase, which is two step upstream from HMG 
CoA reductase in the same pathway. Given bempedoic acid 
is administered as a prodrug that requires activation by 
enzymes only found in the liver, as opposed to muscle, this 
medication does not result in increased muscle-related side 
effects when compared with placebo (Laufs et al. 2019). 
This medication lowers LDL-C by up to 29% (Ballantyne 
et al. 2018; Goldberg et al. 2019; Laufs et al. 2019; Ray 
et al. 2019), and the ongoing Cholesterol Lowering via 
Bempedoic acid, an ACL-Inhibiting Regimen (CLEAR) 
Outcomes trial will elucidate whether bempedoic acid 
results in reductions in major adverse cardiovascular events 
(Nicholls et al. 2021). Each of the CLEAR series of trials 
measured the effect of bempedoic acid on high-sensitivity 
CRP, and evidence from CLEAR Wisdom (Goldberg et al. 
2019), Harmony (Ray et al. 2019), Serenity (Laufs et al. 
2019), and Tranquility (Ballantyne et al. 2018) all demon-
strating significant reductions in this inflammatory marker. 
Thus, bempedoic may exhibit anti-inflammatory properties, 
akin to statin therapy which was observed in the JUPITER 
trial. Furthermore, a pooled analysis of the aforementioned 
4 CLEAR trials showed that new onset and worsening dia-
betes was less frequent among individuals taking bempedoic 
acid compared with placebo (Bays et al. 2020), which differs 
from what has previously been observed with statins.

Recent developments in statin pleiotropy

Gut microbiome

Several recent studies have suggested a link between statins 
and the gut microbiome. In 2020, Vieira-Silva et al. demon-
strated that statin therapy modifies microbiome diversifica-
tion. In this study, a cohort of statin-naive patients with a 
microbiome enriched with Bacteroides, which is associated 
with systemic inflammation, was highly prevalent among 
individuals with obesity and correlates with BMI. Inter-
estingly, matched overweight and obese patients on sta-
tin therapy were found to have lower rates of Bacteroides 
predominant gut microbiomes when compared with their 
statin-naïve counterparts (Vieira-Silva et al. 2020). This led 
to the speculation that statin therapy may influence the gut 
microbiome and counteract a downstream pro-inflammatory 
environment which can be found in individuals with over-
weight and obesity. Alternatively, statins anti-inflammatory 
properties may be exerted on the host, which consequently 
allows the establishment of a more favorable gut microbiome 
(Reichel and Knauf 2021). Another study published in 2022 
found that LDL-C lowering and insulin resistance differed 
among statin users with different gut microbiomes, suggest-
ing that responses to statin therapy may, in part, be due to 
differences in metabolism via the microbiome (Wilmanski 
et al. 2022).

Preeclampsia

Interesting data have recently emerged on a potential benefi-
cial effect of statins in preventing preeclampsia, an important 
cause of maternal morbidity and mortality. Preeclampsia and 
ASCVD share similar risk factors, and both are character-
ized by inflammation and endothelial dysfunction (Roberts 
and Redman 1993). Mouse models with overexpression of 
soluble fms-like tyrosine kinase-1 result in preeclampsia like 
conditions (Bergmann et al. 2010), and elevations in this 
protein have been observed in women prior to the clinical 
development of preeclampsia (Levine et al. 2004, 2006). 
Importantly, lowering soluble fms-like tyrosine kinase-1 
reverses pathological features of preeclampsia (Bergmann 
et al. 2010), and evidence suggests that statins can inhibit 
cytokine-mediated release of soluble fms-like tyrosine 
kinase-1 (Cudmore et al. 2007). To test this hypothesis, 
Döbert et al. randomized women at high risk of term preec-
lampsia to pravastatin 20 mg versus placebo, and observed 
no reduction in the incidence of preeclampsia despite good 
adherence to the medication. Additionally, there was no sig-
nificant between-group differences in soluble fms-like tyros-
ine kinase-1 concentrations (Döbert et al. 2021). Although 
some have postulated that these negative results may have 
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been due to the low potency or short duration of statin use 
(Wei et al. 2021), this study suggests that statins may not 
have pleiotropic beneficial effects among women at risk for 
preeclampsia.

COVID‑19

The coronavirus 2019 (COVID-19) pandemic has ignited 
a firestorm of research in an attempt to find novel therapies 
that may mitigate its devastating effects on morbidity and 
mortality. In severe cases, infection from the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV 2) can 
result in severe acute respiratory distress syndrome (ARDS), 
due to an exaggerated inflammatory response, which may be 
fatal (Li and Ma 2020). Furthermore, infection with SARS-
CoV 2 can also lead to serious cardiovascular complications 
(Hansson and Libby 2006), including stroke, venous throm-
boembolism, myocardial injury, myocarditis, pericarditis, 
arrhythmias, cardiomyopathy and heart failure, cardiogenic 
shock, and cardiac arrest (Xie et al. 2022). SARS-CoV 2 
binds to angiotensin converting enzyme 2 (ACE2) on the 
surface of lung cells which mediates entry and subsequent 
infection (Li et al. 2003; Tai et al. 2020), in addition to serv-
ing as a regulatory enzyme in the renin-angiotensin system. 
Since ACE2 breaks down the pro-inflammatory angiotensin 
II, it has been postulated that low levels of ACE2 may be 
associated with at least some of the inflammatory effects 
induced by SARS-CoV 2 infection (Long et al. 2020). Given 
statins increase ACE2 levels, some believe that these medi-
cations may have a beneficial role in improving outcomes 
among those with COVID-19. One observational study 
using data from the AHA’s COVID-19 cardiovascular dis-
ease registry found that patients taking a statin prior to hos-
pitalization for COVID-19 had a 16% lower odds of death 
compared with those not on a statin (Daniels et al. 2021). 
Several meta-analyses have demonstrated similar benefits 
among statin users, with literature suggesting reductions in 
the risk of fatal or severe disease (Kow and Hasan 2020), 
progression to severe illness or death (Onorato et al. 2021), 
and reductions in hard clinical outcomes (Scheen 2021). 
Although these welcome pleiotropic effects from statin use 
seem to benefit COVID-19-related outcomes, these studies 
are observational in nature and causality cannot be con-
firmed. However, ongoing randomized-controlled trials will 
help further elaborate on the role of statins in SARS-CoV 2 
infection (Torres-Peña et al. 2021).

Conclusion

While it is clear that the LDL-C lowering properties of 
statins largely explain the cardiovascular benefits attrib-
utable to this life saving class of medications, decades 

of basic and clinical research have suggested unique off-
target pleiotropic effects not fully explained by their prin-
ciple mechanism of action. While favorable properties on 
endothelial function, platelets, vascular smooth muscle, and 
inflammation have been demonstrated in preclinical studies, 
these effects have not consistently translated in large-scale 
randomized-controlled trials, while several non-statin thera-
pies have shown similar off-target effects. Although con-
troversy remains regarding the concept of statin pleiotropy, 
the cardioprotective effects are unequivocal. Several novel 
lipid lowering medications in the pipeline will help further 
elucidate if these non-LDL-C lowering properties are unique 
to statin therapy.
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