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Abstract
Chemically induced steatosis is characterized by lipid accumulation associated with mitochondrial dysfunction, oxidative 
stress and nucleus distortion. New approach methods integrating in vitro and in silico models are needed to identify chemicals 
that may induce these cellular events as potential risk factors for steatosis and associated hepatotoxicity. In this study we 
used high-content imaging for the simultaneous quantification of four cellular markers as sentinels for hepatotoxicity and 
steatosis in chemically exposed human liver cells in vitro. Furthermore, we evaluated the results with a computational model 
for the extrapolation of human oral equivalent doses (OED). First, we tested 16 reference chemicals with known capacities 
to induce cellular alterations in nuclear morphology, lipid accumulation, mitochondrial membrane potential and oxidative 
stress. Then, using physiologically based pharmacokinetic modeling and reverse dosimetry, OEDs were extrapolated from 
data of any stimulated individual sentinel response. The extrapolated OEDs were confirmed to be within biologically relevant 
exposure ranges for the reference chemicals. Next, we tested 14 chemicals found in food, selected from thousands of puta-
tive chemicals on the basis of structure-based prediction for nuclear receptor activation. Amongst these, orotic acid had an 
extrapolated OED overlapping with realistic exposure ranges. Thus, we were able to characterize known steatosis-inducing 
chemicals as well as data-scarce food-related chemicals, amongst which we confirmed orotic acid to induce hepatotoxicity. 
This strategy addresses needs of next generation risk assessment and can be used as a first chemical prioritization hazard 
screening step in a tiered approach to identify chemical risk factors for steatosis and hepatotoxicity-associated events.

Keywords New approach method · High-content imaging · Hepatotoxicity · In vitro to in vivo extrapolation

Introduction

Steatosis is a hepatic accumulation of fatty acids in greater 
than 5% of hepatocytes (Chalasani et al. 2012; Musso et al. 
2016). This cellular phenotype is observed in nonalco-
holic fatty liver disease (NAFLD), a complex spectrum of 
diseases that affects around 25% of the adult population 
(Chalasani et al. 2012; Younossi et al. 2018) and ranges 
from benign liver steatosis to nonalcoholic steatohepatitis 
(NASH), leading to cirrhosis and eventually hepatocel-
lular carcinoma. In addition to metabolic disorders (obe-
sity, type 2 diabetes) and genetic factors, environmental 
exposure to chemicals can lead to hepatic steatosis (Kaiser 
et al. 2012; Wahlang et al. 2013). Also, drugs, such as ami-
odarone, valproic acid, and cancer chemotherapeutics can 
cause steatosis in some patients, particularly after chronic 
therapy (Begriche et al. 2011; Kaiser et al. 2012; Wahlang 
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et al. 2013; Jennings et al. 2014; Willebrords et al. 2015; 
Schumacher and Guo 2015). Chemically induced liver 
steatosis appears to induce fatty acid synthesis, decrease 
fatty acid β-oxidation, decrease lipoprotein export and 
increase uptake of free fatty acids (Pavlik et al. 2019). 
Yet, data derived from animal models are poorly trans-
lated to humans due to interspecies differences concerning 
molecular mechanism of steatosis (Soret et al. 2020).

The adverse outcome pathway (AOP) for chemically 
induced liver steatosis involves nuclear receptor binding, 
microsomal triglyceride transfer protein (MTP) or carni-
tine palmitoyltransferase I (CPT-1) inhibition, coenzyme 
A binding and carnitine depletion as the molecular initi-
ating events that lead to triglyceride accumulation (Allen 
et al. 2014; Vinken 2015). Activation of several nuclear 
receptors, such as ER, LXR, PXR or FXR, can lead to 
mitochondrial dysfunction via inhibition of β-oxidation 
and an increase of de novo fatty acid synthesis, creating 
an imbalance in fatty acid metabolism leading to the accu-
mulation of liver triglycerides and eventually steatosis. 
Moreover, disruption of β-oxidation induces increased 
production of reactive oxygen species leading to oxida-
tive stress (Masarone et al. 2018). Furthermore, ongoing 
accumulation of liver triglycerides can distort the nucleus, 
exacerbate mitochondrial dysfunction, oxidative stress and 
cause endoplasmic reticulum stress. (Moya et al. 2010; 
Mellor et al. 2015). Chemicals that give rise to fatty liver 
disease may invoke several of these cellular events as a 
basis for identification.

There are several recent studies concerning chemically 
induced steatosis in vitro (Anthérieu et al. 2011, 2012; 
Rogue et al. 2014; Klein et al. 2016; Tolosa et al. 2016; 
Angrish et al. 2017; Cuykx et al. 2018; Luckert et al. 2018; 
Bucher et al. 2018; Allard et al. 2020; Lichtenstein et al. 
2020; Lasch et al. 2021). These include at least four studies 
in which key events along the liver steatosis AOP were quan-
tified in vitro (Supplementary table 1) (Donato et al. 2012; 
Tolosa et al. 2016; Luckert et al. 2018; Shah et al. 2021). 
Most recently, Shah et al. quantified mitochondrial function, 
lipid accumulation, endoplasmic reticulum stress, lysosomal 
mass, DNA texture, nuclear size, apoptosis, and cell number 
using a high-content imaging approach with rat hepatocytes 
and 51 hepatotoxicants. Moreover, these in vitro data were 
extrapolated to in vivo administered equivalent doses and 
compared to in vivo (rat) data (Shah et al. 2021). Relat-
ing in vitro bioactivity data to exposure values by means of 
physiologically based pharmacokinetic modeling (PBPK) 
and reverse dosimetry is critical in order that in vitro bioas-
says can be accepted for chemical hazard and eventually risk 
assessment by regulatory agencies (Wetmore 2015; Hartung 
2018). To our knowledge, there are as yet no reports of com-
bining an in vitro approach for simultaneous quantification 
of fat accumulation with other hepatotoxicity-associated 

relevant events in human cells with extrapolation to relevant 
human exposures.

In this study, we used high-content imaging to simultane-
ously quantify lipid accumulation, as a marker of steatosis, 
along with several measures of hepatotoxicity that are asso-
ciated with chemically induced liver steatosis. These include 
mitochondrial membrane potential disruption, oxidative 
stress, and nuclear morphology changes. Furthermore, these 
were evaluated on single cell and population levels. Sixteen 
reference chemicals known to induce steatosis by diverse 
mechanisms were tested in HepaRG cells. To evaluate the 
physiological relevance of the resulting dose–response rela-
tionships, we integrated the in vitro data for the reference 
compounds with physiologically based pharmacokinetic 
modeling (PBPK) and reverse dosimetry to derive human 
dose equivalents. These levels were then compared to in vivo 
exposure values. Finally, on the basis of predicted nuclear 
receptor agonist activity, we curated and tested a panel of 
food-related compounds and pesticides for their potential to 
induce steatosis and associated hepatotoxicity.

Materials and methods

Chemicals and reagents

Chemicals (Supplementary table 2) were purchased from 
Sigma-Aldrich (St. Louis, Missouri). Stock solutions (200x) 
were prepared in dimethylsulfoxide (DMSO). Chemicals 
soluble in water were directly dissolved in cell culture 
medium. A mixture of oleic acid/palmitic acid (OA/PA) was 
combined with bovine serum albumin (BSA) in a ratio of 
5.5:1 (OA/PA: BSA). OA/PA was first dissolved in DMSO 
and then added to treatment medium supplemented with 
the corresponding BSA concentration. The OA/PA medium 
mix was then warmed at 60 °C for 1 h (to aid dissolution), 
allowed to return to room temperature, and subsequently 
used for experiments.

Cell culture and chemical exposure

Undifferentiated HepaRG cells were purchased from Bio-
predic international (Saint Grégoire, France). HepaRG cells 
have unlimited growth capacity and phenotypic stability, 
stable enzymatic activities over 4 weeks of cultivation, and 
similar metabolic function to primary human hepatocytes, 
and also avoid limitations of primary cells such as donor 
variability and phenotypic instability (Aninat et al. 2006; 
Guillouzo et al. 2007; Lambert et al. 2009; Lübberstedt et al. 
2011; Andersson et al. 2012). The line contains two cell 
types, hepatocyte-like and cholangiocyte-like cells (Parent 
et al. 2004), which allows for elucidation of cell-specific 
toxicity (Jossé et al. 2008). Cells were seeded at a density 
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of approximately 27′000 cells/cm2 into a 150 × 25 mm petri 
dish and were cultured for 2 weeks in William’s E medium 
(cat. nr.: 32,551,020, ThermoFisher Scientific, Massachu-
setts, USA) supplemented with 2 mM glutamine, 10% (v/v) 
fetal bovine serum (FBS) good forte (cat. nr.: P40-47,500, 
PAN-Biotech, Aidenbach, Germany), 100 U/ml penicillin 
and 100 µg/ml streptomycin (cat. nr.: 15,140,122, Ther-
moFisher Scientific, Massachusetts, USA), 5 µg/ml Gibco 
recombinant AOF insulin (cat. nr.: A11382II, ThermoFisher 
Scientific, Massachusetts, USA) and 50 µM hydrocortisone 
hemisuccinate (cat. nr.: H4881, Sigma-Aldrich, St. Louis, 
USA) at 37 °C and 5%  CO2. Differentiation was induced 
by culturing the cells for another 2 weeks in the above 
mentioned medium supplemented with 1.7% DMSO. After 
4 weeks in culture, differentiated HepaRG cells were seeded 
at a high density of approximately 227′000 cells/cm2 (72,000 
cells/well with 100 µl per well) into black 96-well plates 
with a clear bottom (cat.nr.: 3603, Corning, New York, 
USA) and maintained for 10 days. After 10 days, cells were 
first adapted to treatment medium (culture medium contain-
ing 0.5% DMSO and 2% FBS) for 48 h and then used for cell 
viability and high-content imaging analysis.

Cell viability assessment

Cell viability was analyzed using the WST-1 assay which 
is based on the measurement of mitochondrial dehydroge-
nase activity (cat. nr: ab155902, Abcam, Cambridge, UK). 
HepaRG cells were exposed to chemicals at defined con-
centrations for 24 h. Triton X-100 (0.01%) was a positive 
control. One hour before the end of incubation period, 10 µl 
of WST-1 reagent was added to each well, quickly mixed by 
shaking the plate, and returned to the cell culture incuba-
tor (37 °C, 5%  CO2). After 1 h, absorbance was measured 
(450 nm, reference wavelength 620 nm) using a plate reader 
(Infinite M200 Pro, Tecan group, Männerdorf, Switzer-
land). Absorbance was then subtracted from the reference 
wavelength, corrected for background by subtracting values 
measured without cells, and then normalized to the solvent 
control, which was set to 100%. Dose–response data were 
fitted using drc package (Version 3.0.1) (Ritz et al. 2015) in 
R 3.6.1. Data were from at least 3 independent experiments 
with 6 technical replicates per condition.

High‑content imaging assay

Cellular responses were quantified using a high-content 
imaging approach (Fig. 1). Based on cell viability assess-
ment, concentrations below the  EC50 level were tested 
in the high-content imaging assay. After 24 h chemical 
exposure, live cells were incubated with CellROX, which 
reflects hydroxyl radical and superoxide anion levels 
(ThermoFisher Scientific 2011) (5 µM, cat. nr.: C10422, 

ThermoFisher Scientific, Massachusetts, USA) by adding 
10 µl of a 55 µM CellROX solution in treatment medium 
directly to the well. After incubation (30 min, 37 °C, 5% 
 CO2), cells were rinsed twice with treatment medium with-
out serum. After removal of the treatment medium, cells 
were incubated with Mitotracker Orange CM-H2TMROS 
which was used to measure changes in mitochondrial mem-
brane potential (50 nM, 10 min, 37 °C, 5%  CO2 cat. nr.: 
M7511, ThermoFisher Scientific, Massachusetts, USA). 
Subsequently, cells were washed three times with PBS and 
fixed with 4% PFA at room temperature for 20 min. Both 
dyes were retained after aldehyde fixation. After washing 
3 × 5 min, cells were stained with Bodipy (50 nM, cat. nr.: 
D3921, ThermoFisher Scientific, Massachusetts, USA) and 
Hoechst (2 µM, room temperature, 15 min, cat. nr.: 62,249, 
ThermoFisher Scientific, Massachusetts, USA), rinsed once 
with PBS (cat. nr.: 14,190,250, ThermoFisher Scientific, 
Massachusetts, USA), and then kept in PBS. Images were 
acquired using an ImageXpress micro (IXM) High-Content 
Imaging System from Molecular Devices with a 20 × 0.75 
NA S Fluor objective. A photometrics CoolSNAP HQ high 
resolution camera designed for quantitative fluorescence 
microscopy applications was set to 16 bits with a binning 
of one and a pixel size of 6.45 µm × 6.45 µm, and 25 images 
were captured per well.

Automated quantitative image analysis

Images were quantified using the open-source software 
CellProfiler 3.1.8 (McQuin et al. 2018) and ImageJ 1.52 g 
(Schindelin et  al. 2012). The image analysis pipelines 
are available as supplementary materials and are briefly 
described here. For cell population-level data, nuclei were 
segmented using Otsu thresholding (Sankur 2004) and eve-
rything outside the diameter range of 10–100 pixel was dis-
carded. For lipid droplet quantification, GFP images were 
first deconvoluted using ImageJ 1.52 g and then imported 
into the CellProfiler pipeline. A binary mask of the lipid 
droplets then was created, segmented, and quantified using 
the standard settings in the “IdentifyPrimaryObjects” mod-
ule (Supplementary Fig. 1). Next, mitotracker and Cell-
ROX image intensity were measured. All parameters were 
exported to Excel spreadsheets and analyzed in R 3.6.1, as 
further explained in the paragraph “Dose response data and 
model fitting” below. For the single cell analysis pipeline, 
nuclei images were used to identify individual cells. Cell 
borders were determined based on the mitotracker staining 
with the propagation method (Jones et al. 2005). All quanti-
fications from the cell population-level pipelines were also 
performed at the single cell level. In addition, the follow-
ing parameters were quantified per cell: size and shape of 
identified objects, object intensity, and object textures. The 
data were then exported to an SQLite database and analyzed 
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using R 3.6.1 or GraphPad Prism 9. These pipelines can be 
used for a rapid population-based quantification which is 
amenable for high-throughput assay or for a detailed single 
cell analysis to identify heterogenous responses and distinct 
cellular phenotypes.

Data analysis of single cell data

The single cell SQLite database file was read using RSQLite 
package (Müller et al. 2020). Data across three independ-
ent experiments with 6 technical replicates per concentra-
tion were summarized in a data matrix. This data matrix 

consisted of over  106 cells with over 800 features per cell. 
It was imported into R 3.6.1. Constant and NA values were 
removed from the data matrix to perform a principle com-
ponent analysis. Subsequently, the parameter cytoplasm area 
size was used to separate hepatocyte-like cells (< 5000  px2) 
and cholangiocyte-like cells (> 5000  px2) with the assump-
tion that cells with a cytoplasm area below 5000  px2 are 
likely to be hepatocytes and those above likely to be chol-
angiocytes. Separation by size was further validated by 
anti-ASGPR1 immunostaining, a basolaterally expressed 
surface protein highly specific to hepatocytes (Supplemen-
tary Fig. 2). Its main function is the clearance of desialylated 

Fig. 1  Basis of high-content imaging assay. A Fluorescent probes for 
the selected endpoints including corresponding positive controls. B 
Description of the workflow including rapid population-based quanti-
fication and detailed single cell analysis. During single cell level anal-
ysis, over 800 different features (intensity, size/shape, and texture) per 

cell were quantified and analyzed using principal component analysis 
(PCA). Plotted data were then color labeled using the values from fol-
lowing parameters: lipid droplet size, mitotracker intensity and Cell-
ROX intensity
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glycoproteins (D’Souza and Devarajan 2015). Principle 
component analysis was used for dimensionality reduction 
and performed on the hepatocyte data set and plotted using 
ggplot2.

Machine learning approach to quantify apoptotic 
cells

Apoptotic cells were quantified using a supervised machine 
learning approach. Nuclei images were analyzed with Cell-
Profiler and intensity, size, shape and texture features were 
extracted. These data were loaded into CellProfiler Analyst 
(Jones et al. 2008) together with the raw nuclei images. A 
random forest classifier was trained to distinguish between 
healthy and apoptotic cells using a training set consisting of 
477 different nuclei (Supplementary Fig. 3A). To take imbal-
ance in the dataset into account, random undersampling was 
performed in the training set to achieve a 67/33 ratio (323 
healthy, 154 apoptotic). The training set was assembled 
using nuclei from the menadione exposure across three inde-
pendent experiments. Apoptotic nuclei were defined based 
on morphological nuclear fragmentation. The model was 
trained until a classification accuracy between 80 and 90% 
was reached. Classification accuracy was determined based 
on user-defined assessment. In addition, images from the 
positive control were visually inspected to check the overall 
classification performance of the model and were corrected 
if numerous misclassifications were identified. If the clas-
sification was satisfying, the entire dataset was then scored. 
The resulting hit table was imported into R and the number 
of apoptotic cells were normalized to total cell number in 
the same well and further to untreated cells (Supplemen-
tary Fig. 3). Image analysis and supervised machine learning 
were performed on a terminal server based on Windows 10 
equipped with 40 cores Intel Xeon Gold 6150 @ 2.7 Ghz 
and 512 GB RAM.

Dose–response data and model fitting

Dose–response data were collected on a population level 
(i.e., per well averages) and combined with responses from 
all HepaRG cells per well. For every biological endpoint, 
the following raw parameters were selected per well and 
normalized to cell number per well:

• Lipid accumulation: Total number of lipid droplets 
divided by total number of cells

• Mitochondrial membrane potential: (Mean intensity–
background intensity)/total number of cells

• Oxidative stress: (Mean intensity–background intensity)/
total number of cells

• Nuclear morphology/cell death: number of apoptotic 
cells/total number of cells

These data were normalized to untreated cells to derive 
a fold change; unexposed cells had a fold change of 1. 
All data were normalized per plate to overcome possible 
plate effects. Non-linear regression of dose–response data 
was performed by fitting a log-logistic model with 3 or 4 
parameters. The best fitting model was selected based on 
lowest Akaike Information Criterion (AIC) (Akaike 1973) 
and visual inspection. A positive hit, i.e., an induction of a 
biological endpoint by exposure, was identified when the 
non-linear regression exceeded the calculated threshold 
of ± 2 standard deviations of the response at the two lowest 
concentrations. Dose–response data were fitted using the drc 
package (Ritz et al. 2015) and plotted with ggplot2 (Hadley 
Wickham 2016). The R script of dose–response data and 
model fitting is available as supplementary material.

Benchmark concentration modeling

To determine a point of departure of the high-content imag-
ing concentration–response data, benchmark concentration 
(BMC) was modeled and calculated using the benchmark 
dose software (BMDS) version 3.1.2 (United States Environ-
mental Protection Agency 2023). The benchmark dose tech-
nical guidance was used as a basis to perform the analysis 
(United States Environmental Protection Agency (USEPA) 
2012). Normalized data including tested concentrations were 
entered as individual data points into the BMDS Excel appli-
cation. The BMC was then defined as a benchmark response 
(BMR) of a change in the mean of one standard deviation 
from the control mean. Concentration–response data were 
then fitted to several models including exponential, hill, lin-
ear, polynomial and power models. Normal and log-normal 
distribution with constant or non-constant variance were also 
tested to find the best fit. BMC and its corresponding 95% 
confidence interval (95% CI) were then calculated. Selec-
tion criteria for the model with the best fit were the Akaike 
Information Criterion (AIC), goodness of fit p-value, scaled 
residuals for dose group near BMD, and for control dose 
group and BMDS recommendation. If there were several 
models which received a BMDS recommendation, BMCs 
from all models were averaged. BMCs were calculated for 
all chemicals tested (Supplementary table 3).

In vitro to in vivo extrapolation (IVIVE)

IVIVE was performed based on the previously published 
method by Rotroff and Wetmore et al. (Rotroff et al. 2010; 
Wetmore et al. 2015) and using the high-throughput toxi-
cokinetic (httk) R package (version 1.10.1) developed 
by the US-EPA. The httk package contains four toxi-
cokinetic models which can be parameterized using high 
throughput-derived in vitro data on plasma protein binding 
and hepatic clearance. Moreover, it has a Monte Carlo 
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sampler to simulate population variability and includes 
tools for reverse dosimetry together with functions for the 
analysis of concentration versus time simulations (Pearce 
et al. 2017). In our study, a three-compartment steady 
state pharmacokinetic (PK) model was parameterized and 
used for the simulations. For all simulations, the follow-
ing assumptions were made: oral route of exposure, daily 
dosing with constant dose rate, and 100% bioavailability. 
Human data were used except where otherwise stated. 
Steady-state concentration (Css) in the blood was calcu-
lated using formula 1 (Pearce et al. 2017)

where ko = constant dose rate (mg/kg BW/day), fup = in 
vitro measured chemical fraction unbound in plasma, 
 Clmetabolism = metabolic clearance scaled from in  vitro 
intrinsic hepatic clearance, Rblood2plasma = ratio of blood 
concentration of a chemical to the plasma concentration, 
GFR = glomerular filtration rate (mean 5.17 ml/min/kg^3/4), 
Qliver = blood flow to the liver (mean 59.9 ml/min/kg^3/4), 
and  Qgut = blood flow to the gut (mean 47.5 ml/min/kg^3/4). 
Fraction unbound, metabolic clearance, and  Rblood2plasma 
values were obtained from the httk package or from litera-
ture. Recognizing that formula 1 is linear in dose rate (ko), 
oral equivalent doses (OED) were then calculated using the 
Css predicted for a 1 mg/kg/day dose rate as in formula 2 
(Rotroff et al. 2010).

The calculated OED corresponds to an oral daily dose 
which would lead to a plasma concentration equal to the 
in vitro-derived BMC. The OED is linearly related to the 
BMC and inversely related to Css. This equation is only 
valid for first-order metabolism (Rotroff et al. 2010). A 
Monte Carlo analysis was used to simulate population 
variability in, GFR, Qliver, Qgut, and  Clmetabolism across 
1000 healthy individuals. Extrapolations were performed 
for each chemical and endpoint which was positive in the 
imaging assay. Every predicted parameter per chemical 
was then combined into one boxplot per endpoint, which 
contained all predicted OEDs across all positive endpoints.

For the model evaluation, Css of selected reference 
chemicals were predicted using formula 1 with the same 
dose rate from the in vivo Css measurements. For chemi-
cals with no in vitro intrinsic hepatic clearance and frac-
tion unbound values available in the database included in 
the httk package, in silico predictions from (Sipes et al. 

(1)

Css

(mg

l

)

= ko∕(GFR × fup +

(

Qliver + Qgut

)

× fup × Clmetabolism

(

Qliver + Qgut

)

+
fup×Clmetabolism

Rblood2plasma

)

(2)OED

( mg

kg

day

)

= BMC(uM) ×

1
mg

kg

day

Css(uM)

2017) were loaded using load_sipes2017(). In addition to 
that, in vitro intrinsic hepatic clearance values were cal-
culated for a selection of chemicals (Lomitapide, Fialu-
ridine, Metformin, beta-naphthoflavone and Menadione) 
using in vivo clearance values (Supplementary table 4) 
and formula 3:

where  Clint = in vitro intrinsic hepatic clearance in ul/
min/10^6 cells,  Clmetabolism = in vivo clearance in L/h/kg (if 
available hepatic otherwise total clearance), Fub.corr = assay 
correction factor which is assumed to be 1 (i.e., no correc-
tions), ρliver = liver density of 1.05 g/ml, Ncells = 1.1 × 10^8 
hepatocytes per gram of liver, Vliver = liver volume: 
0.0245 L/kg (human), 0.0349  L/kg (rat), 0.04 L/kg (rab-
bit), fmc2c = conversion factor for millions of cell to one cell, 
 fml2l = conversion factor from ml to l,  fmin2h = conversion fac-
tor from minute to hour, and  fl2ul = conversion factor from 
L to ul. The formula to calculate  Clint was derived from the 
function calc_hepatic_clearance () within the httk pack-
age. Predicted Css values were then compared to published 
in vivo Css values. If there was no published in vivo Css 
available, Css was then calculated based on published in vivo 
pharmacokinetic parameters using the following formula 
(Supplementary table 3)

Vice versa, predicted OED derived from BMC were com-
pared to published exposure values of the corresponding 
chemicals. Simulations were performed in humans where 
pharmacokinetic parameters for humans were available; 
otherwise, estimations were calculated in rats or rabbits, as 
stated in Fig. 7. The R script written to perform the IVIVE 
analysis is available as supplementary material.

Results

Multiparametric analysis of reference chemicals

To validate the assay, positive and negative control chem-
icals with previously established mechanisms of action 
were characterized by the high-content imaging approach 
described above (Fig. 1A). Thus, we tested a mixture of 
oleic acid and palmitic acid, which are often used to induce 
steatosis in vitro (Gómez-Lechón et al. 2007; Sharma et al. 
2011; Graffmann et al. 2016; Michaut et al. 2016); rote-
none, a selective complex I inhibitor (Siddiqui et al. 2013) 
and carbonylcyanide-p-trifluoromethoxyphenylhydrazone 
(FCCP), a weak acid that selectively increases proton 

(3)

Clint =
(Clmetabolism × Fub.corr)

�liver × Ncells × Vliver × fmc2c × fml2l × fmin2h × fl2ul)

(4)Css(
mg

L
) = (Dose × F)∕(Cl × dosinginterval)
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permeability in lipid membranes (Benz and McLaughlin 
1983; Sakamuru et al. 2016), were therefore used as posi-
tive controls for inducing mitochondrial dysfunction via a 
decrease in mitochondrial membrane potential; amiodar-
one and arsenite, which induce oxidative stress (Anthérieu 
et al. 2011; Tolosa et al. 2016; Zhao et al. 2019; Lv et al. 
2020); menadione, which induces DNA damage and cell 
death (Loor et al. 2010); and caffeine as negative control 
(Persson et al. 2013; Saito et al. 2016) (Fig. 2). Concen-
tration ranges were selected on the basis of preliminary 
cell viability screen, and each chemical was used at con-
centrations ranging up to the corresponding  EC50 value 
(Supplementary Fig. 4).

Response profiles of the positive and negative control 
compounds were consistent with expected outcomes. Lipid 
accumulation increased in a dose-dependent manner upon 
exposure to oleic acid/palmitic acid, rotenone, amiodarone 
and menadione, with oleic acid/palmitic acid (1000 µM) 
being the most efficacious (2.3-fold increase). Caffeine 
induced a decrease of lipid accumulation that exceeded the 
threshold, but only at the highest concentration (5000 µM). 
In the case of mitochondrial membrane potential, oleic acid/
palmitic acid (62.5 µM), rotenone (2.5 µM), fccp (2.5 µM) 
and amiodarone (25 µM) all induced a dose-dependent 
decrease exceeding the threshold at the concentrations indi-
cated. In the case of oxidative stress, amiodarone (25 µM) 

Fig. 2  Representative fluorescent images from chemically exposed 
HepaRG cells. A DMSO control B Oleic acid/palmitic acid 
(1000 µM) C Rotenone (20 µM) D Amiodarone (50 µM) E Menadi-

one (50 µM) F) Caffeine (5 mM). Uncropped images were acquired 
at 20x. Scalebar = 50 µm. Blue nuclei, green lipid accumulation, red 
mitochondrial membrane potential, yellow oxidative stress
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and arsenite (25 µM) exposure led to a dose-dependent 
increase and exceeded the threshold at the concentrations 
indicated. The number of apoptotic cells (nuclear mor-
phology) increased in oleic acid/palmitic acid-(250 µM), 
amiodarone- (25 µM), arsenite- (25 µM) and menadione- 
(25 µM) treated HepaRG cells in a dose-dependent fash-
ion, exceeding the threshold at the concentrations indicated 
(Fig. 3). These observations are consistent with previous 
response patterns and sensitivities (Anthérieu et al. 2011; 
Tolosa et al. 2016; Angrish et al. 2017; Allard et al. 2020) 
(Gómez-Lechón et al. 2007; Anthérieu et al. 2011; Sharma 
et al. 2011; Siddiqui et al. 2013; Graffmann et al. 2016; 
Michaut et al. 2016; Tolosa et al. 2016), suggesting the 
accuracy of the in vitro assay and data analysis pipelines.

Following the effective systematic characterization of 
positive and negative control chemicals for each endpoint, 
we tested four Food and Drug Administration (FDA)-
approved drugs with known mechanisms of action. They 
included metformin, an anti-diabetic drug that inhibits mito-
chondrial complex I (Pernicova and Korbonits 2014), tetra-
cycline, an antibiotic drug that inhibits β-oxidation, micro-
somal triglyceride transfer protein (MTP) and upregulates 
PPARγ and SREBP1-c (Anthérieu et al. 2011; Schumacher 
and Guo 2015), lomitapide, an anti-hypercholesterolemic 
drug that inhibits MTP (Lin et al. 2014), and valproic acid, 
an anti-convulsant drug that inhibits β-oxidation and upregu-
lates CD36 and DGAT2 (Schumacher and Guo 2015; Bai 
et al. 2017). Lipids accumulated in a dose-dependent man-
ner above the threshold for metformin, tetracycline and 
valproic acid, but not lomitapide. Mitochondrial membrane 
potential decreased when cells were exposed to metformin 
(50,000 µM) or lomitapide (12 µM), but only at the highest 
concentrations. An unexpected hormetic effect was observed 
in cells exposed to tetracycline (between 31.25 and 125 µM); 
a hyperpolarization, which to our knowledge has not been 
reported previously, was observed, such that only at the 
highest concentration (250 µM) did the mitochondrial mem-
brane potential decrease. Oxidative stress dose-dependently 
increased after tetracycline (125 and 250 µM) exposure and 
exceeded the threshold at the concentrations indicated, but 
no changes were observed for lomitapide or valbroic acid. A 
unique decrease of oxidative stress below the threshold was 
observed after metformin exposure (50,000 µM). Finally, the 
number of apoptotic cells increased above the threshold in 
metformin, tetracycline and lomitapide treated cells (Fig. 3). 
These data thus confirmed the anticipated activation profiles 
of the cellular markers for these reference compounds.

As a next step, we were interested to test etomoxir and 
fialuridine, both chemicals that had their clinical develop-
ment terminated due to severe hepatotoxicity in clinical tri-
als, but with limited knowledge of the underlying mecha-
nisms (Manning and Swartz 1995; Holubarsch et al. 2007). 
Etomoxir was developed as an anti-diabetic drug and is an 

irreversible carnitine palmitoyltransferase 1 (CPT1) inhibitor 
(Merrill et al. 2002). Fialuridine is a nucleoside analog that 
was developed to treat chronic hepatitis and inhibits mito-
chondrial DNA polymerase γ (McKenzie et al. 1995; Lewis 
et al. 2003). However, neither induced lipid accumulation, 
had any consistent impact on oxidative stress, nor induced 
apoptosis (Fig. 3). Nonetheless, fialuridine (25 µM) and eto-
moxir (36 µM) induced an increase in MMP and exceeded 
the threshold the concentrations indicated (Fig. 3). The 
profiles for these known steatotic compound, i.e., lack of 
lipid accumulation with MMP increase, illustrate a concept 
behind using a hallmark-driven assay and potential diffi-
culties in modeling lipid accumulation after short in vitro 
exposures. Thus, chemicals that induce related measures 
of hepatotoxicity, which may be easier to detect, may be 
flagged for more in-depth evaluation with a focus on lipid 
accumulation potential, such as longer duration exposures.

We next were interested in testing chemicals known 
to bind to nuclear receptors, as nuclear receptor activa-
tion is a molecular initiating event of steatosis. Thus, we 
characterized three experimental drugs: T0901317, a syn-
thetic liver X receptor agonist that increases the expression 
of SREBP-1c and CHREBP (Mitro et al. 2007; Cha and 
Repa 2007); WY14643, a dual PPARα/PPARγ agonist that 
increases oxidative stress in mouse liver and affects fatty 
acid metabolism (Woods et al. 2007; Jennings et al. 2014); 
and β-naphthoflavone (BNF), an aryl hydrocarbon receptor 
agonist that upregulates CD36 (Lee et al. 2010; Jennings 
et al. 2014). Lipid accumulation dose-dependently increased 
and exceeded the threshold for cells exposed to T0901317 
and WY14643, but not BNF. In addition to inducing lipid 
accumulation, T0901317 caused a decrease in MMP below 
the threshold, and oxidative stress and apoptosis exceed-
ing the threshold at the highest T0901317 concentration 
(40 µM). For WY14643, which also induced lipid accumu-
lation, we observed MMP hyperpolarization and it induced 
apoptosis Yet, none of the hallmarks were induced by BNF 
(Fig. 3). Thus, 2 out of 3 nuclear receptor agonists induced 
several steatosis and hepatotoxicity related cellular events.

Analysis of food‑related chemicals and pesticides

With nuclear receptor activation as a potential initial pre-
dictor of steatotic potential, as further supported by the 
T0901317 and WY14643 results, we wanted to character-
ize more broadly environmentally relevant compounds with 
structural alerts for nuclear receptor binding. Thus, about 
6,000 Smiles (Simplified Molecular Input Line Entry Sys-
tem, a chemical language system in which chemical struc-
tures can be written using ASCII characters (Weininger 
1988)) were extracted from the regulated food-related use/
occurrence chemical database from the Swiss Federal Food 
Safety and Veterinary Office and about 4,000 from the 
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Fig. 3  Cellular responses for four key steatosis-relevant endpoints. 
Gray area around non-linear regression represents 95% CI. Black dot-
ted line represents a fold change of 1 (DMSO control). Red dotted 
lines represent threshold (± 2 standard deviations of the response at 

the two lowest concentrations). All data were first normalized to cell 
number and then to untreated cells. At least 3 independent experi-
ments with 6 technical replicates per concentration per experiment 
were conducted for all chemicals
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Toxcast database (Richard et al. 2016). We assessed poten-
tial for nuclear receptor binding on the basis of molecular 
fragments and other relevant chemical features, by a previ-
ously reported approach (Mellor et al. 2016), and identified 
about 80 chemicals that might bind one or more receptors. 
Of these 80 compounds, 14 had prior evidence of hepato-
toxicity and published toxicokinetic data (Supplementary 
Table 6), and were selected for further testing in the assay 
established in this study. Of these 14 food-related chemicals 
and pesticides, six of them (uric acid, tartrazine, bisphenol 
A, atrazine, metazachlor, and vinclozolin) induced signifi-
cant lipid accumulation. Orotic acid, fructose and carbo-
furan did not stimulate lipid accumulation, but did stimulate 
a dose-dependent increase in MMP exceeding the threshold. 
No response was observed in oxidative stress or the number 
of apoptotic cells after 24 h exposure (Fig. 4). Thus, 9 out of 
14 food-related chemicals and pesticides induced steatosis 
and/or an increase in MMP, whereas none induced oxidative 
stress or an increase in the number of apoptotic cells.

Chemical exposures induce distinct cellular 
endophenotypes within cell populations

To evaluate the potential heterogeneity of single cell 
responses and interrogate potential endophenotypes within 
and/or between cell populations in the HepaRG cells, we 
further evaluated alterations of lipid accumulation, mito-
chondrial membrane potential and oxidative stress following 
tetracycline exposure. Tetracycline was selected because it 
induced responses above the threshold in all four endpoints. 

First of all, we observed that in general, there were more 
lipid droplets in hepatocyte-like cells compared to cholangi-
ocyte-like cells even in unexposed cells (Fig. 5), and, moreo-
ver, at 125 µM and 250 µM, the median number of lipid 
droplets per hepatocyte-like cell did not drastically increase 
(~ 8 to ~ 12 lipid droplets per cell), but the proportion of 
hepatocyte-like cells with more lipid droplets increased. 
The opposite response was observed for cholangiocyte-like 
cells: the median number of lipid droplets per cholangiocyte-
like cells increased, but the proportion of cholangiocyte-like 
cells with more lipid droplets remained unchanged (125 µM 
or 250 µM tetracycline, Fig. 5). Similar to lipid droplets, the 
mitochondrial membrane potential also increased more in 
hepatocyte- compared to cholangiocyte-like cells for all tet-
racycline concentrations tested. Notably, at the highest con-
centration of tetracycline (250 µM), a decrease of mitochon-
drial membrane potential was observed in both cell types. 
Finally, for oxidative stress, similar patterns of changes were 
observed in hepatocyte-like cells which had increased lev-
els of oxidative stress compared to cholangiocyte-like cells 
throughout all tested concentrations. At the highest concen-
tration at which tetracycline was tested (250 µM), oxidative 
stress levels were elevated in both cell types. By evaluating 
increased oxidative stress on a single cell basis, it became 
apparent that the increased average values for oxidative 
stress on a cell population level arose from a small num-
ber of cells with extremely high levels of oxidative stress, 
rather than constitutive moderate increase across the whole 
cell population (Fig. 5). In summary, hepatocyte-like cells 
appear to be more sensitive than cholangiocyte-like cells and 

Fig. 4  Cellular responses for four key steatosis-relevant endpoints of 
food-related chemicals. Gray area around non-linear regression repre-
sents 95% CI. Black dotted line represents a fold change of 1 (DMSO 
control). Red dotted lines represent threshold (± 2 standard deviations 

of the response at the two lowest concentrations). All data were first 
normalized to cell number and then to untreated cells. 2-3 independ-
ent experiments with 6 technical replicates per concentration per 
experiment were conducted for all chemicals
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that population-level responses appear to be driven by the 
evolution of small populations with high responses rather 
than an equal distribution of responses amongst cells.

Given the heterogeneity of responses in hepatocyte- 
and cholangiocyte-like cells, we investigated whether 

hepatocyte-like cells with a strong response in one end-
point (e.g., large lipid droplet size) responded similarly 
in other endpoints (mitochondrial membrane potential 
and oxidative stress) at the same concentration. For this 

Fig. 5  Quantification of selected endpoints in individual hepatocytes 
versus cholangiocyte-like cells after tetracycline exposure. The same 
raw data used in the population-level analysis were also used for this 
single cell analysis. 30,000 to 150,000 cells per concentration and 

cell type were analyzed. Cells from 3 independent experiment were 
included in the analysis. Notched boxplots were overlaid in the violin 
plots to display the confidence interval around the median
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purpose, over 800 features per cell were extracted by 
high-content imaging and resulting PCA plots were color 
labeled with lipid droplet size, mitochondrial membrane 
potential, and oxidative stress level to visualize their 
distribution (Fig. 6). Heterogeneity in lipid droplet size 
and mitochondrial membrane potential was observed in 
both chemically and mock-exposed hepatocyte-like cells, 
whereas it was only observed for oxidative stress in chemi-
cally exposed cells. Oxidative stress levels in non-exposed 
hepatocytes were similar across all measured hepatocytes 
(Fig. 6A). While mitochondrial membrane potential did 
not decrease in hepatocytes with larger lipid droplets it 
did decrease in hepatocytes with smaller lipid droplets 
(Fig. 6B). Similarly, oxidative stress levels in chemically 
exposed hepatocytes with larger lipid droplets were lower 
than in hepatocytes with medium and small sized lipid 
droplets. Interestingly, a subgroup of hepatocytes with 
medium and small sized lipid droplets also had lower oxi-
dative stress levels compared to other hepatocytes with the 
same lipid droplet size. Thus, tetracycline exposure led to 
heterogenous response patterns in hepatocytes involving 
a subpopulation that was protected from mitochondrial 
dysfunction and oxidative stress.

IVIVE

We used pharmacokinetic modeling and reverse dosimetry 
to evaluate the relevance of the in vitro concentrations that 
stimulated one or more of the endpoints defined as exceed-
ing a calculated threshold of ± two times the standard devia-
tions of the response to the two lowest concentrations. Pre-
dicted Css values were compared with in vivo Css values 
(Fig. 7A), which were derived from pharmacokinetic studies 
in human, rat or rabbit (Supplementary table 3). For the ten 
chemicals, the coefficient of variation (R2) on a logarithmic 
scale was 0.78 and the root mean squared error was 0.69 (a 
factor of 4.9x). The chemicals with the greatest discrepancy 
between actual and predicted Css were beta-naphthoflavone 
and WY-14643, where the predicted Css were about 13 to 26 
times higher than the actual Css values.

Benchmark concentrations (BMC) were then calculated 
for every positive response indication in the imaging assay to 
determine a point of departure (Supplementary table 3 and 
Table 1). A direct comparison between the in vitro-derived 
BMC and in vivo Css was then made to identify a potential 
in vivo hazard. For menadione, the BMC was about 1.5–4 
times lower than the median predicted Css. For amiodarone 
and valproic acid, it was about 1.5–4 times higher and for 

Fig. 6  Heterogenous response pattern after tetracycline exposure in 
hepatocytes. A untreated B tetracycline (250 µM). A single point in 
the PCA plot represents a hepatocyte and its color code represents 

lipid droplet size (px^2), mitochondrial membrane potential (ΔΨm) 
(AU) or oxidative stress (AU). 80,000 to 125,000 cells from 3 inde-
pendent experiments were analyzed per concentration
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artrazine about double the predicted Css.. For orotic acid, 
uric acid, carbofuran, and carbosulfan, the calculated BMC 
was about 10–550 times higher than the predicted Css. For 
lomitapide, fialuridine, WY14643, metformin, and tetra-
cycline, the BMC was about 10–10,000 times higher than 
the median PBPK-predicted Css. This direct comparison of 
in vitro-derived BMC with in vivo Css was consistent with 
the indication of menadione, but only this compound, which 
is a known hepatotoxicant, was identified as a hazard.

As the Css metrics were not available for all the chemi-
cals, we used a three-compartment steady state PK model 
to derive oral equivalent doses (OED) from respective BMC 
values. OEDs were predicted for chemicals with available 
exposure data such as human therapeutic doses, doses from 
clinical trials, food and drinking amounts, or experimental 
doses in animal models. OED was then predicted for every 
endpoint for which a significant response was observed in 
the imaging assay (Fig. 7 and Tables 1 and 2). Predicted 
OED values overlapped with realistic doses for the drugs 

fialuridine, tetracycline, amiodarone, valproic acid and 
menadione, whereas for Rotenone, WY14643, Lomitapide 
and Metformin, the OED values were 10–10,000 times 
higher than the doses. The OED values for orotic acid and 
carbosulfan overlapped with their reported no observable 
adverse effect level (NOAEL), lowest observed adverse 
effect level (LOAEL) concentrations, or the exposure 
estimate.

Discussion

In this study we combined a high-content imaging assay 
for chemically exposed metabolically competent human 
liver cells with PBPK modeling to derive relevant human 
exposure predictions for the potential of chemicals to induce 
hepatic steatosis or other hepatotoxic processes. Validation 
studies were carried out using 16 reference chemicals with 
an overall sensitivity of 66% and specificity of 69% (Fig. 8). 

Fig. 7  Pharmacokinetic 
modeling of selected refer-
ence chemicals. A Forward 
dosimetry of chemicals with 
published Css values. Yellow 
boxplot represents predicted 
Css using IVIVE. B Reverse 
dosimetry of chemicals with 
published human exposure val-
ues from different sources. Blue 
boxplot represents predicted 
oral equivalent doses using httk 
with a monte carlo population 
sampler. OED predictions were 
performed for every endpoint 
from the HCI assay which was 
above the calculated threshold
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Notably, 6/9 predicted OED values for selected reference 
chemicals overlapped with estimated exposure values. Orotic 
acid disrupted MMP, but not other markers, at a concentra-
tion corresponding to an OED that overlaps with estimated 
human exposures. These outcomes are notable for the high 
accuracy of predicted OED with human exposure values 
for known chemicals, and the application of the method to 
screen food-related chemicals.

In this study we correctly flagged 7/11 chemicals known 
to induce lipid accumulation, and also identified two chemi-
cals, metformin and WY-14693, as having the potential to 
induce lipid accumulation, that were unexpected (Fig. 8). 
A potential rationale for this observation, in the case of 
metformin, is that it induced lipid accumulation only at 
extremely high, physiologically irrelevant concentrations 
(25,000 and 50,000 µM), whereas data suggesting that met-
formin reduces lipid accumulation was observed for con-
centrations ranging from 100 to 2 mM (Zare et al. 2019; 
Kim et al. 2020). Furthermore, four chemicals, lomitapide, 
etomoxir, fialuridine and β-naphthoflavone did not give rise 
to lipid accumulation as we would have expected based on 
their established mechanism of action and previous clini-
cal observations (Supplementary table 2) (McKenzie et al. 
1995; Cuchel et al. 2013). A possible explanation for these Ta
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Table 2  Comparison of predicted oral equivalent doses (OED) with 
published exposure values

a In vitro to in vivo extrapolation derived median
b Exposure values include human therapeutic ranges or doses given to 
rat and rabbits
c (United States Environmental Protection Agency (USEPA) 2007)
d (Kleiner et al. 1997)
e (Siddoway 2003)
f (Bienenfeld et al. 2017)
g (Pollinger and Merk 2017)
h (Koch-Weser and Browne 1980)
i (Hu et al. 1996)
j (Panno et al. 2014)
k (Garber et al. 1997)

Chemical OEDa (mg/kg/d) In vivo exposure 
from  literatureb (mg/
kg/d)

Rotenone 0.3 0.01c

Fialuridine 5.6 0.07–0.25d

Amiodarone 15.8 2.9–22.9e

Tetracycline 30.2 5.4–14.3f

WY14643 1.7 0.4–0.7 g

Valproic acid 92.7 3.6–30 h

Menadione 55.4 1.1–36.6i

Lomitapide 1333 0.07–0.86j

Metformin 6778 7.1–35.7 k
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apparent false negative results is that the 24-h duration of 
exposure may be too short for these chemicals to induce lipid 
accumulation. Indeed, lipid accumulation in patients was 
observed only after 13 weeks for fialuridine and 26 weeks 
for lomitapide (McKenzie et al. 1995; Cuchel et al. 2013). 
This limitation suggests that future research using the assay 
reported here, but beyond the scope of the present work, 
should aim to evaluate how longer duration in vitro expo-
sures, i.e. on the order of one to two weeks may resolve false 
negative results. Encouragingly, in previous studies, hepato-
toxicity was effectively characterized in HepaRG cells after 
up to 14 days of chemical exposure (Anthérieu et al. 2011; 
Dietrich et al. 2020; Donato et al. 2022).

In addition to lipid accumulation data, we could assess 
changes in mitochondrial membrane potential, oxidative 
stress and nuclear morphology with varying degrees of 
accuracy (Fig. 8). Thus, in the case of the 10 chemicals 
expected to disrupt MMP, 9 were indeed positive in our 
assay, whereas one chemical, valproic acid, did not affect 

MMP as we would have expected based on its mechanism 
of action (Supplementary table 2) (Fig. 8). This is poten-
tially expected since valproic acid has been characterized to 
induce mitochondrial dysfunction at very high concentra-
tions, i.e. above 15 mM, and after prolonged exposure up to 
72 h (Caiment et al. 2020) whereas we tested concentrations 
ranging from 94 to 6,000 µM and exposed the cells for 24 h. 
Interestingly, etomoxir and fialuridine also increased MMP, 
which to our knowledge has not been reported previously. 
However, the biological relevance of this observation is still 
unclear and needs further investigation.

In the case of oxidative stress, sensitivity was poor; of 
the 9 chemicals expected to induce oxidative stress, only 
amiodarone, arsenite and tetracycline actually did, while 
six were unexpected negative outcomes, including the well-
known ROS-inducer menadione (Fig. 8). This apparent low 
sensitivity could also be due to potential duration differ-
ences and a capacity for adaptive responses since menadione 
induced oxidative stress in embryo chick cardiomyocytes 

Fig. 8  Quantification of the 
predictivity of the in vitro 
assay for A lipid accumulation 
B mitochondrial membrane 
potential C oxidative stress 
and D nuclear morphology for 
16 reference chemicals using 
confusion matrices. Sensitiv-
ity was calculated as “number 
of true positives/(number of 
true positives + number of false 
negatives)” and specificity 
was calculated as “number of 
true negatives/(number of true 
negatives + number of false 
positives)”. Overall sensitivity 
and specificity were calculated 
across all 4 endpoints. Of the 
16 reference compounds tested, 
the outcomes were catego-
rized as negative or positive, 
excluding amongst positive 
outcomes instances where no 
dose–response relationship was 
observed
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after exposure durations as short as 25 min (Loor et al. 
2010). Thus, in addition to longer than 24 h durations men-
tioned previously, also shorter exposure durations than 24 h 
could be important to provide a more dynamic picture of 
oxidative stress responses in hepatocytes. While the simul-
taneous detection of various markers is highly appealing, 
there is also a limitation that the dynamics of various pro-
cesses arise following different durations. Finally, nuclear 
morphology appeared to be an over-sensitive read-out in this 
assay. Whereas only two chemicals were expected to induce 
such changes (arsenite and menadione), altered nuclear mor-
phology was actually observed for a total of 8 chemicals. 
Nuclear morphology response mostly was above the calcu-
lated threshold at the highest tested concentrations, consist-
ent with cell viability data (Supplementary Fig. 4).

Following the characterization of the various reference 
chemicals, we applied the assay to test 14 food-related chem-
icals, 6 of which induced steatosis. Since the test chemi-
cals were selected from a large number of chemicals with 
a focus on predictions of receptor-binding potential, it is 
not surprising that so many induced steatosis, however, at 
high concentrations relative to real exposures. Interestingly, 
orotic acid did not induce steatosis but disrupted mitochon-
drial membrane potential at extrapolated doses overlapping 
with actual exposure values (Table 2). Indeed, orotic acid 
is known to induce fatty liver in rats, whereas other animal 
species including mice and monkeys did not develop fatty 
liver upon orotic acid exposure (Durschlag and Robinson 
1980; Löffler et al. 2015). These findings are consistent 
with a concern that orotic acid might be a potential risk 
factor for hepatotoxicity and steatosis in humans, however 
further investigations are needed. For the other two end-
points, namely oxidative stress and apoptosis, none of the 
tested compounds appeared to induce responses. This may 
be related to the selection criteria, which was not directly 
related to associated molecular initiating events, or may be 
related to the requirement for longer exposure duration to 
stimulate these further cellular effects.

In vitro response data typically describe cell population 
average responses, missing potentially relevant information 
about how sub-populations might react to chemical exposure 
(Singh et al. 2014). In our study, we performed single cell 
analysis and investigated how hepatocytes and cholangio-
cyte-like cells responded on a single cell level to tetracycline 
exposure. For tetracycline in particular, we could readily 
observe from preliminary measurements that responses of 
individual cells were heterogeneous, so we quantified the 
distribution. To our knowledge, this is the first time that 
chemically exposed HepaRG cells were analyzed on a sin-
gle cell level, discriminating cellular responses in hepato-
cyte and cholangiocyte-like cells. Interestingly, hepatocytes 
always responded more than cholangiocyte-like cells, pos-
sibly because hepatocytes may take up chemicals more 

efficiently than cholangiocyte-like cells do. Furthermore, 
hepatocytes with larger lipid droplets were rather protected 
from a decrease in mitochondrial membrane potential com-
pared to hepatocytes with small- and medium-sized lipid 
droplets. Likewise, hepatocytes with larger lipid droplets 
tended to have lower oxidative stress levels than hepato-
cytes with smaller ones suggesting a protective effects of 
larger sized lipid droplets (Jarc and Petan 2019). Further 
mechanistic evidence showed that lipid droplet formation 
may protect cells against fatty acid-induced lipid toxicity. 
For example, Listenberger et al. showed that excess palmi-
tate, which could not be stored in lipid droplets, induced 
apoptosis (CHO cells) whereas cells were protected from 
apoptosis when palmitate was integrated into triglycerides 
and stored in lipid droplets (Listenberger et al. 2003). Fur-
thermore palmitic acid decreased mitochondrial membrane 
potential in HepG2 and THP-1 cells (Li et al. 2018; Alnahdi 
et al. 2019). Tetracycline is known to decrease β-oxidation 
and free fatty acids efflux via MTP inhibition. This could 
lead to palmitic acid accumulating in the cytoplasm and thus 
further increase ROS and decrease mitochondrial membrane 
potential. Hepatocytes, which appear to have the capacity 
to shuttle excess palmitic acids into lipid droplets, may be 
protected from such stress events. This kind of analysis can 
be extended and used as a basis to formulate new hypothesis 
about mechanisms of toxicity.

PBPK models can be used to perform in vitro to in vivo 
extrapolation and predict possible human exposure sce-
narios that connect observed in vitro effects with human 
exposure levels via predicted OED values (Blaauboer 
2010). In our study, predicted Css values overlapped with 
Css values observed in vivo for all chemicals except BNF 
and WY14643 (Fig. 7A). Importantly, for compounds with 
available human exposure data, estimated OEDs were 
within the range of published exposure values. Neverthe-
less, nominal in vitro concentrations for selected chemicals 
were higher compared to in vivo Css (e.g., metformin or 
valproic acid), leading to a high estimate of the OED. The 
following assumptions were made during IVIVE performed 
in this study: (1) Constant dose rate of 1 mg/kg/d with com-
plete absorption for every chemical and excretion was lim-
ited to the renal route; (2) Plasma protein binding was not 
considered when in vitro assay concentrations were used 
for deriving BMC; (3) Metabolism of the chemicals was not 
accounted for. Aside from the quantitative aspects, there are 
also uncertainties associated with IVIVE regarding transla-
tion of whether cellular effects observed in vitro also occur 
in vivo, or whether adaptive or further detrimental responses 
at the organ level are relevant. Quantitative relationships 
between higher level key events in the AOP are needed to 
further link the cellular phenotypes with human disease. 
This would need to be further validated in more complex and 
physiologically relevant models and compared to relevant 
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human exposures, including in susceptible populations, to 
inform risk assessment.

While the use of HepaRG cells offers benefits of meta-
bolic competency and reproducibility, there are limitations. 
For example, they were derived from a single donor, mak-
ing it impossible to study population variability. In addition, 
despite being metabolically active, they do not express high 
levels of CYP2D6, an enzyme responsible for about 25% of 
drug metabolism, due to being derived from a poor CYP2D6 
metabolizer patient (Guillouzo et al. 2007). Finally, they are 
differentiated using DMSO, a histone deacetylase inhibitor 
that may interfere with drug metabolism (Wang et al. 2019). 
In further studies, therefore, the approach may be adapted for 
more complex in vitro models such as primary human hepat-
ocytes from donor pools or from multiple single donors, 
sandwich cultures, liver spheroids from primary human 
cells (including hepatocytes, Kupffer cells and hepatic stel-
late cells), liver-on-a-chip or body-on-a-chip models which 
combine liver spheroids with additional tissues such as adi-
pose tissue or the gut with/without bacterial co-cultivation 
to potentially improve the prediction accuracy and biologi-
cal relevance of the hepatic in vitro models to progressive 
NAFLD.

The results presented here comprise a new method com-
bining high-content imaging of chemically exposed human 
liver cells and IVIVE to prioritize chemicals for further 
evaluation for their potential to induce steatosis and hepa-
totoxicity. Further refinement of the specificity and sensi-
tivity of the in vitro model and methodology may include 
measuring additional key events related to the liver steatosis 
AOP such as ER stress, fatty acid influx/efflux or triglyc-
eride synthesis, adapting the approach for high-throughput 
screening, testing more types of chemicals (including mix-
tures of chemicals), and evaluating the temporal dynamics 
of shorter/longer exposure scenarios. Of 14 food-relevant 
exposures and pesticides tested with this method, a num-
ber could induce lipid accumulation, but at levels outside 
the range of realistic exposures, and none induced oxida-
tive stress or cell death, suggesting the need to screen larger 
numbers of compounds, at varying durations. Nonetheless, 
of these compounds, orotic acid was flagged for its capac-
ity to disrupt mitochondrial membrane potential. Thus, 
aside from expanding the scope of screening, these apical 
endpoint investigations could be combined with molecular 
mechanistic data derived from more in-depth transcriptomic 
and proteomic analyses to identify additional predictive key 
events and refine mechanistic understanding. Future testing 
of existing chemicals of concern and emerging chemicals 
would support a first step in a tiered approach for next gener-
ation chemical risk assessment. Furthermore, this approach 
also could be used in a drug discovery pipeline to screen 
out molecules that could induce steatosis and/or unwanted 
changes in the additional hepatotoxicity markers, as well as 

to gain mechanistic insights for candidate molecules with 
preclinical in vivo liver steatosis findings.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00204- 023- 03490-8.
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