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Abstract
Toxicity studies, among them hepatotoxicity, are key throughout preclinical stages of drug development to minimise unde-
sired toxic effects that might eventually appear in the course of the clinical use of the new drug. Understanding the mechanism 
of injury of hepatotoxins is essential to efficiently anticipate their potential risk of toxicity in humans. The use of in vitro 
models and particularly cultured hepatocytes represents an easy and robust alternative to animal drug hepatotoxicity testing 
for predicting human risk. Here, we envisage an innovative strategy to identify potential hepatotoxic drugs, quantify the mag-
nitude of the alterations caused, and uncover the mechanisms of toxicity. This strategy is based on the comparative analysis 
of metabolome changes induced by hepatotoxic and non-hepatotoxic compounds on HepG2 cells, assessed by untargeted 
mass spectrometry. As a training set, we used 25 hepatotoxic and 4 non-hepatotoxic compounds and incubated HepG2 cells 
for 24 h at a low and a high concentration (IC10 and IC50) to identify mechanism-related and cytotoxicity related metabo-
lomic biomarkers and to elaborate prediction models accounting for global hepatotoxicity and mechanisms-related toxicity. 
Thereafter, a second set of 69 chemicals with known predominant mechanisms of toxicity and 18 non-hepatotoxic compounds 
were analysed at 1, 10, 100 and 1000 µM concentrations from which and based on the magnitude of the alterations caused as 
compared with non-toxic compounds, we defined a “toxicity index” for each compound. In addition, we extracted from the 
metabolome data the characteristic signatures for each mechanism of hepatotoxicity. The integration of all this information 
allowed us to identify specific metabolic patterns and, based on the occurrence of that specific metabolome changes, the 
models predicted the likeliness of a compound to behave as hepatotoxic and to act through a given toxicity mechanism (i.e., 
oxidative stress, mitochondrial disruption, apoptosis and steatosis) for each compound and concentration.
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Introduction

Liver is the principal organ where drugs tend to reach the 
highest concentration, or even to accumulate after oral 
dosage and where they undergo active biotransformation 
and bioactivation reactions potentially causing liver injury. 
This explains the susceptibility of this organ to drugs. 
Hepatotoxicity still is one of the major reasons for drug 
withdrawal in the preclinical stage (Lee 2003). Besides, 
drug-induced liver injury (DILI) is also a challenge in 
pharmacovigilance, as toxic events in polymedicated 
patients may occur as a result of unforeseen drug–drug 
interactions (Doan et al. 2013; Khezrian et al. 2020). DILI 
can be originated from a variety of metabolic initiating 
and key events which are related to the nature and con-
centration of the drug, as well as to genetic factors and 
the exposome of each individual. Although precise and 
individualised mechanisms of toxicity have been properly 
identified (Tolosa et al. 2012b), hepatotoxicity is a com-
plex phenomenon where frequently more than one toxicity 
mechanism acts on hepatocytes.

In the course of the early stages of drug development, 
in vitro models are used as a fast and cost-affordable strat-
egy for lesser hepatotoxic drug candidate selection. Pri-
mary human hepatocytes (PHHs) remain, for this purpose, 
as the gold standard in in vitro hepatotoxicity studies. 
However, their variability, cost and in-time accessibility 
have made other cell systems valuable alternatives. Among 
them, the human hepatoma HepG2 cells are widely used 
in hepatotoxicity studies as an easy to handle and robust 
cell line, circumventing the limitations of availability, 
reproducibility and cost associated to the use of primary 
hepatocytes (Donato et  al. 2009; Tolosa et  al. 2012b; 
Kamalian et al. 2015). Although these cells show limited 
drug biotransformation activities and are not best suited to 
evidence bioactivation-related toxicity phenomena (Castell 
et al. 2006), unless they are upgraded with adenoviral vec-
tors to overexpress biotransformation activities (Gómez-
Lechón et al. 2010; Tolosa et al. 2012a), they display many 
differentiated hepatic functions and, as such, are targets 
for direct-acting hepatotoxic compounds interfering with 
hepatocyte metabolism. Based on that, they are suitable 
for in vitro testing (Brandon et al. 2003).

Hepatotoxicity is a complex phenomenon that involves 
a series of initiating molecular events that tend to have 
diverse and broad consequences on metabolic pathways 
of exposed cells. For instance, compounds acting as 
mitochondrial toxins and known to inhibit enzymes of 
the electron transport chain (Nolfi-Donegan et al. 2020) 
will impair fatty acid ß-oxidation (FAO) as well (Grünig 
et  al. 2018). This impairment of mitochondrial FAO 
causes microvesicular steatosis, which can evolve into an 

inflammatory status, steatohepatitis, and further progres-
sion to cirrhosis (Farrell and Larter 2006). On the other 
hand, uncoupling of the electron transport chain can also 
give rise to a partial reduction of molecular oxygen and 
the generation of intermediate reactive oxygen species, 
causing an imbalance in cells known as oxidative stress 
(Pizzino et al. 2017). This is evidenced by decreased levels 
of reduced glutathione (Kaplowitz 1981; Irie et al. 2016) 
and the presence of oxidised lipid metabolites.

Apoptosis, unlike necrosis, is independent of ATP deple-
tion in the early stages. However, a high extent of cell dam-
age and mitochondrial disruption (decrease of mitochondrial 
membrane potential) result in lower ATP levels shifting from 
apoptosis to necrosis (Jaeschke et al. 2004). Decrease in ATP 
levels affect indirectly many other hepatocyte functions 
(urea synthesis, lipid synthesis, plasma protein synthesis, 
bile acid synthesis and transport) (Labbe et al. 2008; Man-
souri et al. 2018). In other words, although each mechanism 
of toxicity can conceptually be identified as a well differenti-
ated processes with recognisable molecular initiating events 
leading to structural and functional cell injury (key events), 
drug hepatotoxicity is caused by a commingled of mecha-
nisms, that tend to overlap each other. Thus, the high inter-
connection among them increase the difficulty of identifying 
selective and specific biomarkers for isolated hepatotoxicity 
mechanism (Fariss et al. 2005).

The recent developments in ‘omics’ technologies, with 
the help of powerful data analysis tools, offer in-depth infor-
mation regarding biochemical changes occurring in cells/
tissues, as a consequence of the toxic insult, and offer many 
opportunities for global and mechanism-specific toxicity 
biomarker identification (Yong et al. 2020). Previous reports 
have evidenced specific metabolic patterns of toxicity, capa-
ble of discriminating among the different toxicity outcomes 
(Vorkas et al. 2015; Ramirez et al. 2018; Quintás et al. 2021). 
Preliminary evidence from our laboratory, also showed that 
HepG2 in combination with metabolomic analysis, could be 
a good approach for hepatotoxicity investigation (García-
Cañaveras et al. 2015). Based on these premises, we further 
explored the use of ultra-performance liquid chromatog-
raphy–mass spectrometry based untargeted metabolomics 
for the characterization of the metabolic changes occurring 
upon exposure of cells to hepatotoxic and non-hepatotoxic 
compounds, and to estimate the participation of the differ-
ent mechanisms of toxicity in the global hepatotoxicity of a 
given compound.

Selection of a training set of compounds acting through 
the different hepatotoxicity mechanisms was made on the 
basis of solid bibliographic references of scientific literature, 
as well as our own expertise, having worked for a long time 
on drug hepatotoxicity research. Thus, we chose 29 chemi-
cals for which there was a clear consensus about their mode 
of action and preferential mechanism of hepatotoxicity, and 
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were classified accordingly into five major mechanisms 
groups, i.e., oxidative stress (OS), mitochondrial disrup-
tion (MI), apoptosis (APT), steatosis (ST) and cholestasis 
(CHOL), (Manivel et al. 1987; Sentürk et al. 2008; Gómez-
Lechón et  al. 2010; Olayinka et  al. 2012; Tolosa et  al. 
2012b; Afolabi and Oyewo 2014; Stocco et al. 2014; Rodri-
gues et al. 2018), Table 1. The analysis of cellular metabo-
lomic changes was performed at two concentrations: IC10 
to appreciate initial changes in the mechanism of toxicity 
and to another somewhat higher concentration, IC50, to see 
reinforced signals although probably overlapping those of 
general cytotoxicity. An appropriate analysis enabled us to 
identify the metabolic patterns associated with each specific 
mechanism of drug-induced hepatotoxicity and that linked 
to general cytotoxicity. Results were further validated using 
a test set comprising 69 chemicals exerting known hepa-
totoxicity through a predominant mechanism of toxicity, 
and 18 non-hepatotoxic compounds (Gómez-Lechón et al. 
2010; Tolosa et al. 2012b; Chen et al. 2016). The concen-
trations tested (1, 10, 100 and 1000 µM) were selected in 
order to cover the usual range of concentrations of bioac-
tive substances when investigated in vitro. Results obtained 
in this research allowed us to estimate the magnitude of 
global insult alterations caused by a drug (toxicity index) 
and the degree of participation of the different mechanisms 
of hepatotoxicity, acting simultaneously, at the cellular level.

Materials and methods

Standards and reagents

Methanol and acetonitrile (LCMS grade) were purchased 
from Sigma-Aldrich (Madrid, Spain), Dimethyl sulfoxide 
and formic acid were obtained from Sigma-Aldrich (Madrid, 
Spain). Ultra-pure water was obtained from a Milli-Q 
Integral Water Purification System from Merck Millipore 
(Darmstadt, Germany). Isotopically labelled standards 
phenylalanine-D5, tryptophan-D5 and caffeine-D9 were 
purchased from C/D/N Isotopes Inc (Quebec, Canada). All 
compounds used for incubations were obtained from Sigma-
Aldrich (Madrid, Spain), and prepared as indicated  (S. 
Table 1). The compounds of the training set are displayed 
in Table 1, properly grouped, accordingly to mechanisms.

Cell cultures, incubation with drugs and cytotoxicity 
assessment

HepG2 (ECACC No.85011430) cells were seeded and cul-
tured to 70–80% confluence in 12-well plates, at a density 
of 300,000 cells/well, cultured with DMEM + 5% foetal 
calf serum, and kept in culture at 37 °C with 5%  CO2/95% 

atmospheric air and saturated humidity for 24 h. Stock 
solutions for each chemical were prepared in dimethyl 
sulfoxide (DMSO) to a sufficiently high concentration 
so the final concentration of DMSO in culture media at 
the highest drug concentration assayed in cells was 1% 
(v/v). Each compound was added to culture media in quad-
ruplicate wells and incubated for 24 h. Control culture 
wells were simultaneously incubated without adding any 
chemical. In addition, culture wells containing only media 
but no cells were included in the analyses as blank sam-
ples. For the determination of the IC10 and IC50 cyto-
toxic concentrations of chemicals, the MTT test (reduction 
of [3-4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium 
bromide to a blue formazan) was used and concentration 
curves were graphically represented to determine the IC10 
and IC50, by mathematical (logit curve) interpolation 
(Berridge and Tan 1993; Tolosa et al. 2015). Results are 
summarised in Table 1. An additional replicate culture 
plate was used for protein determination using Pierce™ 
Rapid Gold BCA Protein Assay Kit (by Thermo Scien-
tific Pierce). Cell toxicity estimation and the contribution 
of each specific mechanism was first investigated in cells 
treated with a set of 25 compounds (25 hepatotoxic and 9 
non-hepatotoxic, training set) and further validated with 
87 compounds (69 hepatotoxic + 18 non-hepatotoxic) 
at 4 fixed concentrations (1, 10, 100, and 1000 µM), in 
quadruplicate wells for 24 h. Amiodarone, atorvastatin, 
azathioprine, cyclosporine a, fialuridine, tamoxifen and 
troglitazone compounds, due to their limited solubility, 
were incubated up to their highest concentration possible 
(see Supplementary Table 1).

Sample preparation for metabolomics analysis

Consistent, broad and reproducible data of the cell's 
metabolites content is critical for meaningful readings of 
the metabolome. Thus, it is of critical importance a rapid 
cell quenching during sample collection to provide robust 
data for modelling. We optimised extraction of metabo-
lites while following the recommendations of Dettmer 
et al. 2011 for mammalian cell harvesting, quenching and 
extraction (Dettmer et al. 2011), as well as other critical 
factors contributing to metabolomic data variability, such 
as cell pasage, sample peparation and storage, and equip-
ment stability reading, as it was previously and exten-
sively assessed by us (Martínez-Sena et al. 2019; Moreno-
Torres et al. 2021). After incubation, culture media was 
removed and culture wells were rinsed twice with cold 
PBS. Immediately thereafter, cells were detached by scrap-
ping whole plate twice using 300 µL of a solution of cold 
methanol:water (3:1 v/v) containing a set of internal stand-
ards (0.25 μM of phenylalanine-D5, tryptophan-D5 and 
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caffeine-D9). The detached cells, suspended in quenching 
media, were collected and freezed and thawed three times 
in liquid nitrogen for cell disruption and metabolite extrac-
tion. Following centrifugation (10,000g, 10 min), superna-
tant was collected into a new Eppendorf tube, evaporated 
to dryness under vacuum, and reconstituted in 75 μL of 
95:5 acetonitrile:water (0.1% formic acid) (v/v). A volume 
of 25 μL of each extract was withdrawn and pooled jointly 
to prepare a quality control (QC) sample for routine intra 
and inter day batch normalisation.

Mass spectrometry‑based metabolomic analysis

Metabolomic analysis was performed using an Agilent 
1290 Infinity HPLC chromatography coupled to an iFun-
nel quadrupole time of flight (Q-TOF) Agilent 6550 spec-
trometer (Agilent Technologies, CA, USA). Samples were 
analysed using two different chromatographic condi-
tions in order to separate and identify a sufficiently large 

number of metabolites. Method 1 used a Synergi Hydro-RP 
(150 × 1 mm, 4 µm Phenomenex, Torrance, USA) column 
at 50 °C, and injection volume was 3 μL. Binary mobile 
phase gradient starting at 99% of solvent A (water, 0.1% 
(v/v) formic acid) for 2 min, followed by a linear increase 
of solvent B (acetonitrile, 0.1% (v/v) formic acid) up to 80% 
in 8 min and rise to 98% in 0.1 min. Finally, 98% of solvent 
B was held for 2 min and then, initial conditions for 3 min 
to allow reconditioning of the column. The flow rate was 
set at 400 μL/min. Method 2 used a Waters Acquity UPLC 
BEH C18 (2.1 × 100 mm, 1.7 μm, Wexford, Ireland) column 
at a flow rate of 400 μL/min using the binary mobile phase 
system as in Method 1. Column was kept at 55 °C and the 
injection volume was 3 μL. Gradient elution was performed 
first with 98% of A, 2% of B held for 0.5 min, followed by a 
linear gradient of B from 2 to 20% in 4 min and from 20 to 
95% B in 4 min. Finally, 95% B was held for 1 min and then, 
a 0.25 min gradient was used to return to the initial condi-
tions, which were held for 2.8 min (Quintás et al. 2021). The 

Table 1  Compounds used in the training set along with their primary and secondary mechanisms of hepatotoxicity, according to scientific litera-
ture. Compounds used to investigate each mechanisms of hepatotoxicity are properly grouped, accordingly to mechanisms

Principal mechanisms of hepatotoxicity for each compound, oxidative stress (OS); mitochondrial disruption (MI); steatosis (ST); apoptosis 
(APT); cholestasis (CHOL); non toxic (NT); not assigned (NA), as attributed in the scientific literature

Compound IC10 (µM) IC50 (µM) Main 
mecha-
nism

Second 
mecha-
nism

Compound IC10 (µM) IC50 (µM) Main 
mecha-
nism

Second 
Mecha-
nism

Oxidative stress (OS) Steatosis (ST)
 Acetaminophen 500 2000 OS APT  Acetylsalicylic 5000 20,000 ST OS
 Acetylsalicylic 5000 20,000 OS ST  Levofloxacin 235 5800 ST OS
 Aflatoxin B1 100 500 OS APT  Amiodarone 13 30 ST MI
 Amox–Clav (4:1) 1094/500 2190/1000 OS CHOL  Tetracycline 100 2000 ST MI
 Azathioprine 173 600 OS APT  Valproic acid 1000 5000 ST MI
 Chlorpromazine 0.5 60 OS CHOL Apoptosis (APT)
 Dantrolene 5 40 OS NA  Acetaminophen 500 2000 APT OS
 Erythromycin 220 3200 OS APT  Aflatoxin B1 100 500 APT OS
 Levofloxacin 235 5800 OS ST  Azathioprine 173 600 APT OS
 Mercaptopurine 25 50 OS APT  Captopril 250 500 APT NA
 Rifampicin 50 100 OS NA  Erythromycin 220 3200 APT OS

Mitochondrial disruption (MI)  Mercaptopurine 25 50 APT OS
 Amiodarone 13 30 MI ST  Diclofenac 320 700 APT MI
 Bosentan 60 590 MI CHOL  Troglitazone 50 300 APT MI
 Carbamazepine 200 1000 MI NA Cholestasis (CHOL)
 Clozapine 22 70 MI NA  Amox-Clav (4:1) 1094/500 2190/1000 CHOL OS
 Diclofenac 320 700 MI APT  Chlorpromazine 0.5 60 CHOL OS
 Flutamide 30 600 MI NA  Bosentan 60 590 CHOL MI
 Isoniazid 1000 10,000 MI NA  Thiabendazole 10 500 CHOL NA
 Phenytoin 100 500 MI NA Non-Toxic
 Stavudine 500 1000 MI NA  DMSO 0.5 5 NT NA
 Tetracycline 100 2000 MI ST  Glucose 5000 50,000 NT NA
 Troglitazone 50 300 MI APT  Acetylcysteine 100 1000 NT NA
 Valproic acid 1000 5000 MI ST  Thiamine 100 1000 NT NA
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chromatographic separation of highly polar metabolites was 
better achieved with procedure 1. Procedure 2, was more 
suitable for low polarity metabolites and successfully sepa-
rated a wider range of analytes.

For the analysis, samples were randomly injected and 
acquisition of MS-data was open between 70 and 1200 m/z 
by positive electrospray mode, with the following parameters 
selected: gas temperature (T), 200 °C; drying gas, 14 L/min; 
nebulizer, 37 psig; sheath gas T, 350 °C; sheath gas flow, 
11 L/min. To correct mass drifts during data acquisition, a 
set of mass reference standards (phthalic anhydride, purine, 
and hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazene) 
were used. The QC sample, generated as described above, 
was injected every 8 injections for intra- and inter-batch 
correction.

UPLC–MS data pre‑processing and batch correction

Pre-processing of data for an untargeted analyte profile 
including peak detection, deconvolution, alignment and 
integration was performed by XCMS v 3.4.2 (Smith et al. 
2006) software in R v 3.5.0. The centWave method was used 
for peak detection with the following parameters: mass accu-
racy = 20 ppm, peak width = (3, 12), snthresh = 12 and pre-
filter = (5, 5000). A minimum difference in m/z of 10 mDa 
was selected for overlapping peaks. Intensity weighted m/z 
values of each feature were calculated using the wMean 
function. Peak limits used for integration were found through 
descent on the Mexican hat filtered data. Matching peaks 
across samples was performed using the nearest method with 
mz-retention time (RT) balance of 2, RT tolerance of 3 s and 
kNN = 2. Missing data points were filled by reintegrating the 
raw data files in the regions of the missing peaks using the 
fillPeaks method.

For intra-batch correction, a non-parametric QC-SVRC 
approach was used as described elsewhere (Kuligowski et al. 
2015). The batch effect between days was corrected by the 
ratio of a sample (QC of first batch), analysed repeatedly 
on each batch. LC–MS features with QC RSD > 30% after 
within batch effect correction were removed from analysis. 
Blank samples were employed to remove background and 
carry-over signals, features that were not at least three-
fold higher than blank samples. All batches included QC, 
controls, non-toxic, toxic and blank samples and were ran-
domly injected. The protocol for incubation, metabolite 
extraction and measurement had been previously explored 
to provide significant and reproducible cellular metabo-
lite levels following compound treatment, (Moreno-Torres 
et al. 2021). Metabolomics data reproducibility was prop-
erly checked. Data obtained from several negative controls 
is displayed in Supplementary Fig. 1a; the relative standard 
deviation (RSD), mean and CI (95–5%) for six endogenous 
cell metabolites showed a mean RSD < 30%. A histogram 

of mean RSD distribution of all signals of four different 
batches is displayed and show that 92% of the signals have 
RSD < 30% on negative controls (Supplementary Fig. 1b). 
Additionally, (Supplementary Figure 1c) two compounds 
(amoxicillin–clavulanate and valproic acid) both present in 
the train and test sets at the same concentration (1000 µM) 
were compared. Peak area of four key metabolites (oph-
talmic acid, hydroxybutyrylcarnitine, N-8 acetyl spermi-
dine and prutrescine) are displayed along with the values 
recorded for the negative controls. It can be observed that the 
signals obtained maintain the same pattern trend (increase 
or decrease), notwithstanding the run, compared to control 
samples.

Metabolite annotation

The fragmentation pattern of signals was extracted by MS/
MS data-dependent acquisition using QC samples with the 
following m/z precursor ranges: 70–200, 200–350, 350–500, 
500–650, 650–800, 800–950, 950–1100 and 1100–1200 Da. 
Features (m/z-RT) were annotated by matching experimental 
MS/MS spectra to MS/MS spectra available in the Human 
Metabolome Database (HMDB, www. hmdb. ca) correspond-
ing to [M +  H]+ precursors (m/z accuracy error < 20 ppm) 
as described elsewhere (Ten-Doménech et al. 2020). As a 
result, 116 features were successfully annotated (Supple-
mentary Table 2), of which 67 and 49 metabolites were 
retrieved in Method 1 and Method 2, respectively.

Bioinformatics data analysis and software

MS data were converted to mxZML and ms2 format using 
Proteowizard software (Chambers et al. 2012). Statistical 
analysis was carried out in MATLAB 2021a (Mathworks 
Inc., Natick, MA, USA) using in-house written scripts and 
the PLS_Toolbox 8.3 (Eigenvector Research Inc., Manson, 
WA, USA). Multivariate analysis was carried out by Princi-
pal Component Analysis (PCA) and Partial Least Squares-
Discriminant Analysis (PLS-DA). PLS-DA allowed us, first 
to identify the most relevant biomarkers for each mechanism 
of toxicity and second, to mechanistically classify com-
pounds based on the induced changes of the metabolic pro-
file (Worley and Powers 2013). Threefold cross validation 
(CV) (Refaeilzadeh et al. 2016) was perfomed to estimate 
the out-of-sample PLS–DA prediction error. The number 
of PLS latent variables (LVs) was selected according to the 
lowest error of classification. The optimal threshold was 
determined by the intersection of sensitivity and specific-
ity curves (Pérez et al. 2009). The assessment of the statis-
tical significance of PLS figures of merit was carried out 
by permutation testing. The Pathway Analysis module on 
Metaboanalyst 5.0 website was applied using the metabolite 
peak intensities as input data (Pang et al. 2021). Metabolic 

http://www.hmdb.ca
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pathway data were matched against the human KEGG data-
base (Kanehisa et al. 2021). SVR models estimated for 
within-batch effect elimination were carried out in MAT-
LAB using the LIBSVM library (Chang and Lin 2011).

Results and discussion

Strategy overview

To improve the metabolite annotation, samples were ana-
lysed using two complementary methods. According to their 
distinct physicochemical properties, the chromatographic 
separation of highly polar metabolites was best achieved in 
the Synergi Hydro RP (Method 1); while metabolites with 
lower polarity showed a better chromatographic separation 
in the Waters Acquity column (Method 2).

The data set of metabolites identified from both chro-
matographic methods was combined. Data retrieved using 

method 1 and method 2 included 67 and 49 identified metab-
olites, respectively.

The workflow of the research undertaken, its rationale and 
the overall strategy applied is shown in Fig. 1. In the study, a 
training set of compounds containing drugs representative of 
the different mechanisms of hepatotoxicity were used. Upon 
cell incubation at two different concentrations, cell extracts 
were analysed by UPLC–MS to retrieve a broad range of 
signals that enabled the identification of metabolic patterns 
associated with specific mechanisms of drug-induced hepa-
totoxicity, different from those of general cytototoxicity.

For model generation, we used the metabolome of cells 
treated with compounds predominantly acting via one mech-
anism of hepatotoxicity, and compared with the metabolome 
of cells treated with the rest of the compounds, starting at 
the lower concentration, and further comparing with the 
metabolome of cells treated with non-toxic compounds and 
non-treated control cells. At the IC50 concentration, only 
alive and attached cells metabolomes were analyzed and 

Fig. 1  Workflow diagram of the research undertaken. Using a train-
ing set of compounds at IC10/IC50 concentrations, metabolomic data 
were retrieved by two analytical procedures and predictive models of 
toxicity (TOX) and hepatotoxicity mechanisms (OS, MI, APT, ST) 
were subsequently built. The biomarkers identified so far, for global 
toxicity and for each  toxicity mechanism were discussed and exam-
ined in the context of metabolic pathway analysis. A test set of 87 

compounds  containing  hepatotoxic  compounds acting through dif-
ferent mechanisms, as well non-hepatotoxic compounds  was subse-
quently evaluated and results were displayed in a radar chart, in order 
to account for the participation of the different mechanisms of toxic-
ity and the outcome of this informtion discussed and compared to the 
occurrence of mechanisms previously reported in the literature



1729Archives of Toxicology (2023) 97:1723–1738 

1 3

both types of signals, those related to general toxicity as 
well those linked to the occurence of a specific mechanism 
of hepatotoxicity were recorded.

Following this, biomarkers emerging as specific for 
global toxicity and for individual mechanisms of toxicity 
were properly identified. Metabolic pathway analysis was 
also conducted to confirm the relevance of each metabolite 
to the corresponding mechanism of toxicity. We then built 
predictive model based on these biomarkers relevant for 
global hepatotoxicity and for each of the individual mecha-
nisms of hepatotoxicity. Following this, the developed mod-
els were further validated by examining the metabolomic 
pattern of toxicity of cells incubated with a larger set (87) 
of test compounds.

Global drug‑induced hepatotoxicity model

A prediction model for assessing global hepatotoxicity 
(TOX) was constructed. Autoscaled metabolic profiles from 

cells exposed to two toxic concentrations IC10 and IC50 
(Table 1) were selected and compared with profiles obtained 
from cells exposed to equivalent concentrations of non-
hepatotoxic compounds, as well non-treated cells (controls). 
These two concentrations were selected to produce a broad 
range of signals for mechanism modelling. For the model 
generation, we used the metabolome of cells treated with 
compounds predominantly acting via one mechanism of 
toxicity, starting at the lower concentration (IC10), and 
compared with the metabolome of cells treated with non-
toxic compounds and non-treated control cells. The IC50 
concentration, as determind by the MTT test, is a concentra-
tion that affects 50% of the mitochondrial activity, while cell 
viability is much less affected. The metabolome obtained 
from cells treated at high concentrations (IC50) may con-
tain signals attributable to general cytotoxicity events, over-
lapping, but not abolishing, the signals linked to a specific 
mechanism of drug-induced hepatotoxicity. Therefore, at 
this concentration we are recording both mechanism-related 
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Fig. 2  Principal component analysis on training set. PCA scores 
plots of the combined metabolome from cells treated with IC10 and 
IC50 concentrations of hepatotoxins acting through different mecha-
nisms (oxidative stress (OS); mitochondrial disruption (MI); no toxic, 

(upper row);  steatosis (ST); apoptosis (APT);  cholestasis (CHOL), 
non toxic (NT), lower row; as well as with non-toxic xenobiotics, not 
assigned (NA) and controls. There is a clear separation trend among 
toxic and non-toxic concentrations/compounds
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signals and general toxicity signals as well. Later, by doing 
these comparisons for each mechanism, at high and low 
concentration, we were able to distinguish the metabolites 
specifically altered by each toxicity mechanism from the 
metabolites arising in general toxicity, irrespective of the 
drug used. Hence, this strategy enabled us to discriminate 
relevant metabolomic changes linked to each mechanism 
of toxicity, from those less specific arising from a general 
cytotoxicity event (see below).

As a first approximation, we performed an unsupervised 
Principal Component Analysis (PCA) of the autoscaled 
data signals of identified metabolites from cells treated with 
drugs at IC10 and IC50. The four first principal components 
explained approximately 60% of the data variance. For bet-
ter visualisation, six PCAs are shown in Fig. 2, showing the 
main (MI, OS) and secondary (APT, ST, CHOL) mecha-
nisms of toxicity. In the PCA scores, only a slight separa-
tion of the samples according to the different mechanism of 
hepatotoxicity was observed when analysing the whole set 
of data. The analysis of the spatial distribution of objects in a 
PCA scores space is widely used to identify the main sources 
of variation and to get a first overview of the data structure 
and to identify potential outliers. However, this is an unsu-
pervised approach and the interpretation of the sources of 
variation might be difficult, if they are the result of a com-
bination of biological effects associated with one or more 
(orthogonal) principal components. Besides, other elements, 
like the technical and instrumental effects, might also have 
an impact (indeed, they can be one of the main sources of 
variance). Thus, even if in a PCA score plot there is no clear 
sample clustering associated with a given intervention (e.g. 
toxicity mechanism), it cannot be ruled out that there might 
be an impact on the metabolomic profile. Notwithstanding, 
what can be observed is that there is a clear separation trend 
among toxic and non-toxic concentrations/compounds.

This first approach was followed by a partial least 
squares-discriminant analysis (PLS-DA) performed with 
data of the identified metabolites from cells incubated with 
toxic compounds at IC10 and IC50 vs non-toxic and control 
samples. In Table 2, we can observe the distribution of the 
samples in the different classes of the prediction models. We 
carried out a repeated (n = 10) random threefold CV (Lee 
et al. 2018) and 6 LVs were selected according to the low-
est value of error rate (Supplementary Fig. 2a). Figure 3a 
shows the receiver operating characteristic curve (ROC) esti-
mated by CV. The value of the area under curve (AUC) was 

0.8, indicating a high performance for toxicity classifica-
tion and a good sensitivity and specificity in discriminating 
hepatotoxic compounds from controls and non-toxic com-
pounds. The statistical significance of the PLS-DA model 
was assessed by permutation testing (200 permutations, p 
value < 0.05) as described elsewhere (Neubert and Brunner 
2007), using the AUROC as target function. 

Predictive models for the different mechanisms 
of drug‑induced hepatotoxicity

Then, a set of classification models to enable the discrimi-
nation among toxicity mechanisms (OS, MI, APT, ST and 
CHOL) was built using the metabolic profiles of cells incu-
bated with the appropriate model compounds (Table 1). 
Accordingly, for each of the five considered mechanisms of 
toxicity a one vs all discriminant model was built, in which 
samples obtained from cells incubated with compounds 
inducing a given type of toxicity were compared to samples 
obtained from cells incubated with either non-toxic or com-
pounds inducing a different type of toxicity.

We made a comparison of metabolomes from cells treated 
with low concentrations of toxic compounds at IC10 con-
centration, non-toxic compounds and non-treated cells. This 
was complemented with data obtained at higher concentra-
tions (IC50) which enabled us to filter off signals attrib-
utable to general toxicity while emerging the mechanism-
specific metabolome signals. In this way, the analysis for 
each mechanism allowed us to identify metabolites altered 
specifically by each toxicity mechanism and to exclude 
effects linked to general toxicity. Based on these metabolite 
changes, metabolic pathways analysis was also performed 
for each mechanism of toxicity and subsequently analysed 
and compared among them to confirm their relevance for a 
specific mechanism of toxicity.

Then, we built a predictive model based on the biomark-
ers relevant for global hepatotoxicity and those relevant for 
each of the individual mechanisms of hepatotoxicity (i.e., 
comparing the metabolome of cells incubated with com-
pounds that exerted its action through a given mechanism 
with the rest of compounds). Model performance and sta-
tistical significance was carried out as for the Global drug-
induced hepatotoxicity model. The number of LVs selected 
for each model is shown in Supplementary Fig. 2b–f. Sup-
plementary Fig. 3 depicts the evolution of the sensitivity 
and selectivity of each PLS-DA model as a function of the 

Table 2  Balance of positive and 
negative probes in the training 
set for each class and mode of 
action. Oxidative stress (OS); 
mitochondrial disruption (MI); 
steatosis (ST); apoptosis (APT); 
and cholestasis (CHOL)

Model

TOX OS MI APT ST CHOL

Positive probes 50 24 22 16 10 8
Negative probes 10 36 38 44 50 52
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discrimination threshold employed. Based on these results, 
the optimal classification thresholds for each model were 
0.63, 0.35, 0.35, 0.28 and 0.19 for TOX, OS, MI, APT and 
ST, respectively (Supplementary Fig. 3). Figure 3a–e shows 
ROC curves for global toxicity model (a) and for each mech-
anism model (b–e) showing AUC mean values between 0.68 
and 0.81, supporting the discrimination performance of the 
models. Nonetheless, the model built for the identification 
of CHOL toxic responses showed insufficient sensitivity and 
specificity (AUC < 0.5) (Supplementary Fig. 4). A possible 
explanation is that whereas HepG2 cells perform most of 
the mature hepatocyte metabolic functions, they have very 
limited ability for bile acid synthesis (Everson and Polokoff 
1986) and have a reduced expression of the principal bile 
acids transporters (Kullak-Ublick et al. 1996), thereby limit-
ing their applicability as an in vitro model for the detection 
of metabolic alterations caused by cholestatic drugs (Cooper 
et al. 1994).

A slightly lower predictive performance of the individual 
mechanistic models compared to the global hepatotoxicity 
model was observed. This could be attributed to the fact that 
there are no toxic compounds acting exclusively through 
a unique toxic mechanism, but to an interrelation of them 
within the cell which depends on the exposure conditions 
(i.e., concentration, time). Given this unavoidable overlap-
ping effect of distinct mechanisms, it is understandable 
that the compounds, although classified as representative 
of one given mechanism of hepatotoxicity, may partially 
display biomarkers associated with other mechanisms of 
hepatotoxicity.

The most relevant metabolites for global hepatotoxic-
ity assessment and for each mechanism prediction model 
(VIP > 1.5) are shown in Fig. 3f–j. Information about the 
identified metabolites is summarised in Supplementary 
Table 2 including m/z, retention time, HMDB code, meta-
bolic pathway, VIP scores, and t test p value of each pre-
diction model. Three relevant identified metabolites with 
VIP > 1 are grouped by type of mechanism and displayed 
in Fig. 4. Decreased levels of Glutathione (GSH) emerged 
as a consistent biomarker of oxidative stress mechanisms. 
GSH is involved in conjugation processes being of great 
relevance in liver detoxification processes (Kaplowitz 1981; 
Irie et al. 2016). Polyamines and their acetylated products 
N1-acetylspermine and N8-acetylspermidine showed high 
VIP scores in the MI, APT and ST models, and low VIP 
scores in the OS model. It is known that polyamines play an 
important role in the regulation of mitochondrial  Ca+2 trans-
port and ATP (Salvi and Toninello 2004) and are related 
to an increase of oxidative stress independent of the glu-
tathione pathway (Rider et al. 2007). Moreover, the spermi-
dine/spermine N (1)-acetyltransferase (SSAT) enzyme can 
be induced in the liver by toxins such as carbon tetrachloride 
(Matsui et al. 1981) resulting in an increase of N1-acetylated 

polyamines as well as SSAT is reported to be located mainly 
in mitochondria (Holst et al. 2008). Furthermore, in agree-
ment with previous results ophthalmic acid was found highly 
significant (VIP > 1.5) in the OS and APT models. Besides, 
the concentration profile in OS is associated with GSH 
depletion observed in the course of oxidative stress (Soga 
et al. 2006). Ophtalmic acid resulted more relevant to OS, 
MI and ST, and differ from non toxic compounds.

Metabolic pathway analysis

The identification of the  alterations in metabolic path-
ways associated with the different toxicity mechanisms 
was carried out by Metabolic Pathway Analysis (MetPA). 
For that purpose, MetPA was performed comparing sam-
ples from each mechanism versus control samples. MetPA 
combines several advanced pathway enrichment analysis 
procedures along with the analysis of pathway topological 
characteristics to help identify the most relevant metabolic 
pathways involved in a given metabolomic study (Xia and 
Wishart 2010). A list of all metabolites included and their 
corresponding HMDB ID are shown in Supplementary 
Table 2. Results from pathway analysis were summarised 
with 2 descriptors (− log10 (p value) and the impact fac-
tor) as described elsewhere (Xia and Wishart 2010), using 
metabolic pathways with > 3 hits for the analysis. Different 
metabolic pathways appeared significantly altered within 
each mechanism (Supplementary Fig. 5) when compared 
to controls. To determine whether these altered pathways 
were specific and could constitute a characteristic meta-
bolic fingerprint of each mechanism of hepatotoxicity, a 
correlation analysis was performed to compare among the 
metabolic pathways altered in cells treated with drugs act-
ing by one of the mechanisms with respect to controls cells, 
versus the metabolic pathways altered in cells treated with 
drugs characteristic of other mechanisms with respect to 
controls cells. The pairwise correlations between MetPA 
outcomes obtained for APT, ST, OS and MI were estimated 
using Mantel's test, as previously described (Ten-Domé-
nech et al. 2021). In this study, the −log10(p value), and the 
impact factor (estimated as the sum of the importance of 
the measures of all metabolites in the pathway) were used 
as descriptors (i.e., coordinates) of the MetPA outcomes. 
Finally, the Euclidean distance between metabolic pathways 
was used as a measurement of dissimilarity between meta-
bolic pathways. For a better understanding, this strategy is 
highlighted in the workflow shown in Supplementary Fig. 6. 
The correlation between dissimilarity vectors was estimated 
using the Pearson correlation as we previously described 
in detail (Moreno-Torres et al. 2021; Ten-Doménech et al. 
2021). This test estimates a correlation score between the 
outcomes of two MetPA  (ZM). A high, statistically signifi-
cant score indicates a strong correlation between the two 
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distance matrices containing the pairwise distances between 
the elements of each set, where small and large distances in 
one MetPA are associated with small and large distances 
in the second MetPA. Supplementary Table 2 shows the 
metabolites involved in each pathway. As described above, 
glutathione and other metabolites of the glutathione pathway 
were affected in the course of hepatotoxicity, being relevant 
to all mechanisms of toxicity. The nicotinate and nicoti-
namide pathway were altered only in the ST mechanism. 
Indeed, it has been already described in the literature that a 
decrease in the coenzyme NAD, characteristic of this path-
way, is related to an increase in ST (Mukherjee et al. 2017) 
and we found this metabolite with VIP > 1 in the ST model. 
Results also agree with the literature in the sense that the 
glycerophospholipid pathway is altered in the course of MI 
and ST (Peng et al. 2018). Drugs inducing cholestasis did not 
significantly influence any metabolic pathway with the cur-
rently annotated metabolites. as previously mentioned. This 
is likely due to the fact that HepG2 cells lack the ability to 
synthesise, conjugate and transport bile acids (Everson and 
Polokoff 1986). Results depicted in Fig. 5 describe the cor-
relation coefficient between paired comparisons of pathway 
analysis of the different mechanisms assessed and their sta-
tistical significance evaluated by the Mantel’s test. They 
show low, non-statistically significant correlations among 
the alterations observed for the different mechanisms. This 
result suggests that, despite some metabolic pathways are 
commonly altered across mechanisms, the overall impact 
on the metabolome remains characteristic of each toxicity 
mechanism. Thus, by evaluating the meta-analysis of results 
from the pathway analysis, a specific metabolic fingerprint 
for each toxicity mechanism could be obtained.

Assessment of the global toxicity and toxicity 
mechanisms prediction models on a set of testing 
compounds

The performance of global toxicity and toxicity mechanisms 
models to identify the contribution of each mechanism to 
the global hepatotoxicity were assessed in a test set of 87 
compounds having been identified in the literature as acting 
via a principal mechanism of hepatotoxicity. Compounds 
were examined at a range of increasing concentrations (from 
1 to 1000 μM), as an unknown compound would have been 

assayed in a blind in vitro test (Gómez-Lechón et al. 2010; 
Tolosa et al. 2012b; Chen et al. 2016), to see whether the 
model could reveal the occurrence of general toxicity and/
or the contribution of the various mechanisms of toxicity 
at increasing concentrations (Concentrations assayed are 
reported in Supplementary Table 1; in some cases, the larg-
est assayable concentration, because of compound's solubil-
ity is indicated).

PLS y-predicted values accounted for the magnitude of 
global toxicity, as well for the relative impact of each of the 
mechanisms of hepatotoxicity (OS, MI, APT and ST) associ-
ated with each compound at each assayed concentration. Low 
protein content in cell homogenates (less than 1/3 of that 
observed in blank samples) was a sample exclusion criterion, 
as it was indicative of extensive cell death that might dis-
tort the intracellular metabolome. Thus, these samples were 
excluded from the validation set (see the indication of low 
protein (LP)). Values for all compounds and all concentra-
tions are summarised in Supplementary Table 3 together 
with the mechanism of toxicity attributed in the literature 
to each compound (Gómez-Lechón et al. 2010; Tolosa et al. 
2012b). In Supplementary Fig. 7 the predicted toxicity index 
values of toxic compounds at the different concentration 
ranges (i.e., 0–1 µM; 1–10 µM; 10–100 µM, > 100 µM) is 
displayed. All compounds were examined at a wide range 
of concentrations, to assess whether the model identifies a 
general hepatotoxicity and/or the contribution of the vari-
ous mechanisms of toxicity at each concentration assayed. 
Application of the model to each compound and each con-
centration revealed that a given mechanism of hepatotoxicity 
could predominate at a certain concentration, but at higher 
concentrations other mechanisms of toxicity would also be 
present and contribute to the compound’s global toxicity. 
Results showed, as expected, an upward trend in the toxic-
ity index with increasing doses, irrespective of the toxicity 
mechanisms elicited by the drug.

As observed in the Supplementary Fig. 8, 80% of com-
pounds named in the scientific literature as hepatotoxins 
were correctly classified as toxic when incubated at 1000 µM 
(or maximum concentration). It is also remarkable that the 
MI mechanism appears at lower concentrations as opposed 
to the other mechanisms where its incidence increases with 
concentration. MI is likely to appear in the early stages of 
toxicity mechanisms. Despite some disparity with the bib-
liography, each compound is classified within the mecha-
nisms predicted in at least one of the concentrations used. 
It is remarkable to appreciate that our model predicts the 
occurrence of overlapping of mechanisms in more than 90% 
of the studied compounds. This seems to be the expected 
situation where two or more mechanisms occur at a time or 
sequentially.

Radar chart was used to integrate the outcomes from the 
analysis of the five models (TOX, OS, MI, APT, ST) and to 

Fig. 3  ROC curves for global and individual toxicity mechanisms 
prediction models. The average ROC curves for TOX (a), OS (b), MI 
(c), APT (d) and ST (e), with standard deviation (std) on shadow, as 
well the AUC value (mean ± std). Top VIP scores for the correspond-
ing prediction model (f–j). Red circles indicate higher metabolite 
concentrations in the corresponding toxic mechanism. On the con-
trary, blue circles refer to metabolites displaying high concentration 
in the negative mechanism group VIP scores of each model for all 
metabolites are displayed on Supplementary Table 2

◂
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visualise the participation of each of them in the validation 
compounds set (87), and to easily interpret the metabolic 
changes observed along the four concentrations tested. The 
participation of each mechanism of toxicity is represented 
in the radar chart; the different axes graphically represent 
the y-predicted values from each mechanistic model, in a 
relative scale, ranging from 0 (no participation) to 1 (full 
participation). Combined prediction plots of 8 representative 
hepatotoxic compounds, acting preferentially via a specific 

mechanism (Gómez-Lechón et al. 2010): (a) OS, (b) MI, 
(c) APT and (d) ST, are displayed in Supplementary Fig. 9. 
Results showed that although claimed in the literature to act 
preferentially via a given mechanism, such mechanism is not 
unique, and others are likely to be involved. Indeed, while 
the global toxicity index generally increased with concentra-
tion, the relative contribution of each toxicity mechanism 
to global hepatotoxicity was influenced by the concentra-
tion being assayed. Thus, although cumene hydroperoxide 
and Mercury II are claimed to cause OS (Gómez-Lechón 
et al. 2010; Tolosa et al. 2012b), and indeed this is the case 
according to metabolome analysis, other metabolic altera-
tions (APT, ST and MI) are present at larger concentrations 
in cumene hydroperoxide, but not in Mercury II (Supple-
mentary Fig. 9a). 2,4-Dinitrophenol and azathioprine (Sup-
plementary Fig. 9b) are regarded as causing MI (Gómez-
Lechón et al. 2010; Tolosa et al. 2012b). But this is more 
evident in 2,4 dinitrophenol at all concentrations, while in 
the case of azathioprine is more evident at lower concentra-
tions, being overridden by OS, APT and ST at the highest 
concentration, in agreement with the bibliography. Aflatoxin 
B1 and etoposide are claimed as eliciting APT in hepato-
cytes (Gómez-Lechón et al. 2010; Tolosa et al. 2012b). This 
is indeed observed at higher concentrations in the case of 
aflatoxin B1, but it is less evident in the case of etoposide, 
where other mechanisms (OS) prevail over APT, although 
they are indubitably related (Supplementary Fig. 9c). Chlor-
promazine and imipramine, claimed to cause ST (Gómez-
Lechón et al. 2010; Tolosa et al. 2012b), do alter hepatocyte 
metabolome in this sense, at a high concentration, but other 
mechanisms are involved as well (Supplementary Fig. 9d).

To better illustrate the utility of the developed tools, we 
applied the models to three members of the same class of drugs, 
statins, potent hypocholesterolemic drugs, and compared their 
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Fig. 4  Boxplots of autoscaled peak intensities from a set of metabo-
lites and their relevance in the mechanisms of hepatotoxicity. Toxic 
samples were grouped by mechanism as oxidative stress (OS), mito-
chondrial disruption (MI), Apoptosis (APT) and steatosis (ST). These 

biomarkers, typically absent in non-toxic compounds or controls, 
are equally recognised in the literature as biomarkers of the different 
types of hepatocyte damage. Autoscaling of each variable was carried 
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effects on the metabolome of HepG2 cells when assayed at 4 
different concentrations (Fig. 6). Both atorvastatin and lovastatin 
showed, as mentioned in the literature, a mechanistic pattern of 
MI and OS, respectively (Gómez-Lechón et al. 2010). However, 
simvastatin, often described as apoptotic in the literature, shows 
a predominant OS pattern at the highest concentration. This 
apparent inconsistency can be explained, as suggested by other 
researchers, by the fact that the APT in simvastatin is preceded 
by an OS phenomenon (Qi et al. 2010).

In Supplementary Fig. 10, we have included 4 compounds 
that show remarkable changes in the mechanism of hepatotoxic-
ity with concentration. Fluoxetine and Clozapine are named in 
the literature as causing OS; Troglitazone as MI and APT and 
Rifampicin as OS and MI (Gómez-Lechón et al. 2010; Tolosa 
et al. 2012b). In the case of Fluoxetine, the described mecha-
nism of OS is correctly observed at concentrations of 100 and 
1000 µM. On the contrary, Clozapine, also described as OS in 
the scientific literature, shows evolution from an MI mechanism 
at the lowest concentrations to an OS mechanism. Troglitazone 
at lower concentrations main mechanism was MI and is taken 
over by OS at higher concentrations as described in the bibli-
ography (Smith 2003). Meanwhile, Rifampicin coincides with 
the literature description as causing MI at lower concentrations, 
while the mechanism that predominates at higher concentrations 
is OS (Chowdhury et al. 2006).

Conclusions

We have explored the analytical capacity of UPLC–MS/
MS based metabolomics to consistently detect, quantify 
and identify changes in the metabolome of HepG2 cells 
metabolome when incubated with a set of hepatotoxic and 

non-hepatotoxic compounds and, based on this, to build pre-
dictive models to estimate the overall hepatotoxicity insult 
and the involvement of the different mechanisms of hepa-
totoxicity. Based on the occurrence of such metabolomic 
profiles we constructed predictive models to account for the 
likeliness of a compound to be hepatotoxic and to identify 
the hepatotoxicity mechanisms so far involved. Moreover, 
identification of key altered metabolites for each toxicity 
mechanism and the application of predictive models, ena-
bled us to estimate the degree of participation of each of the 
mechanisms in the overall toxicity caused by a compound 
at each concentration.

An analysis of the different altered pathways is a powerful 
tool to draw conclusions on the metabolic changes caused 
in the cell under different conditions (Chen et al. 2015; 
Moreno-Torres et al. 2022). Cholestasis biomarkers in vitro 
could not be properly identified in this exercise, most likely 
because of the inability of the HepG2 model cell system to 
synthesise bile acids and to uptake and transport bile acid 
conjugates. Even if an oxidative stress mechanism (OS) is 
the key initiating event, a generalised OS damage will also 
cause changes in mitochondrial function and is related to 
highly prevalent diseases in the population such as Nonal-
coholic fatty liver disease (NAFLD), steatosis and cirrhosis 
(Cichoż-Lach and Michalak 2014). In a similar manner an 
initial disruption of the mitochondrial function (i.e., mito-
chondrial membrane potential) will certainly cause broader 
changes as oxidative stress (Chowdhury et al. 2006), affect-
ing other mitochondrial functions. Thus, the toxic effects 
of a given drug may result in a set of metabolic changes 
which are shared by more than one mechanism, and that we 
interpret as evidence of the involvement of more than one 
toxic pathway at this is something that can be observed in 
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Lovastatin
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Simvastatin
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Fig. 6  Integrative toxicity radar chart for 3 representative statins. The 
metabolome of cells incubated with three statins, described in the lit-
erature as causing MI (Atorvastatin), OS (Lovastatin) and APT (Sim-
vastatin) as principal mechanisms of hepatotoxicity were examined 
at various concentrations. The global toxicity and the participation 
of the different mechanisms of hepatotoxicity were estimated accord-

ingly with the models and represented using integrative radar charts. 
Contribution of the different mechanisms of hepatotoxicity at various 
concentrations is displayed. The participation of more than one mech-
anism is evidenced and a different degree of mechanistic contribution 
to toxicity is observed with increasing concentrations
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several of the molecules studied, where the contribution of 
other mechanisms to global hepatotoxicity may appear or 
evolve with increasing concentrations of the compound, as 
it has been already reported for some drugs (i.e. sorafenib 
(Rodríguez-Hernández et al. 2020), or the well-known dis-
crepancies reported for the mechanism of toxicity of statins 
in the literature (Gómez-Lechón et al. 2010; Qi et al. 2010).

This study was designed as a proof-of-concept study, 
and we made use of a sufficient large number of hepato-
toxic compounds acting principally, but not exclusively, via 
a major toxicity mechanism. Hence, this study has certain 
limitations regarding the experimental design. The fact that 
most of the compounds analysed in this study may act mar-
ginally through several mechanisms of drug-induced hepa-
totoxicity at increasing concentrations, makes more diffi-
cult the development of fully discriminant models for the 
identification of individual mechanisms of toxicity. Yet, the 
results obtained are eye catching and intuitively describe the 
hepatotoxic behaviour of compounds at different concentra-
tions and the contributions of the different mechanisms of 
tocixity.

In summary, we have developed an innovative and effi-
cient tool for the analysis and prediction of hepatotoxicity 
of drugs based on the metabolomic analysis of HepG2 cells 
exposed to several and different compounds. These mod-
els provide information on the overall hepatic alterations, 
metabolic pathways altered, as well the contributions of the 
mechanisms of hepatotoxicity so far involved. 
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