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Abstract
The phosphatidylinositol 3-kinase (PI3K) signalling pathway regulates cell survival, proliferation, migration, metabolism 
and other vital cellular life processes. In addition, activation of the PI3K signalling pathway is important for cancer devel-
opment. As a result, a variety of PI3K inhibitors have been clinically developed to treat malignancies. Although several 
PI3K inhibitors have received approval from the Food and Drug Administration (FDA) for significant antitumour activity, 
frequent and severe adverse effects have greatly limited their clinical application. These toxicities are mostly on-target and 
immune-mediated; nevertheless, the underlying mechanisms are still unclear. Current management usually involves interven-
tion through symptomatic treatment, with discontinuation if toxicity persists. Therefore, it is necessary to comprehensively 
understand these adverse events and ensure the clinical safety application of PI3K inhibitors by establishing the most effective 
management guidelines, appropriate intermittent dosing regimens and new combination administration. Here, the focus is on 
the development of PI3K inhibitors in cancer therapy, with particular emphasis on isoform-specific PI3K inhibitors. The most 
common adverse effects of PI3K inhibitors are also covered, as well as potential mechanisms and management approaches.
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PD-1  Programmed death 1
PD-L1  Programmed cell death ligand 1
PDX  Patient-derived xenograft
PFS  Progression-free survival
PI3K  Phosphatidylinositol 3-kinase
PJP  Pneumocystis jirovecii Pneumonia
RTK  Receptor tyrosine kinase
SLL  Small lymphocytic lymphoma
Th1  T-helper type 1
Tregs  Regulatory T cells
ULN  Upper limit of normal

Introduction

Excessive activation of the phosphatidylinositol 3-kinase 
(PI3K) signalling pathway is considered to be one of the 
hallmarks of human malignancies (Fruman et al. 2017). 
The pathway is activated through diverse genomic altera-
tions, including the oncogenes phosphatidylinositol-4,5-bi-
sphosphate 3-kinase catalytic subunit alpha (PIK3CA) and 
phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), 
the tumour suppressor gene phosphatase and tensin homolog 
(PTEN), and other crucial genes, which hold promise as 
effective therapeutic targets (Janku et al. 2018). In addition, 
the PI3K axis plays a fundamental role in the survival, cell 

proliferation, metabolism and inflammation of several cel-
lular processes (De Santis et al. 2019). Hence, it follows that 
the significance of the PI3K pathway has facilitated pharma-
cological intervention targeting PI3K.

PI3K is a family of lipid kinases that have been divided 
into three classes (I, II, III) based on sequence homology 
and substrate specificity (Miller et al. 2019). There are few 
reports on the specific functions of class II and class III 
PI3Ks relative to class I PI3Ks. Class II PI3Ks consist of 
the p110-like catalytic subunit and are capable of regulat-
ing the internalization of receptors. Class III PI3Ks are key 
proteins for vesicle transport from the Golgi to the vacu-
ole in budding yeast (Aksoy et al. 2018). Class I PI3Ks are 
closely related to cancer and have been studied in-depth. 
Focus is on the class I PI3Ks, a heterodimer composed of a 
regulatory subunit and a catalytic subunit, which are divided 
into class IA and class IB due to different coupled recep-
tors. Class IA is activated by growth factor receptor tyrosine 
kinase (RTK) and class IB is activated by G-protein-coupled 
receptor (GPCR) (Fig. 1). Class IA PI3Ks are further subdi-
vided into p110α, p110β, p110δ with regulatory subunit p85, 
and class IB only includes p110γ with regulatory subunit 
p87 or p101 (Bilanges et al. 2019). Isoform-specific func-
tions are related to the expression levels in different tissues. 
p110α and p110β are widely distributed throughout tissues, 
while p110δ is highly expressed in haematopoietic cells, 

Fig. 1  Overview of the phosphatidylinositol 3-kinase (PI3K) signal-
ling pathway. The PI3K signalling pathway is activated by G protein-
coupled receptor (GPCR) or receptor tyrosine kinase (RTK). Class I 
PI3Ks activate phosphatidylinositol 4,5-bisphosphate (PIP2) to gen-
erate phosphatidylinositol 3,4,5-trisphosphate (PIP3), and PIP3 can 
be dephosphorylated by phosphatase and tensin homolog (PTEN) to 
form PIP2. PIP3 further induces the activation of the downstream 

protein kinases phosphoinositide-dependent kinase 1 (PDK1), pro-
tein kinase B (Akt), and mammalian target of rapamycin (mTOR) to 
regulate cell survival and proliferation. Class I PI3Ks are divided into 
class A and class B. The class A PI3Ks are further subdivided into 
catalytic subunit p110α, p110β, p110δ with p85 regulatory subunit, 
and class IB include p110γ with p87 or p101 regulatory subunit
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and p110γ is mainly expressed in leukocytes (Thorpe et al. 
2015). Using gene targeting studies, p110α was identified as 
the crucial isoform involved in vascular remodelling (Vantler 
et al. 2015), and p110β was considered to play a major role 
in platelet physiology (Moore et al. 2019); p110δ and p110γ 
regulate diverse aspects of the function of T and B lympho-
cytes (De Henau et al. 2016; Horwitz et al. 2018). Therefore, 
the drug’s effectiveness may be increased by specific PI3K 
subtype inhibition, but this could also result in more severe 
adverse events. (Esposito et al. 2019).

PI3K inhibitors have shown desired therapeutic effects 
in various cancer treatments. Among these PI3K inhibitors, 
copanlisib, alpelisib, idelalisib, duvelisib and umbralisib 
have been approved by the Food and Drug Administration 
(FDA), although approvals/accelerated application indica-
tions of partial inhibitors (idelalisib, duvelisib and umbral-
isib) have been withdrawn (Meng et al. 2021). In addi-
tion, several PI3K inhibitors are undergoing clinical trials. 
Despite ongoing research on this target, unintended side 
effects such as hyperglycaemia, rash, diarrhoea/colitis, hepa-
totoxicity and hypertension continue to be a major barrier 
to the development of PI3K inhibitors (Hanker et al. 2019).

In this review, we provide a comprehensive summary of 
the PI3K inhibitors that have been approved or in clinical tri-
als (Table 1). Representative adverse effects associated with 
PI3K inhibitors, management guidelines and the conceivable 
mechanisms that have been reported are also discussed.

The typical PI3K inhibitors approved 
or in clinical trials

Pan‑PI3K inhibitors

Due to the lack of a thorough understanding of the struc-
ture of the PI3K protein and isoforms in the early stage, 
PI3K inhibitors targeting the four isoforms of class I PI3K 
were mainly developed. In addition to playing different roles 
in tumour proliferation, various isoforms are often associ-
ated with multiple physiological functions, such as glucose 
metabolism, inflammation and immunity. Thus, pan-PI3K 
inhibitors have inevitably increased safety risks. In particu-
lar, the high incidence of metabolic-related adverse events, 
such as hyperglycaemia, has led to limited clinical doses (De 
Santis et al. 2019; Janku et al. 2018).

Copanlisib

Copanlisib  (Aliqopa™; BAY 80–6946; Bayer AG) is an 
intravenous pan-class I PI3K inhibitor with potent activity 
against all four isoforms (Markham 2017) and was approved 
by the FDA in May 2017 for the treatment of adult patients 
with relapsed follicular lymphoma (FL) who have received 

at least two prior systemic therapies. In addition, copanlisib 
shows greater efficacy and safety both as monotherapy and 
in combination in various clinical trials. In a phase II study, 
copanlisib as a single agent also demonstrated significant 
efficacy with relapsed or refractory indolent lymphoma 
(NCT01660451) (Dreyling et al. 2017b) and relapsed or 
refractory diffuse large B cell lymphoma (NCT02391116) 
(Lenz et al. 2020), and the median progression-free sur-
vival (PFS) was 11.2 months and 2.4 months, respectively. 
Copanlisib plus gemcitabine act synergistically when treat-
ing peripheral T cell lymphomas (NCT03052933); PFS 
was 6.9 months, and median overall survival (OS) was not 
reached (Yhim et al. 2021). In addition, copanlisib com-
bined with rituximab improved PFS (21.5  months ver-
sus 13.8 months in the placebo plus rituximab group) in 
patients with relapsed indolent non-Hodgkin lymphoma 
in the CHRONOS-3 study (NCT02367040) (Matasar et al. 
2021). Hyperglycaemia, diarrhoea and hypertension are the 
most frequent adverse events with copanlisib, but all of them 
are minor (Dreyling et al. 2020). Notably, although other 
PI3K inhibitors have remarkable safety concerns, copanlisib 
has a low incidence of severe toxicities may be due to the 
intravenous route of administration and intermittent dosing 
schedule (Killock 2021; Munoz et al. 2021).

Buparlisib

Buparlisib (NVP-BKM120; Novartis) is an oral pan-PI3K 
inhibitor that selectively inhibits all isoforms of class I PI3K 
(Maira et al. 2012). On one hand, buparlisib has shown 
improved PFS in the clinical development of combined 
treatment, but on the other hand, it is limited by extensive 
toxicities (van Dam 2019). The BELLE-2 (NCT01610284) 
and BELLE-3 (NCT01633060) trials reported that bupar-
lisib plus fulvestrant was effective in hormone receptor 
(HR)-positive, human epidermal growth factor receptor 2 
(HER2)-negative, advanced breast cancer, with a median 
PFS of 6.9 months and 3.9 months, respectively. However, 
the toxicities associated with this combination, such as 
increased alanine aminotransferase (ALT) and aspartate ami-
notransferase (AST), hyperglycaemia and rash, led to clini-
cal trial discontinuation (Baselga et al. 2017; Di Leo et al. 
2018). Other studies have shown that buparlisib failed to 
have sufficient antitumour activity as a single agent or even 
plus carboplatin/lomustine in patients with recurrent glio-
blastoma (Rosenthal et al. 2020; Wen et al. 2019). Although 
some clinical trials suggest that buparlisib showed modest 
activity in solid tumours, this may be due to the different 
tissue distributions and functions of the various subunits. To 
increase efficacy while reducing the toxicity of PI3K inhibi-
tors, future development of PI3K inhibitors should concen-
trate on isoform-selective PI3K inhibitors (McPherson et al. 
2020; Soulieres et al. 2017).
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Table 1  The typical and 
clinically developed PI3K 
inhibitors.
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Isoform‑specific PI3K inhibitors

The four isoforms of class I PI3Ks (α, β, δ, γ) have different 
tissue distributions and physiological functions, which affect 
the inhibitory effect of isoform-specific inhibitors on vari-
ous tumours and the incidence of adverse effects (Table 2).

PI3Kα inhibitors

The PIK3CA gene encodes the p110α catalytic subunit of 
PI3K, and its mutation occurs at a high rate in endometrial, 
breast, bladder, cervical and colorectal cancers (Arafeh and 
Samuels 2019). The PIK3CA activation mutation is among 
the most common oncogenic mutations described in breast 
cancer to date (Arafeh and Samuels 2019).

p110α is a widely expressed PI3K isoform in vivo and 
a key intermediate in insulin-like growth factor-1 (IGF-
1), insulin and leptin signalling, where it plays a key role 

in growth factor and metabolic signalling through highly 
selective recruitment and activation of the insulin receptor 
substrate (IRS) signalling complex (Hopkins et al. 2018). 
p110α is significantly expressed in endothelial cells and 
its activity is necessary for vascular development. Severe 
defects in angiogenic sprouting and vascular remodelling 
caused by generalized or endothelial cell-specific inactiva-
tion of p110α lead to embryo death in the second trimester 
(Araiz et al. 2019).

Alpelisib

Alpelisib (Piqray™; BYL719; Novartis) is an oral, highly 
selective inhibitor of PI3Kα, that received approval on May 
2019 by the FDA and is indicated in combination with ful-
vestrant for the treatment of postmenopausal women, and 
men, with HR-positive, HER2-negative, PIK3CA-mutated, 
advanced or metastatic breast cancer (Markham 2019). The 

Table 1  (continued)
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SOLAR-1 trial (NCT02437318) showed that the PFS of 
breast cancer patients treated with alpelisib plus fulvestrant 
was significantly longer than that of patients treated with 
placebo-fulvestrant (11 months versus 5.7 months), and 
the overall response rate was greater (26.6% versus 12.8%) 
(Andre et al. 2019). Furthermore, in a phase Ib clinical trial 
(NCT01623349), alpelisib in combination with olaparib was 
also tolerable and effective in patients with triple-negative 
breast cancer. The median OS of the enrolled patients was 
11.8 months (Batalini et al. 2022).

Given the effectiveness of alpelisib, other combined 
strategies are still in development, and toxicity management 
should be considered simultaneously (Rugo et al. 2021). In a 
first-in-human study (NCT01219699) with 134 patients with 
PIK3CA-mutated solid tumours, 13.4% of patients discontin-
ued treatment because of serious adverse events, but overall, 
the safety was tolerable (Juric et al. 2018). Hyperglycaemia, 
rash and diarrhoea occurred frequently during alpelisib treat-
ment, among which only diarrhoea occurred later (Andre 
et al. 2021; Rugo et al. 2020). Symptomatic treatment can 
alleviate adverse reactions to a certain extent. Hyperglycae-
mia can be relieved with metformin; receiving H1 antihista-
mines can prevent rash; notably, grade ≥ 3 diarrhoea occurs 
in only 7% of patients and often does not require intentional 
intervention (Sharma et al. 2021).

PI3Kβ inhibitors

P110β regulates insulin metabolism, cell proliferation and 
trafficking in a kinase-independent way, and conditional 
knockout of p110β in mouse liver results in impaired insulin 
sensitivity and glucose homeostasis with little effect on pro-
tein kinase B (Akt) phosphorylation (Fujikawa et al. 2019; 
Zhang et al. 2021). The development of PTEN-deficient 
tumours is dependent on p110β signalling. p110β is a cru-
cial kinase driving the survival of PTEN-deficient cancer 
cell lines in vitro (Zhang et al. 2017). In vivo, knockdown 
of p110β inhibited tumour formation in a mouse model of 
PTEN-deficient prostate tumours (Mao et al. 2021). How-
ever, recent studies have shown that PTEN-deficient breast 
cancer cell lines, which are resistant to PI3K inhibitors, 
have a highly activated p110β D1067Y mutant and induce 

elevated phosphatidylinositol 3,4,5-trisphosphate (PIP3) 
levels, resulting in hyperactivation of the PI3K pathway 
(Nakanishi et al. 2016). In other respects, the expression 
level of p110β is highly correlated with the high incidence 
and poor survival of glioblastoma (Pridham et al. 2018), and 
p110β inhibitor monotherapy or combined c-Jun N-terminal 
kinase (JNK) inhibitor can significantly inhibit the growth 
of xenograft tumours (Zhao et al. 2016).

AZD8186

AZD8186 (AstraZeneca) is a potent and selective inhibitor 
of PI3Kβ and PI3Kδ (Barlaam et al. 2015). Preclinically, 
AZD8186 has fairish activity across tumour cells and PTEN-
null tumour models (Lynch et al. 2017) alone or in combina-
tion with docetaxel (Hancox et al. 2015), androgen depriva-
tion (Marques et al. 2015), PI3Kα inhibitor (Schwartz et al. 
2015) and mitogen-activated protein kinase kinase (MEK) 
inhibitor (Marques et al. 2020). The first-in-human, phase 
I study (NCT01884285) characterized the favourable safety 
and tolerability of AZD8186 in patients with advanced solid 
tumours, and in the present study, the most common adverse 
events were diarrhoea, nausea and vomiting (Choudhury 
et al. 2022).

GSK2636771

GSK2636771 (GlaxoSmithKline) is an orally bioavailable, 
selective inhibitor of PI3Kβ. As with AZD8186, the first-
in-human clinical trial (NCT02215096) results confirmed 
promising clinical activity as a single agent and manageable 
toxicity profile of this PI3Kβ inhibitor (Mateo et al. 2017). 
Even so, no further clinical trials have shown its effective-
ness. Although GSK2636771 plus enzalutamide was toler-
ated in patients with metastatic castration-resistant prostate 
cancer, it still has limited antitumour activity and needs other 
combinations to achieve clinical benefit (Sarker et al. 2021). 
The most common adverse events related to GSK2636771 
included diarrhoea, nausea and vomiting (Mateo et al. 2017).

Table 2  Catalytic subunit typing of class I PI3K and their main physiological functions

Catalytic subunit p110α (Zhang et al. 2021) p110β (Moore et al. 2019) p110δ (Xenou and Papakon-
stanti 2020)

p110γ (Nurnberg and Beer-
Hammer 2019)

Tissue expression Widely expressed Widely expressed Mainly expressed in hemat-
opoietic cells

Mainly expressed in leu-
kocytes

Physiological function Insulin signalling; glucose 
metabolism; angiogenesis; 
PIK3CA-mutated in solid 
tumor;

Insulin signalling; glucose 
metabolism; platelet func-
tion;

B cell, T cell and mast cell 
development and func-
tion; antigen-dependent 
responses;

Driving leukocyte chemo-
taxis and recruitment; 
-adrenergic receptor 
(β-AR) signalling;
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PI3Kδ inhibitors

P110δ is mainly expressed in leukocytes and exists as an 
oncogenic driver in various solid tumours, such as breast 
cancer, prostate cancer and colorectal cancer (Xenou and 
Papakonstanti 2020). Although no mutation of p110δ was 
detected in breast cancer, its expression level gradually 
increased during the progression of human breast cancer 
(Goulielmaki et al. 2018). Inactivation of p110δ in mac-
rophages inhibits mammary tumour growth and reduces 
the recruitment of macrophages in mice, and PI3Kδ inhibi-
tors may be considered in clinical trials for the treatment of 
breast cancer in the future (Goulielmaki et al. 2018). There-
fore, many studies on p110δ-selective inhibitors as mono-
therapy or combination therapy to improve cancer immuno-
therapy are being actively carried out.

p110δ inhibition has significant immunomodulatory 
activity, causing immune-mediated adverse effects by pref-
erentially inhibiting regulatory T cells (Tregs). An inter-
mittent dosing regimen alleviated adverse effects while 
maintaining the antitumour activity of PI3Kδ inhibitors 
in a phase II trial. Moreover, the intermittent dosing regi-
men in mouse models of melanoma resulted in a marked 
reduction in tumour growth without inducing pathogenic 
T cells in colon tissue (Eschweiler et al. 2022).

Idelalisib

Idelalisib (Zydelig™; CAL-101; Gilead Sciences) is a 
first-in-class, highly specific, small molecule inhibitor 
targeting p110δ, that was indicated, in combination with 
rituximab, for the treatment of patients with relapsed 
chronic lymphocytic leukaemia (CLL) by the FDA in 
2014. The drug has also been approved in patients with 
relapsed follicular B cell non-Hodgkin lymphoma and 
relapsed small lymphocytic lymphoma (SLL) who have 
received at least two prior systemic therapies (Markham 
2014; Yang et al. 2015). However, this approval also car-
ries a black box warning: fatal and serious toxicity related 
to idelalisib includes hepatic toxicity, severe diarrhoea, 
colitis, pneumonitis, infections and intestinal perforation. 
Therefore, the FDA withdrew accelerated approval of ide-
lalisib for both FL and SLL on Feb. 18, 2022. In a phase 
III study (NCT01539512), the combination of idelalisib 
and rituximab significantly improved OS at 12 months 
(92% in the idelalisib group versus 80% in the placebo 
group), with an acceptable incidence of adverse events due 
to the short follow-up in this study (Furman et al. 2014). 
In another phase III study (NCT01539291), the longer-
term data showed that diarrhoea increased with longer 
exposure, while the incidence of elevated transaminases 
plateaued. Most patients discontinued treatment during 

the trial due to serious adverse events (Sharman et al. 
2019). As the first approved PI3K inhibitor, many pre-
clinical studies on idelalisib are still ongoing to address 
the high incidence of adverse events. Recent reports imply 
that idelalisib exposure deeply impairs human dendritic 
cell differentiation and function in vitro, which partly 
explains the mechanisms of idelalisib-associated infec-
tions (Braun et al. 2021). In addition, idelalisib might 
increase the risk of infections in all B cell malignancies 
by inducing dysfunction of natural killer cells and T cells 
(Rohrbacher et al. 2021). On-target toxicity is the major 
limitation of idelalisib. Given the patients who are refrac-
tory to first-line therapy, further clinical trials are needed 
to develop a new combination of approaches to reduce 
toxicities (Tomowiak et al. 2021). Disappointingly, while 
combining idelalisib with Bruton's tyrosine kinase (BTK) 
inhibitors at a lower dose is overall well tolerated, there no 
sufficient efficacy advantage was obtained (Morschhauser 
et al. 2021).

Duvelisib

Duvelisib  (Copiktra™; IPI-145; Verastem) is a selective dual 
inhibitor of PI3Kδ and PI3Kγ, that received approval by 
the FDA for the treatment of adult patients with relapsed 
or refractory CLL and SLL and accelerated approval for 
FL after at least two prior therapies in 2018 (Blair 2018). 
Duvelisib has shown meaningful efficacy and acceptable 
safety as monotherapy for CLL/SLL patients (Flinn et al. 
2018). Studies are ongoing about combination treatment of 
duvelisib or its activity in advanced haematologic malignan-
cies. In patients with relapsed/refractory CLL, combination 
therapy with rituximab did not result in new toxicities, but 
its PFS (13.7 months) did not significantly outperform duv-
elisib alone (PFS, 13.3 months) (Davids et al. 2021a; Flinn 
et al. 2019a). However, inhibition of PI3K reversed resist-
ance to BTK inhibitors in mantle cell lymphoma (Zhao et al. 
2017). Treatment with duvelisib and the B cell lymphoma-2 
(Bcl-2) inhibitor venetoclax synergistically induces tumour 
regression in Richter syndrome patient-derived xenograft 
(PDX) models (Iannello et al. 2021). In a DYNAMO study 
(NCT01882803), duvelisib monotherapy had to encour-
age clinical activity in patients with refractory indolent 
non-Hodgkin lymphoma; the median PFS was 10 months, 
yet 31% of patients required treatment discontinuation as 
immune-related toxicities (Flinn et al. 2019b). Duvelisib 
carries a black box warning for the risk of fatal and/or seri-
ous infections, diarrhoea or colitis, cutaneous reactions and 
pneumonitis. On Oct. 17, 2021, the FDA withdrew acceler-
ated approval of duvelisib treatment for FL. Considering the 
high activity of duvelisib, many investigations are underway 
to relieve frequent adverse events, including diverse combi-
nations of drugs and alternative dosing schedules.
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Umbralisib

Umbralisib (UKONIQ™; TGR-1202; TG Therapeutics) is 
a dual PI3Kδ and casein kinase 1 epsilon (CK1ε) inhibi-
tor with accelerated approval by the FDA for the treatment 
of adult patients with relapsed or refractory marginal zone 
lymphoma (MZL) who have received at least one prior 
anti-CD20-based regimen and refractory FL who have 
received at least three prior lines of systemic therapy on 
2021 (Dhillon and Keam 2021). At a median follow-up 
of 27.7 months, the objective response rates (ORRs) were 
49.3 and 45.3% for patients with MZL and FL, respectively 
(NCT02793583). MZL did not reach the median PFS. For 
FL, the median PFS was 10.6 months (Fowler et al. 2021). 
Studies using it as combination therapy are still ongoing, 
a triplet approach in which umbralisib and ublituximab 
plus ibrutinib (NCT02006485) are well tolerated and effec-
tive in patients with CLL (Nastoupil et al. 2019; Roeker 
et al. 2022). In terms of clinical trial results, umbralisib has 
achieved encouraging clinical activity with a relatively low 
incidence of adverse events. The most common grade 3 or 
higher adverse events were neutropenia (8.9%), diarrhoea 
(6.7%) and increased aminotransferase levels (5.4%), which 
are lower than those of other PI3Kδ inhibitors (Davids et al. 
2021b). It was reported that inhibition of CK1ε can preserve 
Tregs number and function, which may modulate immune-
mediated adverse events (Maharaj et al. 2020). However, 
on May. 31, 2022, FDA withdrew accelerated approval of 
umbralisib for both MZL and FL due to increased risk of 
death for patients.

PI3Kγ inhibitors

P110γ is highly expressed in myeloid cells, and inhibition of 
p110γ can reshape the tumour immune microenvironment 
and restore the sensitivity of tumours rich in tumour-asso-
ciated myeloid cells to immune checkpoint inhibitors (De 
Henau et al. 2016). Knockout phosphatidylinositol-4,5-bi-
sphosphate 3-kinase catalytic subunit gamma (PIK3CG) 
increased  CD8+ T cell infiltration and programmed death 
1 (PD-1) expression in T cells in the tumour microenviron-
ment; thus, inhibiting p110γ enhanced the efficacy of anti-
programmed cell death ligand 1 (PD-L1) immunotherapy in 
head and neck squamous cell carcinoma by modulating host 
immune activity against tumour cytotoxicity and increas-
ing the expression of immunosuppressive markers (Ander-
son et al. 2021). In addition, activation of PI3K signalling 
cooperates with Kirsten rat sarcoma (KRAS) viral oncogene 
homologue to promote the development of aggressive pan-
creatic ductal adenocarcinoma in vivo, and knockdown of 
p110γ inhibits KRAS-induced tumour growth. However, in 
the context of a high-fat diet, knockdown of p110γ caused 
p-Akt activation and liver injury instead (Torres et al. 2019). 

On the other hand, targeting p110γ can interfere with doxo-
rubicin-induced cardiotoxicity and synergistically enhance 
anticancer effects. p110γ-mediated blockade of autophagy 
drives doxorubicin-induced cardiotoxicity while blocking 
T-cell-mediated tumour killing by promoting trafficking and 
differentiation of immunosuppressive macrophage subsets 
(Li et al. 2018).

IPI‑549

IPI-549 (Infinity Pharmaceuticals), the only efficient and 
highly selective PI3Kγ inhibitor in clinical development, is 
currently being evaluated in some clinical trials. In vitro, tar-
geting p110γ with IPI-549 can reshape the tumour immune 
microenvironment and overcome resistance to checkpoint 
blockade therapy in myeloid cells (De Henau et al. 2016). 
In vivo, IPI-549 remodels the suppressive tumour microen-
vironment alike by inhibiting p110γ in both murine pancre-
atic cancer and melanoma models (Zhang et al. 2019). Fur-
thermore, the codelivery of IPI-549 and silibinin to breast 
tumours can act synergistically (Jiang et al. 2020). IPI-549 
treatment mitigates abdominal aortic aneurysm formation 
in mice by inhibiting Akt phosphorylation (Liu et al. 2020). 
Even though there are still no successful PI3Kγ inhibitors 
recognized in the clinic, the advance of IPI-549 in preclini-
cal research testifies to the viability and druggability of this 
kinase. Clinical trials of IPI-549 for triple-negative breast 
cancer (NCT03719326) and head and neck squamous cell 
carcinoma (NCT03795610) are ongoing.

Mechanism and management of the most relevant 
toxicity

The FDA presented in a briefing at the oncologic drug advi-
sory committee (ODAC) meeting in April 2022 that six ran-
domized controlled trials of PI3K inhibitors for haemato-
logic malignancies showed consistent results: in the context 
of PFS advantage or potential advantage, there has been a 
downwards trend in OS, and this trend may be due to toxic-
ity. Clinical data from single-arm trials limit the interpreta-
tion of efficacy and safety. In the absence of a comparator 
arm, the observed side effects can be attributed to the drug 
or the underlying disease, making it difficult to determine 
which is responsible. At the same time, single-arm trials 
have relatively short follow-up periods, which limits confi-
dence in assessing long-term safety (Meeting of the onco-
logic drugs advisory committee 2022).

Although the efficacy of PI3K inhibitors has been 
reported in a variety of tumours, and several inhibitors have 
been approved for marketing, the serious and even lethal 
toxicity they cause remains a problem that cannot be ignored 
(De Santis et al. 2019). In addition to playing various roles 
in tumour proliferation, different subunits of PI3K are often 
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associated with multiple physiological functions, such as 
glucose metabolism, inflammation and immunity (Fruman 
et al. 2017). The dosage of drugs that can inhibit tumours is 
bound to affect the normal function of other cells, resulting 
in severe side effects (He et al. 2021). The following sum-
marizes the serious toxicity caused by PI3K inhibitors in 
clinic (Table 3), including hyperglycaemia, cutaneous reac-
tions, diarrhoea/colitis, pneumonitis, hepatotoxicity and 
hypertension.

Hyperglycaemia

Pan-PI3K inhibitors and PI3Kα inhibitors usually generate 
severe hyperglycaemia, grade ≥ 3, which was experienced 
by 23.8% of patients treated with copanlisib (Dreyling 
et  al. 2017a) and 32.7% of patients treated with alpe-
lisib (Rugo et al. 2020). In a phase II study of copanlisib 
(NCT01660451) in patients with relapsed or refractory indo-
lent lymphoma, the incidence of hyperglycaemia (grade ≥ 3) 
was up to 41% (Dreyling et al. 2017b).

Management of hyperglycaemia usually involves once/
twice-daily glucose monitoring and treatment with oral 
antihyperglycaemic agents (metformin, first line) (Goldman 
et al. 2016). Hyperglycaemia typically occurs during the first 
two cycles of treatment with PI3K inhibitors (Andre et al. 
2019; Lenz et al. 2020). Upon treatment initiation, patients 
should follow dietary guidelines. Once hyperglycaemia was 
detected, a mild increase was relieved by metformin 500 mg 
once daily. If symptoms cannot be improved, adding an insu-
lin sensitizer, such as pioglitazone, can be considered. How-
ever, if hyperglycaemia is still serious despite treatment with 
antidiabetic medications, the PI3K inhibitor should be dose 
reduced or discontinued (Nunnery and Mayer 2019).

Hyperglycaemia is considered an on-target effect of 
PI3K inhibitors, which is relevant to the crucial role of the 
PI3K pathway in insulin signalling and glucose homeostasis 
(Juric et al. 2018). In addition, p110α and p110β modulate 

insulin-driven PI3K/Akt signalling, the inhibition of which 
would result in hyperglycaemia rather than p110δ and p110γ 
(Molinaro et al. 2019). Moreover, glucose-insulin feedback 
induced by PI3K inhibitors is sufficient to reactivate PI3K 
signalling and compromise their effectiveness (Hopkins 
et al. 2018).

Cutaneous reactions

Cutaneous reactions (rash or maculopapular rash) are one of 
the most common toxicities with PI3K inhibitors in trials. A 
grade 3 or higher maculopapular rash was reported in 17% of 
patients treated with duvelisib (Horwitz et al. 2018) and 13% 
of patients treated with alpelisib (Juric et al. 2019). In the 
treatment of CLL with idelalisib, rash was reported in 10 to 
22% of patients receiving monotherapy and 58% of patients 
using rituximab in combination (Huilaja et al. 2018). In par-
ticular, three patients with PI3K inhibitors developed diffuse 
erythroderma and keratoderma (Dewan et al. 2018).

Mild rash intervention with topical corticosteroid treat-
ment and oral antihistamine as appropriate, systemic corti-
costeroids and discontinued PI3K inhibitors in more severe 
cases (Rugo et al. 2020). Moreover, topical or oral antibiot-
ics, topical antipruritic agents and γ-aminobutyric acid ago-
nists are also considered if symptoms cannot be controlled 
(Esposito et al. 2019).

PI3K/Akt signalling determines the choice between dif-
ferentiation and death of epidermal keratinocytes (Li et al. 
2019). Inhibition of this pathway also suppresses the prolif-
eration and migration of keratinocytes (Wu et al. 2022). In 
addition, activation of the PI3K/Akt/mammalian target of 
rapamycin (mTOR) pathway inhibits autophagy and pro-
motes inflammation in keratinocytes (Varshney and Saini 
2018). Presumably, inhibition of PI3K is responsible for this 
toxicity. Unfortunately, current reports on the mechanism of 
cutaneous reactions remain limited.

Table 3  Serious adverse events (AEs) of FDA-approved PI3K inhibitors

FDA-approved drugs Copanlisib (Dreyling 
et al. 2017a) (n = 84)

Alpelisib (Andre 
et al. 2019) 
(n = 284)

Idelalisib (Gopal 
et al. 2014) 
(n = 125)

Duvelisib (Flinn 
et al. 2018) 
(n = 160)

Umbralisib (Fowler 
et al. 2021) 
(n = 208)

Grade ≥ 3 AEs
 Pneumonitis 2% 1.1% 7% 14% 3%
 Cutaneous reactions 0% 10% 2% 2% 2%
 Diarrhoea/colitis 5% 7% 13% 15%/12% 10%
 Hepatotoxicity 6% – 21% 6% 7%
 Hyperglycemia 25% 37% – – –
 Hypertension 41% – – – –
 Discontinuation due to AEs 21% 25% 20% 35% 15%
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Diarrhoea/colitis

Common diarrhoea/colitis caused by PI3K inhibitors has 
been widely reported, even resulting in many patients dis-
continuing protocol therapy because of severe diarrhoea 
(Curigliano and Shah 2019). In 84 patients treated with 
copanlisib monotherapy, the incidence of diarrhoea was 
40.5% (any grade) and 4.8% (grade ≥ 3) (Dreyling et al. 
2017a); the diarrhoea of any grade that occurred in patients 
with alpelisib was 57.7% (grade ≥ 3, 6.7%) (Andre et al. 
2019); and the most common adverse event related to idela-
lisib was colitis/diarrhoea (37%; grade ≥ 3, 15%) (Lampson 
et al. 2019). Colitis and diarrhoea were the only adverse 
events reported in 5% of the duvelisib-treated patients who 
discontinued treatment (Flinn et al. 2018). More seriously, 
idelalisib causes fatal intestinal perforation (Barrientos 
2016). An expert panel identified two types of diarrhoea 
caused by idelalisib. The first type is self-limiting and gen-
erally occurs within the first 8 weeks, which is mild and 
responds to antidiarrhoeal agents. The second type of diar-
rhoea is considered most likely to be related to idelalisib; 
it tends to occur relatively late and does not respond well 
to antidiarrhoeal or empiric antimicrobial therapy (Coutre 
et al. 2015).

Initial management of diarrhoea induced by PI3K inhibi-
tors should include evaluation and work-up to rule out infec-
tion, followed by treatment with oral or intravenous budeso-
nide after exclusion of infection causes (Coutre et al. 2015). 
Additionally, patients could also be instructed to use lopera-
mide followed by opium tincture and octreotide acetate, and 
diphenoxylate hydrochloride/atropine sulphate may be used 
in place of loperamide (Nunnery and Mayer 2019). Eventu-
ally, treatment with PI3K inhibitors should be reduced or 
even interrupted if patients experience unresolved diarrhoea 
(Esposito et al. 2019).

Histologically, colonoscopy examination in patients who 
had colitis found neutrophilic infiltration of the crypt epithe-
lium, intraepithelial lymphocytosis and crypt cell apoptosis 
(Weidner et al. 2015). The increased intraepithelial lympho-
cytes were mostly  CD8+ T cells, which may be caused by 
immune dysregulation (Louie et al. 2015). In mouse mod-
els, PI3Kδ knockout developed histologic findings similar to 
idelalisib-associated diarrhoea (Uno et al. 2010), and mes-
enteric B cells protect against mucosal injury by inhibiting 
Tregs. Therefore, PI3Kδ inhibitors may inhibit B cell dif-
ferentiation through immune dysregulation of Tregs, leading 
to intestinal injury (Louie et al. 2015).

Pneumonitis

Fatal and serious pneumonitis has occurred in patients 
treated with PI3K inhibitors. Copanlisib-related pneumo-
nitis was reported in 21 of 307 (7%) patients and even led 

to death in 2% of patients (Matasar et al. 2021). Pneumo-
nitis was the most commonly reported infectious adverse 
effect in duvelisib-treated patients (18%), and Pneumocystis 
jirovecii pneumonia (PJP) occurred in three patients (Flinn 
et al. 2018). Similarly, there were four occurrences of PJP 
infections in patients treated with idelalisib (Sharman et al. 
2019). The clinical features of idelalisib-related pneumoni-
tis include cough, dyspnoea and fever, and lung computed 
tomography scans showed diffuse ground-glass opacities, 
consolidations, diffuse micronodules and pleural effusions 
(Haustraete et al. 2016).

The United States prescribing information for idelal-
isib recommends that patients who are treated with PI3K 
inhibitors should be monitored for respiratory symptoms, 
such as cough, dyspnoea, hypoxia, interstitial infiltrates 
on a radiologic examination, or oxygen saturation drops 
more than 5% (Coutre et al. 2015). PI3K inhibitors should 
be immediately interrupted until the cause of pneumonitis 
has been determined. A subsequent infectious aetiological 
evaluation for pneumonia should be performed (Esposito 
et al. 2019). Patients may require oxygen supplementation 
and have bronchoalveolar lavage. However, broad-spectrum 
antibiotic therapy has little effect on such patients. Treatment 
with systemic corticosteroids and drug withdrawal present a 
favourable outcome (Haustraete et al. 2016).

Currently, there is no in-depth report on the pathogen-
esis of PI3K inhibitor-related pneumonia. Noninfectious 
pneumonitis may be related to the inhibition of PI3K down-
stream. PI3K inhibitors also inhibit the mTOR pathway by 
inhibiting PI3K. Both hypersensitivity pneumonitis and 
organizing pneumonia have occurred in patients treated with 
mTOR inhibitors (Albiges et al. 2012). Pneumonitis is also 
an immunologic disorder. Median increments in cytokines/
chemokines associated with immune cell recruitment and 
T-helper type 1 (Th1) responses, including interferon-γ and 
interleukins 6, 7, and 8, were observed in serum samples 
from patients with idelalisib-related pneumonia (Barr et al. 
2016).

Hepatotoxicity

Severe hepatotoxicity is an idelalisib-specific adverse effect 
that is not shared with the other PI3K inhibitors. Although 
transaminitis occurred in copanlisib treatment, elevations 
in ALT and AST were generally less severe (Matasar et al. 
2021). Patients treated with idelalisib experienced elevated 
ALT levels (39.1%) and AST levels (28.2%) during the pri-
mary study which was not associated with prolonged drug 
exposure (Sharman et al. 2019). Elevations in ALT or AST 
more than five times the upper limit of normal (ULN) were 
observed within the first 12 weeks of treatment, most of 
which were reversible with dose interruption (Coutre et al. 
2015). Idelalisib plus the immunomodulator lenalidomide 
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significantly increased the elevation of transaminase, lead-
ing to death in two cases (Lampson and Brown 2017). In 
contrast, younger patients with immunoglobulin heavy chain 
variable region (IGHV)-mutated disease tend to be more 
likely to develop early hepatotoxicity caused by idelalisib 
(Lampson et al. 2016).

Hepatic function monitoring should be performed 
every 2 weeks for the first 3 months of treatment to pre-
vent transaminitis; drugs should be temporarily discon-
tinued when transaminases are increased over 5 times the 
ULN (grade 3); steroid-based treatment should be given if 
transaminitis does not significantly decline after 7 days of 
the drug withdrawal; and elevations in transaminases more 
than 20 times over the ULN (grade 4) should permanently 
discontinue the drug (Cuneo et al. 2019; Nair and Cheson 
2016).

Idelalisib-related hepatotoxicity is immune mediated, 
the cause of which is irrelevant to the virus (Lampson et al. 
2016). Liver biopsy showed increased infiltration and acti-
vation of  CD8+ T cells. Cytokine analysis found that the 
serum levels of the proinflammatory cytokines C–C motif 
chemokine ligand (CCL)-3 and CCL-4 were significantly 
upregulated. Moreover, patients who experience hepatotox-
icity usually have a visibly reduced Tregs population, 68% of 
which lost 42% of the Tregs fraction (Lampson et al. 2016).

Hypertension

Hypertension is one of the most common adverse events, 
occurring in 49% of patients treated with copanlisib plus 
rituximab (Matasar et  al. 2021) and 40.3% of patients 
treated with monotherapy (Lenz et al. 2020). Hypertension 
reported with long-term exposure to copanlisib was transient 
and manageable. The incidence of grade 3 was essentially 
unchanged (23.9%) compared to the primary study (23.2%) 
(Dreyling et al. 2020). Blood pressure peaked 1–2 h after 
transfusion and then declined to baseline levels within 24 h 
(Dreyling et al. 2017a). The mean changes in systolic and 
diastolic blood pressure during this period were 16.8 mmHg 
and 7.8 mmHg, respectively (Cheson et  al. 2019). Few 
patients discontinued due to severe hypertension, and short-
acting antihypertensive drugs nifedipine or reducing the 
dose of copanlisib are generally chosen when blood pres-
sure cannot be controlled (Cheson et al. 2019).

Although the specific mechanism of copanlisib-related 
hypertension has not been identified thus far, it may be 
associated with acute vasoconstriction because of the mode 
of intravenous infusion (Lenz et al. 2020; Matasar et al. 
2021). The PI3K/Akt pathway is involved in the regulation 
of canonical endothelial functions such as the regulation of 
vascular tone and leukocyte recruitment to the vessel wall 
(Mishra et al. 2021). As one of the targets of copanlisib, 
p110γ is a key factor that affects blood pressure levels. On 

one hand, p110γ relieves hypertension and reduces the 
inflammatory response in vascular tissue by reducing periph-
eral resistance; on the other hand, it may play a decisive role 
in the occurrence of hypertension and related target organ 
damage by regulating the function of T cells (Perrotta et al. 
2016).

Conclusion

There is no doubt that the activation of the PI3K pathway 
is crucial to the occurrence and development of tumours 
(Janku et al. 2018). This pathway is widely dysregulated in 
a variety of human cancers, including haematological malig-
nancies, breast cancer and colorectal cancer, illustrating the 
potential value of developing PI3K inhibitors (De Santis 
et al. 2019). Currently, FDA-approved inhibitors include 
the pan-PI3K inhibitor copanlisib, PI3Kα inhibitor alpe-
lisib, PI3Kγ/δ inhibitor duvelisib, PI3Kδ inhibitor idelalisib 
and umbralisib. In addition to alpelisib for the treatment of 
breast cancer, the approved indications for other inhibitors 
are haematological malignancies. Meanwhile, exploring the 
application of PI3K inhibitors in solid tumours has become 
a new hotspot.

However, with the launch of PI3K inhibitors, serious 
safety issues related to p110δ are increasingly exposed 
(Curigliano and Shah 2019). p110δ is preferentially 
expressed mainly in the haematopoietic system and affects 
immune cell development and function (Braun et al. 2021). 
On one hand, PI3Kδ inhibitors, thus, show significant effi-
cacy in the treatment of haematological malignancies due 
to the regulation of immune cells (Xenou and Papakonstanti 
2020). On the other hand, the immune-activating effects of 
PI3Kδ inhibitors have resulted in severe and lethal immune-
related adverse reactions, such as hepatotoxicity, pneumo-
nia, colitis and even intestinal perforation (Roskoski 2021). 
Furthermore, regulation of insulin signalling by p110α 
also contributes to PI3Kα inhibitor-related hyperglycaemia 
(Molinaro et al. 2019).

The PI3K inhibitors approved by the FDA based on 
single-arm trials have basically failed to show their due 
advantages. Although single-arm trials allow the evaluation 
of ORRs, they cannot accurately assess PFS and OS, and it 
is difficult to accurately characterize the efficacy and toxic-
ity observed in patients. Approval of PI3K inhibitors will 
be significantly more difficult in the future due to serious 
safety issues. There are three recommendations made by 
ODAC: first, advocate careful dose selection through robust 
dose exploration in early randomized trials; second, avoid 
single-arm trials as a regulatory strategy in favour of rand-
omized trials; third, comprehensively collect and analyse OS 
data to assess the effect of the drug on this “ultimate safety 
endpoint”. In brief, the above three points are achieved to 
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determine a real and credible safety window of PI3K inhibi-
tors, thereby ensuring the efficacy and safety of treatment.

Overall, first, on-target toxicities severely limit the devel-
opment of PI3K inhibitors, and understanding the physi-
ological functions of different isoforms of PI3K and their 
distribution in tissues is helpful for the clinical prediction 
of adverse effects. In addition to the need for corresponding 
adverse event management guidelines, it is also necessary 
to further clarify the mechanism of toxicities and find tar-
geted intervention strategies. In addition, the side effects of 
PI3K inhibitors are closely related to their high-dose clinical 
application. Therefore, a large number of clinical studies are 
needed to determine the balance point of immunoregulation 
with PI3K inhibitors and to reduce side effects by optimiz-
ing low-dose and multiple administration. Future develop-
ment of PI3K inhibitors requires exploring new intermittent 
delivery modalities or combination regimens to reduce the 
clinical dose of PI3K inhibitors while ensuring antitumour 
efficacy. Second, the lack of biomarkers also limits the clini-
cal application of PI3K inhibitors. For example, stratification 
of breast tumours according to single and multiple copies 
of PIK3CA mutations resulted in distinct distributions of 
scores for PI3K signalling and cellular stemness (Madsen 
et al. 2021). This suggests that more genomic studies are 
still needed to accurately assess patient stratification for 
PI3K-targeted therapy and to identify a biomarker that can 
effectively predict patient susceptibility to PI3K inhibitors.
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