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Abstract
UV-327 (2-(5-chloro-benzotriazol-2-yl)-4,6-di-(tert-butyl)phenol) is used as an ultraviolet (UV) absorber in plastic products 
and coatings. Due to its ubiquitous distribution in the environment, human exposure is conceivable. In the study presented 
herein, initial information on the human in vivo metabolism of UV-327 was obtained by single oral administration to three 
volunteers. Urine and blood samples were collected up to 72 h after exposure. One study participant additionally donated 
plasma samples. Maximum blood and plasma levels of UV-327 and its two monohydroxylated metabolites UV-327-6-mOH 
and UV-327-4-mOH were reached 6 h post-exposure. Almost the entire amount found in blood and plasma samples was 
identified as UV-327, whereas the two metabolites each accounted for only 0.04% of the total amount, indicating that UV-327 
is well-absorbed from the intestine, but only partially metabolized. Plasma to blood ratios of UV-327, UV-327-6-mOH, and 
UV-327-4-mOH ranged from 1.5 to 1.6. Maximum urinary excretion rates of UV-327, UV-327-6-mOH, UV-327-4-mOH, 
and UV-327-4 + 6-diOH were reached 9–14 h post-exposure. However, only about 0.03% of the orally administered dose of 
UV-327 was recovered as UV-327 and its metabolites in urine, indicating that biliary excretion may be the major route of 
elimination of UV-327 and its hydroxylated metabolites. The present study complements the insight in the complex absorp-
tion, distribution, metabolism, and elimination (ADME) processes of benzotriazole UV stabilizers (BUVSs).
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Introduction

Benzotriazole ultraviolet (UV) stabilizers (BUVSs) are used 
as additives in consumer and industrial plastic products and 
coatings to avoid yellowing and degradation as a result of 
UV radiation (Nakata et al. 2009). The prominent BUVS 
2-(5-chloro-benzotriazol-2-yl)-4,6-di-(tert-butyl)phenol 
(UV-327, CAS No. 3864-99-1) is used as a UV absorber in 
rubber, in car and wood coatings, as well as in plastics, such 
as polycarbonates and polyvinyl chloride. It was categorized 
as “very persistent and very bioaccumulative” (vPvB) under 
the REACH (Registration, Evaluation, Authorization, and 

Restriction of Chemicals) regulation and was, therefore, 
categorized as a “substance of very high concern” (SVHC) 
(ECHA 2015). As such, UV-327 was included in Annex XIV 
of REACH so that, after a transitional period that lasts until 
the end of 2023, an authorization is required for placing 
UV-327 on the market or using it in the European Economic 
Area (European Commission 2020).

Wastewater treatment plants (WWTPs) are a potentially 
important indicator of environmental pollution by BUVSs, 
such as UV-327 (Liu et al. 2012). Accordingly, UV-327 was 
found in WWTP effluents (Nakata and Shinohara 2010) and 
sewage sludge (Zhang et al. 2011; Ruan et al. 2012) as well 
as in various environmental matrices, such as sediment 
(Apel et al. 2018; Vimalkumar et al. 2018), seawater (Mon-
tesdeoca-Esponda et al. 2019; Tashiro and Kameda 2013), 
and biosolid-amended soils (Lai et al. 2014). UV-327 has 
furthermore been detected in plastic waste collected from 
the sea and beaches (Rani et al. 2017; Santana-Viera et al. 
2021; Tanaka et al. 2020).

Human exposure to UV-327 and other BUVSs may occur 
through the use of consumer products and the consumption 
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of fish and seafood (NTP 2011). Dust inhalation represents 
another potential route of exposure as the compound has 
been detected in house dust (Carpinteiro et al. 2010; Kim 
et al. 2012). UV-327 was additionally found in breast-milk 
samples, which indicates both maternal exposure and pos-
sible infant exposure as well (Kim et al. 2019; Lee et al. 
2015; Sun et al. 2022).

The oral  LD50 of UV-327 was determined to 
be > 5000 mg/kg body weight in rats (Ema et al. 2006), 
suggesting that UV-327 possesses a low acute toxicity. 
In contrast to other BUVSs, UV-327 showed no activity 
against human estrogen and androgen receptors and thus no 
endocrine-disrupting potential (Fent et al. 2014; Sakuragi 
et al. 2021). Sakuragi et al. (2021) posited that the chlo-
rine substituent of UV-327 hinders its interaction with the 
estrogen receptor. The compound furthermore showed no 
activity against thyroid hormone receptors (Nagayoshi et al. 
2015), but was found to bind to human serum albumin by 
forming hydrogen bonds (Zhuang et al. 2016). UV-327 did 
not cause reproductive (Ema et al. 2008) nor developmental 
(Ema et al. 2006) toxicity in rats. However, increased liver 
weights, histopathological changes in hepatic tissue, and 
alterations in liver-specific blood parameters were observed 
after repeated oral administration, especially in male rats 
(Ema et al. 2008).

UV-327 was included in the human-biomonitoring initia-
tive agreed upon in 2010 by the German Federal Ministry for 
the Environment, Nature Conservation and Nuclear Safety 

(BMU) and the German Chemical Industry Association 
(VCI), due to potential exposure of the general population 
and the lack of appropriate human-biomonitoring strate-
gies (Kolossa-Gehring et al. 2017). In this context, phase I 
metabolites of UV-327 were identified in in vitro experi-
ments with human liver microsomes. The formation of ten-
tatively identified metabolites was confirmed by comparing 
their retention times and mass-spectrometric fragmentation 
patterns with those of synthesized reference standards (Fis-
cher et al. 2020). Based on these experiments, the biotrans-
formation pathway is considered a successive oxidation 
of one or both tert-butyl side chains (see Fig. 1). Due to 
the free hydroxyl and carboxyl groups of UV-327 and its 
metabolites, conjugation is expected prior to urinary excre-
tion. Following the in vitro experiments, analytical proce-
dures for the determination of UV-327 and its metabolites 
in urine (Fischer and Göen 2021) and blood (Fischer and 
Göen 2022) were developed and validated, enabling the 
analysis of the samples obtained as part of the in vivo study 
hereby presented. In the present study, volunteers ingested 
a single oral dosage of UV-327 with the aim to investigate 
in vivo metabolism and determine the elimination kinetics 
of UV-327 and its metabolites. This study was needed to 
confirm the in vivo formation of the metabolites, which have 
been identified in vitro, as well as reveal their contribution 
in the human metabolism of UV-327. This study, therefore, 
tried to clarify whether the metabolites identified in vitro are 
suitable biomarkers for a human biomonitoring of UV-327.

Fig. 1  Postulated biotransformation pathway of UV-327. The dashed arrows indicate that these metabolites were detected in vitro but not in vivo
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Materials and methods

Chemicals and reagents

UV-327 [certified reference material,  TraceCERT®, 
chemical purity 99.3%] was purchased from Merck KGaA 
(Darmstadt, Germany). 2-(5-Chloro-benzotriazol-2-
yl)-4,6-di-(tert-1,1,1-[2H9]-butyl)-3,5-(2H1-2H)phenol 
 [D20-UV-327; chemical purity 96%; isotopic purity 93.4%] 
was ordered from Toronto Research Chemicals (Toronto, 
Canada). The Institute for Organic and Biomolecular 
Chemistry (Göttingen, Germany) synthesized 2-(5-chloro-
benzotriazol-2-yl)-4-(1-hydroxy-2-methylpropyl)-6-(tert-
butyl)phenol [UV-327-4-mOH; chemical purity > 98%], 
2 - ( 5 - ch l o r o - b e n z o t r i a z o l - 2 - y l ) - 6 - ( 1 - hy d r ox y-
2-methylpropyl)-4-(tert-butyl)phenol [UV-327-6-mOH; 
chemical purity > 98%], 2-(5-chloro-benzotriazol-2-yl)-
4-(1-carboxy-2-methylpropyl)-6-(tert-butyl)phenol 
[UV-327-4-mcx; chemical purity > 98%], 2-(5-chloro-
benzotriazol-2-yl)-6-(1-carboxy-2-methylpropyl)-4-(tert-
butyl)phenol [UV-327-6-mcx; chemical purity > 98%], 
2-(5-chloro-benzotr iazol-2-yl)-4,6-di-(1-hydroxy-
2-methylpropyl)phenol [UV-327-4 + 6-diOH; chemi-
cal purity  97%], 2-(5-chloro-benzotriazol-2-yl)-4-(1-
carboxy-2-methylpropyl)-6-(1-hydroxy-2-methylpropyl)
phenol [UV-327-4-mcx-6-mOH; chemical purity > 97%], 
and 2-(5-chloro-benzotr iazol-2-yl)-6-(1-carboxy-
2-methylpropyl)-4-(1-hydroxy-2-methylpropyl)phenol 
[UV-327-4-mOH-6-mcx; chemical purity > 97%]. The 
internal standards 2-(5-chloro-benzotriazol-2-yl)-4-(1,1-
di-([2H3]-methyl)-2-hydroxyethyl)-6-(tert-butyl)phe-
nol  [D6-UV-327-4-mOH; chemical purity 99%; isotopic 
purity > 98%], 2-(5-chloro-benzotriazol-2-yl)-4-(1,1-
di-([2H3]-methyl)-1-carboxymethyl)-6-(tert-butyl)phe-
nol  [D6-UV-327-4-mcx; chemical purity 98%; isotopic 
purity > 98%], 2-(5-chloro-benzotriazol-2-yl)-6-(1,1-
dimethyl-1-carboxymethyl)-4-(1,1-di-([2H3]-methyl)-2-hy-
droxyethyl)phenol  [D6-UV-327-4-mOH-6-mcx; chemical 
purity 95%; isotopic purity > 98%], and 2-(5-chloro-benzo-
triazol-2-yl)-4,6-di-[1,1-di-([2H3]-methyl)-2-hydroxyethyl]
phenol  [D12-UV-327-4 + 6-diOH; chemical purity 96%; 
isotopic purity > 98%] were also synthesized by the Insti-
tute for Organic and Biomolecular Chemistry (Göttingen, 

Germany). Acetonitrile [anhydrous] was purchased from 
VWR International GmbH (Darmstadt, Germany). Ace-
tone [GC grade], ammonium acetate, chloroform [GC 
grade], ethyl acetate [p.a.], glacial acetic acid, hydrochloric 
acid [HCl], isopropanol [GC grade], n-hexane [GC grade], 
N,O-bis(trimethylsilyl)acetamide in combination with 5% 
trimethylchlorosilane [BSA/TMCS], N-(trimethylsilyl)imi-
dazole [TSIM], sodium chloride [NaCl], sodium hydrox-
ide [NaOH], and toluene [GC grade] were ordered from 
Merck KGaA (Darmstadt, Germany). β-Glucuronidase/
arylsulfatase from Helix pomatia (H. pomatia) was pur-
chased from Roche Diagnostics GmbH (Mannheim, Ger-
many). Double distilled water was prepared using a Milli-
Q system (Millipore, Bedford, USA). Human plasma was 
obtained from in.vent Diagnostica GmbH (Hennigsdorf, 
Germany). Human blood was donated by a volunteer par-
ticipating in the in vivo metabolism study.

Study design

Three healthy volunteers (two men and one woman) aged 
between 22 and 56 years were included in the study. Table 1 
summarizes further information on the study participants. 
The administered dose of UV-327 was calculated with 
respect to an adequate distance from the no observed adverse 
effect level (NOAEL) determined in toxicological studies. 
Thus, an NOAEL of 30 mg/kg/day, which was established in 
a 90-day feeding study with beagle dogs (CIBA AG 1970), 
was used as a point of departure and combined with a safety 
factor of 100. As a result, 0.3 mg of UV-327/kg body weight 
was administered to each participant.

For the determination of potential background expo-
sure, one blood and one urine sample of each participant 
were collected prior to the oral administration of UV-327. 
14–29 mg of UV-327 were weighed directly onto a small 
piece of bread with butter, which was then consumed by the 
volunteers. Samples of urine and blood were then collected 
up to 72 h post-application. The participants collected all 
urine voids in separate containers. The sampling times and 
volumes of each sample were recorded. The urine samples 
were aliquoted and stored at − 50 °C until analysis. 9 ml of 
blood were drawn from peripheral veins at 2 h, 4 h, 6 h, 
8 h, 10 h, 24 h, 34 h, 48 h, and 72 h after exposure and 
collected in EDTA-Monovettes®. Additional blood samples 

Table 1  Information on the 
participants of the in vivo study 
with single oral administration 
of UV-327 (0.3 mg/kg body 
weight)

Subject Gender Age [years] Body 
weight 
[kg]

Number of 
urine samples

Total volume 
of urine [l]

Number of 
blood sam-
ples

Number 
of plasma 
samples

1 Male 56 88 43 4.9 13 13
2 Male 27 97 33 4.7 10 –
3 Female 22 45 30 3.1 10 –
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were collected from one subject 14 h, 28 h, and 58 h after 
exposure. This study participant donated two blood samples 
at each point in time; one blood sample was centrifuged to 
obtain plasma samples. Both blood and plasma samples were 
stored at − 50 °C until analysis.

The ethics committee of the Friedrich-Alexander-Univer-
sität Erlangen-Nürnberg approved the study design (49_18 
B). All participants were informed about the goals and risks 
of the study and gave written, informed consent. General 
inclusion criteria for study participation were an age of 
between 18 and 60 years, nonsmoker status, and an absence 
of occupational exposure to UV-327. All participants met 
these criteria.

Sample preparation

Urine samples

The urine samples were prepared, processed, and analyzed 
according to a previously published method (Fischer and 
Göen 2021). Enzymatic hydrolysis was performed at 37 °C 
for 16 h using β-glucuronidase/arylsulfatase from H. poma-
tia. The analytes and internal standards were extracted by 
dispersive liquid–liquid microextraction (DLLME) with iso-
propanol and chloroform. The resulting extracts were evapo-
rated to dryness, followed by the addition of toluene and 
derivatization with both BSA/TCMS and TSIM. The limits 
of detection (LODs) ranged from 0.05 to 0.10 µg/l. Precision 
and repeatability were confirmed by relative standard devia-
tions below 15%. Mean relative recovery rates ranged from 
88% to 112%. The urinary creatinine content was determined 
photometrically by the Jaffé’s method (Larsen 1972).

The urine samples of one study participant were addition-
ally processed without the addition of β-glucuronidase/aryl-
sulfatase from H. pomatia or incubation at 37 °C to quantify 
the unconjugated forms of UV-327 and its metabolites in 
urine.

Blood samples

Whole blood samples were prepared, processed, and ana-
lyzed according to a previously published method (Fischer 
and Göen 2022). Proteins and cellular components were pre-
cipitated by the addition of acetonitrile. After centrifugation, 
the supernatants were diluted with water and ammonium 
acetate buffer. For analyte extraction, chloroform was added. 
The extracts were evaporated to dryness, followed by the 
addition of toluene and derivatization with both BSA/TCMS 
and TSIM. LODs ranged from 0.02 to 0.36 µg/l. Precision 
and repeatability were confirmed by relative standard devia-
tions below 15%. Mean relative recovery rates ranged from 
91% to 118%.

The blood samples of one study participant were addi-
tionally processed with the addition of β-glucuronidase/
arylsulfatase from H. pomatia and incubation at 37 °C for 
16 h to examine potential conjugation of UV-327 and its 
metabolites to glucuronide/sulfate.

Plasma samples

Stock solutions of each analyte and internal standard 
(200 mg/l) were prepared in acetone. For calibration, an 
analyte spiking solution was prepared in a mixture of ace-
tonitrile and aqueous 0.9% NaCl solution (v/v, 1:1), which 
contained 500 µg/l of each metabolite. For the determination 
of UV-327, two analyte spiking solutions were prepared, 
containing 2 mg/l or 40 mg/l of UV-327 in a mixture of 
acetonitrile and 0.9% NaCl solution (v/v, 1:1). The internal 
standard spiking solution contained 20 mg/l of  D20-UV-327 
and 1 mg/l each of  D6-UV-327-4-mcx,  D6-UV-327-4-mOH, 
 D12-UV-327-4 + 6-diOH, and  D6-UV-327-4-mOH-6-mcx. 
For derivatization, a solution containing 5% (v/v) TSIM in 
toluene was freshly prepared for each analytical run. Cali-
bration standards were prepared by spiking human plasma 
with various volumes of the analyte spiking solutions. An 
eight-point calibration curve in the range of 0.5–25 µg/l 
was applied for the determination of the metabolites, except 
for UV-327-4-mOH-6-mcx, for which the calibration range 
was set to 2–100 µg/l due to higher limits of detection and 
quantitation. For the determination of UV-327, a nine-point 
calibration curve in the range of 10–2000 µg/l was applied. 
A reagent blank sample, containing water instead of plasma, 
was included in each analytical run. Any blank values were 
subtracted from the analytical results. One sample each 
of Qlow (low-concentration quality-control material), Qmid 
(medium-concentration quality-control material), and Qhigh 
(high-concentration quality-control material) was processed 
analogously to the samples in each analytical run. The con-
centrations of the quality-control materials are given in 
Table SI-1.

Plasma samples were, with some minor modifications, 
processed according to a method published by Andrenyak 
et al. (2017). The samples were thawed at room temperature 
and thoroughly mixed on a roller mixer. Subsequently, 1 ml 
of plasma was pipetted into an 8-ml glass vial. Both 10 µl of 
the internal standard spiking solution and 2 ml of acetoni-
trile were added to the samples, which were immediately 
vortex-mixed for 1 min. After centrifugation at 1400×g for 
10 min, the supernatants were transferred into clean 8-ml 
glass vials and the volume was reduced to ≈ 1 ml under a 
stream of nitrogen. Both 1 ml of 1 M HCl and 3 ml of a mix-
ture of hexane and ethyl acetate (9:1) were then added to the 
samples. The samples were mixed on a laboratory shaker for 
20 min. After centrifugation at 1400×g for 10 min, the upper 
organic phases were transferred into clean 8-ml glass vials 
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and the volume of each sample was reduced to ≈ 1 ml under 
a stream of nitrogen. The samples were then transferred into 
2-ml glass vials and evaporated to dryness. Following the 
addition of 40 µl of toluene, the samples were derivatized 
with 40 µl of BSA/TMCS and 20 µl of 5% (v/v) TSIM in 
toluene.

The supplemental material contains a description of the 
validation procedure. LODs ranged from 0.03 to 0.86 µg/l 
with corresponding limits of quantitation (LOQs) from 
0.11 to 2.9 µg/l. The detailed validation data are given in 
Table SI-2.

Instrumentation

A TRACE 1310 gas-chromatographic system equipped 
with a TriPlus  RSH autosampler and a split/splitless 
injector was used for the analysis of the urine, blood, and 
plasma samples. The gas-chromatographic system was cou-
pled to a TSQ 9000 triple–quadrupole mass spectrometer 
equipped with an advanced electron ionization (AEI) source 
(Thermo Fisher Scientific Inc., Waltham, USA). Chromato-
graphic separation was performed on a (5% phenyl)-meth-
ylpolysiloxane low-bleed capillary column (HP-5msUI, 
60  m × 250  µm × 0.25  µm, Agilent Technologies, Inc., 
Santa Clara, USA) at a constant flow rate of 1 ml/min using 
helium as a carrier gas. Total analysis time was 44 min. The 
GC–MS/MS equipment and parameter-specific settings were 
used as described in earlier publications for the analysis of 
urine (Fischer and Göen 2021) and blood samples (Fischer 
and Göen 2022). Plasma samples were analyzed using the 
same parameter-specific settings as for the analysis of blood 
samples.

Data evaluation

Following an exploratory approach, we included all detect-
able results in the toxicokinetic analysis to elucidate human 
in vivo metabolism and time courses as entirely as possible.

Renal excretion rates (RE, in µg/h) of each analyte at 
a certain point in time were calculated by the following 
equation:

where ci (in µg/l) is the concentration of UV-327 or its 
metabolites in the urine sample i, vi (in l) is the volume of 
the respective urine sample, ti (in h) is the elapsed time value 
of the sampling, and ti−1 (in h) is the elapsed time value of 
the previous sampling.

Renal excretion kinetics of UV-327 and its metabolites 
were plotted as temporal progressions of the renal excretion 

RE =
c
i
× v

i

t
i
− t

i−1

rates RE at the midpoint of the respective sampling periods 
(ti,m in h), which were calculated as follows:

Excretion curves were prepared for each study partici-
pant and each analyte by plotting the current excretion rates 
against the average time of the sampling period. Mean excre-
tion curves were then obtained by averaging the closest 
sampling time points and the corresponding renal excretion 
rates for all study participants (mean ± standard deviation 
(SD)). The slopes (kel, elimination rate constant) of the ln-
transformed mean excretion curves were used to calculate 
the elimination half-lives (t1/2) as follows:

By summing the molar excreted amounts of UV-327 and 
its metabolites, the cumulative excreted amount of each ana-
lyte (in µmol) was calculated for each study participant:

where M (in µg/µmol) is the molar mass of the respec-
tive analyte. Furthermore, urinary excretion factors (FUE) as 
UV-327 dose equivalents (as percentages) were calculated 
to express the total excretion of UV-327 and its metabolites 
in urine after 24 h, 48 h, and 72 h:

CEi is the amount of the respective analyte excreted after 
24 h, 48 h, and 72 h (in µmol) and MD is the ingested amount 
of UV-327 (in µmol).

The shares of conjugation of UV-327 and its metabolites 
were determined by correlation of the urinary excretion rates 
obtained with and without the performance of enzymatic 
hydrolysis. The slope of the linear fit describes the percent-
age of the unconjugated form of the respective analyte.

Mean concentration–time curves in blood were obtained 
by plotting the mean blood levels against time. The elimina-
tion half-lives (t1/2) were calculated as described above. The 
maximum blood levels of all analytes were considered as 
the most suitable time points for approximation of an over-
all distribution function in blood. For this purpose, UV-327 
equivalents (as percentages) were calculated as follows:

where cmax is the maximum blood level (in µg/l), M (in 
µg/µmol) is the molar mass of the respective analyte, and 

t
i,m = t
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t
i
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MUV-327 (in µg/µmol) is the molar mass of UV-327. Plasma-
to-blood ratios were obtained from the concentration–time 
curves of the study participant who donated both plasma 
and blood samples. The areas under the concentration–time 
curves of UV-327 and its metabolites in plasma were, there-
fore, divided by the areas under the concentration–time 
curves in blood. The areas under the curve were calculated 
using the trapezoidal method.

Microsoft  Excel® was used for data processing and 
 Origin® was used for curve fitting.

Results

UV‑327 and its metabolites in blood

In the blood samples collected before oral administration 
of UV-327, none of the metabolites were detected. UV-327 
was detected in these samples, but only at marginal levels 
and mostly below the LOD. UV-327, UV-327-4-mOH, and 
UV-327-6-mOH were detected in the blood samples col-
lected after exposure to UV-327. The toxicokinetic data 
of UV-327 and its metabolites in blood are summarized in 
Table 2. Figure 2 shows the concentration–time curves of 
UV-327, UV-327-6-mOH, and UV-327-4-mOH in blood. 
The mean maximum blood level (cmax ± SD) of UV-327 
(632 ± 114 µg/l) was reached 6 h after oral administration. 
Afterward, an initial moderate decline in the concentra-
tion was observed. Twenty-four hour post-exposure, the 
mean blood level of UV-327 was 103 ± 24 µg/l, followed 
by a slower terminal elimination phase. At 72 h post-expo-
sure, 27 ± 5 µg/l of UV-327 were still detectable, which 
demonstrates that the elimination of the parent compound 
was not complete 3 days after exposure. Mean maximum 
blood levels of the two monohydroxylated metabolites 
UV-327-6-mOH (0.27 ± 0.10 µg/l) and UV-327-4-mOH 
(0.26 ± 0.10 µg/l) were also reached 6 h after oral admin-
istration of UV-327. Afterward, an initial moderate decline 
of their levels was observed as well. Twenty-four hour post-
exposure, the mean blood levels of UV-327-6-mOH and 
UV-327-4-mOH were 0.08 ± 0.04 µg/l and 0.09 ± 0.03 µg/l, 

respectively. Thereafter, a slower decline in the mean con-
centrations was observed until the mean blood levels of both 
metabolites were below their respective LODs after 48 h 
(UV-327-6-mOH) and 72 h (UV-327-4-mOH). Elimination 

Table 2  Kinetics of UV-327, UV-327-4-mOH, and UV-327-6-
mOH in blood after single oral administration of UV-327 (n = 3; 
mean ± SD)

Cmax maximum blood level, tmax time point of maximum blood level, 
t1/2 elimination half-life

UV-327 UV-327-6-mOH UV-327-4-mOH

cmax [µg/l] 632 ± 114 0.27 ± 0.10 0.26 ± 0.10
tmax [h] 6 6 6
t1/2—phase 1 [h] 6.6 ± 0.3 9.9 ± 1.0 10.8 ± 0.3
t1/2—phase 2 [h] 24.9 ± 1.9 29.0 ± 1.1 33.0 ± 0.2

Fig. 2  Mean concentrations of a UV-327, b UV-327-6-mOH, and c 
UV-327-4-mOH in blood after single oral administration of UV-327 
with log-normal fit (n = 3, mean ± SD)
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half-lives  (t1/2) of UV-327, UV-327-6-mOH, and UV-327-
4-mOH for phases 1 and 2 were estimated to be 6.6–10.8 h 
and 24.9–33.0 h, respectively. No further metabolites were 
detected in any of the collected blood samples.

UV-327 accounted for 99.9% of the total amount of 
all analytes at the time point of maximum concentration, 
while UV-327-6-mOH and UV-327-4-mOH each accounted 
for only 0.04%. The analyte concentrations obtained with 
enzymatic hydrolysis were comparable with the concentra-
tions obtained without enzymatic hydrolysis. UV-327 and its 
monohydroxylated metabolites are, therefore, not present as 
conjugates in blood.

UV‑327 and its metabolites in plasma

In the plasma sample collected before oral administration 
of UV-327, none of the metabolites were detected. The 
concentration of UV-327 in the sample collected before 
exposure was equal to the LOD. Figure 3 shows the plasma 
concentration–time curves of UV-327, UV-327-6-mOH, 
and UV-327-4-mOH. Maximum plasma levels of UV-327 
(1261 µg/l), UV-327-6-mOH (0.58 µg/l), and UV-327-4-
mOH (0.55 µg/l) were reached 6 h post-exposure. Linear 
correlations were observed between the plasma and blood 
levels of UV-327 (R2 = 0.9856, y = 1.4668x + 30.674), UV-
327-6-mOH (R2 = 0.9857, y = 1.5706x − 0.0126), and UV-
327-4-mOH (R2 = 0.9787, y = 1.5605x + 0.0041) (Fig. 4).

UV‑327 and its metabolites in urine

In the urine samples collected before oral administration 
of UV-327, none of the analytes were detected (< LOD). 
In the urine samples collected after oral administration of 
UV-327, four analytes were detected, namely, UV-327, UV-
327-4-mOH, UV-327-6-mOH, and UV-327-4 + 6-diOH. The 
renal excretion kinetics of UV-327 and its metabolites are 
summarized in Table 3. Maximum urinary excretion rates 
were reached after 9–14 h. For UV-327, mean maximum 
urinary excretion rates of 0.026 ± 0.007 µg/h were reached 
13.5 ± 0.05  h post-exposure. Mean maximum urinary 
excretion rates of UV-327-6-mOH (0.068 ± 0.06 µg/h) and 
UV-327-4-mOH (0.032 ± 0.012 µg/h) were each reached 
8.7 ± 0.21 h and 13.5 ± 0.05 h after oral administration of 
UV-327, respectively. The dihydroxylated and thus most 
polar metabolite UV-327-4 + 6-diOH exhibited the highest 
mean maximum excretion rates (0.214 ± 0.058 µg/h), which 
were reached 10.6 ± 0.08 h post-exposure.

Figure 5 shows the temporal progressions of the urinary 
excretion of UV-327 and its mono- and dihydroxylated 
metabolites. Due to the very low urinary excretion rates of 
UV-327 and its hydroxylated metabolites, as well as interin-
dividual differences between the study participants, only one 
mean elimination half-life could be reliably determined for 

each analyte, as a clear differentiation of elimination phases 
was not possible.

The overall urinary excretion rates of UV-327 and its 
metabolites were very low. Within 72 h, only 0.03% of the 
orally administered dose of UV-327 was recovered in urine 

Fig. 3  Plasma concentration–time curves of a UV-327, b UV-327-6-
mOH, and c UV-327-4-mOH (n = 1)
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as UV-327 and its metabolites. Among the analytes found 
in urine, UV-327-4 + 6-diOH was the main metabolite and 
accounted for 0.018% of the applied dose; it accounted 
for 64.5% of the dose that was recovered in urine within 
72 h. Within 24 h and 48 h, a respective 61% and 88% 

of the total urinary amount, recovered as UV-327 and its 
metabolites within 72 h, have been excreted.

Processing the urine samples with and without enzy-
matic hydrolysis revealed that UV-327 is mainly present 
in its unconjugated form (84%), whereas UV-327-6-mOH, 
UV-327-4-mOH, and UV-327-4 + 6-diOH are only present 
in their conjugated forms (see Table 3).

Discussion

The relatively high peak level of the parent compound in 
blood indicates a quantitatively high oral absorption rate. 
However, maximum blood levels of UV-327 were reached 
only after 6 h, which is much later than after oral admin-
istration of other chemicals and, therefore, may indicate a 
temporally retarded absorption of UV-327 through the intes-
tinal mucosa. For example, propyl paraben reached maxi-
mum serum levels 1.4 ± 1.1 h after oral administration (Shin 
et al. 2019) and the natural product N,N-dimethyltyramine 
reached plasma peak levels 30–90 min after oral adminis-
tration (Sommer et al. 2020). Nevertheless, the structurally 
related BUVS 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentyl-
phenol (UV-328) showed retarded resorption kinetics as well 
and reached maximum blood levels 8 h after oral adminis-
tration (Denghel et al. 2021). The comparable findings for 
UV-327 and UV-328 indicate similar resorption processes 
for these substituted BUVSs.

In spite of an extensive monitoring of probable metabo-
lites, only few of them as well as very low levels of them 
were found in blood/plasma and urine. Accordingly, UV-327 
was only moderately metabolized in in vitro experiments 
with human liver microsomes (Fischer et al. 2020). Moreo-
ver, lower metabolism in substituted BUVSs compared 
to unsubstituted BUVSs was observed in an animal study 
(Waidyanatha et al. 2021). The low rate of metabolism of 
UV-327 might be related to the low reactivity of its bulky 
tert-butyl substituents (OECD 2017).

Due to their lipophilic properties (Log  Kow (UV-
327) = 6.75 (Cantwell et al. 2015)), UV-327 and its hydrox-
ylated metabolites might be reabsorbed from the intestine 
with subsequent enterohepatic circulation, which prolongs 
their residence time in the body and leads to an extended 
elimination half-life. In fact, the mean terminal elimination 
half-lives of UV-327 and its monohydroxylated metabolites 
in blood ranged from 24.9 to 33.0 h, whereby the elimina-
tion half-lives of the metabolites are somewhat longer than 
the elimination half-life of the parent compound. UV-327 
was furthermore still detectable in relatively high concentra-
tions 72 h post-exposure, indicating that its elimination from 
the body takes at least several days. Due to the distinctive 
hydrophobicity, storage in adipose tissue as well as in other 
tissues and organs is conceivable, which would also lead to 

Fig. 4  Correlations between a UV-327, b UV-327-6-mOH, and c UV-
327-4-mOH concentrations in plasma and blood samples (n = 1)
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a prolonged elimination half-life. Consistent with this con-
clusion, UV-327 has already been detected in adipose tissue 
(Yanagimoto et al. 2011) as well as breast milk (Kim et al. 
2019; Lee et al. 2015; Sun et al. 2022).

Higher levels in plasma compared to whole blood were 
observed and can be attributed to the volume displacement 
by cellular components of whole blood (Ehresman et al. 

2007). The higher plasma compared to whole blood levels 
result from the lower total sample volume after removing 
the cellular components by centrifugation. As a result, the 
analytes are enriched in the plasma fraction (González-
Domínguez et  al. 2020). The plasma to blood ratios of 
UV-327, UV-327-6-mOH, and UV-327-4-mOH were 1.47, 
1.57, and 1.56, respectively, indicating that the binding and 

Table 3  Renal excretion kinetics of UV-327, UV-327-4-mOH, UV-327-6-mOH, and UV-327-4 + 6-diOH after single oral administration of 
UV-327 (n = 3; mean ± SD)

REmax maximum renal excretion rate, tmax time point of maximum renal excretion rate, t1/2 elimination half-life, FUE urinary excretion factor

UV-327 UV-327-6-mOH UV-327-4-mOH UV-327-4 + 6-diOH

REmax [µg/h] 0.026 ± 0.007 0.068 ± 0.06 0.032 ± 0.012 0.214 ± 0.058
tmax [h] 13.5 ± 0.05 8.7 ± 0.21 13.5 ± 0.05 10.6 ± 0.08
t1/2 [h] 18.2 13.9 26.7 33.0
Cumulative excreted amount [µmol] 0.0016 ± 0.0007 0.0030 ± 0.0011 0.0016 ± 0.0009 0.0121 ± 0.0051
FUE after 24 h [%] 0.0015 ± 0.0004 0.0034 ± 0.0006 0.0016 ± 0.0004 0.0104 ± 0.0022
FUE after 48 h [%] 0.0023 ± 0.0007 0.0046 ± 0.0010 0.0022 ± 0.0007 0.0156 ± 0.0027
FUE after 72 h [%] 0.0026 ± 0.0009 0.0049 ± 0.0013 0.0026 ± 0.0011 0.0183 ± 0.0030
Share of conjugation [%] 16 100 100 100

Fig. 5  Mean urinary excretion rates of a UV-327, b UV-327-6-mOH, c UV-327-4-mOH, and d UV-327-4 + 6-diOH after single oral administra-
tion of UV-327 with log-normal fit (n = 3, mean ± SD)
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resorption of UV-327 and its monohydroxylated metabolites 
to erythrocytes is negligible.

Urinary excretion of UV-327 and its metabolites occurs 
slowly and only to a small extent. Only hydroxylated metab-
olites were detected, whereas higher oxidized metabolites 
(carboxylated metabolites and hydroxylated as well as 
carboxylated metabolites), which were found in in vitro 
experiments with human liver microsomes (Fischer et al. 
2020), were detected neither in blood/plasma nor in urine. 
The in vivo biotransformation pathway of UV-327, there-
fore, appears to be less extensive than its in vitro metabo-
lism pathway (see Fig. 1). The reason for the absence of 
higher oxidized products in blood/plasma and urine may be 
the rapid elimination of the hydroxylated products via urine 
immediately after generation. They may rapidly undergo 
phase II reactions leading to elimination before higher oxi-
dized products are formed. This hypothesis is supported by 
the fact that each of the hydroxylated metabolites were com-
pletely conjugated when excreted with the urine. In contrast, 
the parent compound was excreted mainly without conjuga-
tion, which indicates the low accessibility of the phenolic 
hydroxyl group for phase II enzymes, whereas the additional 
hydroxyl groups of the UV-327 metabolites are easily acces-
sible for the conjugation of glucuronic acid or sulfate.

The relative urinary shares of UV-327-4 + 6-diOH, UV-
327-6-mOH, UV-327-4-mOH, and UV-327 were 64.5%, 
17.2%, 9.2%, and 9.0% of the amount recovered within 72 h, 
respectively. Thus, the relative proportions of the analytes 
in blood and urine differed considerably. In blood, mainly 
UV-327 was found (99.9% of the total amount of analytes 
found in blood at the time point of maximum concentration), 
whereas UV-327 accounted for only 9.0% of the amount 
recovered in urine. UV-327-4 + 6-diOH was not detected in 
blood, but was the main metabolite in urine. The shift of the 
metabolites’ shares toward the dihydroxylated metabolite 
may be explained by its higher polarity, which favors renal 
excretion.

Since UV-327 and its metabolites in urine accounted for 
only about 0.03% of the orally administered dose of UV-327, 
it is theoretically conceivable that further metabolites are 
formed which were not identified in the in vitro experi-
ments and are, therefore, not detectable by available ana-
lytical methods. Due to their hydrophobicity and relatively 
high molecular weights, the more likely reason for the low 
urinary levels of UV-327 and its metabolites is, however, 
that they may be excreted predominantly with the bile. Pro-
longed elimination half-lives are expected, since substances 
excreted via the biliary tract are subject to enterohepatic 
circulation. Accordingly, mean elimination half-lives of 
18.2 h (UV-327), 13.9 h (UV-327-6-mOH), 26.7 h (UV-327-
4-mOH), and 33.0 h (UV-327-4 + 6-diOH) were observed. 
Another indication for bile being the main route of elimina-
tion is that UV-327 is well-absorbed from the intestine, as 

is reflected in its high blood levels, but its urinary excretion 
rates are very low. Most of the substance must, therefore, 
be excreted via an alternative route. Consistently, biliary 
excretion was assumed to be the main route of excretion for 
UV-328, too (Denghel et al. 2021).

Conclusion

The in vivo study presented herein provides initial infor-
mation on the absorption, metabolism, and elimination of 
the UV absorber UV-327. The data indicate that UV-327 is 
quantitatively well-absorbed from the intestine, but is elimi-
nated from the body with relatively slow kinetics. Concur-
rently, only minor amounts of the substance are metabolized. 
In total, three metabolites of UV-327, which carry hydroxyl 
groups at one or both tert-butyl groups, were detected 
in the studied samples. In blood and urine, the monohy-
droxylated metabolites UV-327-4-mOH and UV-327-6-
mOH were found. In urine, the dihydroxylated metabolite 
UV-327-4 + 6-diOH was additionally detected and was the 
main metabolite accounting for 64.5% of the dose recov-
ered within 72 h. Carboxylated metabolites and hydroxy-
lated as well as carboxylated metabolites, which have been 
confirmed to be formed in vitro, could not be detected in any 
of the in vivo samples. UV-327 and its biotransformation 
products seem to be mainly eliminated via the feces, while 
urinary excretion is only a minor route of elimination with 
only about 0.03% of the administered dose being detected 
in urine samples up to 72 h post-exposure. Due to their lipo-
philic properties, the minor relevance of renal elimination, 
and the slow elimination kinetics, UV-327 and its metabo-
lites may accumulate in the human body with repeated 
exposure. The present study complements the insight in the 
complex absorption, distribution, metabolism, and elimina-
tion (ADME) processes of BUVSs.
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