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Abstract
The kinetically derived maximal dose (KMD) provides a toxicologically relevant upper range for the determination of chemi-
cal safety. Here, we describe a new way of calculating the KMD that is based on sound Bayesian, theoretical, biochemical, 
and toxicokinetic principles, that avoids the problems of relying upon the area under the curve (AUC) approach that has 
often been used. Our new, mathematically rigorous approach is based on converting toxicokinetic data to the overall, or 
system-wide, Michaelis–Menten curve (which is the slope function for the toxicokinetic data) using Bayesian methods and 
using the “kneedle” algorithm to find the “knee” or “elbow”—the point at which there is diminishing returns in the velocity 
of the Michaelis–Menten curve (or acceleration of the toxicokinetic curve). Our work fundamentally reshapes the KMD 
methodology, placing it within the well-established Michaelis–Menten theoretical framework by defining the KMD as the 
point where the kinetic rate approximates the Michaelis–Menten asymptote at higher concentrations. By putting the KMD 
within the Michaelis–Menten framework, we leverage existing biochemical and pharmacological concepts such as “satura-
tion” to establish the region where the KMD is likely to exist. The advantage of defining KMD as a region, rather than as an 
inflection point along the curve, is that a region reflects uncertainty and clarifies that there is no single point where the curve 
is expected to “break;” rather, there is a region where the curve begins to taper off as it approaches the asymptote (Vmax in 
the Michaelis–Menten equation).

Keywords  Kinetically derived maximal dose · Maximum tolerated dose · KMD · MTD · Toxicokinetics · Michaelis–
Menten

Introduction

Regulatory toxicology studies are conducted to help society 
avoid hazards and unacceptable risks that might be posed 
by exposure to chemicals. Since toxicity, and thus, hazards, 
are not intrinsic to the chemical itself but also depend upon 
the dose and the conditions under which consumers, work-
ers, plants, and animals encounter chemicals (McCarty et al. 
2020), avoiding hazards and unacceptable risks requires 
identifying doses of chemicals that produce no adverse 
effects; see explanation in our companion paper, Borgert 
et al. (2021). The goal is to ensure safety by providing 

regulatory agencies with information about the safe dose 
range, so they can set safe exposure levels.

Contrast this with investigational toxicology, which is 
focused on understanding why a chemical is toxic—what 
is the mode of action, what are the biomarkers that can be 
used to infer toxicity, are there specific chemical structures 
that should be avoided in the future?

The difference between regulatory toxicology and investi-
gational toxicology is clear—it is the purpose. The purpose 
of the studies, the information that they will yield, and how 
that information will inform decisions is what underlies the 
differences.

This paper focuses on regulatory toxicology—specifi-
cally, how should studies be designed to identify the safe 
exposure levels? We argue that the old standard, the maxi-
mum tolerated dose (MTD), should be abandoned, and that 
regulatory toxicology studies should embrace a more objec-
tively defined kinetically derived maximum dose (KMD) 
that we introduce here.
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Therefore, what is wrong with MTD studies? Some have 
argued that toxicity studies at low doses tend to miss tox-
icity, and that very-high-dose studies are thus warranted 
(McConnell 1989; Heringa et al. 2020; Woutersen et al. 
2020; Slob et al. 2020). They contend that lower doses are 
inadequate, because lower doses will produce smaller effect 
sizes, leading to a lower chance of being statistically signifi-
cant, and thus, increasing the false negative rate. Their solu-
tion is to call for studies at higher doses which they believe 
will increase the statistical power.

Such interpretations of statistical power are misleading. 
In addition, studies with small sample sizes and lower sta-
tistical power actually lead to an increase in false positives 
(Christley 2010; Gelman and Carlin 2014). In other words, 
low-power studies done at lower doses where the effect sizes 
are smaller are more likely to be found significantly differ-
ent, when they should not be. This is a major contribut-
ing factor to the reproducibility crisis we face in toxicology 
today. These flawed arguments are predicated on the false 
notion that there must be toxicological effects at all doses, 
including at lower doses that may truly lack effects.

In addition to the conceptual errors involved in advocat-
ing use of the MTD for regulatory toxicology studies, the 
MTD is rarely relevant to human exposures, may confound 
identification of the non-hazardous dose range in a variety 
of ways, and is unnecessary for establishing safety, as we 
have recently explained (Borgert et al. 2021). Since animals 
used in an MTD-based study are experiencing unnecessary 
harm without the counterbalance of the benefits for ensur-
ing human safety, the use of animals in an MTD study is 
unethical.

Fortunately, better approaches are available. For regula-
tory purposes, dose-setting based on kinetics is superior to 
MTD-based dose-setting, and as we have recently described 
(Borgert et al. 2021).

Setting doses based on the KMD helps to ensure that the 
study is conducted under conditions of consistent toxicoki-
netics and that any adverse effects observed are due to dose-
relevant mode(s) of action. This is accomplished by ensuring 
that the doses employed in the study are constrained to the 
same side of the toxicokinetic conditions—either the study 
is conducted below saturation of elimination kinetics, or at 
the point of saturation of elimination kinetics and above. 
Crossing that boundary, where the enzymes become satu-
rated, triggers different modes of action, and thus, includ-
ing both dose ranges within the same study requires a clear 
delineation of interpretation between the two dose ranges, a 
delineation typically ignored in regulatory interpretations.

Here, we introduce a new, mathematically rigorous way 
to identify the region where the KMD exists. We believe 
that a new KMD approach is necessary as the existing 
method requires assumptions that can be problematic. 
Specifically, the existing KMD approach requires the use 

of the area under the toxicokinetic curve (AUC) at 24 h 
(Saghir 2015; Saghir et al. 2012). The assumption when 
using the AUC in this way is that the overall shapes of 
the various possible blood concentration curves will be 
congruent. However, it is well known that multiple, very 
different, blood concentration curves can all yield the same 
AUC. It is also well established statistically that using a 
small number of replicates increases the likelihood that the 
sample distribution of AUCs and the sample distribution 
of the elimination curves will differ markedly from the 
population distribution of AUCs and elimination curves. 
In other words, a small number of replicates are far less 
likely to replicate the population than one would hope; 
meaning that any estimate of where the KMD region might 
lie is more likely to be biased (as in deviating from the 
population distribution) than not. Compounding these 
complications is the fact that toxicity is often the result 
of peak plasma concentrations rather than the total dose 
(which the AUC represents), as is the case for chloroform 
and perchloroethylene (reviewed in Borgert et al. 2015); 
hence, there is no compelling reason to ground the rela-
tionship between administered dose and blood level on the 
AUC rather than on a different kinetic parameter.

Finally, we find that the use of a point estimate for the 
KMD is not mathematically rigorous. The reason is sim-
ple—there is not one single point where the rate of the 
elimination curve moves from being linear to nonlinear. 
Said another way—our eyes may perceive that the linear 
aspect of the elimination curve is linear, but in reality, the 
slope, or rate (or first derivative) of the elimination curve 
is constantly changing as a function of time (or concentra-
tion when examining the Michaelis–Menten curve). While 
a portion of the rate curve may appear to be linear, it is 
quasi-linear at best (where quasi-linear means having an 
appearance that is linear, meaning no change in the slope 
function, when in fact there are small changes in the slope 
function). Due to various biological processes, the rate 
of the elimination kinetics curve is actually described by 
a system-wide Michaelis–Menten equation. Thus, math-
ematically, we believe that it is better to refer to the KMD 
as a region, representing uncertainty, where the rate curve 
begins to demonstrably approach the asymptote, where 
the asymptote represents system-wide saturation of the 
elimination mechanism.

We were motivated, for these reasons, to develop a new 
KMD approach that does not rely on the same set of prob-
lematic assumptions, but instead is closely grounded in 
established biochemical and pharmacological theory. Our 
approach uses toxicokinetic data to estimate the Michae-
lis–Menten mechanics that undergird the toxicokinetics. Spe-
cifically, Michaelis–Menten mechanics represent the slope 
of the toxicokinetic data—it is actually Michaelis–Menten 
mechanics that determine the KMD, as the saturation of 
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enzyme kinetics is represented as the Michaelis–Menten 
curve approaching the high concentration asymptote. Using 
toxicokinetic data to estimate the Michaelis–Menten param-
eters, we can do a better job of estimating the region where 
the KMD exists using mathematical algorithms designed 
to identify maximal curvature, such as the “kneedle” algo-
rithm (Satopaa et al. 2011) which is used to find “knees” or 
“elbows” in continuous, scale-free curves.

Defining the KMD using the Michaelis–
Menten equation

When a drug or chemical (we will use the term “chemical” 
broadly throughout to also include drugs) is ingested, or 
somehow introduced into the circulation, the absorption, dis-
tribution, metabolism, and excretion (ADME) of the chemi-
cal is governed by two general phenomena, first, by physi-
cal–chemical properties of the chemical and the system, that 
is, adsorption and partitioning between lipid and aqueous 
compartments, and second, by the action of specific proteins. 
With respect to the latter—active proteins such as transport-
ers, enzymes, etc.—a chemical will typically bind or interact 
with in a way that causes a biologically important alteration. 
For instance, chemicals may bind plasma proteins, facilitat-
ing their transport throughout the body and/or hinder their 
metabolism and excretion. Other proteins may facilitate the 
efflux of chemicals or their metabolites into urine, bile ducts, 
or into the intestinal lumen. Some proteins may enzymati-
cally transform the chemical into a metabolite, or conjugate 
the chemical or metabolite to facilitate excretion.

Chemical and protein interactions are governed by 
Michaelis–Menten mechanics. Michaelis–Menten mechan-
ics provide a mathematical way of understanding the veloc-
ity of product formation as a function of the substrate con-
centration. For instance, the rate of production of a chemical 
metabolite by an enzyme is governed by the Michae-
lis–Menten equation

where v is the reaction rate, Vmax is the maximum reaction 
rate, Km is the substrate concentration that results in 50% of 
Vmax, and [S] is the substrate concentration.

Michaelis–Menten kinetics governs all processes where 
a chemical interacts with a specific active protein. Chemical 
binding to plasma binding proteins is governed by Michae-
lis–Menten kinetics, where the product is the chemical-
bound protein complex. The same is true for chemical/ligand 
binding to receptors. In the case of transporter proteins, such 
as the multidrug resistance 2 (MRP2) protein, the product is 
the effluxed chemical.

v =
Vmax[S]

Km + [S]
,

If we consider ADME as a system, it is ultimately driven 
by numerous chemical–protein interactions. As each chemi-
cal–protein interaction is governed by their own Michae-
lis–Menten equation, the function of the system as a whole is 
the result of a system of Michaelis–Menten equations, where 
some equations govern the appearance of the chemical in the 
system (e.g., absorption and reabsorption), others govern the 
distribution of the chemical into and out of organ compart-
ments (e.g., distribution), while others govern the disappear-
ance of the chemical (e.g., metabolism and excretion). The 
rates of absorption/reabsorption, distribution, metabolism, 
and excretion are all the result of the sums of the Michae-
lis–Menten equations for the proteins (including enzymes 
and channels) and other macromolecules that govern differ-
ent parts of the ADME process. We know that this is true 
given the fact that physiologically based pharmacokinetic 
models work, and this is no more than an extension of the 
concept of a system of continuous stirred tank reactor sys-
tems. The sums of the Michaelis–Menten equations across 
all of ADME can be brought together into a larger system-
level Michaelis–Menten equation that governs the rate of the 
observed pharmacokinetic curve.

Thus, the observed pharmacokinetic curve has a Michae-
lis–Menten rate. By definition, that rate is the first deriva-
tive of the pharmacokinetic curve. Likewise, as the Michae-
lis–Menten curve governs the observed pharmacokinetic 
curve, the observed pharmacokinetic curve also adheres to 
certain known characteristics of Michaelis–Menten kinetics. 
Chief among these is the observation that as the substrate/
chemical/ligand concentration increases, the velocity asymp-
totically increases toward the maximum velocity, Vmax. In 
enzyme and receptor kinetics, we refer to this phenomenon 
as enzyme or receptor saturation. The key point being that 
one does not need to experience 100% occupation of a set of 
enzymes or receptors in the cell to see saturation. Rather, the 
key idea is that the increase in the slope (the second deriva-
tive of the pharmacokinetic curve) declines as the amount 
of substrate/chemical/ligand increases, and that there is a 
point where the increase in the slope slows so much that the 
system acts or responds as if the system is saturated.

Finding the KMD

Our approach to finding the KMD is different from others. 
Although we use toxicokinetic data, our approach is based 
on Michaelis–Menten mechanics, and then, a mathematical 
analysis called the “kneedle” algorithm is used to identify 
the point of “diminishing returns”—the point at which the 
change in slope clearly demarcates the curve being nearly 
indistinguishable from the asymptote (Satopaa et al. 2011). 
The region within which that point lies, also known as a 
knee or elbow in the curve, is the KMD.
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Our approach starts by reverse engineering the system-
wide Michaelis–Menten mechanics that result in the toxi-
cokinetic curve. Our view is that elimination kinetics is 
governed by a system of Michaelis–Menten functions, as 
proteins (and mostly enzymes) are driving ADME. Each 
enzyme has its own Michaelis–Menten equation that govern 
it, but the sum of all of these working together as a system 
results in a system-wide, overall Michaelis–Menten func-
tion. It is this overall, system-wide function that governs the 
observed toxicokinetic curve.

Here, we use a Bayesian framework to estimate Vmax and 
Km using the toxicokinetic data. This approach applies Bayes 
Theorem to obtain a final (posterior) distribution of plau-
sible Vmax and Km values by adjusting observed data based 
on prior knowledge. We used information from previously 
published, peer-reviewed studies and government reports 
to build our prior distribution. Applying Bayesian analy-
sis with differential equations, we can use the toxicokinetic 
data to estimate likely values for Vmax and Km. The resulting 
distributions of likely Vmax and Km values can then be used 
to generate a set of Michaelis–Menten equations that are 
likely to represent the slope function for the toxicokinetic 
data, and thus estimate a range of KMD values. A similar 
analysis could be conducted by classical/frequentist sta-
tistical approaches using maximum-likelihood approaches 
rather than prior knowledge. Estimates for Vmax and Km can 
be used to build the Michaelis–Menten curve by applying 
the Michaelis–Menten equation.

In this specific example, our calculations are based on 
the following:

where σ is the standard deviation; µ is the instantaneous 
slope of the toxicokinetic curve, expressed as the Michae-
lis–Menten equation. Vmax and Km have truncated normal 
distributions, with hyperparameters derived from the litera-
ture. Less informative priors can also be used for Vmax and 
Km when prior information is lacking. What we are doing 
is calculating the distribution of likely values of Vmax and 
Km using the prior distributions (prior or existing informa-
tion from the literature to set the prior distributions), and 
informing these priors using the toxicokinetic data. Thus, we 

y ∼ Normal(u, �)

� ∼ HalfCauchy(1)

Vmax ∼ Normal[25, 2;(0, infinity)]

Km ∼ Normal[11, 2;(0, infinity)]

� ∼ Vmax

[S]

Km + [S]
,

are estimating Vmax and Km using the toxicokinetic data as 
input to an ordinary differential equation (ODE) solver and 
specifically minimizing the difference between the observed 
toxicokinetic data and the simulated value from the ODE 
solver.

Figure 1 presents the single Michaelis–Menten curve 
built from the mean of the Vmax and Km distributions.

To calculate the KMD we used the kneedle algorithm. 
This algorithm finds the point on a curve where the slope 
approaches an asymptote (i.e., the flat part of the curve at 
higher concentrations). This is also known as the point of 
“diminishing returns” or the “knee” (Satopaa et al. 2011). 
The challenge to identifying this point on an exponential 
curve, or something similar such as the Michaelis–Menten 
curve, is that the point is not scale-invariant, meaning that 
the highest substrate concentration and rate plotted will 
alter the point at which the kneedle algorithm identifies the 
“knee”. In our experience, looking for the kneedle with the 
highest plotted concentration corresponding to 90% or 95% 
of Vmax tends to be sufficiently close to the asymptote.

The reason for suggesting 90% or 95% is simple: the 
goal is to choose a point that is near the concentration at 
which the enzyme behaves as if it were saturated. Saturable 
behavior is noted as being very near to zero-order elimina-
tion kinetics, i.e., that the elimination kinetics are linear. 
Keep in mind that the elimination kinetics are the same as 
the slope of the curve. As the slope will never be linear 
for the Michaelis–Menten curve, we instead look for the 
region where the change is slope is the smallest—that is, 
the asymptotic region. Based on our experiences, the region 
from 90 to 95% of the Vmax is quite suitable (see Table 1 and 
Fig. 2).

Fig. 1   An example of Michaelis–Menten curve. The x-axis is the 
substrate concentration, and the y-axis is the enzyme conversion rate 
for the substrate. As the substrate concentration increases, the rate 
increases. This behavior is asymptotic, such that the slope of the rate 
decreases with increasing substrate concentration—as the asymptote 
is reached
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The substrate concentration at 95% of the Vmax can be 
found algebraically as

Similarly, we can find the substrate concentration at 90% 
of the Vmax

v =
Vmax[S]

Km + [S]

[S] = −
vKm

v − Vmax

[S] = −

(

0.95Vmax

)

Km

0.95Vmax − Vmax

[S] = −

(

0.95Vmax

)

Km

−0.05Vmax

[S] = 19Km.

We calculated the slope of the curves for Vmax = 25.0 and 
Km = 10.5 and Vmax = 100 and Km = 100 to show the slope of 
the elimination curves. We used 95% and 90% of the Vmax 
as our maximum substrate concentrations and the starting 
concentration. Table 1 shows the slopes of the elimination 
curves (Fig. 2) for at 95% and 90% of the Vmax.

It is clear that the slope is not stable, or truly linear, for 
large segments of the curve, but one can see that the change 
in slope is much smaller at the earlier time-points (where the 
substrate concentration is closer to the asymptote)—this is 
the range where saturation is clearly more evident (as noted 
by the smaller change in slope). The starting concentration 
at 90% of the Vmax still shows smaller changes in slope, and 
is thus still near the saturable kinetics.

An Application Example

Typically, we will have toxicokinetic data available for a 
chemical of interest, and we want to estimate the KMD 
along with our uncertainty in that estimate. In this instance, 
we have generated a model set of toxicokinetic data using 
the known Km and Vmax for liver alcohol dehydrogenase in 
males and females for ethanol metabolism. For the purposes 
of this example, we obtained the toxicokinetic data from 
our toxicokinetics simulator, which uses Michaelis–Menten 
mechanics to model the system-wide elimination rate. We 
set the Vmax = 175 mg/kg-hr and the Km = 11.8 mg/dL, which 
is within the range reported by Baraona et al. (2001). This 
results in a blood concentration elimination curve shown 
in Fig. 3.

The first step in estimating the KMD is to estimate the 
system-level Vmax and Km. We used a differential equation 
solver in a Bayesian context to estimate the Vmax and Km 
values from the Michaelis–Menten equation; however, one 
could also use a maximum-likelihood approach. The solver 
gives us a distribution of plausible Vmax and Km values that 
drive the elimination kinetics. Our Bayesian analysis esti-
mates that Vmax has a mean of 176.49 mg/kg-hr, with lower 
and upper limits of 169.33 mg/kg-hr and 183.45 mg/kg-hr, 
and that Km has a mean of 11.97 mg/dL with lower and 
upper limits of 11.08 mg/dL and 12.86 mg/dL, respectively 
(Fig. 4). Note that these values for Vmax and Km are similar to 
the values we used to generate the elimination kinetic curve 
(Vmax = 175 mg/kg-hr and the Km = 11.8 mg/dL).

[S] = −

(

0.90Vmax

)

Km

0.90Vmax − Vmax

[S] = −

(

0.90Vmax

)

Km

−0.10Vmax

[S] = 9Km.

Table 1   Slopes over time for different enzymatic parameters (see 
Fig. 2)

Time range (h) Vmax: 25 
Km: 10.5 
95% Vmax
Slope

Vmax: 25 
Km: 10.5 
90% Vmax
Slope

Vmax: 100 
Km: 100 
95% Vmax
Slope

Vmax: 100 
Km: 100 
90% Vmax
Slope

0.0–0.5 − 23.71 − 22.36 − 94.94 − 89.77
0.5–1.0 − 23.63 − 22.02 − 94.82 − 89.28
1.0–1.5 − 23.54 − 21.60 − 94.68 − 88.74
1.5–2.0 − 23.44 − 21.06 − 94.55 − 88.15
2.0–2.5 − 23.33 − 20.33 − 94.40 − 87.50
2.5–3.0 − 23.19 − 19.33 − 94.25 − 86.78
3.0–3.5 − 23.04 − 17.89 − 94.09 − 85.98
3.5–4.0 − 22.85 − 15.78 − 93.92 − 85.08
4.0–4.5 − 22.63 − 12.70 − 93.74 − 84.08
4.5–5.0 − 22.36 − 8.63 − 93.56 − 82.94
5.0–5.5 − 22.03 − 4.55 − 93.36 − 81.66
5.5–6.0 − 21.62 − 1.84 − 93.14 − 80.18
6.0–6.5 − 21.07 − 0.63 − 92.92 − 78.49
6.5–7.0 − 20.35 − 0.20 − 92.68 − 76.54
7.0–7.5 − 19.36 − 0.06 − 92.42 − 74.26
7.5–8.0 − 17.94 − 0.02 − 92.15 − 71.59
8.0–8.5 − 15.85 − 0.01 − 91.85 − 68.45
8.5–9.0 − 12.80 0.00 − 91.53 − 64.74
9.0–9.5 − 8.75 0.00 − 91.19 − 60.37
9.5–10.0 − 4.65 0.00 − 90.83 − 55.24
10.0–10.5 − 1.90 0.00 − 90.43 − 49.30
10.5–11.0 − 0.65 0.00 − 90.00 − 42.62
11.0–11.5 − 0.21 0.00 − 89.53 − 35.40
11.5–12.0 − 0.06 0.00 − 89.01 − 28.06
12.0–12.5 − 0.02 0.00 − 88.45 − 21.12
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Next, we input these plausible values and the upper and 
lower bounds of Vmax and Km along with the alcohol concen-
tration at 90% and 95% Vmax into the KMD kneedle algorithm 
to estimate the range where the KMD is likely. The substrate 
concentrations at 90% and 95% Vmax are 106.2 mg/dL and 
224.2 mg/dL, respectively. We use the lower bound of Vmax, 
165 mg/kg-hr, and the lower bound of Km, 11 mg/dL, with the 
substrate concentration at 90% of Vmax (106.2 mg/dL) to esti-
mate the lower bound of the range that contains the KMD. We 
also use upper bounds for Vmax (184 mg/kg-hr) and Km (13 mg/
dL) and the substrate concentration at 95% Vmax (224.2 mg/
dL) to estimate the upper bound of the range that contains the 

KMD. Thus, the KMD is bound at 25 mg/dL and 42 mg/dL 
(Fig. 5). The mid-point of this range is 34 mg/dL, which we 
calculated by taking the most plausible values for Vmax and 
Km, and using the mean of the 90% Vmax and 95% Vmax as the 
maximum concentration. Thus, we estimate a plausible range 
for the KMD to be between 25 and 42 mg/dL with the most 
likely value being near 34 mg/dL.

Fig. 2   Elimination kinetics curves. A The elimination kinetics curve 
for an enzyme or enzyme system with a Vmax = 25 and a Km = 10.5 
and a starting concentration equivalent to the rate at 95% of the Vmax. 
B The elimination kinetics curve for an enzyme or enzyme system 
with a Vmax = 25 and a Km = 10.5 and a starting concentration equiva-
lent to the rate at 90% of the Vmax. C The elimination kinetics curve 

for an enzyme or enzyme system with a Vmax = 100 and a Km = 100 
and a starting concentration equivalent to the rate at 95% of the Vmax. 
D The elimination kinetics curve for an enzyme or enzyme system 
with a Vmax = 100 and a Km = 100 and a starting concentration equiva-
lent to the rate at 90% of the Vmax
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Conclusions

We have demonstrated a mathematically tractable 
approach based on established principles from biochem-
istry and pharmacology to identify the range where the 

KMD likely exists. Thus, we reject the argument that it is 
not possible to identify the region where a toxicokinetic 
curve begins to approach enzymatic saturation. Rather, we 
argue that the notion of enzyme saturation is a well-known 
and well-recognized concept from the fields of biochem-
istry and enzymology, governed by the well-established 
principle of the Michaelis–Menten equation.

We also recognize that there are challenges in identify-
ing the KMD using only the area under the curve (AUC) to 
represent the pharmacokinetic profile. It is important to note 
that there is an extensive literature that demonstrates that 
more than one curve shape can result in the same AUC over 
any given timeframe. This means that the ADME/kinetics 
can be substantially different between several curves that 
all have the same AUC. One of the most obvious examples 
of this occurs with drugs that have high oral bioavailability, 
such as ibuprofen (Atkinson et al. 2015; Pavliv et al. 2011). 
Pavliv et al. (2011) compared the pharmacokinetic profile 
of ibuprofen administered per os as an 800 mg oral tablet or 
infused over 5–7 min in 200 mL intravenous saline solution 
containing 4 mg/mL ibuprofen. Both administrations were 
equally well tolerated. Figure 1 and Table 1 of their publica-
tion show clearly that IV infusion produced a higher Cmax 
and more rapid tmax, but identical AUC over 12 h compared 
to oral administration. Since toxicity can depend upon peak 
plasma concentrations rather than total dose (AUC), as is 
the case for chloroform and perchloroethylene (reviewed in 

Fig. 3   Elimination kinetic curve for alcohol. The rate of alcohol elim-
ination is governed by Michaelis–Menten mechanics. To demonstrate 
how we use PK data to estimate the Vmax and Km, we needed to simu-
late the alcohol elimination curve using empirical estimates of Vmax 
and Km. In a typical situation, we would start with the PK data, and 
then, we would use our Bayesian approach to solve the Michaelis–
Menten equation to obtain the Vmax and Km values

Fig. 4   Bayesian estimates of Vmax and Km from the Elimination 
Kinetic Curve for Alcohol. We used a Bayesian approach to estimate 
the kinetic parameters, Vmax and Km, associated with the elimination 
kinetic curve for alcohol. The Michaelis–Menten equation serves as 
the slope of the pharmacokinetic curve/elimination kinetic curve for 
alcohol. The histograms show the distribution of the Vmax and Km val-

ues estimated using the Bayesian approach. The dark lines inside each 
histogram depict the 95% Bayesian credible interval (the central 95% 
most likely values for each parameter). We used these values, along 
with the 90% Vmax and 95% Vmax values to estimate the region where 
the KMD is most likely to exist
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Borgert et al. 2015), there is no compelling reason to ground 
the relationship between administered dose and blood level 
on the AUC rather than on a different kinetic parameter.

Thus, we devised a strategy that refocuses the attention on 
identifying a KMD where it is mathematically more tenable—
the slope function of Michaelis–Menten mechanics. To accom-
plish this, we describe how a differential equation solver can 
be used to estimate the Michaelis–Menten parameters, Vmax 
and Km, using only the pharmacokinetics data. We then solved 
the problem of identifying the range where the KMD exists 
by recasting the problem as a “diminishing returns” problem, 
where we aim to identify the point on a curve where slope 
becomes asymptotic. We used the well-established kneedle 
algorithm to help us identify the KMD region. Consequently, 
we have demonstrated not only is it possible to estimate a 
KMD, but that recasting the pharmacokinetics back to basic 
biochemical and pharmacological principles makes the identi-
fication of the region containing the KMD tractable.
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Fig. 5   Bounded range of the KMD. We calculated the upper and 
lower bounds of the KMD for both the 90% Vmax and 95% Vmax val-
ues. The substrate concentrations at 90% and 95% Vmax are 106.2 mg/
dL and 224.2 mg/dL, respectively. We use the lower bound of Vmax, 
165 mg/kg-hr, and the lower bound of Km, 11 mg/dL, with the sub-
strate concentration at 90% of Vmax (106.2  mg/dL) to estimate the 
lower bound of the range that contains the KMD. We also use upper 
bounds for Vmax (184 mg/kg-hr) and Km (13 mg/dL) and the substrate 
concentration at 95% Vmax (224.2 mg/dL) to estimate the upper bound 
of the range that contains the KMD. Thus, the KMD is bound at 
25 mg/dL and 43 mg/dL (vertical lines). The mid-point of this range 
is 34 mg/dL
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