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Abstract
The proliferation of new psychoactive substances (NPS) has necessitated the development and improvement of current 
practices for the detection and identification of known NPS and newly emerging derivatives. High-resolution mass spec-
trometry (HRMS) is quickly becoming the industry standard for these analyses due to its ability to be operated in data-
independent acquisition (DIA) modes, allowing for the collection of large amounts of data and enabling retrospective data 
interrogation as new information becomes available. The increasing popularity of HRMS has also prompted the exploration 
of new ways to screen for NPS, including broad-spectrum wastewater analysis to identify usage trends in the community 
and metabolomic-based approaches to examine the effects of drugs of abuse on endogenous compounds. In this paper, the 
novel applications of HRMS techniques to the analysis of NPS is reviewed. In particular, the development of innovative data 
analysis and interpretation approaches is discussed, including the application of machine learning and molecular networking 
to toxicological analyses.
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Introduction

The United Nations Office on Drugs and Crime (UNODC) 
defines new psychoactive substances (NPS) as ‘substances 
of abuse, either in a pure form or a preparation, that are 
not controlled by the 1961 Single Convention on Narcotic 
Drugs or the 1971 Convention on Psychoactive Substances, 
but which may pose a public health threat’ (United Nations 
Office on Drugs and Crime 2021). In this context, the 
word ‘new’ does not necessarily mean new inventions, but 
merely substances that have recently appeared on the drug 
market (United Nations Office on Drugs and Crime 2021). 
These substances are often marketed as ‘legal highs’, ‘bath 
salts’, or ‘research chemicals’ in order to circumvent legis-
lation (United Nations Office on Drugs and Crime 2021); 

however, many analogues eventually become controlled due 
to their unknown toxicologic and pharmacological effects 
(Pasin et al. 2017b). This cat-and-mouse game between law 
enforcement and clandestine laboratories has led to the pro-
liferation of many new analogues and is a cause for signifi-
cant concern for analytical laboratories.

As of December 2020, more than 1,000 different NPS 
have been reported to the UNODC Early Warning Advi-
sory (EWA) from 126 different countries. The NPS mar-
ket is primarily dominated by stimulants, such as synthetic 
cathinones, aminoindanes, and piperazines, and synthetic 
cannabinoids, accounting for 36% and 29% of the market, 
respectively. Classic hallucinogens, predominantly halluci-
nogenic phenethylamines, account for 15% of the market, 
while opioids represent 9% (United Nations Office on Drugs 
and Crime 2021), showing a large increase from the 2% of 
NPS reported in 2014 (United Nations Office on Drugs and 
Crime 2020). Synthetic opioids are a class of NPS of particu-
lar concern for toxicologists, due to the significantly higher 
potency of these compounds when compared to their tradi-
tional counterparts (Suzuki and El-Haddad 2017; Zawilska 
2017). The increasing proliferation of these NPS, in addi-
tion to the often-considerable delay between the early use 
of a new compound and the availability of relevant certified 

 * Joshua Klingberg 
 joshua.c.klingberg@gmail.com

1 Australian Racing Forensic Laboratory, Racing NSW, 
Sydney, NSW 2000, Australia

2 Centre for Forensic Science, University of Technology 
Sydney, Broadway, NSW 2007, Australia

3 Section of Forensic Chemistry, Department of Forensic 
Medicine, University of Copenhagen, Copenhagen, Denmark

http://orcid.org/0000-0003-4310-4777
http://crossmark.crossref.org/dialog/?doi=10.1007/s00204-022-03224-2&domain=pdf


950 Archives of Toxicology (2022) 96:949–967

1 3

reference materials (CRMs), demonstrates the inadequacies 
of traditional targeted screening and necessity of developing 
new, non-targeted screening strategies.

In recent years, there has been a continual push towards 
the use of high-resolution mass spectrometry (HRMS) tech-
niques for the analysis of NPS. One of the main driving 
forces behind this trend is the ability of HRMS instruments 
to operate in a data-independent acquisition (DIA) mode 
(Pasin et al. 2017b). This method of acquisition allows for all 
precursor ions to be subjected to collision-induced dissocia-
tion (CID), which provides full scan tandem MS (MS/MS) 
data (Klingberg et al. 2021a; Noble et al. 2017). The major 
benefit of this acquisition mode is that data can be reviewed 
retrospectively for new compounds of interest, without the 
need for sample re-extraction and re-analysis (Pasin et al. 
2017b).

Concurrent with the development of DIA, the expansion 
of metabolomics offers opportunities to improve non-tar-
geted screening strategies (Courant et al. 2014; Fiehn et al. 
2015; Szeremeta et al. 2021). Metabolomics aims to meas-
ure small changes within a multicellular system, in response 
to a given stimulus (Fiehn et al. 2015; Steuer et al. 2019; 
Szeremeta et al. 2021). The metabolome is described as a 
group of endogenous metabolites which are produced by a 
biological system (Junot et al. 2014). The inclusion of prod-
ucts metabolised from exogenous sources as either phase I or 
II metabolites is referred to as the xenometabolome (Courant 
et al. 2014; Steuer et al. 2019; Szeremeta et al. 2021). It is 
this unrestricted approach to sample analysis that makes the 
use of metabolomics so desirable.

The increase in the volume of data that is available to 
analysts, however, has necessitated more focus on ‘back-
end’ data processing techniques to draw meaningful conclu-
sions. With the availability of cheaper and more powerful 
computational processing (Margagliotti and Bollé 2019), 
statistical approaches, such as machine learning (Klingberg 
et al. 2021b; Meshref et al. 2020; Stanstrup et al. 2015) and 
molecular networking (Allard et al. 2019; Vincenti et al. 
2020), have become more viable for toxicological applica-
tions. Machine learning algorithms enable a computer to 
‘learn’ information directly from a data set without need-
ing a predetermined equation to use as a model (Klingberg 
et al. 2021b). Molecular networking, on the other hand, is 
a technique that is capable of representing MS/MS data in 
a graphical form (Allard et al. 2019). This approach is able 
to identify potential similarities among all MS/MS spectra 
within a given dataset and correlate unknown but related 
molecules (Vincenti et al. 2020).

This review aims to provide an overview of the status 
of NPS analysis in toxicology. It will focus on the different 
techniques which have been used for both sample prepara-
tion and instrumental analysis. In addition, this review will 
highlight emerging areas of development, including the use 

of metabolomics-based techniques for drug screening, and 
novel data analysis methods applied to toxicological appli-
cations. Particular focus was given to advancements made 
since the review by Pasin et al. (2017b); however, topics 
that were not previously covered but published before 2017 
are also reviewed here including novel data analysis and 
interpretation methods.

Sample preparation and extraction

A particular challenge that can be associated with the analy-
sis of NPS is the diverse range of analytes and the complex 
matrices in which they are often found. Therefore, appropri-
ate sample preparation can be vital for successful analysis. 
Analytes are often found in urine as metabolised conjugates, 
requiring hydrolysis to liberate the free drug. The develop-
ment of ‘dilute and shoot’ methods can alleviate this require-
ment (Borden et al. 2020). Some drug conjugates have been 
shown to be responsive to MS analysis (Dickerson et al. 
2012), though they can often show poor sensitivity and lack 
commercially available standards for confirmatory analysis. 
Traditionally, hydrolysis was achieved through either acidic 
conditions or use of an enzyme, such as commercially avail-
able glucuronidase enzymes (Borden et al. 2020). Regard-
less of how hydrolysis is performed, once the free drug is 
liberated, it must be extracted from the matrix to facilitate 
analysis.

The two most common extraction procedures are solid-
phase extraction (SPE) and liquid–liquid extraction (LLE). 
While these techniques are still widely used for toxicologi-
cal analyses, they do have some drawbacks, including the 
use of large volumes of organic solvents (LLE) and being 
relatively time-consuming procedures (Borden et al. 2020). 
From a metabolomic perspective, these techniques also 
introduce bias as they limit the analytes to a targeted group, 
such as acidic or basic drugs. More recently, there has been 
a focus on the concept of ‘green chemistry’, which aims to 
reduce the environmental impact of chemical procedures, 
giving rise to the popularity of microextraction procedures. 
Both solid-phase microextraction (SPME) and liquid-phase 
microextraction (LPME) have been extensively reviewed 
and demonstrated applicability to toxicological analyses 
(Borden et al. 2020; He and Raynie 2017; Płotka-Wasylka 
et al. 2015). The key advantages of some emerging sample 
preparation methods are summarised in Table 1.

In addition to microextraction techniques, the use of pres-
surised liquid extraction (PLE) as an effective multi-class 
extraction procedure for NPS from hair samples has been 
explored. PLE uses solvents at high temperatures and pres-
sures, without their critical point being reached, in order 
to extract analytes from solid or semi-solid matrices (Mon-
tesano et al. 2017). Montesano et al. (2017) demonstrated 
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the applicability of a PLE technique for the multi-class 
extraction of NPS from hair samples. The authors noted that 
the traditional extraction procedure used for hair samples 
involved NaOH matrix dissolution, followed by either SPE 
or LLE clean-up, which can be unsuitable for some drugs. 
As such, a PLE method was developed which demonstrated 
efficacy for the extraction of synthetic cannabinoids, cathi-
nones, phenethylamines and piperazines. The collected hair 
samples were extracted using a 70:30 (v/v) water–methanol 
mix at a pressure of 100 bar and a temperature of 120 °C. 
The extract was then centrifuged, and the supernatant further 
extracted by SPE. The method was validated with matrix 
effects found to be less than 15% for all analytes (Montesano 
et al. 2017).

Vincenti et al. (2019) investigated the use of dispersive 
liquid–liquid microextraction (dLLME) in addition to PLE 
to extract a range of drugs of abuse from hair samples, 
including both NPS and traditional drugs of abuse. In this 
study, a mixture of 0.15 M formate buffer (pH 3.5) and iso-
propanol (80:20 v/v) was used for extraction at 100 bar and 
150 °C. Following extraction and centrifugation, a dLLME 
procedure was carried out using isopropanol as a dispersing 
solvent and chloroform as an extraction solvent. In order 
to determine the effectiveness of the PLE-dLLME extrac-
tion procedure, the samples were compared to hair samples 
extracted using an alkaline digestion or a simple methanol 
extraction. It was found that analyte recoveries were gener-
ally lower than the other techniques, especially methanolic 
extraction; however, the extracts were a lot cleaner and less 
matrix effects were observed (Vincenti et al. 2019).

In addition to PLE, the quick, easy, cheap, effective, rug-
ged, and safe (QuEChERS) extraction method has started 
seeing use in toxicological analyses. This method, first pre-
sented by Anastassiades et al. (2003), involves a simple, two-
step extraction process including acetonitrile in the presence 

of a salt, commonly magnesium sulfate or sodium chloride, 
for extraction and dispersive SPE for clean-up (Yang et al. 
2020). While QuEChERS has traditionally been used for the 
analysis of pesticides in food products, some recent stud-
ies have explored its application to more toxicologically 
relevant drug analyses. Hasegawa et al. (2018) employed 
QuEChERS for the identification and quantification of syn-
thetic cannabinoid metabolites in human urine. Two differ-
ent QuEChERS cartridges were used, both of which con-
tained magnesium sulfate and end-capped octadecylsilane; 
however, one cartridge contained N-propylethylenediamine 
as a primary secondary amine (PSA) and the other did not. 
Acetonitrile was added to the QuEChERS tubes with the 
urine samples in a 9:1 ratio. All the analytes were identified 
using both extraction methods, however the presence of the 
PSA increased the sensitivity of detection, showing a 15-fold 
increase in peak areas (Hasegawa et al. 2018).

While matrices such as whole blood, plasma, serum, and 
urine are commonly used for toxicological analyses, and are 
considered the ‘conventional’ matrices, there has been sig-
nificant research into the use of alternate matrices for drug 
screening. Oral fluid and hair have become increasing popu-
lar as matrices of interest in toxicology for different applica-
tions. Oral fluid has been considered a direct filtering of the 
blood as the salivary glands are highly perfused with blood. 
Much of the interest in this matrix is due to the simplified 
sample collection, which is quicker, easier, and non-invasive, 
in comparison to matrices such as blood and urine. On the 
other hand, this matrix can be variable, being influenced by 
factors such as circadian rhythm, age, gender, and health, 
among others. From an analytical perspective, the sample 
volume is generally limited, and analytes may be present in 
low amounts, requiring highly sensitive detection methods 
(de Campos et al. 2021). Additionally, hair analysis can be 
used to detect the presence of drugs and some metabolites. 

Table 1  Key advantages of emerging samples preparation methods

Technique Key Advantages Reference

Pressurised Liquid Extraction (PLE)  Increased extraction efficiency
 Potential for automation
 Lower solvent volumes required
 Faster extraction times
 Multi-analyte extraction

Carabias-Martínez 
et al. (2005); 
Montesano et al. 
(2017)

Dispersive Liquid–Liquid Microextraction (dLLME)  Smaller solvent and sample volumes than tradi-
tional LLE

 Greater enrichment factor
 Cleaner extracts
 Lower matrix effects
 Faster extraction times
 Multi-analyte extraction

Vincenti et al. (2019)

Quick, Easy, Cheap, Effective, Rugged, and Safe Extraction (QuECh-
ERS)

 Simple, two-step process
 Faster extraction times
 Increased sensitivity of detection

Anastassiades et al. 
(2003); Hasegawa 
et al. (2018)
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While it is still unclear exactly how drugs are incorporated 
into the hair, it is generally accepted that it involves passive 
diffusion through blood capillaries to the base of the hair fol-
licle (Mantinieks et al. 2018). Similar to oral fluid, the col-
lection of hair samples is easy and non-invasive and can help 
provide a timeline of drug use through segmental analysis; 
however, the detection of recent drug use (within approxi-
mately 7 days) is not possible (de Campos et al. 2021).

In addition to hair and oral fluid, a number of other 
unconventional matrices have been reviewed in the lit-
erature, including sweat and vitreous humor (de Campos 
et al. 2021), bile (Bévalot et al. 2016), nails (Solimini et al. 
2017), bone marrow (Cartiser et al. 2011), and cerumen (ear 
wax) (Meier et al. 2017). The use of human breast milk and 
meconium, the first stool excreted by a newborn, has also 
been investigated in order to identify licit and illicit drug 
use by mothers during pregnancy (de Campos et al. 2021). 
While each of these matrices have unique advantages and 
disadvantages, it is important for an analyst to select the 
most appropriate matrix for the case under investigation and 
alternative matrices can be useful in situations where blood 
and/or urine is not available.

NPS screening—instrumental analysis

Numerous analytical techniques have been developed to 
exploit the advantages of HRMS for the screening and con-
firmatory analysis of NPS. While most of these techniques 
involve the use of a coupled separation instrument, most 

commonly liquid chromatography (LC) or gas chromatog-
raphy (GC), there have been some direct HRMS analyses 
reported in the literature, leveraging techniques such as 
matrix-assisted laser desorption/ionisation (MALDI) and 
paper spray ionisation.

The most common NPS screening methods involve the 
use of LC separation coupled to a variety of HRMS plat-
forms, frequently QTOF or Orbitrap instruments. The major 
driving force behind the preferential use of LC over GC is 
that analytes of interest do not need to be volatile and deri-
vatisation is not required (Pasin et al. 2017b). Many different 
methods optimised for a range of different chemical classes 
have been reported in the literature. Table 2 summarises the 
LC-HRMS-based screening methods recently presented in 
the literature.

While the use of multi-reaction monitoring (MRM) and 
 MS1 monitoring of pseudomolecular ions can be useful for 
drug screening, they do not provide a great deal of struc-
tural information or allow for the detection of unknown com-
pounds. Non-targeted analyses are becoming increasingly 
popular due to the ever-changing nature of the NPS market. 
To this end, Krajewski et al. (2020) reported a method for 
the detection of newly emerging synthetic opioids using a 
QTOF instrument operated in data-dependent acquisition 
(DDA) mode. While this approach can allow for the detec-
tion of unknown compounds within a sample, there is still 
the possibility of analytes of interest being missed, espe-
cially when they have low abundance in comparison to the 
matrix. On the other hand, use of a DIA approach allows for 
both targeted screening in comparison to a library database 

Table 2  Summary of newly presented LC–MS-based screening methods

Drug classes monitored Instrument Analysis mode Analyte identification Reference

Broad spectrum Orbitrap Full scan MS Accurate mass and RT align-
ment to standards

Mokhtar et al. (2020)

Broad spectrum Orbitrap Full scan MS Accurate mass and RT align-
ment to standards

Stephanson et al. (2017)

Designer benzodiazepines Orbitrap Full scan MS (Screening)
Parallel Reaction Monitoring 

(Confirmation)

Accurate mass and RT align-
ment to standards

Pettersson Bergstrand et al. (2018)

Synthetic opioids QTOF Data-dependant acquisition with 
inclusion list

Mass spectral library search Krajewski et al. (2020)

Synthetic opioids QTOF Data-independent acquisition Mass spectral library search 
(targeted)

Monitoring of class-specific 
cleavages (non-targeted)

Noble et al. (2017)

Designer benzodiazepines QTOF Data-independent acquisition Mass spectral library search 
(targeted)

Common fragmentation path-
ways and in silico fragmenta-
tion (non-targeted)

Mollerup et al. (2017)

Synthetic opioids QTOF Sequential Windowed Acquisi-
tion of All Theoretical Frag-
ment Ion Mass Spectra

Mass spectral library search Salomone et al. (2021)
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as well as non-targeted screening using further data analy-
sis and interpretation techniques. Another approach to DIA 
analysis is known as variable DIA, where the full mass-to-
charge (m/z) range is broken down into smaller windows 
and analysed sequentially (Oberacher and Arnhard 2016). 
This can help reduce the noise present in extracted ion 
chromatograms (EICs) of product ions, as fewer precursor 
ions are being fragmented in each mass window. Salomone 
et al. (2021) demonstrated the use of Sequential Windowed 
Acquisition of All Theoretical Fragment Ion Mass Spec-
tra (SWATH™) for the analysis of fentanyl analogues and 
metabolites in hair, using a total of 12 windows covering a 
mass range of m/z 230 to 450.

While the use of GC-HRMS for drug screening is not 
as common as LC-based techniques, Shevyrin et al. (2016; 
2015) published multiple studies detailing the detection and 
characterisation of novel synthetic cannabinoids using both 
GC and LC-HRMS. In situations where CRMs and spectral 
data are not available for newly emerging compounds, GC-
HRMS can present a useful orthogonal technique to LC-
HRMS to assist with structural confirmation.

In addition to ‘conventional’ separation techniques, Got-
tardo et al. (2021) presented a capillary electrophoresis 
(CE)-HRMS method for the detection of a range of cathi-
nones, phenethylamines and tryptamines in urine. While the 
use of CE is not commonplace within forensic toxicology, it 
can provide a useful alternate separation mechanism, which 
has demonstrated high separation efficiency, short analysis 
times and low sample volume requirements. Additionally, 
since CE techniques do not use a packed column, it can 
quickly change between different analytical conditions, with-
out needing lengthy washing and equilibration times. On the 
other hand, CE can often have lower sensitivity than LC-
based techniques and can demonstrate instability in migra-
tion times (Gottardo et al. 2021). Nevertheless, it can pro-
vide a useful orthogonal technique to LC-HRMS analysis.

While chromatographic or CE separation can help reduce 
noise in complex matrices, direct sample analysis techniques 
can also be used for rapid analysis. Due to the lack of chro-
matographic separation, these direct analysis techniques are 
commonly applied to seized samples, where the background 
matrix is less likely to affect the analysis. Birk et al. (2020) 
reported a method for the direct detection of novel phenethy-
lamines, including 2C and NBOMe compounds, on street 
drug blotter samples using a paper spray ionisation QTOF-
MS technique. Paper spray ionisation uses a combination 
of solvent and high voltages to create an ionised spray in 
a similar mechanism to electrospray ionisation. Using this 
approach, five different NPS compounds were able to be 
detected on street blotter samples with no complex sam-
ple preparation steps required. Similarly, Vandergrift et al. 
(2018) employed a paper spray ionisation approach to the 
detection of fentanyl and norfentanyl that had been spiked 

into diluted urine and commercially available analgesics, 
to simulate fentanyl being added to a street drug. It was 
found that by simply spotting a diluted urine sample or a 
methanolic suspension of a powdered sample onto a paper 
strip, fentanyl could be detected with limits of detection of 
0.27 ng/mL and 0.66 ng/mL for urine and powder suspen-
sion, respectively.

Joye et al. (2020) reported the use of a MALDI-Orbitrap 
instrument for the detection of various novel phenethylamine 
and tryptamine compounds, alongside traditional drugs of 
abuse. Very little sample preparation was required, simply 
involving the dilution of the sample solution in a 1:1 ratio 
with a MALDI matrix solution before being spotted onto 
a stainless-steel plate for analyses. The authors found the 
results obtained by analysis using the MALDI technique 
comparable to conventional LC- and GC–MS analyses, sug-
gesting that this approach could provide a viable alternative 
for rapid, high-throughput screening (Joye et al. 2020).

While most direct MS analysis techniques focus on 
screening for drugs prior to ingestion to reduce the potential 
effects from complex biological matrices, Usui et al. (2018) 
presented a probe electrospray ionisation (PESI) method 
designed for the direct detection of MT-45 in human tis-
sue. Various tissue samples were placed on dedicated plas-
tic sample plates before being placed into the PESI source. 
When the probe needle was brought into contact with the 
sample, a high voltage was applied to generate ions which 
could be introduced into the HRMS detector. The PESI-
HRMS method presented was able to detect the presence of 
MT-45 in all tissue samples analysed, along with two poten-
tial hydroxylated metabolites with similar concentrations to 
conventional analyses (Usui et al. 2018). While the nature 
of direct analysis techniques makes it difficult to separate 
compounds with the same precursor mass, due to the lack of 
a chromatographic separation step, the presented direct anal-
ysis methods demonstrate the potential for such techniques 
to be used as alternate rapid screening analysis approaches.

Wastewater‑based epidemiology (WBE)

Understanding the usage patterns of NPS can be important 
not only for healthcare professionals and toxicologists to 
assess the risks posed by particular compounds, but also for 
policymakers to make informed decisions with regards to 
law enforcement activities (Bijlsma et al. 2019). Estimating 
the prevalence of NPS within the community can be quite 
challenging, however, as information obtained from drug 
seizures, forensic analyses and medical reports can often be 
outdated and not representative of the constantly shifting 
market (Salgueiro-González et al. 2019). Similarly, surveys 
of the population can be biased due to the users’ limited 
knowledge of the substances they are taking. It is difficult 



954 Archives of Toxicology (2022) 96:949–967

1 3

for a single measure to adequately provide the full picture of 
drug use within the community, and, therefore, it is common 
practice for a multi-indicator approach to be adopted (Archer 
et al. 2014). The use of urban wastewater and pooled urine 
samples has seen recent advances in providing anonymised 
but comprehensive information about the prevalence of NPS 
within the community (Bijlsma et al. 2021). This approach 
relies on the fact that traces of everything humans consume 
are excreted, whether unaltered or as metabolites. There-
fore, monitoring biomarkers for relevant analytes of interest 
can be used to estimate drug use within a given population 
(Bijlsma et al. 2019).

Numerous studies have been conducted worldwide to 
investigate the prevalence of NPS use through screening 
of wastewater samples, which are summarised in Table 3. 
While wastewater analysis can be useful for broad-spectrum 
screening of NPS use within the community, there is also 
scope for its use in monitoring particular compounds, or 
classes, of concern. Additionally, studies have demonstrated 
the potential of retrospective analysis for screening historical 
samples, provided that suitable HRMS data were collected 
during the original analyses (Campos-Mañas et al. 2019).

Pandopulos et al. (2020) noted that the extraction of can-
nabinoids from wastewater matrices can be particularly 
challenging due to their hydrophobic nature. To this end, an 
alternate method was developed for the analysis of sewage 
sludge and biosolids, as they can capture the nonaqueous 
components of wastewater and have been shown to contain 
the bulk of phytocannabinoids (Pandopulos et al. 2021). In 
this study, the sludge samples were filtered under vacuum to 
remove as much of the aqueous fraction as possible, before 
applying an LLE method. The analytical method used a 
QTrap instrument operated in MRM mode. The developed 
method was then applied to sludge samples collected from 
a major municipal treatment plant in Australia. The analyses 
showed three cannabinoids, namely Δ9-tetrahydrocannabinol 
(THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-
COOH) and cannabidiol (CBD), at high concentrations, with 
THC being the most abundant analyte, found at concentra-
tions up to 3200 µg/kg in raw primary sludge. This study 
demonstrates that, while wastewater analysis is effective for 
the identification of illicit drug biomarkers, targeting the 
solid fraction could help in the accurate estimation of the 
prevalence of lipophilic compounds, such as cannabinoids, 
in the community (Pandopulos et al. 2021).

In addition to wastewater analysis, pooled anonymous 
urine analysis has been conducted to help form a more 
accurate picture of NPS use within the community. Pooled 
urine samples can form a particularly useful adjunct to 
wastewater analysis as it can eliminate some of the poten-
tial complications, such as the unknown bacterial metab-
olism and stability of targeted analytes in wastewater 
(Archer et al. 2014). Archer et al. (2014) demonstrated 

the potential of such a technique to study the trends in 
the use of classical drugs of abuse and NPS by analysing 
pooled anonymous urine samples from portable urinals 
around London (UK) over a 6-month period. The pooled 
samples underwent enzyme hydrolysis before three dif-
ferent SPE techniques were applied to collect extracts for 
three distinct assays: a basic drug, general drug, and a 
synthetic cannabinoid screen. All extracts were analysed 
on an Orbitrap instrument operated using full scan MS and 
a selection of  C18 columns for the different screens. This 
study found a total of 13 different NPS from a range of 
chemical classes present in the pooled urine samples, with 
mephedrone being the most consistently identified analyte. 
Interestingly, synthetic cannabinoids were not detected in 
any of the pooled urine samples; however, it was noted 
by the authors that degradation may have occurred from 
the samples pooling for 12-h prior to collection (Archer 
et al. 2014).

Following on from this work, Archer et al. (2020) later 
conducted a long-term monitoring study of pooled urine 
samples over a 5.5-year period. For this study, samples 
were prepared in a similar manner to their previous work; 
however, only the general drug and synthetic cannabi-
noid screens were applied. Samples were analysed using 
a ThermoFisher Scientific Q Exactive orbitrap instrument 
operating with full scan MS and both DDA and All Ion 
Fragmentation MS/MS modes using T3 and  C18 columns 
for the general drug and synthetic cannabinoid screens, 
respectively. A total of 44 NPS were detected over the 
study period, with cathinones and synthetic cannabinoids 
being the most prevalent classes. By monitoring the long-
term presence of NPS within pooled urine samples, it is 
possible to gauge the impacts of legislative changes, with 
the prevalence of cathinones decreasing following the 
introduction of the Psychoactive Substances Act in the 
UK, mirrored by a rise in the prevalence of other NPS 
(Archer et al. 2020). Both these studies demonstrate the 
potential of pooled urine as an additional matrix to study 
the NPS phenomenon and provide valuable information to 
relevant stakeholders.

Data analysis and machine learning

The large volume of data collected by HRMS analyses 
necessitates the development of novel data analysis strat-
egies to extract useful intelligence out of the veritable 
haystack of information. These strategies can range from 
relatively simple processes, such as generating EICs for 
common product ions, to more advanced, computational-
based techniques, such as machine learning and molecular 
networking.
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Suspect screening databases and mass spectral 
libraries

Given the continual proliferation of NPS and the constant 
introduction of new compounds, maintaining an up-to-date 
suite of reference materials is impractical and unrealistic 
for a toxicological laboratory. While there are a number of 
freely available MS libraries and data repositories, such as 
MassBank (Horai et al. 2010), mzCloud (HighChem LLC 
2021), RESPONSE (https:// www. polic ija. si/ apps/ nfl_ respo 
nse_ web/ seznam. php) and the NPS Data Hub (https:// nps- 
datah ub. com/) (Urbas et al. 2018), the scope of NPS covered 
by these resources varies and the databases themselves can 
be difficult to incorporate into screening processes across 
different vendor platforms (Mardal et al. 2019). In response 
to these challenges, Mardal et al. (2019) presented an online, 
crowd-sourced NPS database named HighResNPS. This 
database allows users to submit product ion data from their 
analysis of NPS and provides consensus data on diagnos-
tic product ions based on their frequency of reporting. The 
database is also kept up to date through the addition of com-
pounds reported by the EMCDDA, UNODC, Drug Enforce-
ment Administration and other drug monitoring bodies. This 
database can be downloaded in the relevant vendor soft-
ware formats to allow searching against the exact precursor 
masses and diagnostic product ions (Davidsen et al. 2020; 
Mardal et al. 2019).

The applicability of this crowd-sourced database to 
the analysis of seized materials was demonstrated by von 
Cüpper et al. (2020) who submitted five powder samples 
obtained from Danish authorities to HRMS analysis and 
conducted an accurate mass search including both precur-
sor and product ions. In all five cases, the combination of 
accurate mass and fragmentation information provided by 
HighResNPS allowed for the tentative identification of the 
NPS present (von Cüpper et al. 2020). While the structural 
elucidation of isomeric compounds remains challenging, 
owing to the identical fragmentation patterns, tools such as 
these can be invaluable in providing preliminary informa-
tion regarding the presence of novel analogues in analysed 
samples.

Product ion searching

While mass spectral databases are a valuable tool for use 
in screening assays, they still leave the potential for false 
negative results where no previous data is available. As such, 
the development of non-targeted analysis methods which do 
not rely on these databases or CRMs is essential for com-
prehensive screening of toxicological samples. One such 
method which has been developed for this purpose is the 
use of diagnostic product ions to monitor specific classes 
of compounds, rather than individual analytes. It has been 

found previously that different HRMS instruments generally 
present comparable fragmentation patterns following CID 
(Mardal et al. 2019), which is crucial for these screening 
approaches to work.

There have been numerous studies that have investigated 
the CID pathways of various classes of NPS. Fornal (2014) 
studied the fragmentation of substituted cathinones and dis-
covered that most known cathinones can be separated into 
nine distinct classes. These classes could be differentiated 
by their double bond equivalent (DBE) and the characteris-
tics of the amine group present in the structure. From their 
study, it was found that the different subclasses of cathi-
nones follow five generic fragmentation pathways and pro-
duce several diagnostic product ions which may be viable for 
non-targeted screening (Fornal 2014). Additionally, Fornal 
found that many protonated cathinones produce odd-electron 
product ions following CID, which contradicts the even-
electron rule of fragmentation (Fornal 2013). This means 
that inclusion of odd-electron product ions into screening 
methods may be essential for the detection of novel cathi-
none analogues.

Pasin et al. (2017a) explored the CID pathways of halluci-
nogenic phenethylamines, namely 2,5-dimethoxyphenethy-
lamines (2C-X), 2,5-dimethoxyamphetamines (DOX), and 
N-(2-methoxybenzyl) (25X-NBOMe) compounds. These 
compound classes showed several common neutral losses 
and diagnostic product ions which could be exploited for 
non-targeted screening strategies. The applicability of these 
findings to toxicological screening was then demonstrated 
using EICs and neutral loss filtering (NLF). It was found 
that the presence of a compound belonging to either the 
2C-X or DOX groups can be detected by monitoring their 
common neutral losses, although they cannot be differenti-
ated by NLF alone. Furthermore, the generation of EICs for 
diagnostic product ions allowed for the detection of relevant 
compounds in the samples analysed and could differenti-
ate between analytes belonging to each class (Pasin et al. 
2017a).

Noble et al. (2017) investigated the application of product 
ion searching (PIS) techniques to fentanyl analogues in con-
junction with a DIA screening method. The authors found 
that a characteristic, class-specific cleavage of the C-N bond 
between the piperidine ring and amide moiety was present 
for all 50 fentanyl analogues analysed and could be used to 
screen for novel 4-anilidopiperidine fentanyl analogues. This 
was supported by the retrospective analysis of 2,339 authen-
tic whole blood samples to identify 56 fentanyl, 5 alfentanil 
and 1 remifentanil positives (Noble et al. 2017). These find-
ings demonstrate the usefulness of such screening techniques 
for routine casework. Klingberg et al. (2019) expanded upon 
this work to include additional classes of novel synthetic 
opioids (NSOs), namely the AH- and U-series opioids, along 
with MT-45 and the W- series pseudo-opioids. Consistent 

https://www.policija.si/apps/nfl_response_web/seznam.php
https://www.policija.si/apps/nfl_response_web/seznam.php
https://nps-datahub.com/
https://nps-datahub.com/
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with the findings of Noble et al., this study showed that 
each of the subclasses presented several diagnostic product 
ions that could be exploited for inclusion in a non-targeted 
screening method (Klingberg et al. 2019). Several spiked 
samples were analysed in equine plasma, and it was found 
that these diagnostic product ions could be used to detect 
different opioids down to concentrations of 0.05 ng/mL 
(Klingberg et al. 2021a, 2019). All these studies demon-
strate the efficacy of PIS approaches to a broad spectrum 
of NPS and their potential to detect novel analogues which 
have yet to be included in mass spectral databases or have 
no CRM available.

Mass defect filtering (MDF) and Kendrick mass 
defect (KMD)

Mass defect filtering (MDF) is another technique with the 
potential to interrogate the vast amounts of data acquired 
by HRMS instruments. The mass defect of a compound is 
defined as the difference between the exact mass and nomi-
nal integer mass (Sleno 2012; Zhang et al. 2009). Compound 
classes often have similar mass defects, or demonstrate spe-
cific trends with increasing nominal mass (Sleno 2012). This 
technique was first reported in a toxicological context by 
Grabenauer et al. (2012), who investigated its use in the 
screening of herbal products for synthetic cannabinoids. The 
authors reported that the MDF workflow was able to detect 
a compound that was not originally present in the total ion 
chromatogram.

An extension of MDF, known as Kendrick mass defect 
(KMD), has also shown promise for application to the 
screening of toxicological samples. This altered mass scale 
allows for the identification of a group of compounds that 
differ by a specific repeating mass unit, such as a methylene 
group (–CH2) (Hughey et al. 2001; Sleno 2012). The appli-
cability of this technique for toxicological screening was first 
demonstrated by Anstett et al. (2018), who investigated the 
use of KMD analysis for the screening of various pheneth-
ylamine classes; namely 2C-X, aminopropylbenzofuran and 
25X-NBOMe compounds. The authors were able to define a 
KMD filter which successfully differentiated the 2C-X com-
pounds from the other structurally similar classes analysed 
in the study (Anstett et al. 2018). This demonstrated the 
potential selectivity of KMD analysis when screening for 
specific chemical classes.

The use of KMD analysis was further evaluated by Kling-
berg et al. (2021a) who investigated its application to syn-
thetic opioids. This utilised a custom-built program devel-
oped by Pasin (2018) in the Visual Basic for Applications 
environment for Microsoft Excel (named DefectDetect). 
Spiked samples of equine plasma, containing a representa-
tive panel of synthetic opioids, were analysed using DIA and 
six different KMD filters applied to cover a broad scope of 

synthetic opioids. The authors found this approach was able 
to reliably detect most of the synthetic opioids present down 
to a concentration of 0.1 ng/mL. This was possible without 
targeting the known precursor mass of spiked compounds. It 
was noted, however, that the structural diversity within the 
different subclasses of opioids presented a challenge, as ana-
logues which incorporate significant structural changes may 
not be captured by the implemented KMD filters. While this 
presents a drawback for the application of these techniques 
to NPS classes that display significant structural diversity, 
the use of KMD analysis can be beneficial to assist with 
the non-targeted screening of toxicological samples. One 
of the key advantages of KMD analysis and PIS is that they 
can be applied alongside currently implemented screening 
workflows, regardless of the vendor software being used at 
a given laboratory (Klingberg et al. 2021a). From an opera-
tional perspective, this is a significant advantage as it does 
not require users to implement and validate a new method 
to leverage these data analysis techniques.

Metabolomics‑driven approaches for NPS detection

Metabolomics-driven approaches for NPS focus on identify-
ing potential biomarkers, through variations in the metab-
olome post-administration of a drug, which allows for an 
alternative approach to current detection methods, therefore 
reducing limitations in the detection of NPS (Steuer et al. 
2019).

There are two different approaches to metabolomics in 
toxicological screening: targeted and non-targeted. Targeted 
metabolomics measures a known number of endogenous 
compounds and exogenous metabolites (Szeremeta et al. 
2021). The applications of targeted metabolomics are often 
limited, however, as it requires reference standards for these 
metabolites for method development, validation, and quality 
control purposes, which are often unavailable or cost-pro-
hibitive (Bade et al. 2019; Steuer et al. 2019). With growing 
numbers of NPS being reported, this approach would also 
be perpetually outdated. On the other hand, non-targeted 
metabolomics, also known as metabolic fingerprinting, is 
not limited to a predefined list of metabolites and therefore 
aims to analyse everything detected in the sample (Narduzzi 
et al. 2020; Szeremeta et al. 2021).

Non-targeted metabolomics generates semi-quantitative 
data and generally requires retrospective analysis to confirm 
the identity of metabolites of interest (Steuer et al. 2019). 
For this purpose, MS/MS experiments are used to gather 
further information on the identified metabolites (Pan and 
Raftery 2007). The general workflow of data processing for 
metabolomics analysis is well described by Scalbert et al. 
(2009). These steps include data pre-processing, normalisa-
tion, statistical tests, and metabolite identification. Statisti-
cal analysis requires data pre-processing and normalisation 
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to account for biological and analytical variations (Junot 
et al. 2014; Narduzzi et al. 2020). Two approaches to sta-
tistical analysis, supervised and unsupervised methods, 
are generally used in combination for the interpretation of 
metabolomics data. The most common unsupervised tool 
is principal component analysis (PCA), as it allows for rea-
sonably simple visual inspection of the data. Alternatively, 
supervised methods are used for biomarker discovery, clas-
sification, and prediction. Partial least squares (PLS) and 
support vector machines (SVM) are the most frequently used 
supervised learning methods (Ren et al. 2015).

One of the most time-consuming processes of metabo-
lomics is metabolite identification. Often MS/MS spectra 
are used to facilitate the identification process (Ibáñez et al. 
2014). Additionally, informatic tools, such as XCMS (https:// 
xcmso nline. scrip ps. edu) (Smith et al. 2006) and MetFrag 
(https:// ipb- halle. github. io/ MetFr ag/) (Ruttkies et al. 2016), 
may be used to aid in the analysis of fragmentation data or 
review in silico MS/MS spectra (Junot et al. 2014). Putative 
metabolite identifications rely on using databases to gain 
information about suspected metabolites, such as MS/MS 
data and chemical parameters (Courant et al. 2014). Junot 
et al. (2014) highlights a range of different databases, such 
as Metlin (https:// metlin. scrip ps. edu) (Smith et al. 2005), 
Human Metabolome Database (HMDB, https:// hmdb. ca/) 
(Wishart et al. 2017), Kyoto Encyclopedia of Genes and 
Genomes (KEGG, https:// www. genome. jp/ kegg/) (Kane-
hisa et al. 2004) and PubChem (https:// pubch em. ncbi. nlm. 
nih. gov/), (Wang et al. 2011), available to analysts to assist 
metabolite identification.

Metabolomics has applications in many fields including 
doping, drug discovery, health and disease monitoring, and 
forensic toxicology (Cawley and Keledjian 2017; Mollerup 
et al. 2019; Shao and Le 2019; Wang et al. 2020). Table 4 
provides an overview of studies which demonstrate the 
applicability of metabolomic-based approaches to toxico-
logical casework. In addition, Steuer et al. (2020) investi-
gated the effects on the metabolome of three different drugs, 
namely MDMA, amphetamine and 4-methylmethcathinone 
(mephedrone). When using statistical analyses to compare 
the effects seen from administration of all the analytes of 
interest, it was found that two specific endogenous com-
pounds, linoleic acid and pregnenolone sulfate, were signifi-
cantly altered. An alternate approach for identifying meta-
bolic pathways of interest was investigated to reduce the data 
bottleneck that comes with non-targeted data analysis. This 
approach revealed that the aminoacyl-tRNA biosynthesis 
and linoleic acid metabolism pathways were significantly 
altered in all three administration studies (Steuer et al. 2020). 
This synonymous result revealed that both approaches were 
a viable means of analysing metabolomics data.

Following on from the work conducted by Steuer et al., 
Keen et al. (2021) investigated butorphanol administration Ta

bl
e 

4 
 S

um
m

ar
y 

of
 m

et
ab

ol
om

ic
-b

as
ed

 a
pp

ro
ac

he
s t

o 
to

xi
co

lo
gi

ca
l c

as
ew

or
k

D
ru

g 
m

on
ito

re
d

B
io

m
ar

ke
rs

 ta
rg

et
ed

Re
su

lts
 o

bs
er

ve
d

Re
fe

re
nc

e

γ-
hy

dr
ox

yb
ut

yr
ic

 a
ci

d 
(G

H
B

)
G

H
B

; G
H

B
-g

lu
cu

ro
ni

de
; γ

-a
m

in
ob

ut
yr

ic
 a

ci
d 

(G
A

BA
); 

an
d 

γ-
bu

ty
ro

la
ct

on
e 

(G
B

L)
G

H
B

 fo
un

d 
to

 b
e 

m
os

t r
el

ev
an

t t
ar

ge
t a

na
ly

te
 w

ith
 a

 1
0 

µg
/m

L 
cu

t-o
ff 

in
 p

os
t-m

or
te

m
 u

rin
e 

es
ta

bl
is

he
d 

to
 d

iff
er

en
tia

te
 e

xo
ge

no
us

 
G

H
B

B
us

ar
dò

 e
t a

l. 
(2

01
7)

γ-
hy

dr
ox

yb
ut

yr
ic

 a
ci

d 
(G

H
B

)
3,

4-
di

hy
dr

ox
yb

ut
yr

ic
 a

ci
d;

 2
,4

-d
ih

yd
ro

xy
bu

ty
ric

 a
ci

d;
 a

nd
 g

ly
co

lic
 

ac
id

G
H

B
 re

la
te

d 
ac

id
s u

se
fu

l b
io

m
ar

ke
rs

 in
 se

ru
m

 a
nd

 u
rin

e 
as

 th
ey

 
ex

te
nd

 th
e 

de
te

ct
io

n 
w

in
do

w
 o

f G
H

B
Ja

rs
ia

h 
et

 a
l. 

(2
02

1)

M
D

M
A

A
cy

lc
ar

ni
tin

es
; a

de
no

si
ne

; a
de

no
si

ne
 m

on
op

ho
sp

ha
te

; i
no

si
ne

; 
ly

so
ph

os
pa

tid
yl

ch
ol

in
e;

 S
-a

de
no

sy
l-L

-h
om

oc
ys

te
in

e;
 th

ei
om

or
-

ph
ol

in
e 

3-
ca

rb
ox

yl
at

e;
 a

nd
 tr

yp
to

ph
an

En
er

gy
 m

et
ab

ol
is

m
 id

en
tifi

ed
 a

s t
he

 m
aj

or
 si

te
 fo

r m
et

ab
ol

ic
 

ch
an

ge
s i

n 
re

sp
on

se
 to

 M
D

M
A

 a
dm

in
ist

ra
tio

n.
 R

et
ro

sp
ec

tiv
e 

da
ta

 
an

al
ys

is
 o

f p
rio

r s
cr

ee
ni

ng
 d

at
a 

ca
n 

be
 u

se
d 

to
 id

en
tif

y 
po

te
nt

ia
l 

bi
om

ar
ke

rs
 o

f a
na

ly
te

s o
f i

nt
er

es
t

N
ie

ls
en

 e
t a

l. 
(2

01
6)

H
er

oi
n

Tr
ic

ar
bo

xy
lic

 a
ci

d 
cy

cl
e

Tr
yp

to
ph

an
 a

nd
 5

-h
yd

ro
xy

trp
ta

m
in

e 
sh

ow
n 

to
 d

ec
re

as
e 

in
 se

ru
m

, 
an

d 
try

pt
op

ha
n 

an
d 

5-
hy

dr
ox

yi
nd

ol
ea

ce
ta

te
 sh

ow
n 

to
 in

cr
ea

se
 in

 
ur

in
e 

fo
llo

w
in

g 
he

ro
in

 a
dm

in
ist

ra
tio

n

Zh
en

g 
et

 a
l. 

(2
01

3)

https://xcmsonline.scripps.edu
https://xcmsonline.scripps.edu
https://ipb-halle.github.io/MetFrag/
https://metlin.scripps.edu
https://hmdb.ca/
https://www.genome.jp/kegg/
https://pubchem.ncbi.nlm.nih.gov/)
https://pubchem.ncbi.nlm.nih.gov/)


959Archives of Toxicology (2022) 96:949–967 

1 3

in equine athletes using a non-targeted mass spectrometric 
approach employing an LC-HRMS instrument. The devel-
oped workflow enabled an extended window of detection 
for metabolic variation within the horse through a list of 
biomarkers of exposure, allowing for the effects of the dop-
ing to be identified long after the parent drug was below the 
limit of detection of the employed screening method. The 
implementation of these biomarkers in routine drug testing 
would, therefore, allow for improved doping control, espe-
cially when a significant delay between sample collection 
and the doping event occurs (Keen et al. 2021).

The applicability of metabolomics is ever growing due to 
its increased popularity within different scientific fields. It is 
likely that this will also be the case for forensic toxicological 
screening.

Machine learning

The paradigm shift towards the use of HRMS for toxico-
logical analyses has meant that there is a large volume of 
data available to analysts. Simultaneously, technological 
advances have meant that more powerful computational 
processing is widely available and cheaper, making the 
use of artificial intelligence approaches, such as machine 
learning, more realistic (Margagliotti and Bollé 2019). 
Mitchell (1997) defined machine learning as, ‘a computer 
is said to learn from experience with respect to some task 
and some performance measure, if its performance on said 
task improves with experience’. There are two distinct 
approaches to machine learning, namely supervised and 
unsupervised approaches. Supervised machine learning 
takes a known set of inputs (the training set) and known 
responses to those inputs (the output) and trains a model to 
predict responses for new input data. Supervised learning 
models can be further categorized as either ‘classification’ 
or ‘regression’ models. Classification models aim to predict 
a discrete output, such as a drug class, whereas regression 
models attempt to predict an outcome that falls within a con-
tinuous space, such as a time range in the case of retention 
time (RT) prediction. Alternatively, unsupervised machine 
learning is useful when an analyst wishes to explore data 
without specific goals or previous knowledge of the informa-
tion contained within the data (Margagliotti and Bollé 2019).

Machine learning approaches have been previously 
applied to the field of drug discovery, most notably though 
the investigation of structure–activity relationships (Ekins 
2018; Luechtefeld et  al. 2018). RT prediction has been 
extensively studied using regression models for the study of 
environmental contaminants (Aalizadeh et al. 2019; Pyke 
et al. 2019) and more recently for drug analysis (Klingberg 
et al. 2021b; Miller et al. 2013; Mollerup et al. 2018).

The use of supervised machine learning algorithms, 
such as artificial neural networks (ANNs), for probabilistic 

feature recognition in LC-HRMS data has been suggested. 
Woldegebriel and Derks (2017) theorised that the detec-
tion of all possible peak features within a given sample can 
be considered a pattern recognition problem; therefore, a 
technique such as ANN can be especially useful. Features 
of interest within both the LC and MS space have unique 
characteristics, such as peak shapes and m/z patterns, that 
an algorithm can be trained to recognise. The applicability 
of the developed ANN was examined using two data sets 
analysed across two different LC–MS systems and known 
to contain a range of xenobiotics and pesticides. The out-
put of this algorithm provided a two-dimensional coordi-
nate, including both RT and m/z, along with a posterior 
probability of whether these coordinates correspond to the 
centre of a peak feature. The authors noted that there was 
no correlation between the intensity of a signal and the 
probability of feature detection, indicating the ANN was 
generalising sufficiently and could identify all potential 
features within a sample (Woldegebriel and Derks 2017). 
The identified features could then be compared to librar-
ies/databases or undergo further processing to achieve 
putative identification. This approach is comparable to 
molecular feature extraction (MFE) algorithms that can 
be found in some proprietary software, such as Agilent 
Technologies MassHunter Profinder. MFE algorithms 
attempt to locate individual sample components (often 
called molecular features) within complex chromatograms 
(Sana et al. 2008). Both approaches allow for the simplifi-
cation of complex matrices into the different components 
that are present.

While feature detection is important for identifying an 
analyte of interest within a sample, high-throughput screen-
ing can benefit from a simple binary classification of a blank 
sample vs. a drug containing sample. Streun et al. (2020) 
demonstrated the potential of using ANNs for such a pur-
pose. In this study, the authors applied an ANN approach 
to raw HRMS-DIA data (i.e. not extracted mass spectra) 
acquired using SWATH  MS2 mode. The raw HRMS data 
underwent pre-processing using the R programming lan-
guage, allowing the data to be structured for application 
to the ANN. Initially, the network was successfully trained 
to differentiate between blank and drug-containing solvent 
samples using three different software platforms, namely 
KNIME, Keras and a custom-built Python program. Fol-
lowing the proof-of-concept using the solvent samples, 
the authors applied the approach to a batch of more than 
150 authentic blood samples, 59 of which were considered 
blank and the rest containing relevant xenobiotics, includ-
ing cocaine, amphetamine, and zolpidem. The determined 
sensitivity and specificity of the trained ANNs were within 
a suitable range for routine laboratory use and the differ-
ence between the software platforms tested was marginal 
(Streun et al. 2020). While this approach does not allow for 
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the identification of the analyte of interest, it does show sig-
nificant potential for settings such as workplace drug testing, 
where the prevalence of negative samples is high.

Another potential application for machine learning 
approaches was presented by Guan et al. (2021). In this 
study, the authors employed the metabolomics-driven soft-
ware, Compound Discoverer (Thermo Fisher Scientific 
2021), to extract all compounds present in a group of 13 
plasma samples, two of which had been spiked with rel-
evant analytes. This extraction process, however, identified 
8343 compounds within the dataset, making it very difficult 
for an analyst to manually search for analytes of interest. 
To address this, a mathematical model was developed con-
sisting of two algorithms to calculate the ratio of the mean 
(ROM) and outlier index (OLI), enabling the identification 
of analytes among the extracted compounds. The applied 
model was able to successfully identify 55 of the 57 spiked 
drugs present in the samples. While the developed model 
was easy to use and incorporate into the Compound Dis-
coverer processing workflow, it was noted that the success 
of this technique was reliant on the use of drug databases to 
identify the compounds (Guan et al. 2021).

Identification of novel NPS analogues, without relying 
on CRMs or comprehensive HRMS databases, can prove 
problematic (Pasin et al. 2017b). While there are vendor 
software packages available to assist with this process, such 
as Compound Discoverer (Thermo Fisher Scientific 2021) 
and Molecular Structure Correlator (Agilent Technolo-
gies 2011), understanding the general classification of an 
unknown compound can assist an analyst to affect a timely 
identification. Klingberg et al. (2021b) developed a predic-
tion model to exploit the class-specific fragmentation that 
has been noted by previous studies (Klingberg et al. 2019; 
Noble et al. 2017) by using  MS2 data to classify synthetic 
opioids as either fentanyl derivatives, AH- or U- series opi-
oids. This proof-of-concept study found that a Naïve Bayes 
model provided the best outcome, with an overall accuracy 
of 89.5% and 100% classification accuracy for fentanyl 
derivatives. It was noted, however, that the model was lim-
ited by the number of compounds available in each subclass, 
and the increased prediction accuracy for the fentanyl deriv-
atives could likely be due to their higher prevalence in the 
training and validation sets (Klingberg et al. 2021b). While 
this study focused on the prediction of synthetic opioid com-
pounds, it demonstrates the potential for similar processes to 
be implemented where other NPS classes show class specific 
fragmentation patterns.

Many of these studies have applied machine learning to 
analytical data to detect features of interest or as a classifi-
cation tool; however, machine learning has been applied to 
the structures of NPS themselves. Skinnider et al. (2021) 
reported the development of a deep generative model, 
termed DarkNPS, to predict novel structures using the 

known structures of NPS present on the HighResNPS data-
base. The model was able to predict 176 of the 189 (93.1%) 
NPS-related compounds that were added to the database 
after the training set was finalised. The model also predicted 
(or sampled) some structures more often than others, allow-
ing them to be ranked based on their sampling frequency, 
which may indicate how likely a predicted structure is to 
appear on the market.

Retention time prediction

Another aspect of machine learning that has recently been 
gaining popularity is RT prediction. While the use of mass 
spectrometric techniques to identify unknown compounds 
is clearly invaluable, the ‘front end’ chromatographic RT 
is quite often overlooked. Knowledge of a theoretical RT 
for a suspected compound can provide an analyst with evi-
dence to help confirm a putative structure and, perhaps more 
importantly, eliminate false identifications. Traditionally, RT 
prediction has been studied for the detection and identifi-
cation of a large variety of pesticides and environmental 
contaminants (Aalizadeh et al. 2019, 2016; Bade et al. 2015; 
Bride et al. 2021; Feng et al. 2021). More recently, however, 
the use of RT prediction modelling has been investigated for 
drug screening and anti-doping applications.

One of the main obstacles to the effective implementa-
tion of RT prediction in routine analysis is the use of unique 
chromatographic systems. This in turn means that the RTs 
predicted by one laboratory cannot be directly applicable 
to another and, therefore, specific prediction models are 
required. To mitigate this, Stanstrup et al. (2015) presented 
an online database, known as PredRet (http:// predr et. org), 
that allows for users to share RT information across labo-
ratories and chromatographic systems. While many RT 
prediction approaches rely on the use of physicochemical 
properties for a given compound to model the quantitative 
structure–retention relationships (QSRR), PredRet generates 
predicted RT values by mapping the different RTs of known 
compounds between chromatographic systems. In this way, 
experimentally determined RTs of several compounds across 
two different chromatographic systems can be used to model 
the relationships between the two systems. If the RT of a 
given compound is known by one system, but not the other, 
the model can be used to predict the RT in the other system. 
While this approach cannot be used to compare RT values 
between very different chromatographic systems, such as 
hydrophilic interaction liquid chromatography (HILIC) 
and reversed-phase liquid chromatography (Stanstrup et al. 
2015), it can still provide valuable information to an analyst 
when attempting to identify an unknown compound.

Barron and McEneff (2016) developed a generalised 
ANN model to predict the RTs of 1117 chemically diverse 
compounds in a range of complex matrices across ten 

http://predret.org
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different reversed-phase chromatographic systems. Unlike 
Stanstrup et al. (2015), however, the authors applied a more 
traditional approach to QSRR modelling, using 16 differ-
ent molecular descriptors to generate predicted RTs. These 
molecular descriptors included unsaturation index, hydro-
philic factor, Ghose–Crippen logP (AlogP), Moriguchi logP 
(MlogP), number of benzene-like rings, number of double 
and triple bonds, number of 4–9 membered rings, number of 
carbons, number of oxygens, pKa (acid and base), logP and 
logD. Several different types of neural networks were also 
trialled, and it was determined that multilayered perceptrons 
provided the best predictions for 8 out of the 10 chromato-
graphic systems. Following training of the ANNs, blind tri-
als were conducted and an average predictive inaccuracy of 
1.02 min for the blind trial compound was found across all 
the chromatographic systems. The authors, therefore, stated 
that RT prediction using ANNs, when reversed-phased chro-
matographic systems are used, is a viable method for imple-
mentation into non-targeted screening workflows (Barron 
and McEneff 2016).

The application of RT prediction modelling to anti-
doping analysis was investigated by Miller et al. (2013). In 
this study, the authors used a dataset containing 86 different 
compounds included in the London 2012 Olympic and Para-
lympic Games drug testing schedule and developed an ANN 
prediction model using 18 different molecular descriptors. 
The molecular descriptors used in this study included the 16 
used by Barron and McEneff (2016), as well as AlogD and 
MlogD values. The authors first assessed the reproducibility 
of the chromatographically generated RTs to determine the 
viability of an RT prediction approach and found a maxi-
mum RT variability of 0.35 min across all samples. A feed-
forward, back-propagated multilayered perceptron network 
with two hidden layers of five and four, respectively, pro-
vided the best prediction results and could predict 80 of the 
86 compounds tested (~ 93%) within 0.5 min of their experi-
mentally determined RTs. The study also investigated the 
contribution of each molecular descriptor to the predicted 
RT by sequentially removing one descriptor and calculat-
ing the percent change in the accuracy of the predicted RT 
values. From this investigation, it was found that the number 
of carbon atoms, number of double bonds, number of oxy-
gen atoms, AlogP values and number of 9-memebered rings 
were the five most contributing descriptors to the overall 
accuracy of the model (Miller et al. 2013).

Following on from the work conducted by Miller et al. 
(2013), Talebi et al. (2015) investigated the use of PLS-
related methods for selecting appropriate variables to be 
used for RT prediction modelling. The authors computed 
825 different molecular descriptors for 86 suspected sports 
doping compounds to predict their RTs in a reversed-phase 
chromatographic system. Six different multivariate analysis 
methods were applied to select descriptors for RT prediction. 

It was found that all the models trained using a subset of 
descriptors selected by the multivariate methods outper-
formed the PLS model trained with all the descriptors. The 
number of descriptors that were selected by each approach 
ranged drastically, from 28 descriptors for competitive adap-
tive reweighted sampling (CARS) to 263 for Monte Carlo 
uninformative variable elimination (MC-UVE); however, the 
authors determined that the CARS approach provided the 
best compromise between the number of descriptors selected 
and the prediction accuracy. This approach was able to pre-
dict the RT of the compounds in the test set with prediction 
errors as low as 46 s and there was no evidence of any bias 
or systematic error in the predicted values, indicating the 
suitability of the model for the dataset used (Talebi et al. 
2015).

Klingberg et al. (2021b) investigated the use of regression 
modelling to predict RT data for a range of synthetic opioid 
compounds. The authors employed 13 molecular features 
to evaluate four different regression models and found that 
the Gaussian Process Regression (GPR) model provided the 
best prediction accuracy for the dataset employed. Similarly 
to Miller et al. (2013), the authors investigated the effect of 
individual descriptors on the overall accuracy of the model. 
It was discovered that five of the descriptors led to a decrease 
in the prediction accuracy and were therefore, omitted from 
the optimised GPR model. Using the optimised model, it 
was found that 79.7% of the samples fell within ± 0.1 min 
of their experimentally determined RT, which indicates that 
the model would be suitable for application to non-targeted 
screening workflows. While this work focused on a subset 
of compounds relevant to toxicological screening, it demon-
strates the viability of such an approach to broader applica-
tions. Unlike the works presented by Stanstrup et al. (2015) 
and Barron and McEneff (2016), this model was specific to 
the chromatographic system employed by the author, and, 
therefore, it would require retraining with chromatographic 
data specific to the system it is being applied to (Klingberg 
et al. 2021b).

Mollerup et al. (2018) took a broader approach to RT 
prediction, developing an ANN model for 869 different 
compounds using 105 molecular descriptors. The com-
pounds included in this study covered a range of pharma-
ceuticals, drugs of abuse and their metabolites, making it 
highly relevant for toxicological screening. In addition to 
the RT prediction, the developed model incorporated ion 
mobility spectrometry (IMS) data to predict collision cross 
sections (CCS) of the included compounds. The CCS of a 
compound is related to its size, shape and charge (Mollerup 
et al. 2018) and has been shown to be matrix and system 
independent (Regueiro et al. 2016). This makes it a use-
ful orthogonal technique to chromatographic separation 
and can help reduce the number of false positive identifica-
tions. In this study, the authors found that a four-layered 
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multilayer perceptron ANN provided the best optimisation 
for the combined RT-CSS prediction model, with 91.9% of 
the compounds falling within ± 2 min for the RT prediction 
and 5% relative CCS error (Mollerup et al. 2018). While the 
RT prediction accuracy in this study is lower compared to 
other studies, it is important to note that this study included 
a broad range of chemically diverse compounds, and, there-
fore, it can be expected that some variation will be observed. 
Additionally, the inclusion of the CCS prediction to compli-
ment the predicted RT values can also help affect putative 
identification of compounds.

More recently, Pasin et al. (2021) developed a single 
ANN-based RT prediction model capable of incorporating 
multiple chromatographic systems using a machine learning 
technique called ‘one-hot encoding’. The model was trained 
using data from HighResNPS and included laboratories that 
provided 50 analytes or more. The model was able to predict 
81% and 97% of the test set (n = 193) within ± 1 and 2 min, 
respectively. The results also showed that a model incor-
porating all laboratories outperformed individually trained 
models, particularly when there were smaller numbers of 
compounds. The model is used to predict the RTs of all 
entries on HighResNPS for each laboratory included in the 
model to facilitate the development of personalised suspect 
screening libraries containing over 2000 NPS-related com-
pounds (Pasin et al. 2021).

Molecular networking

Molecular networking has been presented as a method to 
visualise complex, multi-dimensional HRMS data in a 
graphical form and was originally developed and validated 
for small molecules (Allard et al. 2019; Wang et al. 2016). 
This technique has been applied to the study of metabo-
lomics, metabolite identification (van der Hooft et al. 2016), 
natural products research (Wang et al. 2016), drug discovery 
and precision medicine (Quinn et al. 2017). The molecular 
network itself provides a visual depiction of the spectra that 
are acquired in an  MS2 experiment, which allows for the 
comparison of MS profiles. Within the network, each node 
represents a particular ion and its associated fragmenta-
tion spectrum. Links between the different nodes represent 
similarities in the obtained spectra (Allard et al. 2019; Vin-
centi et al. 2020). This means that a molecular network can 
provide both an overview of all the molecules which were 
detected and fragmented during a non-targeted MS experi-
ment and their structural relationships (Allard et al. 2019). 
This approach, however, relies on the assumption that struc-
turally related molecules will produce similar fragmentation 
patterns, in the same way that PIS does and, therefore, will 
be related within the molecular network (Quinn et al. 2017). 
If some compounds within a network can be identified and 
annotated, this structural information can then be propagated 

to unknown, but structurally similar, compounds allowing 
for dereplication within the sample (Wang et al. 2016; Yang 
et al. 2013). This information can be especially useful to an 
analyst for the identification of drug metabolites and novel 
NPS where analogues share a similar scaffold structure 
(Allard et al. 2019; Vincenti et al. 2020).

The application of this molecular networking approach 
to the context of forensic toxicology has been demonstrated 
by several studies. Allard et al. (2019) explored the poten-
tial uses of molecular networking combined with HRMS 
analysis of various biological matrices. This study utilised 
the Global Natural Products Social Molecular Networking 
(GNPS) online platform. GNPS is a data-driven platform 
which allows for the storage, analysis and dissemination of 
 MS2 spectra (Aron et al. 2020; Wang et al. 2016). The analy-
sis infrastructure of this online platform allows for auto-
mated generation of molecular networks (Wang et al. 2016). 
The authors first investigated the case of a lethal self-injec-
tion through the analysis of the contents of a syringe and a 
femoral blood sample taken from the victim. In this case, the 
main objective was to determine if any of the compounds 
present in the syringe were also found in the victim’s blood 
(Allard et al. 2019). It was discovered that only a single node 
contained a compound found in both the blood and syringe 
liquid. Further investigation allowed for the annotation of 
this node as the pesticide chlormequat, which was consist-
ent with the official cause of death. In a second case, hair 
samples from the victim of a sexual assault were analysed. 
The hair was segmented into three sections, which correlated 
to the month before the incident, the month of the incident 
and the month after the incident, respectively. In this case, 
the objective was to determine if there were any suspected 
xenobiotics present only in the segment related to the month 
of the incident. Once again, inspection of the molecular net-
work highlighted one node which was only found in the seg-
ment of interest, and correlated to the antihistamine doxy-
lamine, which is commonly used in drug-facilitated sexual 
assault cases due to its sedative effects (Allard et al. 2019). 
Both cases demonstrate the effectiveness of a molecular net-
working approach to assist analysts to draw meaningful con-
clusions from complicated cases involving multiple samples 
and complex biological matrices.

Allard et al. (2019) also demonstrated the potential of a 
molecular networking approach for the exploration of NPS 
metabolism. This can be especially important as the metabo-
lism of newly emerging NPS is often unknown. In this study, 
blood and urine samples of a patient who had taken the hal-
lucinogenic 3-methoxyphencyclidine (3-MeO-PCP) were 
analysed and a molecular network generated. The node relat-
ing to 3-MeO-PCP was linked to a cluster of other molecules, 
indicating they possessed potentially similar chemical struc-
tures. Within this cluster, 12 previously described metabo-
lites of 3-MeO-PCP were identified, along with five putative 
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metabolites (Allard et al. 2019). More recently, Gicquel et al. 
(2021) identified several metabolites for a novel ketamine 
derivative, 2-fluoro-deschloroketamine (2F-DCK), using a 
molecular networking approach. In vitro experiments were 
conducted using both human liver microsomes (HLMs) and 
hepatic (HepaRG) cell line incubates to explore the metabolic 
process of this ketamine derivative. Additionally, post-mortem 
samples, including blood, bile, vitreous humor and urine, were 
taken from a self-intoxication fatality involving 2F-DCK. By 
using molecular networks to map the spectral data, 13 metabo-
lites of 2F-DCK were identified from the in vitro studies, with 
a further seven metabolites identified in the post-mortem bile 
and urine samples (Gicquel et al. 2021). This approach could 
prove invaluable to toxicological analysis, especially in situ-
ations where the metabolic pathways of NPS are completely 
unknown.

Following on from the work completed by Allard et al., Yu 
et al. (2019) investigated the use of molecular networking for 
the classification of several cathinone and NBOMe derivatives. 
Nine NBOMe derivatives and eleven cathinone derivatives, 
as well as ephedrine and pseudoephedrine, were analysed and 
found to separate into two distinct clusters. Additionally, the 
authors analysed various spiked urine samples to determine 
the feasibility of using a molecular networking approach to 
screen for unknown NPS in biological samples. Nine NBOMe 
compounds, including two considered as unknowns (i.e. not 
included in the spectral database used) were identified in a 
single cluster (Yu et al. 2019). While this preliminary study 
may not account for all classes of NPS, especially where there 
is significant structural variation within a given class of NPS, 
it does demonstrate the potential of molecular networking as 
a useful tool to screen and categorise NPS.

In addition to the use of molecular networks for the 
screening of biological samples, Vincenti et  al. (2020) 
demonstrated the potential of this approach to assist with 
the identification of compounds present within seized sam-
ples. In this study, a molecular networking approach was 
used to identify four different fentanyl derivatives within the 
seized samples, as well as two unexpected derivatives. These 
derivatives were not present in the mixed standards analysed 
alongside the seizures; however, they could be detected and 
putatively identified due to their connection to the cluster 
containing other fentanyl derivatives (Vincenti et al. 2020). 
All these studies demonstrate the potential for molecular 
networking approaches to assist analysts in the various facets 
of toxicological analyses.

Conclusion

HRMS analysis is a powerful tool in the arsenal of toxicolo-
gists to combat the constant evolution of the NPS threat. 
Wastewater analyses have shown significant potential in 

their ability to model the overall consumption of drugs of 
abuse within a given community. While this may not have 
a significant impact on most day-to-day analyses, this intel-
ligence can be invaluable in guiding healthcare profes-
sionals and policy makers in the implementation of harm 
reduction strategies. In addition, metabolomic approaches 
have been applied to drug screening. These approaches aim 
to characterise the effects that drugs of abuse have on the 
metabolome, which can provide new information that can be 
used for non-targeted analyses. Additionally, this approach 
can potentially identify new biomarkers that can be used 
to screen for drug use. With HRMS instruments becoming 
more commonplace in toxicological laboratories, the focus is 
shifting towards novel ways to use the large volume of data 
produced by these instruments. Many different data analysis 
and interpretation strategies have been developed to lever-
age the advantages of HRMS instruments and the increasing 
availability of powerful computational processing to ana-
lysts has made the prospect of machine learning assisted 
data processing more accessible. While there is still no sin-
gle technique that can be used to provide reliable detection 
of all analytes of interest, the continual evolution of novel 
data interpretation methods is bringing that prospect closer 
to reality. In the meantime, the use of a ‘toolbox’ approach 
using multiple, complementary techniques can allow for the 
development of a rigorous analytical workflow to encompass 
a broad range of the chemical space.
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