
Vol.:(0123456789)1 3

Archives of Toxicology (2022) 96:919–932 
https://doi.org/10.1007/s00204-021-03201-1

REPRODUCTIVE TOXICOLOGY

A model‑based approach to designing developmental toxicology 
experiments using sea urchin embryos

Michael D. Collins1   · Elvis Han Cui2 · Seung Won Hyun3 · Weng Kee Wong2

Received: 1 July 2021 / Accepted: 9 December 2021 / Published online: 13 January 2022 
© The Author(s) 2022

Abstract
The key aim of this paper is to suggest a more quantitative approach to designing a dose–response experiment, and more 
specifically, a concentration–response experiment. The work proposes a departure from the traditional experimental design 
to determine a dose–response relationship in a developmental toxicology study. It is proposed that a model-based approach 
to determine a dose–response relationship can provide the most accurate statistical inference for the underlying parameters 
of interest, which may be estimating one or more model parameters or pre-specified functions of the model parameters, 
such as lethal dose, at maximal efficiency. When the design criterion or criteria can be determined at the onset, there are 
demonstrated efficiency gains using a more carefully selected model-based optimal design as opposed to an ad-hoc empiri-
cal design. As an illustration, a model-based approach was theoretically used to construct efficient designs for inference in a 
developmental toxicity study of sea urchin embryos exposed to trimethoprim. This study compares and contrasts the results 
obtained using model-based optimal designs versus an ad-hoc empirical design.

Keywords  Approximate design · D-optimality · Dose–response · Optimal experimental design · Sea urchin embryo · 
Trimethoprim

Introduction

A fundamental concept in toxicology is the dose–response 
relationship. An initial step in understanding the biologi-
cal effects of a chemical compound on any organism is 
the establishment of a dose–response relationship to pro-
vide doses of the compound that can be used in subsequent 
toxicological assessments. Then, after performing the toxi-
cological studies, an understanding of the dose–response 
relationship allows for extrapolation of the information to 
predict threshold concentrations, make high- to low-dose 

predictions and to begin to understand the nature of the 
interactions of chemical substances in complex mixtures. 
Although toxicologists frequently use empirical approaches 
to determine the various dose parameters (e.g., dose lev-
els, spacing, and number of observations per dose) used to 
experimentally determine a dose–response curve, there are 
more systematic mathematical approaches of determining 
the appropriate doses that can yield a reduction in the vari-
ance of the relationship. In this era of systems biology where 
there is an emphasis on providing comprehensive systematic 
analyses of biological parameters, perhaps, a more system-
atic approach for establishing dose–response relationships 
may be warranted. In particular, Giles (2006) noted that only 
a small percentage of results from laboratory studies can 
be replicated in clinical trials mainly due to poor design 
and further lamented that poor designs are responsible for 
lack of confidence in results. Some possible reasons men-
tioned included (i) an improper (or lack of a) randomiza-
tion scheme, (ii) inadequate controls to minimize bias, (iii) 
inappropriate models, and (iv) a less than thoughtful design 
strategy and data analysis plan. Study design is therefore a 
critical aspect of obtaining useful information from toxicol-
ogy experiments. In particular, a study design can increase 
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the precision in the statistical inference substantially when 
the choices for the doses are carefully considered. It is there-
fore suggested that the design of such experiments can likely 
benefit from a more formal approach to designing experi-
ments where doses can be selected more objectively; to this 
end, a model-based approach that requires a pre-specified 
statistical model, a pre-selected design criterion, and a pre-
determined design space (dose range) can be helpful. Opti-
mization tools are then used to find designs that optimize 
the design criterion among all designs on the design space 
(dose range).

More specifically, a statistical model for the 
dose–response relationship must be carefully selected 
upfront to capture all prior information available for the 
study to formalize the process. This usually requires mod-
eling of how the outcome is related to the dose levels, along 
with distributional assumptions of the observation errors. 
The latter are errors incurred in recording the outcome and 
are beyond the complete control of the research. Standardly, 
errors are assumed to be independent, identically and nor-
mally distributed for inference purposes. There are unknown 
parameters in the model, and usually, some are more mean-
ingful than others. The functional relationship between the 
mean outcome and the doses, which may also include other 
explanatory variables in the regression model, is usually 
user-selected based on the experience of the investigator or 
from the literature. The model is linear if this relationship 
depends on the parameters in a linear fashion; otherwise, it 
is a nonlinear model. Examples of linear models are polyno-
mial models or fractional polynomial models and examples 
of nonlinear models are exponential models with the simple 
one or two parameters or the Michaelis–Menten model and 
its several variations.

At the onset of the study, the real goal or goals of the 
experiment must be formulated in terms of a design or opti-
mality criterion as accurately as possible. Optimality needs 
to be clearly defined, even for studies where it may be dif-
ficult to do so. The design criterion enables one to com-
pare competing designs using a mathematical approach to 
facilitate decisions on how to select or improve the experi-
ment for maximal gain in statistical efficiency with minimal 
resources.

In a dose–response experiment, decisions regarding the 
dose range, the number of doses, the dose levels, and the 
number of experimental units at each dose are sometimes 
made predicated on nebulous criteria. These are design 
issues that can potentially have a substantial impact on the 
quality of the statistical inference at the end of the study, 
yet they are decided in some cases on an ad-hoc basis. Fre-
quently, an equal number of experimental units are assigned 
at each dose. When the doses are equally spaced, these are 
called uniform designs in the statistical literature and while 
they are appealing and intuitive, it has been shown that they 

can be inefficient, depending on the goal of the study and the 
underlying model assumed. For example, Wong and Lachen-
bruch (1996) showed that performance of such designs can 
depend sensitively on the choice of the number of doses 
in a uniform design, the model, and the optimality criteria. 
Therefore, each aspect in the design of the study must be 
carefully considered to realize maximum accuracy in the 
information. Such attention to detail will enhance reproduc-
ibility, thus addressing a current issue in animal experimen-
tation (Giles 2006).

To optimally design an experiment, model assumptions 
are required to work out the mathematical and statistical 
details. Invariably, the goal is formulated as an objec-
tive function defined on the user-specified dose range (or 
design interval) that depends on the statistical model and 
the design. The optimization of the criterion can then be 
performed among a specific class of designs, for example, 
among all designs with five doses, or among all designs on a 
given dose interval. The resulting optimal design is therefore 
model-based and, as a consequence, can be highly model-
dependent, suggesting that choice of a statistical model for 
the dose–response study is also important. Wong (1994) is 
one of many design papers in the statistical literature that 
provides examples that showed efficiencies of a design can 
vary substantially when model assumptions are violated.

The approach used in this study was to utilize data from 
an empirically designed study to essentially model develop-
mental toxicity dose–response relationships from the pur-
ple sea urchin, Strongylocentrotus purpuratus, after early 
embryo exposure to the antibiotic trimethoprim. Trimetho-
prim has been dichotomously categorized in the human as 
either a teratogen or as a non-teratogen depending on the 
assessor. If it is a human teratogen, it has been described as 
idiosyncratic but weakly teratogenic (Shepard et al. 2002). 
For decades, human teratogens have been used to induce 
dysmorphogenesis in developing sea urchins with the goal 
of studying the basic biology of the chemical perturbation 
(Hagström and Lönning 1973; Estus and Blumer 1989a, b; 
Sconzo et al. 1996; Qiao et al. 2003; Buznikov et al. 2007; 
Reichard-Brown et al. 2009). These studies have been predi-
cated on the idea that the developmental cell processes and 
functions of sea urchins and humans may share common 
chemical perturbations despite the difference in organs 
between the species (e.g., sea urchins lack liver, kidney, 
lung, and brain). A rationale for using sea urchin embryos in 
this study is that replicate sample populations are relatively 
simple and inexpensive to produce, allowing for experiments 
with large numbers of fertilized eggs. It is hypothesized 
that humans and sea urchin share many homologous genes 
(Venter et al. 2001; Sea Urchin Sequencing Consortium 
2006). It is further hypothesized that the chemical target of 
a teratogenic substance can be determined by perturbing the 
sea urchin developmental gene regulatory network (GRN) 
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which is a highly experimentally derived gene regulatory 
network (Martik et al. 2016). Essentially, two developmental 
outcomes were modeled in this study, namely the develop-
mental abnormality aboral radialization and developmental 
arrest/death. Aboral radialization is a dysmorphic form of a 
sea urchin embryo/pluteus in which the left–right axis has 
been lost to become radially symmetrical and instead of hav-
ing oral and aboral ectoderm (the sea urchin equivalent of 
dorsal–ventral); all ectoderm is aboral. The goal is to dem-
onstrate how modeling and optimal design can contribute 
to the process of producing dose–response curves in this 
specific experiment, with the idea that these concepts are 
more generalizable in the establishment of dose–response 
relationships for a variety of toxicological analyses.

Materials and methods

Sea urchin developmental toxicity tests

Experiments consisted of culturing purple sea urchin (Stron-
gylocentrotus purpuratus) fertilized eggs through the first 
96 h post-fertilization (hpf). For brevity, data for two end-
points of interest are reported at 96 hpf after exposure from 1 
to 24 hpf to various doses of trimethoprim, namely (1) early 
developmental arrest or death (EDA/D) of the zygote, and 
(2) a developmental abnormality called aboral radialization.

Sea urchins were originally captured off the coast of San 
Diego, California. They were initially transferred to Ker-
ckhoff Marine Laboratory at Corona del Mar in California 
and subsequently delivered to the Davidson/Peter Labora-
tory at the California Institute of Technology, Pasadena, 
CA. They were maintained in aquaria, containing sea water 
taken directly from the Pacific Ocean (Kerckhoff Marine 
Laboratory), that are temperature controlled to 16 ± 1 °C. 
The tanks were aspirated with air and supplied with kelp. 
These tanks were maintained in a room with a temperature 
of 16 ± 2 °C. Sea urchins were either manually shaken or 
injected with 0.55 M potassium chloride to induce gamete 
release. Sperm were collected in 20–100 microliter aliquots 
in 0.5 ml Eppendorf tubes and were stored at 4 °C for up 
to 7 days. Eggs were collected on the day of fertilization 
and rinsed three times with Millipore-filtered sea water 
(MPFSW). Then, sperm were mixed with MPFSW (1:2–1:5 
dilution) and 1 or 2 drops of the solution were placed in a 
beaker with the rinsed eggs. The time when the sperm are 
placed in the vessel with the eggs is presumed to be the 
time of fertilization and subsequent steps were monitored 
in terms of hours post-fertilization (hpf). Approximately 90 
s after the sperm were placed with the eggs, a small vol-
ume of eggs (300–500) were visualized under a dissecting 
microscope to detect the fertilization membrane. Fertiliza-
tion rates were usually greater than 98%. If the eggs had an 

appropriate fertilization rate (> 95%), then the number of 
fertilized eggs in the culture was counted by diluting the 
eggs (1:30) in MPFSW and counting eight 200 µl aliquots 
in a glass micropipette. After determining the concentration 
of fertilized eggs, the eggs were diluted to a concentration of 
approximately 1500 eggs per ml. The eggs were then placed 
in a glass 125 ml flask with a volume of 75 ml of MPFSW at 
a density of 20 eggs per ml. The flasks were then placed on 
a platform shaker at a rate of 120 rpm for the duration of the 
experiment. At 1 hpf, trimethoprim (100 mM stock solution 
in dimethyl sulfoxide) was placed in some flasks containing 
the sea urchin embryos at various concentrations and a con-
trol flask was administered a quantity of dimethyl sulfoxide 
(DMSO) equivalent to the largest volume of the stock solu-
tion used in the experiment. Each 125 ml flask containing 
approximately 1500 embryos had a specific concentration 
of trimethoprim (ranging from 0 to 1000 µM). A number of 
flasks were cultured simultaneously to produce a concentra-
tion–response curve. The MPFSW containing the various 
concentrations of trimethoprim were exchanged for MPFSW 
without trimethoprim at 24 hpf, so that the duration of expo-
sure was approximately 23 h (although the compound within 
the embryo is not removed by this process). The sea urchin 
embryos were then maintained under the culture conditions 
until 96 hpf, a time at which the organisms should develop to 
the pluteus stage. At approximately 96 hpf, the cultures are 
sampled and about 100 individual plutei more or less from 
each flask were examined under a dissecting microscope to 
determine the phenotype. The morphological characteristics 
of each of the examined plutei were recorded.

The biological endpoints evaluated in this study for the 
purpose of modeling were aboral radialization (Radial: Ab) 
and early developmental arrest and/or death (EDA/D). The 
compound was placed in a flask with developing sea urchin 
embryos at 1 h post-fertilization (hpf), the sea water con-
taining the compound is replaced at 24 hpf, and then, the 
embryos are assessed at 96 hpf. At the time of phenotyp-
ing the plutei (96 hpf), some or all of the organisms may 
not have advanced to the pluteus stage. In other words, the 
developing sea urchin embryos may have stopped develop-
ing at an earlier stage in development. When the embryo 
has developed at 96 hpf to a stage achieved by a normal sea 
urchin embryo at 24 hpf (gastrulation) or less, it is catego-
rized as developmentally arrested and/or dead. On observa-
tion, it is difficult to distinguish if the embryos are devel-
opmentally arrested (but viable) or dead (non-viable). If a 
chemical is sufficiently water soluble, then at some dose, it 
will eventually produce this endpoint and, as a result, almost 
all compounds that have been examined in the sea urchin 
embryo assay produce this phenotype at high doses. Depend-
ing on the concentration of the compound, the embryos may 
stop development at an early developmental stage (e.g., 2 
hpf) or at a later developmental stage (e.g., 23 hpf), with 
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higher chemical concentrations inducing earlier develop-
mental arrest/death. These two categories of arrest/death 
phenotypes, namely early or late, were not delineated in 
this study.

Aboral radialization is a relatively specific endpoint that 
is only produced by a relatively small number of compounds 
studied to date. Radialization was originally characterized by 
Hardin et al. (1992) where nickel chloride induced oral radi-
alization, but aboral radialization was reported by Bergeron 
et al. (2011) following exposure of sea urchins to either chlo-
rate or the TGF beta type 1 receptor inhibitor SB-431542. 
The difference between these two phenotypes is that the lar-
vae are either surrounded by epithelia with red pigment cells 
(aboral) or not (oral). For the purposes of modeling, both of 
these endpoints are binary.

Statistical methods for modeling the sea urchin 
concentration–response relationship

The Beta model is a relatively simple model for studying 
a continuous outcome with values confined to between 0 
and 1. Ordinarily, it has a single controlled variable that 
fluctuates across a pre-specified range of doses called the 
design space. Experiments are conducted using selected 
doses from the design space and determining the outcome. 
One potential experimental outcome is the percentage of 
embryos with developmental delay or death at a particular 
dose; this observed outcome varies between 0 and 100 %, or 
0 and 1 after standardization.

A most basic statistical model to study proportions or 
an outcome that takes values between 0 and 1 is the Beta 
model with two parameters and a single controlled variable. 
The controlled variable is the chemical concentration in our 
experiments. A log-logistic model with additive normal 
errors could also be used to study a continuous outcome 
between 0 and 1. The model is relatively simple to opera-
tionalize and interpret, since it has only two parameters. The 
four-parameter log-logistic model (Ritz 2010) is a more flex-
ible model in that it can also fit outcomes when their values 
are not restricted to between 0 and 1. It is also a widely used 
model with readily available software for data fitting and 
analysis in dose–response studies. For example, Ritz, et al. 
(2015) and Knezevic, et al. (2021) provide a dose–response 
analysis using the R software for the four-parameter log-
logistic model. The Beta model has the same mean response 
as the four-parameter log-logistic model when the latter is 
assumed to have values of the responses that are bounded 
by 0 and 1. The Beta model is increasingly used to fit pro-
portions and rates using a single variable across disciplines 
and is well discussed in various textbooks in statistics. 
An example of using such a model and one of its exten-
sions to estimate the parameters in the model is Ferrari and 
Cribari-Neto (2004). For instance, one of its extensions is a 

re-parameterization of the Beta model, so that its two param-
eters are the mean and dispersion parameters to study the 
regression model and examine departures from the model 
assumptions. While estimation issues are quite well studied 
for this and other statistical models, design issues for differ-
ent models are less investigated, even though it is clear that 
how data are collected can seriously affect the quality of the 
inference to follow.

Before collecting data in an experiment, design issues 
should be considered and addressed as fully as possible. 
They include making decisions on how many dose levels to 
be included in the study, what concentrations or doses, and 
how many experimental units to assign at each dose. The 
latter are called replicates where there are repeated obser-
vations taken under the same experimental setting. These 
questions are difficult or impossible to answer objectively 
without a statistical model in mind. Typically, previous stud-
ies on similar agents or related analogues can provide some 
information on the dose–response relationship for the chemi-
cal agent under investigation. The choices for the number of 
doses, their concentrations, and the replication schemes to 
be used in the study are the design components, and they can 
affect the quality of the statistical inference. Careful choices 
of these variables can provide information as to whether the 
assumed statistical model is adequate by conducting a lack 
of fit test commonly described in design and analysis mono-
graphs; see, for example, Montgomery (2012).

The typical estimates of interest in a toxicology experi-
ment are the model parameters, or functions thereof, which 
may include the various quantiles typically used for estimat-
ing various lethal or risk assessment thresholds. For exam-
ple, one may suspect hormesis occurs for a compound with a 
curvilinear mean response curve and there is interest to esti-
mate the dose where the turning point in the dose–response 
curve occurs. If the expected curve has a quadratic form, i.e., 
Ey = a0 + a1x + a2x2, where x is the dose level and a0, a1, 
and a2 are the coefficients in the linear model, then taking 
the derivative of Ey with respect to x and setting it equal to 
zero yields the turning point, which is x*= − a1/(2a2). In this 
case, the model is clearly linear and the function of interest 
to estimate is a nonlinear function of the model parameters. 
This means that the asymptotic variance of the estimated 
x* contains model parameters and a locally optimal design 
cannot be implemented unless prior estimates of the model 
parameters are available. Consequently, design issues can 
become complex quickly even for a relatively simple linear 
model. Likewise, when a logistic model is used to study a 
binary response variable y, for instance, it may be desirable 
to estimate a lethal dose or concentration (LCp), which can 
be expressed as a nonlinear function of the model param-
eters. For instance, to estimate the LC5, the concentration 
expected to produce a 5% death rate in embryos, a com-
monly used statistical technique called the Delta’s method 
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is first applied to obtain the (asymptotic) variance of the 
estimated LC5 before the variance is minimized by choice 
of the design. The design problem is more complex, because 
the design criterion also contains the unknown parameters. 
Again, this means that nominal values are required before a 
locally optimal design can be implemented. Alternatively, 
in both examples, more complicated design strategies like 
adopting a Bayesian approach or a maxim in design strategy 
can also be used. The former assumes that a prior distribu-
tion for the unknown parameters is available to average out 
the unknown parameters before the criterion is optimized. In 
the latter case, it is required that there is a known set of plau-
sible values for the true parameters and one seeks a design 
to maximize the minimum efficiency arising from choices 
of the model parameter in the plausible set.

How does one use statistical ideas to design experiments 
with quality inference when a statistical model seems plausi-
ble to begin with? The model-based design approach begins 
with calculating the likelihood function from the error distri-
bution assumed in the model. In statistical estimation, a key 
object to focus on is the Fisher Information matrix defined 
by the expected value of the second derivatives of the log-
likelihood function with respect to the model parameters. 
This matrix depends on model parameters when the model 
is nonlinear and it does not when the model is linear. This 
explains why designing for a nonlinear model is generally 
more difficult than for a linear model.

The design criterion is a scalar function of the informa-
tion matrix, and frequently, it is formulated, so that it has 
some desirable properties. For example, it is commonly 
formulated as a concave or convex function of the infor-
mation matrix, and so, a design that maximizes the design 
criterion is sought. For example, the D-optimality criterion 
for estimating model parameters is formulated as the log of 
the determinant of the information matrix and a design that 
maximizes the criterion is a D-optimal design. Because such 
a design minimizes the generalized variance of the model 
estimates, a D-optimal design provides the smallest confi-
dence ellipsoids for the model parameters. If there is only 
one parameter in the model, this means that a D-optimal 
design provides the shortest confidence interval for a given 
confidence level. Likewise, the design criterion c-optimality 
is used to find a design that is best for estimating an interest-
ing function of the model parameters. A c-optimal design 
minimizes the (asymptotic) variance of the estimated func-
tion and such an optimal design produces the most accurate 
estimate of the function of interest. As mentioned earlier, 
these design criteria typically depend on the unknown model 
parameters and cannot be directly optimized.

The simplest way to overcome the issue is to find locally 
optimal designs. This requires prior estimates (sometimes 
called nominal values) of the unknown parameters by a 
knowledgeable party or information from previous studies 

on the compound or similar compounds. These nominal val-
ues are then substituted as values for the unknown model 
parameters, so that optimization can proceed as described. 
The resulting optimal design clearly depends on the nominal 
values and they are called locally optimal. There are some 
similarities with the ad-hoc empirical approach that is gen-
erally used by toxicologists, except that they do not assume 
any statistical model and do not attempt to have the most 
accurate statistical inference for the given experimental cost.

Locally D-optimal designs for estimating parameters 
in the Beta model were reported in Latif and Yab (2015). 
An extension of locally optimal designs is to assume that 
there are various competing nominal values from previous 
studies and experts. This situation can arise when differ-
ent prior studies or experts offer differing information of 
the anticipated dose–response curve. Instead of relying on 
a single best guess for the parameters, a prior density will 
have to be elicited from the competing information to come 
up with a prior density to describe the plausible values of 
the true model parameters. Bayesian D-optimal designs are 
designs that maximize the D-optimality criterion after the 
design criterion has the unknown parameters averaged over 
the prior density. Some Bayesian optimal designs for the 
Beta model were reported for a regression setup in Jafari and 
Pirmohamdi (2017). Wu et al. (2005) used the Beta model 
to model responses from a drug trial and showed the D-opti-
mal design performed well for the application. This means 
that the optimal experimental design produces estimates for 
the model parameters that are most accurate among other 
designs given the same setup.

The density of the response rate y under the Beta model 
is given by

where 0 ≤ y ≤ 1 and Γ is the Gamma function. Figure 1 shows 
its shapes for various values of the two parameters α and β.

Wu et  al. (2005) showed that the parameters in the 
Gamma function can be parametrized in terms of the dose 
by letting a = exp(�1 + �2x) and � = exp(�1 + �2x) , so that 
under such a setup, the mean response rate at dose level x is

where Θ = (α1, α2, β1, β2) is a set of unknown model param-
eters that controls the shape of the response curve and the 
dose level x is the actual dose range (no need to standardize 
between 0 and 1 or transfer to log scale). The Beta model 
describes a sigmoidal response curve and it can be shown 
that there are inhomogeneous variances for the response 
rates y across the dose levels.

f (y) =
Γ(� + �)

Γ(�)Γ(�)
y�−1(1 − y)�−1,

1

1 + exp{(�1 − �1) + (�2 − �2)x}
,
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Optimal designs can also be constructed for estimating 
percentiles in a distribution. For instance, if there is inter-
est in estimating the concentration for which it will result 
in a user-specified percentage, say p, of the sea urchins 
experiencing death, i.e., the LCp, one can find a design that 
minimizes the (asymptotic) variance of the estimate for 
LCp. This variance can be calculated based on the model. 
Alternatively, a dual-objective optimal design may be sought 
primarily for estimating a specific LCp, and second, to esti-
mate the model parameters as accurately as possible. Table 3 
displays some of these theory-based designs.

Results

Sea urchin concentration–response data

Figure 2 shows photomicrographs of sea urchin larvae at 
either 66 or 72 hpf that have either been exposed to trimetho-
prim from 1 to 24 hpf or exposed to vehicle (DMSO). This 
figure illustrates embryos/larvae with the two phenotypes 
that have been described in this study, namely early embry-
onic developmental arrest/death (panel A: left side) and abo-
ral radialization (panel B), along with two larvae that have 
normal phenotypes for the observation time (panel A: right 
side and panel C). Table 1 shows numerical phenotypic data 
for sea urchin embryos that were exposed to various concen-
trations of trimethoprim from 1 to 24 hpf and then observed 
at 96 hpf for the purpose of deriving concentration–response 
information. The columns in the table include the dose of 
trimethoprim, the total number of embryos/plutei examined 
(N), number of normal plutei (normal), number of embryos 
with early embryonic developmental arrest/death (EDA/D), 
and aboral radialization (Radial: Ab). The response rate at 

each dose level for EDA/D was computed by dividing the 
number of arrested/dead embryos by the number of observa-
tions. The response level for aboral radialization was derived 
by dividing the number of larvae with aboral radialization 
by N, the number of presumed living plutei (total number of 
examined plutei/embryos minus EDA/D) (Fig. 2). 

Modeling and optimal designs of the concentration–
response data

For any set of data, there are several statistical models that 
may fit the data well. There are various measures in the sta-
tistical literature that assess how well a particular model 
fits the data. Some of these measures are information-based 
criterion or are based on how well the fitted model predicts 
the response. Various models were compared using good-
ness of fit measures, such as the pseudo R2, the deviance, 
the likelihood value, and the Akaike’s Information Criterion. 
The Beta model was found to have a significantly better fit 
than other models for the sea urchin data and it is used in 
this study.

The algorithm used to find single and dual-objective 
locally optimal designs for the Beta model was written in 
R and similar to the ones in Hyun et al. (2018) and Hyun 
et al. (2020). This algorithm was chosen, because it is based 
on a state-of-the-art exchange algorithm proposed by Yang, 
et al. (2013) and comes with a proof of mathematical con-
vergence. For convenience, this algorithm is named the YBT 
algorithm after the surnames of the three coauthors of the 
paper.

The ad-hoc empirical design implemented in the sea 
urchin study was compared with the various optimal designs 
found by the YBT algorithm using the same dose ranges. 
Using data from an earlier experiment, the assumed nominal 

Fig. 1   Density of beta distribu-
tion with parameters α and β
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Table 1   Concentration–
response data for the sea urchin 
study with various trimethoprim 
concentrations (Conc) and 
results for the two endpoints: 
(1) embryonic developmental 
arrest/death (EDA/D), and (2) 
aboral radialization (Radial:Ab).

N is the total number of embryos examined, and normal is the number of embryos that developed in the 
normal range

Conc (uM) N Normal EDA/D Radial: Ab Conc (uM) N Normal EDA/D Radial: Ab

0 93 87 0 0 200 113 0 113 0
1000 83 0 83 0 0 91 89 0 0
0 97 93 2 0 100 105 17 2 0
100 94 56 10 0 150 108 0 3 25
300 87 0 78 0 175 103 0 37 59
1000 95 0 95 0 200 108 0 60 48
0 87 84 1 0 0 89 88 0 0
100 93 59 1 0 100 121 50 0 0
300 80 0 80 0 125 107 6 0 1
1000 70 0 70 0 150 118 0 5 35
0 94 87 7 0 175 115 0 1 35
100 89 55 11 0 200 114 0 4 54
200 104 0 20 65 0 105 102 2 0
300 129 0 129 0 150 104 9 0 2
0 128 104 17 0 300 107 0 77 28
100 106 61 7 0 0 109 104 1 0
150 111 15 1 33 150 100 1 34 25
200 112 0 51 34 225 104 0 40 25
300 75 0 75 0 300 104 0 104 0
0 88 88 0 0 450 98 0 98 0
100 104 80 2 0 0 101 100 0 0
150 106 45 2 2 150 107 0 1 11
200 101 0 4 33 225 101 0 21 63
300 97 0 27 48 300 100 0 100 0
0 89 81 1 0 450 100 0 100 0
100 97 75 2 4 0 101 97 97 0
150 120 0 59 48 150 102 6 2 89
200 93 0 30 62 225 101 0 34 67
300 69 0 69 0 300 102 0 80 22
0 90 88 1 0 450 100 0 97 3
100 105 96 1 0 0 109 108 1 0
150 103 74 2 2 150 116 35 5 10
200 124 16 9 60 0 107 107 0 0
300 111 4 47 53 180 113 3 0 96
0 100 94 2 0 0 120 120 0 0
100 103 93 1 0 180 101 0 0 98
200 106 0 80 4 0 103 101 1 0
300 114 0 112 0 180 64 0 51 13
0 100 99 0 0
100 103 25 11 3
150 97 0 88 7
200 88 0 88 0
300 106 0 106 0
0 100 92 3 0
100 107 81 1 0
150 109 0 20 17



926	 Archives of Toxicology (2022) 96:919–932

1 3

parameters for the Beta model were the maximum likelihood 
estimates (MLEs), which were Θ1a = (− 1.250, 0.004, 1.460, 
− 0.007) for the first endpoint and Θ1b = (1.513, − 0.013, 
6.103, − 0.034) for the second endpoint.

Where there is no previous information regarding a com-
pound of interest, a common approach would be to admin-
ister log doses such as 1, 10, 100, and 1000 to establish 
limits and then use more linear doses once the limits of the 
dose–response curve are determined. In the current study, 
the concentration levels between the extremes were used to 
ascertain the slope of the response curve. For the first end-
point, arrest rates (i.e., EDA/D/N), the implemented design 
is designated as ξo1. From Table 1, it can be seen that it has 
11 different concentration levels in the range X = [0, 1000] 
and replications at various concentrations have unequal 
numbers of sea urchin embryos.

For the second endpoint, aboral radialization rates (i.e., 
Radial:Ab/(N-EDA/D)), the implemented design is desig-
nated by ξo2 and is the same as ξo1 except that it has the 

restricted concentration range X = [0, 450]. The design 
space was selected, because the aboral radialization endpoint 
cannot be observed at concentrations higher than 450 µM 
due to the death or arrest of all the embryos at these levels.

Both implemented designs for the sea urchin study were 
empirical and this is a common approach for studies con-
ducted in various laboratories. The experimental design in 
this circumstance was based on literature information on 
the biological activity of trimethoprim, the experience of 
the investigator, as well as results from earlier experiments 
to influence decisions in later experiments. Results from the 
experiments showed that the proportions of both endpoints 
respond as a sigmoidal response curve with inhomogeneous 
variances as the level of trimethoprim varies.

Are the above results accurate and reliable? Would 
another investigator examining the same endpoints using 
sea urchins come up with similar results? From the practi-
cal standpoint, there may be a long list of possible causes 
for why a scientist would not be able to duplicate the 

Fig. 2   Development of sea urchin embryos. A Shows two sea urchin 
embryos/plutei that were exposed to 100 µM trimethoprim from 1 to 
24 hpf and observed at 66 hpf. The pre-pluteus on the left has the 
phenotype described as early embryonic developmental arrest/death 
(EDA/D), and the pluteus on the right is phenotypically normal for 
this time of development. B This embryo was exposed to 180 µM tri-
methoprim from 1 to 24 hpf and observed at 72 hpf and has aboral 
radialization that is difficult to observe, because there is a problem 

getting the spicules in focus simultaneously due to the depth of field 
issues. Nevertheless, there are spicules located at approximately posi-
tions of the clock of 8, 9, 10, 11, 1, 3, and 4. C The pluteus shown is 
a control that was given vehicle (DMSO) from 1 to 24 hpf and then 
observed at 72 hpf. This photograph shows a single skeletal spicule in 
the foreground and a second spicule that is less focused but meets the 
first spicule on the aboral (left) region of the embryo
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results of an experiment whether they were in the same or 
a different laboratory and the list would not only include 
the various underlying models that were used to address 
this issue or any of the mathematical manipulations that 
are being considered. Therefore, the quality of the statis-
tical inference at the end of the study must be addressed 
for others to have faith in the toxicological findings. Giles 
(2006), mentioned earlier, alluded to such issues in toxi-
cology experiments and traced them to a root cause, which 
is the use of inefficient designs in such studies. How is it 
possible to judge the experimental results and what com-
parisons should be made with the results to assess quality?

Implementing more efficient designs provides an 
answer, and since optimal designs are not without draw-
backs, as noted before, additional design strategies can be 
developed to address practical problems. The next section 
discusses the situation where there is uncertainty about the 
nominal values for the model parameters and a desire to 
assess the relative robustness of the locally optimal design 
to misspecification in the nominal values.

Locally optimal designs for the Beta model

The locally optimal design determined by the algorithm 
depends on the nominal values of the parameters, and if the 
distance is far from the true parameter values, the locally 
optimal design becomes inefficient. Since the true param-
eters are unknown, it is important to investigate if the locally 
optimal design is sensitive to the misspecification of the 
nominal values. To investigate if the optimal designs were 
robust to misspecified nominal parameter values, five addi-
tional sets of parameter values were selected that provide 
reasonable approximations to response curves for both of 
the endpoints. Table 2 displays the six selected parameter 
sets and Fig. 3 shows the fitted response curves for the two 
endpoints.

A locally D-optimal design for the Beta model was gener-
ated from the algorithm for each of the six sets of nominal 
values for the model parameters. These designs depend on 
the nominal values and can perform poorly if the nominal 
values are misspecified. It is therefore desirable to have a 
design robust to misspecification in the model parameters. 
One version of a robust D-optimal design is to maximize a 

Table 2   Six selected sets of 
parameter values that provide 
reasonable response curves for 
the sea urchin data

The sets of nominal parameter values Θ1a and Θ1b are the MLEs obtained from fitting the data to the first 
and second endpoints, respectively, and the sets Θ2–6 are departures from the MLEs

(a) Arrest/death rates (b) Aboral radialization rates

Θ1a = (− 1.250, 0.004, 1.460, − 0.007) Θ1b = (1.513, − 0.013, 6.103, − 0.034)
Θ2a = (─1.500, 0.007, 1.700, − 0.010) Θ2b = (0.900, − 0.021, 6.103, − 0.052)
Θ3a = (− 1.750, 0.010, 2.000, − 0.013) Θ3b = (0.900, − 0.021, 8.930, − 0.053)
Θ4a = (− 1.500, 0.004, 1.460, − 0.007) Θ4b = (0.900, − 0.021, 9.700, − 0.060)
Θ5a = (− 1.000, 0.004, 2.460, − 0.007) Θ5b = (1.100, − 0.015, 9.700, − 0.072)
Θ6a = (− 1.000, 0.006, 3.460, − 0.010) Θ6b = (1.500, − 0.015, 11.500, − 0.065

Fig. 3   Response curves from 
the six sets of the parameter 
values for each endpoint. The 
black solid curve represents 
the response curve from the 
MLEs as nominal values and 
the red curves are from the five 
additional parameter sets. a 
Early embryonic developmental 
arrest/death (Arrest) versus 
concentration (Dose) relation-
ship. b Aboral radialization 
versus concentration (Dose) 
relationship
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weighted average of the D-optimality criteria across the six 
parameter sets with each weight proportional to the probabil-
ity that the set of nominal values is the true value or close to 
the true value. Table 2 displays robust D-optimal design for 
the two endpoints under the Beta model where it has been 
assumed that all the sets of parameter values are equally 
likely to be valid and they are denoted as ξRD.

The algorithm in Hyun and Wong (2015) was modified 
to find designs for estimating model parameters and the 
concentration LCp (lethal concentration for percentage p of 
the population) for which a user-specified p% of the urchins 
would succumb. This is an example of a dual-objective opti-
mal design where there are two pre-determined objectives 
at the onset. For the sea urchin study, it was assumed both 
objectives are equally important and the six sets of param-
eter settings are equally likely to be true or close to the true 
values of the model parameters.

Table 3 displays robust optimal designs and dual-objec-
tive optimal designs for estimating model parameters and 
one of four lethal concentrations: LC10, LC20, LC25, and 
LC50. The construction strategy for these designs is similar 
to those for constructing robust D-optimal designs in Hyun 
and Wong (2015), where more technical details are avail-
able. From Table 3, it can be observed that robust designs 
and dual-objective optimal designs require 3–6 dose levels 
and all contain the lower and upper limits of the dose range. 
For example, if the primary goal is to estimate parameters in 
the Beta model for the first endpoint, the robust D-optimal 
design in the first row of column (a) allocates about 34.1% 
of the embryos to the zero dose level, 3.2% of the embryos 
to the 250 dose level, 37.5% of the embryos to the 300 dose 
level, and 25.2% of the embryos to the 1000 dose level.

It is counter-intuitive that the optimal design allocates 
about a quarter of the observations to the 1000 dose level, 
which is the highest dose in this study. The high dose was 
selected in part, because it is believed that at such a dose, 
100% of the experimental units will result in death/arrest, 
and furthermore, it would be anticipated that there would be 

essentially no variability in this response. Does it make sense 
that such a large percentage of embryos be allocated to this 
dose? Perhaps not, but optimal design construction is solely 
based on mathematical and optimization considerations only 
and so the optimal design may deviate from the pragmatic 
concerns of a particular experimental goal. A general rule 
for the application of optimal design is that it should be used 
as an overall guide in the design of experimental studies and 
should incorporate pragmatic study considerations which 
are used to modify the optimal design. For example, it may 
be deemed desirable to have a smaller percentage assigned 
at the highest dose and augment the resulting design with 
additional doses predicated on particular biological activi-
ties. The modified design can then be assessed by calculating 
its efficiencies under different model assumptions and crite-
rion. The implemented design should have acceptably high 
efficiencies, say 80% or higher, so that the altered design is 
a compromise between statistical efficiency and pragmatic 
consideration. Of course, the term `high’ is a relative term 
and depends on the investigator and the problem at hand.

In general, designs with high efficiencies are sought. 
Formally, if D-optimality is the design criterion, the D-effi-
ciency of a design is defined by the ratio of the determinant 
of its information matrix to that from the D-optimal design. 
For interpretability, the ratio is raised to pth root where p is 
the number of parameters in the model. A design with 80% 
D-efficiency can be interpreted as requiring 1/0.80 = 1.25 
times more observations to perform as well as the D-optimal 
design for estimating the model parameters. Thus, a design 
with the D-efficiency close to 1 signifies that the design per-
forms just as well as the D-optimal design, and a design with 
very low D-efficiency close to 0 signifies that it performs 
very poorly for estimating model parameters relative to the 
D-optimal design.

The definition for c-efficiency is the ratio of the variance 
of the estimated function using the c-optimal design to that 
from the design of interest. The interpretation of c-efficiency 
is similar to that for D-optimality. Figure 4 displays the 

Table 3   Optimal designs for 
both endpoints under the Beta 
model: the first row displays 
the selected dose levels and 
the second row displays the 
corresponding weight

Design (a) Arrest rates (b) Aboral radialization rates

ξRD
[

0 250 300 1000

0.341 0.032 0.375 0.252

] [

0 163 207 450

0.450 0.154 0.166 0.230

]

ξRDc10
[

0 236 1000

0.453 0.414 0.133

] [

0 158 213 450

0.285 0.225 0.377 0.113

]

ξRDc20
[

0 186 246 1000

0.324 0.130 0.417 0.129

] [

0 158 212 226 450

0.253 0.258 0.125 0.258 0.106

]

ξRDc25
[

0 213 264 1000

0.286 0.307 0.277 0.130

] [

0 158 163 212 226 450

0.246 0.154 0.116 0.091 0.287 0.106

]

ξRDc50
[

0 271 298 1000

0.203 0.540 0.127 0.130

] [

0 164 212 226 450

0.233 0.289 0.034 0.335 0.109

]
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D-efficiencies and Figures 5 and 6 show c-efficiencies of 
various designs for estimating LC10 and LC20, and LC25 and 
LC50, respectively, when different sets of nominal param-
eters are assumed. A design with consistently high efficien-
cies across different sets of nominal values is always appeal-
ing, because there is always uncertainty in the true values of 
model parameters. The same reasoning holds for wanting to 
have a design with high efficiencies across different models 
and criteria.

Robustness properties of the designs

The robustness properties of the optimal designs ξRD and 
ξRDcp and the ad-hoc empirical designs (ξo1 and ξo2) to the 
misspecified nominal model parameters are compared for 
both endpoints. Note that (i) the empirical design ξo1 is the 

implemented design on the whole dose range for the first 
endpoint (arrest rates), and ξo2 is the same as O1 but on a 
restricted or truncated dose range for the second endpoint 
(aboral radialization rates), and (ii) robust designs are simply 
designs found after averaging the nominal values for the 
model across the six sets with equal weights. For studying 
the two endpoints, the focus is on estimating lower lethal 
concentrations (LC10 and LC20) for the first endpoint and 
higher concentrations (LC25 and LC50) for the second end-
point. The performance of a few uniform designs relative to 
the optimal designs and the ad-hoc empirical designs were 
assessed. Uniform designs are designs with equally spaced 
doses across the dose interval and have equal number of 
observations at each dose. They are popular due to their 
simplicity and intuitive appeal. If a uniform design has k 
points, it is denoted by Uk, and the performances of the 

Fig. 4   D-efficiencies of the 
various designs relative to the 
locally D-optimal designs with 
MLEs as nominal values for 
estimating model parameters 
across the six sets of nominal 
parameter values for both 
endpoints. RD stands for the 
ξRD, O1 and O2 stand for ad-hoc 
empirical implemented designs, 
ξo1 and ξo2, respectively, and 
U4, U8, and U11 stand for the 
uniform designs U4, U8, and 
U11, respectively

Fig. 5   C-efficiencies of various 
designs relative to the locally 
c-optimal designs with MLEs 
as nominal values for estimating 
the LC10 and LC20 across the 
six sets of nominal parameter 
values for the arrest/death rates 
as the first endpoint. RDc10 
and RDc20 stand for the robust 
optimal designs, O1 stands for 
the ad-hoc empirical design 
ξo1 used for the study, and U4, 
U8, and U11 are the uniform 
designs U4, U8, and U11, respec-
tively. The notation O2 stands 
for the ad-hoc empirical design 
ξo2 obtained from O1 but on a 
restricted design space
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optimal designs found here are compared with those of Uk 
for selected values of k = 4, 8, or 11.

Figure 4 is a plot of the D-efficiencies of the various 
designs across different sets of nominal values for the model 
parameters. It shows the merits of the robust D-optimal 
design ξRD for estimating the model parameters in the pres-
ence of six competing choices for the vector of nominal val-
ues. For both endpoints, ξRD performs the best across the 
six parameter sets. It also clearly outperforms the ad-hoc 
empirical designs ξo1 and ξo2. The uniform designs do not 
perform well despite their popularity; both graphs also sug-
gest that more concentration points in the uniform designs 
do not necessarily result in better performance.

Figures 5 and 6 are plots of the c-efficiencies of the vari-
ous designs across different sets of nominal values for the 
model parameters. Figure 5 shows the empirical design O1 
is competitive with design ξRDc10 but O2 outperforms ξRDc20; 
however, Fig. 6 shows ξRDc25 and ξRDc50 clearly outperform 
all other designs, but their efficiencies are smaller than those 
observed for ξRDc10 and ξRDc20 in Figure 5. All three of the 
uniform designs consistently underperform for estimating 
the four lethal concentrations. For some set of nominal 
values, the difference in c-efficiencies between the robust 
design and one of the uniform designs can be as large as 
39%, i.e., 62% versus 23% (for estimating LC20 ) with a simi-
lar magnitude difference for estimating LC10 as well (82% 
versus 41%). All the uniform designs U4, U8, and U11 per-
form poorly and uniformly worse than the robust designs for 
estimating all model parameters or the four lethal concentra-
tions. Among them, they have mixed performances with no 
clear indication which one of the three is the best. The main 
practical implication is that intuitively appealing designs, 
such as uniform designs, can be very inefficient in that they 
require more time and labor to administer more doses yet can 
produce less reliable and less accurate estimates.

Discussion

Optimal design theory was used to construct efficient 
designs for making statistical inference when a statistical 
model and a specific goal in the experiment were assumed. 
The optimal design provides the most accurate inference for 
a fixed amount of resources. However, the theory requires a 
known model and a clearly specified goal, neither of which 
is likely applicable in developmental toxicity studies. This is 
because frequently experiments are performed in an ad-hoc 
manner without a statistical model in mind. It is therefore 
useful to modify an optimal design which is robust to vari-
ous model assumptions, different objectives, and different 
goals.

In this sea urchin developmental toxicity study, con-
centration–response relationships were established for tri-
methoprim and two developmental outcomes, namely aboral 
radialization and embryonic developmental arrest/death. The 
relationship was a sigmoidal curve with inhomogeneous var-
iances on the responses and it was found that a Beta model 
provided a good fit to the data with concentration (dose) as 
the only independent variable. Using an algorithm developed 
by the coauthors [WKW and SWH], it was found D and 
LC-optimal designs were robust to different sets of nominal 
parameters for the Beta regression model. Statistical infer-
ence was sought for two endpoints in the sea urchin study: (i) 
estimating the model parameters and (ii) estimating various 
lethal concentrations. The optimal designs found from the 
algorithm for the Beta model were then compared to the ad-
hoc empirical designs implemented for the sea urchin study 
and three uniform designs.

Although the Beta model provides a good fit to the data, 
the complexity of the model and the difficulty of finding an 
optimal design can deter the use of such a design in practice. 
To this end, a website was constructed to provide additional 

Fig. 6   C-efficiencies of various 
designs relative to the locally 
c-optimal designs with MLEs 
as nominal values for estimating 
the LC25 and LC50 across the 
six sets of nominal parameter 
values for aboral radialization 
as the second endpoint. RDc25 
and RDc50 stand for the robust 
optimal designs, O2 stands for 
the ad-hoc empirical design 
ξo2 used for the study, and U4, 
U8, and U11 are the uniform 
designs U4, U8, and U11, respec-
tively. The notation O1 stands 
for the ad-hoc empirical design 
ξo1 implemented in the study to 
obtain the responses over the 
full dose range of interest
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background information on design for such experiments and 
implement the algorithm so that a toxicologist can inter-
actively use the site to generate different types of optimal 
designs.

The site address is https://​elvis​cuihan.​shiny​apps.​io/​Dc_​
optim​al_​design/, and it allows a toxicologist to find the 
D-optimal design or the LCp-optimal design or a dual-objec-
tive optimal design for the two objectives after determination 
of the design parameters. The input parameters include the 
dose interval of interest, the value of p, up to six sets of pos-
sible values (Θ1, Θ2, Θ3, Θ4, Θ5, Θ6) for the nominal values 
of the Beta model and how long the algorithm is to be run, 
along with the grid size. For the latter two inputs, r and Grid, 
respectively, it is recommended to use the default values. If 
some sets of nominal values are deemed to be more likely 
than others, the user can assign an appropriate vector of 
probabilities (P1, P2, P3, P4, P5, P6) to reflect the plausibil-
ity of each set. If fewer than six sets of nominal values are 
available, the corresponding probabilities are assigned zeros. 
For finding a dual-objective optimal design, the user also 
needs to specify a value of W between 0 and 1 to indicate 
which of the two objectives are more important. Clearly, if 
the weight W used to balance between the two competing 
objectives is set to W = 0 or W = 1, the single-objective 
optimal design is obtained. After all inputs are provided, 
the user clicks on the “search optimal design!” prompt and 
it should take several seconds for the algorithm to find the 
desired optimal design.

In conclusion, some aspects of optimal design theory 
were used to construct optimal designs in a developmental 
toxicology study. Details on the theory of constructing and 
confirming optimality of a model-based design are omit-
ted, but they can be found in Holland-Letz and Kopp-Sch-
neider (2015), who described them nicely for a toxicology 
audience. Additional fundamentals of optimal design and 
technical details are also available in several design mono-
graphs, such as, Fedorov (1972), Silvey (1980), and Berger 
and Wong (2009). Examples of use of optimal design ideas 
in various fields are illustrated in many real applications in 
Berger and Wong (2005).

It is concluded that an optimal design is derived math-
ematically under a set of restrictive assumptions and so the 
optimal design may not meet all the practical requirements 
related to deriving a dose–response relationship. A guiding 
principle is that the implemented design should be modified 
to meet practical needs to the extent possible, and not devi-
ate too much from the optimum to avoid a marked reduction 
in statistical efficiency. Some of the assumptions required 
for the theory may not be tenable in a laboratory experi-
ment, but this should not totally exclude consideration of 
incorporating optimal design ideas in toxicology studies. 
For instance, model assumptions can be questionable, but 
data from the design can help validate the appropriateness of 

the assumed model by assessing the adequacy of the model 
fit. In addition, there are statistical tests to detect problems 
with specific model assumptions or overall adequacy of the 
performance of a model using an array of residual diagnostic 
tools (Cook and Weisberg 1982). The regression diagnos-
tic results can then frequently provide a valuable guide to 
develop a more plausible model for the next experiment. The 
overarching problem is that there is a need to improve study 
design in toxicology experiments and incorporating some 
optimal design ideas at the design stage is a reasonable step 
in the right direction.

Therefore, a question that derives from this study is what 
does this mean for human developmental toxicity of trimeth-
oprim? The answer is that trimethoprim is a developmental 
toxicant in sea urchins at the doses tested irrespective of 
whether the data are modeled or not. Further studies are 
required to determine the molecular basis of this toxicity in 
sea urchins, and then, a subsequent step would be to assess 
if this molecular pathway relates to mammalian (specifically 
human) development. These steps may be facilitated by hav-
ing an accurate mathematical model of phenotypic results as 
well as the molecular events.
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