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Abstract
Co-occurrence of pesticide residues in food commodities raises a potential safety issue as their mixture effects on human 
health are largely unknown. In a previous study, we reported the toxicological effects (pathology and histopathology) of 
imazalil (IMZ), thiacloprid (THI), and clothianidin (CTD) alone and in binary mixtures in a 28-day oral gavage study in 
female Wistar rats. Five dose levels (up to 350 mg/kg body weight/day) ranging from a typical toxicological reference value 
to a clear effect dose were applied. In the present study, we undertook a transcriptomics analysis of rat livers by means of 
total RNA sequencing (RNA-Seq). Bioinformatic data analysis involving Ingenuity Pathway Analysis (IPA) was used to 
gain mechanistic information on hepatotoxicity-related pathways affected after treatment with the pesticides, alone and in 
mixtures. Our data show that 2986 genes were differentially regulated by CTD while IMZ and THI had effects on 194 and 
225 genes, respectively. All three individual compounds shared a common subset of genes whose network is associated 
with xenobiotic metabolism and nuclear receptor activation. Similar networks were retrieved for the mixtures. Alterations 
in the expression of individual genes were in line with the assumption of dose addition. Our results bring new insight into 
the hepatotoxicity mechanisms of IMZ, THI, and CTD and their mixtures.
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Introduction

Humans are exposed to multiple pesticide residues through 
the environment or their daily diet (Cataudella et al. 2012; 
Cedergreen 2014; Kortenkamp 2014). Facing the need 
to integrate this stake, strategies have been proposed and 
implemented to help with the risk assessment of chemical 
mixtures (EFSA 2013; OECD 2018; Rotter et al. 2018). One 
critical aspect in the study of chemical mixtures is the identi-
fication of modes of action (MoA) underlying the toxicologi-
cal outcomes. Indeed, such identification not only helps to 
classify substances into groups [i.e., cumulative assessment 
groups (CAG)], but is also important when using most math-
ematical models for modeling of mixture effects (Cedergreen 
2014; EFSA 2013; Kortenkamp et al. 2009).

Furthermore, the integration of knowledge about the 
toxicological MoA in the risk assessment of substances has 
gained increasing attention as the development of tools such 
as the concept of adverse outcome pathways (AOP) emerged 
(EFSA 2014; Martens et al. 2018; Perkins et al. 2019). How-
ever, establishing biological pathways linking changes at 
the molecular level to the observed outcome at the physio-
pathological level represents a scientific challenge that sin-
gle endpoint investigation cannot face efficiently. In the last 
decade, the rapid development and implementation of omics 
technologies has enabled the possibility of characterization 
and quantification of large sets of biomolecules in a single 
run. Such approaches allow for better understanding and 
deciphering of the MoA of a given substance and in the 
context of chemical mixtures could help to identify poten-
tial biomarkers of mixture toxicity (Altenburger et al. 2012; 
Martins et al. 2019; Marx-Stoelting et al. 2015; Seeger et al. 
2019).

We have recently published the outcome of a 28-day oral 
study in female Wistar rats with the three pesticidal active 
compounds imazalil (IMZ), thiacloprid (THI) and clothia-
nidin (CTD) (Alarcan et al. 2020). Those substances have 
been assigned to the CAG liver toxicity and recent expo-
sure studies revealed a predominant occurrence in food or 
even in human urine samples, thus raising a concern about 
safety (Craddock et al. 2019; Crepet et al. 2019; Nielsen 
et al. 2012). The pesticides were either being administrated 
alone or in binary combinations, using an equipotency-
based approach. Reported effects included an increase in 
liver weight, hepatocellular hypertrophy and cytoplasmic 
changes of the hepatocytes. Additionally, liver and kidney 
residue analysis showed alterations in pesticide residues 
when applied in mixtures as compared to the levels of pes-
ticide residues for the single compound treatment (Alarcan 
et al. 2020).

Even after having documented the toxicological effects at 
the histopathological level, the mechanisms by which IMZ, 

THI and CTD induce adverse effects at the molecular level 
are still to be characterized. Using transfected human HepG2 
liver cells, we previously showed the activation of human 
pregnane X receptor (PXR) and constitutive androstane 
receptor (CAR) by IMZ in a dual luciferase-based trans-
activation assay (Lichtenstein et al. 2020). Furthermore, in 
this study, THI was found to activate PXR and peroxisome 
proliferator-activated receptor γ (PPARγ) while CTD inhib-
ited PPARα. These findings on PXR and CAR activation 
were complemented by the observation of up-regulation in 
the expression of associated target genes (e.g., CYP genes) 
in human HepaRG hepatocarcinoma cells (Lichtenstein et al. 
2020). Of note, an increase in CYP content in rats follow-
ing 30-day treatment with THI was also reported by others 
(Hendawi et al. 2016).

The present study constitutes a follow-up to the previous 
publication of pesticide hepatotoxicity in vivo (Alarcan et al. 
2020) and aims to investigate the molecular effects of pesti-
cides in rat liver, both individually and in combination. To 
this end, we undertook a transcriptomics analysis using total 
RNA sequencing (RNA-Seq). Furthermore, gene ontology 
(GO) term enrichment and ingenuity pathway analysis (IPA) 
were performed to get insight into the molecular MoA of a 
compound by comparing and retrieving datasets of genes 
that are associated with a specific biological function or 
pathway (Krämer et al. 2014). The present study is part of 
the EuroMix project (European Test and Risk Assessment 
Strategies for Mixtures—information available on www.
eurom ixpro ject.eu).

Materials and methods

Test substances

Clothianidin (CAS no. 210880-92-5, Batch no. 
EDFL036131) and thiacloprid (CAS no. 111988-49-9, Batch 
no. EDTE013890) were supplied by Bayer AG (Leverkusen, 
Germany). Imazalil (CAS no. 35554-44-0, Batch no. 1-TAH-
30-1) was obtained from Sigma-Aldrich (Taufkirchen, 
Germany).

Animals and treatment

Detailed description of study design can be found in Alar-
can et al. (2020). Briefly, young adult female Wistar rats 
(Crl:WI) were acclimatized to the laboratory conditions 
for at least 1 week and were weighed and monitored for 
their health status. Female rats were chosen consider-
ing a previous 28-day study in which only female rats 
showed increase in liver weight following IMZ admin-
istration [study from “Draft Assessment Report on the 
Active Substance Imazalil” (DAR)]. Rats were allocated 

http://www.euromixproject.eu
http://www.euromixproject.eu
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in a randomized manner to the different treatment groups 
(see Table 1) and were maintained under conventional 
laboratory conditions: constant 12/12-h light/dark cycle 
with controlled temperature at 22 °C ± 2 °C and humid-
ity at 55% ± 15%. The specified doses of the test com-
pounds were daily administered to the rats by oral gav-
age for 28 days. Test compounds were suspended in 0.5% 
aqueous carboxymethyl-cellulose with a dosing volume of 
7.5 ml/kg bw. Rats of the control group were treated with 
the vehicle only (0.5% aqueous carboxymethyl-cellulose 
in deionized water). Dose selection was based on stud-
ies from DARs of the individual compounds. Equipotent 
mixtures were established following the relative potency 
factors (RPF) approach. The determined maximal doses of 

the single compounds were used to calculate provisional 
RPF: RPF CTD/THI = 2.50, RPF CTD/IMZ = 2.92, and RPF 
THI/IMZ = 1.17.

After sacrifice, the liver was isolated and prepared as fol-
lows: the liver hilus as well as the adjacent connective tissue 
were prepared off and discarded, and the liver was trimmed 
into the individual liver lobes. Lobes were cut into small 
cubes (approx. 5 × 5 mm), cleansed on filter paper, immedi-
ately shock frozen in liquid nitrogen, and stored at − 80 °C 
until further analysis.

RNA preparation

Total RNA was isolated from approximately 20–40 mg fro-
zen rat tissue sample using the RNeasy Mini Kit (Qiagen, 
Hilden, Germany) following the manufacturer’s protocol. 
The quality and concentration of RNA was determined using 
NanoQuant plate with Infinite M200 Pro plate reader (Tecan 
group, Männedorf, Switzerland) following the instruction 
manual and the integrity of RNA was evaluated using the 
Agilent RNA 6000 Nano LabChip kit together with the Agi-
lent 2100 Bioanalyzer (Agilent, Santa Clara, USA) accord-
ing to the manufacturer’s protocol. All RNA samples had 
RNA integrity numbers (RINs) greater than 9.3. For each 
sample, one half was used for total RNA sequencing while 
the other half was used for real-time quantitative PCR analy-
sis. Samples obtained from the animals of each treatment 
group represented independent biological replicates.

Total RNA sequencing

RNA-Seq was done only for the rats of the high dose 
groups. For sequencing analysis, the samples were shipped 
to CeGaT GmbH (Tübingen, Germany) for library prepara-
tion using TruSeq Stranded Total RNA Sample Preparation-
Kit (Illumina) from 100 ng RNA per sample. Sequencing 
was performed using the Illumina NovaSeq6000 platform. 
Depths of ~ 50–160 million paired-end 100 bp reads were 
generated for each sample (see Supplementary Table S1 for 
details). The raw RNA sequencing data are available from 
GEO under accession number GSE153986. Adapters were 
trimmed by Skewer version 0.2.2 (Jiang et al. 2014) and data 
quality was assessed by FastQC version 0.11.5 (Andrews 
2010). Reads were mapped to the rat reference genome 
Rnor_5.0 and counted per gene ID using STAR version 
2.5.2b (Dobin et al. 2013).

Statistical analysis

After removing genes with low expression (sum of reads 
across all samples below two), retained genes were ana-
lyzed by the R-package (R Core Team 2013) DESeq2 
version 1.15.1 (Love et al. 2014) using default settings 

Table 1  Study design and dosing scheme of the 28-day oral toxicity 
study in female Wistar rats

The asterisk indicates that one or more rats were killed in moribund 
condition (for IMZ, the rat was found dead)

Group Treatment Dose mg/kg bw/day Number 
of rats

1 Control (vehicle) – – 8
2 Thiacloprid Very low 10 4
3 Thiacloprid Low 43 4
4 Thiacloprid Mid 75 4
5 Thiacloprid High 108 4
6 Thiacloprid Very high 140 3*
7 Imazalil Very low 10 4
8 Imazalil Low 38 4
9 Imazalil Mid 65 4
10 Imazalil High 93 4
11 Imazalil Very high 120 3*
12 Clothianidin Very low 100 4
13 Clothianidin Low 163 4
14 Clothianidin Mid 225 4
15 Clothianidin High 288 3*
16 Clothianidin Very high 350 2*
17 Thiacloprid + Imazalil Very low 5/4 4
18 Thiacloprid + Imazalil Low 21/18 4
19 Thiacloprid + Imazalil Mid 38/32 4
20 Thiacloprid + Imazalil High 54/46 4
21 Thiacloprid + Imazalil Very high 70/60 4
22 Thiacloprid + Clothianidin Very low 5/13 4
23 Thiacloprid + Clothianidin Low 21/53 4
24 Thiacloprid + Clothianidin Mid 38/94 4
25 Thiacloprid + Clothianidin High 54/134 4
26 Thiacloprid + Clothianidin Very high 70/175 3*
27 Imazalil + Clothianidin Very low 5/15 4
28 Imazalil + Clothianidin Low 19/55 4
29 Imazalil + Clothianidin Mid 33/95 4
30 Imazalil + Clothianidin High 46/135 4
31 Imazalil + Clothianidin Very high 60/175 4
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estimation of size factors and dispersion. Negative Bino-
mial GLM fitting and Wald statistics were applied to test 
for differential gene expression between each treatment 
and control conditions, respectively. False discovery rate 
(FDR) was used to control for multiple testing (Benjamini 
and Hochberg 1995). Only genes with a q-value < 0.05 
were included in the further analyses. Variance stabiliz-
ing transformation was applied prior to probabilistic PCA 
(ppca) on pareto scaled and centered data by the R-pack-
age pcaMethods (Stacklies et al. 2007). K-means cluster-
ing of transformed and scaled gene expression data with 
12 centers was performed by the R-package stats. Theo-
retical  log2-fold change values (LFC) for mixtures were 
computed as a combination of single compounds adjusting 
for the dose: LFC

IMZ+CTD
= 0.5 × LFC

IMZ
+ 0.47 × LFC

CTD
 

(the factor for CTD results from the division of 135 mg/
kg bw/day in mixture by 288 mg/kg bw/day in single com-
pound treatment).

Verification of target genes by real‑time 
quantitative PCR analysis

A quantity of 1000 ng RNA were reverse transcribed into 
cDNA using High Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems, Darmstadt, Germany) and 
thermal cycling conditions were chosen according to the 
manufacturer’s protocol. The primers were designed with 
the free webtool Primer3. All primers (Supplementary 
Table S2) were purchased from Eurofins (Luxemburg). 
Real-time quantitative PCR (qRT-PCR) was performed 
on ABI 7900 HT Fast Real-Time PCR system instrument 
(Applied Biosystems, Darmstadt, Germany) using Maxima 
SYBR Green/Rox qPCR Mastermix (Life Technologies, 
Carlsbad, USA) with 5 μM primers and 1 µl cDNA in a 
total volume of 10 µl. Thermal cycling conditions were as 
follows: initial denaturation at 95 °C for 10 min, 40 cycles 
of denaturation at 95 °C for 15 s and combined annealing 
and elongation at 60 °C for 1 min, 15 s at 95 °C and final 
elongation at 60 °C for 15 min. At the end of the run, a 
dissociation curve analysis was performed. For the relative 
quantification of mRNA content according to the  2−∆∆Ct 
method (Livak and Schmittgen 2001),  Ct values were nor-
malized to Actb (encoding β-actin) and referred to vehicle-
treated rats. Differences between means were determined 
by the nonparametric Kruskal–Wallis test followed by 
Dunn’s test (*p < 0.05; **p < 0.01; ***p < 0.001).

Mixture analysis

The software PROAST (www.proas t.nl) was used to inves-
tigate, whether the observed mixture effects comply with 

the assumption of dose addition. A detailed explanation 
on this statistical dose–response modeling can be found 
in previous studies (EPA 2012; Kienhuis et  al. 2015). 
Briefly, the dose response curves obtained from the single 
compounds and from the compounds applied in mixture 
were plotted and their curve fit was estimated. In case the 
mixture deviates from the dose addition assumption, the 
plot of the mixture will shift to the left (synergism) or to 
the right (antagonism) in contrast to the plot of the single 
compounds.

Ingenuity pathway analysis

Data were analyzed through the use of QIAGEN’s Ingenu-
ity Pathway Analysis (IPA, QIAGEN Redwood City, www.
qiage n.com/ingen uity; release 2014-06-24). We performed 
an upstream regulator analysis to determine transcription 
regulators potentially activated or inhibited. The right-tailed 
Fisher’s exact test was used to estimate the probability of 
association of a set of genes in the dataset with a transcrip-
tion regulator by random chance alone. A p value < 0.05 was 
chosen as significance level. Results were filtered to include 
only ligand-dependent nuclear receptors and transcription 
regulators. The p value was used to evaluate the statistical 
significance of the overlap between the dataset genes and 
the genes which are regulated by the transcription regulator. 
The IPA z-score algorithm was used to identify transcrip-
tion regulators that are expected to be activated or inhibited. 
A z-score ≥ 2 or ≤ − 2 predicts a significantly activated or 
inhibited transcription regulator state, respectively. Heatmap 
presentations were generated using matrix2png (Pavlidis and 
Noble 2003).

GO term enrichment analysis

Gene ontology (GO) Biological Process term enrichment 
analysis was performed using a hypergeometric test by the 
R-package clusterProfiler version 3.14.3 (Yu et al. 2012). 
False discovery rate (FDR) was applied to control for multi-
ple testing (Benjamini and Hochberg 1995) and an adjusted 
p value < 0.05 was considered as significant. Resulting GO 
terms were clustered by semantic similarity using Wang 
method and the R-package GOSemSim version 2.14.0 (Yu 
et al. 2010) and –log10(p value) were visualized in heatmaps 
using the R-package pheatmap version 1.0.12. The GO 
terms shown in heatmaps were filtered by removing redun-
dant entries measured by semantic similarity (the complete 
results are shown in Supplementary Table S4–S6).

http://www.proast.nl
http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
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Results

Total RNA sequencing

To obtain in-depth information on the hepatic molecular 
MoA of pesticides alone and in mixtures, RNA-Seq was 
performed on the liver samples from the high dose group 
treatment. On average, 85% of the reads were mapped to 
the reference genome Rnor_5.0 (Supplementary Table S1). 
After filtering for genes with low expression, 19,904 genes 
were retained representing 75% of all annotated genes.

Principal component analysis (PCA) was employed to get 
an overall picture of the transcriptome profile upon pesti-
cide treatment. As shown in Fig. 1a, the treatment effect 
contributed mainly to the transcriptome variation as PC1 
explains 12.4% of the variation. PCA of subsets indicate a 
clear separation of control samples from the treated samples, 
especially for CTD (Fig. 1b–d). However, the effect of single 
treatment with THI (Fig. 1b) and IMZ (Fig. 1c) appeared to 
be less pronounced since these samples cluster together with 
control samples. Interestingly, the treatment with THI + CTD 
resulted in a gene expression pattern between the respective 
single compounds THI (Fig. 1b), while IMZ + CTD sam-
ples resemble rather the samples treated with IMZ alone 

Fig. 1  Principal component analysis (PCA) of transcriptome profiles 
of rat livers treated with different pesticidal active compounds alone 
or in mixtures was performed on normalized variance stabilized read 
counts. a Scores plot of samples for all conditions. PCA scores plots 

for data subsets of each mixture and the respective single compound 
for THI-CTD (b), IMZ + CTD (c) and THI + IMZ (d). Each treatment 
is indicated by a different color and the type of treatment by symbols
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(Fig. 1c). The samples of the mixture THI + IMZ clustered 
together with both single compounds indicating a compara-
ble treatment effect on the transcriptome (Fig. 1d).

Analysis of differentially expressed genes (DEGs) was 
performed to assess the treatment effect of single com-
pounds and mixtures in comparison to control conditions. 
In single treatment, CTD modulated the expression of 2986 
genes while IMZ and THI differentially regulated 194 and 
225 genes, respectively (Fig. 2). For all three compounds, 
repartition between up-regulated and down-regulated genes 
was well balanced. In mixture, THI + CTD modulated 
1421 genes while IMZ + CTD and THI + IMZ modified the 
expression of 641 and 476 genes, respectively. Overall, the 
DEG numbers reflected the clustering of samples in the PCA 
plots (Fig. 1) where CTD treatment caused the strongest 
separation from control conditions.

In a next step, we analyzed the overlaps between sets 
of DEGs and visualized them in Venn diagrams. In single 
treatment condition, a total of 64 common genes were dif-
ferentially regulated by IMZ, THI and CTD (Fig. 3a). GO 
term analysis revealed an enrichment of xenobiotic meta-
bolic process (GO:0006805) and similar ones for common 
DEGs (Supplementary Figure S1). 156 (92 + 64) genes were 
commonly affected by CTD and THI, while 150 (86 + 64) 
genes were commonly affected by CTD and IMZ. IMZ 
and THI shared 78 (64 + 14) differentially regulated genes. 
Among these shared DEG sets, we identified GO terms 
related to response to glucocorticoid and DNA packaging 

(GO:00513844, GO:0006323) as well as steroid and fatty 
acid metabolic process (GO:0008202, GO:0006631) (Sup-
plementary Table S4). 92% of the genes regulated by CTD 
were exclusively regulated by this compound and not 
affected by any of the other compounds. This figure was 
15% and 24% for IMZ and THI, respectively. For the genes 
exclusively regulated by CTD, we observed strong enrich-
ment of GO terms related to cell division and DNA replica-
tion (GO:0051301, GO:0006260).

In mixture treatment condition, a total of 196 com-
mon genes were differentially regulated by the 3 different 
combinations (Fig. 3b). 390 (196 + 194) genes were com-
monly affected by CTD + THI and CTD + IMZ while 287 
(196 + 91) genes were commonly affected by CTD + THI 
and THI + IMZ. CTD + IMZ and THI + IMZ shared 223 
(196 + 27) differentially regulated genes.

Comparison between CTD, IMZ and their mixture 
showed that the number of new genes found solely in mix-
ture treatment condition (i.e., that were not regulated in sin-
gle condition by either CTD or IMZ) is 195, representing 
30% (195/641) of total regulated genes (Fig. 3c). 352 genes 
in the mixture treatment condition were regulated solely 
by CTD (~ 55%). A similar trend is observed for mixture 
THI + CTD with 52% of genes being regulated solely by 
CTD (742 out of 1421) while around 35% of new genes were 
regulated (502 out of 1421). On the contrary, for THI + IMZ 
the proportion of new genes regulated solely in mixture is 
considerably higher, reaching 66% (313/476). 56 genes in 

Fig. 2  Bar plot of the number 
of DEG per single compound 
and mixture treatment in com-
parison to control conditions. 
Genes were filtered based on a 
q-value < 0.05
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mixture treatment condition are genes that were regulated 
solely by THI (~ 12%) while 42 genes were solely regulated 
by IMZ (~ 9%).

To confirm the data acquired by RNA-Seq, the expres-
sion of selected genes was verified using qRT-PCR. In 
addition, RNA samples from the remaining dose levels 
of treatment with individual compounds or mixtures 
were used to quantify the full dose–response curve of 

the selected transcripts. We decided to choose genes that 
were among the most differentially regulated (both up and 
down) and which feature a biological interest (Table 2). 
Supplementary Figure S3 presents volcano plots for the 
different treatment conditions, highlighting the top ten 
differentially regulated genes. Xenobiotic-metabolizing 
enzyme (XME)-coding genes (i.e., Aldh1a1, Cyp2b2, and 
Cyp3a23/3a1) represent almost one-third of the selected 

Fig. 3  Venn diagrams showing the overlaps and differences in the number of genes regulated by single compounds (a), mixtures (b) and single 
compounds and their corresponding mixtures (c) in rat liver. Only genes with a q-value < 0.05 were included

Table 2  Top ten differentially regulated genes (fold change; q < 0.05) after treatment with compounds alone and in mixtures

The asterisk indicates non-significant fold change

Gene Function THI IMZ CTD THI + IMZ THI + CTD IMZ + CTD

Up-regulation Abcc3 Transporter 3.67 3.28 2.94 3.88 3.95 2.37
Aldh1a1 Enzyme 2.77 2.31 2.55 2.75 3.14 2.09
Cyp2b2 Enzyme 3.29 2.82 2.82 3.11 3.45 2.01
Cyp3a23/3a1 Enzyme 2.60 2.82 1.59 2.41 2.47 1.78
Mme Enzyme 2.97 2.59 3.43 2.46 4.35 2.70

Down-regulation Cyp7a1 Enzyme − 1.80 − 1.18* − 1.51 − 1.89 − 1.50 − 1.55
Eln Other − 1.97 − 2.08 − 1.80 − 2.04 − 1.91 − 1.79
Ky Enzyme − 2.41 − 1.65 − 3.21 − 2.32 − 2.89 − 1.65
Megf11 Other − 2.37 − 2.14 − 3.18 − 2.26 − 2.87 − 2.87
Slc6a1 Transporter − 1.77 − 1.37* − 1.96 − 1.80 − 1.93 − 1.63
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ten genes. Genes involved in bile acid synthesis (Cyp7a1) 
and uptake/disposition (Slc6a1 and Abcc3) were also 
among the top differentially regulated genes. Surprisingly, 
the other genes among the most regulated ones imply neu-
ronal functions and neurotransmitter/hormone pathway 
genes (Ky and Mme).

Direction of gene regulation correlated well for all genes 
(except Ky) between RNA-Seq and qRT-PCR analyses 
(Supplementary Figure S4). Quantitatively, Cyp3a23/3a1 
and Mme up-regulations were underestimated by RNA-
Seq. Abcc3 and Cyp3a23/3a1 showed a dose-dependent 
up-regulation for all treatment groups. For the genes that 
were positively regulated, the magnitude of up-regulation 
increased with rising doses.

Ingenuity pathway analysis

Upstream effectors

We performed an upstream analysis to predict the possible 
activation/inhibition of transcription regulators involved in 
the toxicological response to the pesticides. As shown in 
Fig. 4, many transcription regulators were predicted to be 
affected in either activation or inhibition direction. Using the 
single compound treatment datasets, the highest number of 
predicted regulations was observed for CTD, while THI and 
IMZ modulated comparatively few transcription regulators. 
This is in line with the differences in the overall numbers of 
regulated genes.

THI and IMZ showed a similar profile in the activation 
of transcription regulators with increase of CAR, PXR 
and NRF2 (Fig. 4a). CAR and PXR are nuclear receptors 
involved in xenobiotic/endobiotic metabolism, while NFR2 
is a transcription factor involved in response to oxidative 
stress. CTD was also predicted to activate NFR2 along with 
ESR1 (estrogen receptor) and many regulators involved in 
cell cycle and cell proliferation (E2F1-3, FOXM1, MYB, 
MYBL2 and MYC). In mixture (i.e., with THI or IMZ), a 
similar pattern of activation was observed. Interestingly, the 
mixture of THI and IMZ appeared to activate much more 
transcription regulators than single treatment, and featured 
a pattern of activation similar to those of THI + CTD and 
IMZ + CTD.

The only transcription regulator predicted to be inhibited 
after THI treatment was KDM5B (Fig. 4b), while IMZ also 
inhibited ARNT2 and TP53. CTD inhibited the highest num-
ber of regulators with strongest decreases in the tumor sup-
pression-related proteins CDKN2A, KDM5B, RB1 and in 
multi-functional protein TP53. THI + CTD and IMZ + CTD 
featured a similar pattern of inhibition as observed for CTD 
alone. The mixture of THI and IMZ inhibited much more 
transcription regulators than single treatment, and features 
a pattern of inhibition similar to IMZ + CTD.

Pathways

Networks consist in functionally related transcripts and pro-
teins involved in a biological response connected with pre-
dictions of adverse outcomes at the tissue and organ level, 
as well as with predictions of potential regulators involved 
in the changes seen at the mRNA and protein levels. Con-
sidering the similar spectrum of reported effects by all three 
pesticides, we hypothesized that a common network should 

Fig. 4  Transcription regulators predicted to be affected by THI, IMZ, 
CTD and their mixtures in rat livers. The list of genes significantly 
regulated by pesticides in rat hepatocytes as revealed by RNA-Seq 
(q < 0.05) was comparatively analyzed using Ingenuity Pathway 
Analysis. Upstream regulator analysis was performed and the p value 
(calculated by Fisher’s exact test right-tailed) was used to identify 
transcription regulators significantly associated with genes regu-
lated by pesticides. The p value indicates the probability of associa-
tion of a set of genes in the dataset with a transcription regulator by 
random chance alone. A p value < 0.05 was considered significant. 
The IPA activation z-score was used to predict transcription regula-
tors that are increased or decreased by pesticides. Only transcription 
regulators with a z-score ≥ 2, predicting a significant increase (a), or a 
z-score ≤ − 2, predicting a significant decrease (b), were considered. 
Missing values (i.e., − 2 < z-score < 2) are depicted in gray
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exist between the three pesticides, aside from possible other 
compound-specific networks. Therefore, we used the sub-
group of 64 genes that were regulated by all 3 pesticides (see 
corresponding Venn diagram in Fig. 3a). Figure 5 depicts 
the network of NR1I3 (i.e., CAR) and PXR. The transcrip-
tion regulators NR1I3 and MED-1 are interconnected and 
regulate different enzymes such as ALDH1A1, CYP3A5, 
CYP2B6, EPHX1, GSTA5 and GSTM5, which in turn acti-
vate the functions metabolism of xenobiotic, metabolism of 
terpenoid, conversion and oxidation of lipid.

In a second step, we investigated whether the specific 
subgroups of each pesticide would retrieve any networks. 
No networks were predicted for IMZ and THI. This is in 
line with only very few enriched GO terms (Supplementary 
Figure S1) for both pesticides. For CTD, a network lead-
ing to the function DNA repair is depicted (Supplementary 
Figure S5). In this network, BRCA1 plays a key role by 
regulating downstream targets involved in gene expres-
sion (IFNG), checkpoint regulation (CHK1, PLK1) or by 
being part of complexes A, B, and C which are involved in 
homologous recombination. Important actors in the response 
to DNA double-strand breaks (i.e., ATR, MDC1, MCPH1 
and H2AX) are also clearly up-regulated by CTD treatment.

Evaluation of mixture effects

Characterization of mixture effects relies on the use of 
mathematical models, each model having different features 
(Foucquier and Guedj 2015; Lasch et al. 2020). In the con-
text of this study, proper characterization of mixture effects 
towards gene regulation will be described in Sect. 3.3.1. 
Additionally, we considered it worth to describe relevant 
observations that may indicate mixture effects.

Top ten differentially regulated genes

To assess mixture effects, the dose–response data obtained 
by qRT-PCR was analyzed via PROAST. Genes showing no 
regulation or dissimilar gene regulation direction between 
single treatment and mixture were not suitable for this analy-
sis. Therefore only Abcc3, Aldh1a1, Cyp3a23/3a1 and Mme 
were analyzed. The data points for all three mixtures fit the 
curve derived from the respective single compounds (one 
representative modeling is shown for Cyp3a23/3a1 in Fig. 6, 
modeling for other genes can be found in Supplementary 
Figure S6). According to Kienhuis et al. (2015), this indi-
cates dose addition for the combination of the two respective 
substances.

Fig. 5  Network of transcriptional NR1I3-mediated response elicited 
by pesticides (here shown: IMZ) in rat liver, as computed with Inge-
nuity Pathway Analysis software. Continuous lines indicate direct 
functional relationships, dashed lines indicate indirect relationships 
(i.e., do not require physical contact between the two molecules, as 

defined by IPA). Network nodes are labeled with the gene name and 
the functional classification of genes is denoted by their different 
shapes. The human genes CYP2B6, CYP2C19, CYP3A5, GSTA5 and 
GSTM5 correspond to the rat genes Cyp2b2, Cyp2b6, Cyp3a23/3a1, 
Gsta2, and Gstm1, respectively
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Cluster analysis

To gain insight into regulated pathways and associated bio-
logical pathways among all DEGs (n = 3837), we performed 
kmeans clustering to group co-regulated genes into 12 dif-
ferent clusters (Supplementary Figure S7). Cluster 2 and 3 
reflect down- or up-regulation compared to control across 
all treatments, respectively (Fig. 7). We tested for GO term 
enrichment using hypergeometric test per cluster and sum-
marized the results in a heatmap (Supplementary Figure S8, 
Supplementary Table S6). Cluster 2 contains mainly down-
regulated genes (e.g., Tlr7, Sema4a) enriched for adaptive 
immune response, response to virus and T cell activation. 

The up-regulated genes of cluster 3 are related to enriched 
GO terms, like xenobiotic metabolic process and lipid modi-
fication that are reflected by the network shown in Fig. 5. 
Cluster 4 illustrates a gene expression pattern where mostly 
CTD and its mixtures induce up-regulation of genes related 
to DNA replication, cell division and cell cycle. The genes of 
cluster 12 are mainly down-regulated by IMZ + CTD treat-
ment and enriched for GO terms, such as rhythmic process 
and response to virus. Most of the remaining clusters (6–11) 
are dominated by CTD-induced gene regulation (Figure S6).

In the following subsections, observations in regards to 
hypothetical mixture effects are described.

Fig. 6  Representative dose–response modeling of gene expression 
Cyp3a23/3a1. The curves represent the four-parameter exponential 
model. For testing of mixture effects, the dose–response data for the 
single compounds and mixtures were compared using the benchmark 
(BMD) dose modeling software PROAST. Data are shown as means 

and SD. The concentration–response of the mixture (green diamonds) 
shows no derivation from the overall concentration–response fit, indi-
cating that dose addition can be assumed. Data for gene regulation 
can be found in Supplementary Table S7

Fig. 7  Boxplot of scaled gene expression per treatment per cluster. 
All 3837 DGEs were grouped by kmeans clustering into 12 clusters 
among which 4 clusters are presented here exemplarily. The numbers 

above each boxplot indicate the number of significant DGEs per treat-
ment and cluster



1049Archives of Toxicology (2021) 95:1039–1053 

1 3

THI + IMZ

For the mixture THI + IMZ, Venn diagram analysis revealed 
313 genes differentially regulated solely in the mixture con-
dition (ca. 66% of total differentially regulated genes, see 
Fig. 3c). 185 of those genes are retrieved in the clusters 3, 4 
and 12 (53, 81, and 51, respectively). Among the 313 spe-
cifically differentially regulated genes, we found GO terms 
enriched such as negative regulation of innate immune 
response (GO:0045824, mainly cluster 2) and cell division 
(GO:0051301, mainly cluster 4) (Supplementary Figure S2).

IMZ + CTD

For the mixture IMZ + CTD, Venn diagram analysis revealed 
195 genes differentially regulated solely in the mixture con-
dition (ca. 30% of total differentially regulated genes, see 
Fig. 3c). 124 of those genes are retrieved in the clusters 3 
and 12 (29 and 95, respectively). It is noteworthy that the 
genes of cluster 12 show the most pronounced down-regula-
tion by IMZ + CTD treatment compared to treatment by IMZ 
or CTD. Figure 8a shows that the actual  log2-fold change is 
stronger than the theoretical one for numerous genes sug-
gesting synergistic interactions for this gene set (in contrast 
to cluster 4, Fig. 8b). GO enrichment analysis for the set 
of 195 specifically differentially regulated genes revealed 
regulation of circadian rhythm (GO:0042752) including 
many key regulators like, Cry1, Cry2, Dbp, Nr1d2 and Per1 
(Fig. 8c).

THI + CTD

For the mixture THI + CTD, Venn diagram analysis revealed 
502 genes differentially regulated solely in the mixture 

condition (ca. 35% of total differentially regulated genes, see 
Fig. 3c). However, GO enrichment analysis for these genes 
reveals only slight hints for genes related to lipid homeo-
stasis (Supplementary Figure S2). 462 of those genes are 
retrieved in the clusters 1, 2, 3 and 5 (100, 151, 125, and 
86, respectively). In cluster 1–5, we observed a strong mix-
ture effect, for cluster 2 and 3 even more pronounced than 
for the single treatments with CTD or THI (Supplementary 
Figures S7 and S8). This might point to a synergistic effect 
for some genes of these clusters.

Discussion

In a previous paper, we published the results of a 28-day 
repeated-dose oral exposure study with the three pesticides 
IMZ, THI and CTD in rats: the outcomes included liver 
weight increase, hepatocellular hypertrophy, cytoplasmic 
degeneration and toxicokinetic alterations (Alarcan et al. 
2020). In the present study, the goal was to investigate the 
associated hepatic molecular MoA of the pesticides IMZ, 
THI and CTD, alone or in mixtures.

RNA-Seq analysis revealed a high number of differen-
tially regulated genes by CTD, while THI and IMZ modified 
the gene expression more moderately. In detail, CTD dif-
ferentially regulated 13 and 15 times more genes than THI 
and IMZ, respectively. This much stronger impact on gene 
expression could either reflect a higher potency of CTD or 
a different and/or additional MoA which does not neces-
sarily become apparent at the histopathological level due 
to the short treatment period. Despite the relatively small 
subset of commonly DEG (i.e., 64 genes), we were able to 
describe a consistent network depicting the transcriptional 
CAR and PXR-mediated response leading to the activation 

Fig. 8  Gene expression changes specific for IMZ + CTD. Scatterplot 
of actual versus theoretical  log2-fold change for genes from cluster 
12 (a) and cluster 4 (b). Grey line indicates the theoretical additive 
response of IMZ + CTD. Data for all clusters can be found in Sup-

plementary Figures S9 to S11. Heatmap of  log2-fold change for genes 
related to circadian rhythm differentially regulated by IMZ + CTD 
mixture (c)
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of metabolism-associated functions (metabolism of xenobi-
otic, metabolism of terpenoid, conversion and oxidation of 
lipid). Since all three pesticides induced comparable effects 
on the liver (increase in organ weight, hepatocellular hyper-
trophy, decrease in triglyceride content) and with a simi-
lar magnitude, it is coherent to find a common molecular 
MoA between the three substances. The common network 
includes ALDH1A1, CYP2B6 and CYP3A5 (the orthologs 
of rat Cyp2b2 and rat Cyp3a23/3a1, respectively), whose 
gene expressions were among the top up-regulated ones 
detected by RNA-Seq and confirmed by qRT-PCR. These 
three XME are respectively located in the mitochondria and 
in the endoplasmic reticulum of the cells. This is in line with 
the observation of liver hypertrophy following exposure to 
IMZ, THI and CTD, as the nuclear receptor-mediated induc-
tion of metabolic enzymes causes an increase in endoplas-
mic reticulum, peroxisomes and/or mitochondria. Previous 
studies showed that IMZ activates both human and mouse 
PXR and also human CAR (Lichtenstein et al. 2020; Yoshi-
maru et al. 2018). Besides, THI activated human PXR and 
PPARγ while CTD showed no effect on human PXR or CAR 
(Lichtenstein et al. 2020). Predictions by IPA on transcrip-
tion regulators further support this idea, as CAR and PXR, 
two master regulators of XME, were activated by THI and 
IMZ. However, in the case of CTD, none of those nuclear 
receptors was predicted for activation. Instead, the strong-
est activation was predicted for the estrogen receptor (ER). 
Nonetheless, since CTD is not considered an agonist of ER 
(according to the ToxCast database), this hypothesis might 
not be valid in the present case. Besides, particular cau-
tion needs to be taken when considering ligand properties 
towards xenobiotic metabolism-associated nuclear recep-
tors as multiple inter-species differences are documented 
(Omiecinski et al. 2011; Timsit and Negishi 2007; Wang 
et al. 2012).

In a second step, we aimed at identifying specific net-
works associated with the unique gene expression changes 
for each pesticide. A DNA repair network was predicted 
for CTD, possibly indicating a genotoxic potential. Our 
present data do not allow concluding on such toxicological 
property, but it is noteworthy that JMPR Meeting reported 
three in vitro studies where CTD was found positive in 
gene mutation and chromosomal aberration assays (JMPR 
2010). Those three studies indicated a clastogenic potential, 
which is in line with the different regulators included in the 
network predicted by IPA, such as BRCA1, ATR, MDC1, 
MCPH1 and H2AX (Bonner et al. 2008; Hustedt and Duro-
cher 2016). Interestingly, a study on pyrrolizidine alkaloids 
reported the induction of a DNA damage response involving 
the up-regulation of Rad51 and Ddias that were also induced 
our study (Ebmeyer et al. 2020). For THI or IMZ, no specific 
networks or evident GO enrichment patterns were observed.

When doing mixture toxicity experiments, it is necessary 
to evaluate the data by means of one or several mathemati-
cal models to come to conclusions on the behavior of com-
pounds in mixture (Foucquier and Guedj 2015; Lasch et al. 
2020; Zhao et al. 2010). A prerequisite in mixture analysis 
involves the determination of the similarity or dissimilarity 
in the mode of action of the compounds of study. This deter-
mines the choice of mathematical model to use (Cedergreen 
et al. 2008; EFSA 2013). Furthermore, it is necessary to 
have quantitative data from multiple concentration/dose lev-
els for a proper use of the mathematical models. In the case 
of transcriptomics analysis, each investigated gene should 
be technically considered as a single endpoint, so that two 
compounds in combination are unlikely to show the exact 
same type of mixture effect for every gene. As a result, the 
strict denomination for a mixture appears elusive. Besides, 
evaluation of mixture effects with recommended mathemati-
cal models is not feasible if based on solely one dose level. 
However, PCA could be seen as a multivariate technique 
for MoA evaluation. PCA is a statistical method permitting 
the visualization of high-dimensional data by new sets of 
variables called principal components, thereby enabling the 
identification of sample clusters (Ringner 2008; Todorov 
et al. 2018). In our study, single reference compounds and 
their mixtures (especially THI + IMZ) showed relative over-
laps of their clusters, meaning that they overall show simi-
lar gene expression signature profiles according to PC1 and 
PC2. Dose addition would be then legitimately considered. 
In case of THI + CTD, the samples were not overlapping 
with THI or CTD indicating potential independent modes 
of action. Similarly, PCA revealed hidden structures in gene 
expression data of metal mixtures reflecting unique tran-
scriptional signatures and suggesting interaction among the 
single compounds (Tilton et al. 2011; Vandenbrouck et al. 
2009). Moreover, PC1 and PC2 account together only for up 
to 30% of the transcriptomics variation so that the remaining 
variance might reveal further separation of mixtures and the 
single compound defined as reference hinting towards non-
additive effects.

Besides this multivariate approach to determine quan-
titative mixture effects for gene clusters, we also applied 
a qualitative assessment using Venn diagrams followed by 
GO term enrichment analysis of specific gene sets. Our 
results showed that for each mixture a significant proportion 
of new genes (i.e., not regulated by treatment with single 
compounds) was regulated (from 30 up to 66%). For some 
combinations, gene enrichment analysis revealed enrichment 
of GO terms for those specific subsets of genes, such as cir-
cadian rhythm. It has been shown that ~ 10% of the rat liver 
transcriptome are rhythmically expressed (Storch et al. 2002) 
including genes related to xenobiotic detoxification (Tahara 
and Shibata 2016). The treatment with IMZ + CTD resulted 
in pronounced inhibition of clock-controlled genes Dbp, 
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Tef, and Hlf which regulate expression of genes encoding 
detoxification enzymes. Possibly this mixture disrupted the 
circadian rhythm of expression of certain genes, as indicated 
by altered gene expression levels, and resembling the effects 
of 4-OH-CB107 on the rat liver transcriptome (Ochiai et al. 
2018).

Therefore, although being unable to characterize it with 
a mathematical model, it seems that mixture effects take 
place. Thus, a transcriptomics approach (or any other omics 
technology) may bring substantial benefit in the framework 
of chemical mixtures as they permit to uncover the whole 
spectrum of biological effects of substances and could reveal 
as shown here for IMZ + CTD some particular effects that 
would be laborious to reveal using traditional single target 
apical endpoints. A two-step investigation (untargeted tran-
scriptomics approach followed by endpoint confirmation 
using a targeted technique) could be an efficient strategy to 
be applied in the context of chemical mixtures.

The quantitative and qualitative approaches we applied 
to assess mixture effects on transcript responses resulted in 
common and specific gene expression patterns. While for 
specific gene expression patterns different MoA and thus 
independent action may be assumed, common patterns 
point at a common MoA and at dose addition. For a limited 
set of commonly affected genes that were studied by qRT-
PCR, we indeed observed additive effects: irrespective of 
the combination, dose addition was described for Aldh1a1 
or Cyp3a23/3a1. As discussed previously, those genes are 
suspected to reflect the main biological effect of hypertro-
phy. Thus, it is of note that the same concordance in the type 
of mixture effect was described in vivo over three different 
layers of biological organization, i.e., molecular (genes), 
cellular (hepatocellular hypertrophy), and tissue (increase 
in liver weight).

Conclusions

In the present study, we comparatively analyzed transcrip-
tome expression in rat hepatocytes after 28-day exposure to 
IMZ, THI and CTD alone or in mixtures. RNA-Seq revealed 
drastic regulation of gene expression by CTD, while IMZ 
and THI moderately affected gene expression. Furthermore, 
we suggest that pesticide-induced hepatotoxicity is associ-
ated with nuclear receptor activation as the most differen-
tially regulated genes involve some key phase I XME and 
transport proteins. The data presented in the current study 
provide new insights into the molecular mechanism of hepa-
totoxicity of IMZ, THI and CTD. While bioinformatics 
analysis revealed some evidence for possible non-additive 
regulation of certain groups of transcripts by the mixtures, 
results from the evaluation of individual top-regulated genes 
followed the additivity concept.
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