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Abstract
Drug-induced liver injury (DILI) is a serious health burden. It has diverse clinical presentations that can escalate to acute 
liver failure. The worldwide increase in the use of psychotropic drugs, their long-term use on a daily basis, common 
comorbidities of psychiatric and metabolic disorders, and polypharmacy in psychiatric patients increase the incidence of 
psychotropics-induced DILI. During the last 2 decades, hepatotoxicity of various antidepressants (ADs) and antipsychotics 
(APs) received much attention. Comprehensive review and discussion of accumulated literature data concerning this issue 
are performed in this study, as hepatotoxic effects of most commonly prescribed ADs and APs are classified, described, and 
discussed. The review focuses on ADs and APs characterized by the risk of causing liver damage and highlights the ones 
found to cause life-threatening or severe DILI cases. In parallel, an overview of hepatic oxidative stress, inflammation, and 
steatosis underlying DILI is provided, followed by extensive review and discussion of the pathophysiology of AD- and AP-
induced DILI revealed in case reports, and animal and in vitro studies. The consequences of some ADs and APs ability to 
affect drug-metabolizing enzymes and therefore provoke drug–drug interactions are also addressed. Continuous collecting of 
data on drugs, mechanisms, and risk factors for DILI, as well as critical data reviewing, is crucial for easier DILI diagnosis 
and more efficient risk assessment of AD- and AP-induced DILI. Higher awareness of ADs and APs hepatotoxicity is the 
prerequisite for their safe use and optimal dosing.

Keywords Hepatotoxicity · Antidepressants · Antipsychotics · Oxidative stress · Inflammation · Steatosis

Introduction

Drug-induced liver injury (DILI) is an adverse reaction to 
drugs and/or their metabolites that may result in perma-
nent loss of liver function and death. DILI covers a broad 
spectrum of clinical manifestations, from asymptomatic 
abnormalities in the liver function tests (prothrombin time, 
albumin, direct and indirect bilirubin, the level of aspar-
tate, and alanine transaminase in serum) to symptomatic 

acute liver disease, prolonged jaundice, and disability, 
or overt acute or subacute liver failure (Chalasani et al. 
2008). DILI is commonly divided into two types: intrinsic 
and idiosyncratic. Intrinsic DILI is dose-dependent, typi-
cally has a short latency period and predictable disease 
course, and is reproducible in animal models. Idiosyn-
cratic DILI is a severe liver injury occurring very rarely 
and usually is not dose-dependent. It is characterized by 
unpredictable disease course, more varied manifestations, 
and is not reproducible in animal models (Ye et al. 2018). 
Drugs that cause idiosyncratic DILI typically also cause a 
mild and asymptomatic liver injury—transient, asympto-
matic elevations in serum alanine aminotransferase levels 
(Mosedale and Watkins 2017). The lack of specific sero-
logical markers makes DILI hard to diagnose. The clinical 
symptoms are very diverse and may include tiredness, lack 
of appetite, nausea, vomiting, fever, joint and muscle pain, 
rash, and jaundice, while some patients remain asympto-
matic. DILI is challenging not only concerning diagnosis 
but for the management as well. In most cases, the only 
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treatment is to stop the drug administration and provide 
general supportive care (Navarro and Senior 2006).

The liver is the primary site for the metabolism of 
drugs, including antidepressants (ADs) and antipsychot-
ics (APs). Thus, it is of great importance to understand 
how a specific drug and its metabolites affect the structure 
and function of this organ. Hepatotoxicity may result in 
hepatic steatosis (accumulation of fat in the liver), stea-
tohepatitis (steatosis with inflammation), fibrosis (exces-
sive accumulation of extracellular matrix proteins), and 
cirrhosis (formation of bridging fibrous septa and dis-
ruption of the standard architecture of the liver) (Aithal 
et al. 2011). ADs and APs, used in treating different psy-
chiatric disorders such as depression, schizophrenia, and 
anxiety, may display hepatotoxicity, even at therapeutic 
doses (reviewed in detail in the following sections). More 
than 160 psychotropic drugs have been shown to produce 
hepatic side-effects (Dumortier et al. 2002). A more recent 
study reported that psychotropic drugs were responsible 
for 7.6% of DILI cases in a cohort of 185 patients (Licata 
et al. 2017). Thus, the strategy behind the choice of a psy-
chotropic drug must consider its hepatotoxicity, especially 
in patients with other risk factors, such as alcoholism, drug 
abuse, polymedication, obesity, and diabetes.

DILI represents a burden that has been heavily under-
estimated due to the limitations of clinical trials to iden-
tify such rare events. However, it is among the leading 
causes of late-stage drug development interruption and 
post-marketing drug withdrawal (Raschi and de Ponti 
2015). A systematic review which included 462 medical 
products withdrawn in the period 1953–2013 revealed that 
most products were withdrawn from the marketplace due 
to their hepatotoxicity (18%), followed by immune-related 
reactions (17%), neurotoxicity (16%), and cardiotoxicity 
(14%) (Onakpoya et al. 2016). DILI is the most common 
cause of acute liver failure (50%), ahead of viral infection 
or autoimmune hepatitis. In developing countries, people 
are at higher risk of acute liver failure due to viral infec-
tions, while in Western Europe and the United States, most 
cases arise from DILI (Bernal et al. 2010). Epidemiology 
data regarding DILI are limited, given that the incidence 
and prevalence of this disorder are underestimated. In 
China, the incidence of DILI has been rising year by year 
and now is recognized as a major public health concern 
(Yu et al. 2017; Shen et al. 2019). According to different 
national studies, summarized by Ahmad and Odin (2017), 
DILI incidence varies from 2 to 19 cases per 100,000 per 
year. However, despite low incidence, DILI should always 
be considered in acute liver injury cases when other possi-
ble aetiologies have been excluded. DILI frequency varies 
according to age, gender, and socio-economic status. As 
for the age, the elderly are more affected, probably due to 
multiple drug use and low tolerability of the therapy. Also, 

women and wealthier classes are more affected than men 
and developing societies, respectively (Licata et al. 2017).

Given a large number of new cases of psychiatric patients 
each year, the need and use of psychotropic drugs are on the 
constant rise. In the case of depression, the total estimated 
number of affected people increased by 18.4% between 
2005 and 2015 (WHO 2017). Also, it is expected that the 
current worldwide health emergency caused by COVID-19 
adversely affects mental health in many ways. It has already 
been established that COVID-19 survivors and frontline 
healthcare engaged with COVID-19 patients presented a 
high risk of developing symptoms of depression, anxiety, 
insomnia, fatigue, and post-traumatic stress disorder (Lai 
et al. 2020; Mazza et al. 2020; Rogers et al. 2020). In addi-
tion, fear of infection, as well as unemployment, working 
from home, home-schooling of children, and lack of contact 
with family members and friends are risk factors for psychi-
atric disorders in the general population (WHO 2020). Thus, 
the current COVID-19 pandemic is expected to increase the 
use of psychotropic drugs further in the near future. With 
exploding rates of mental disorders and the growing use of 
psychotropic drugs, more and more evidences emerge on 
their hepatotoxic effects.

This review aims to: (1) provide a brief insight into the 
hepatic metabolism of psychotropic drugs; (2) evaluate the 
hepatotoxic effects of commonly prescribed ADs and APs; 
(3) summarize the roles of oxidative stress, inflammation, 
and lipid accumulation in the pathophysiology of DILI; and 
(4) review and discuss these pathophysiological mechanisms 
in the course of AD- and AP-induced hepatotoxicity.

The most important means of assessing a drug’s risk for 
hepatotoxicity is to review the published case reports, ani-
mal studies, and cell-based in vitro studies. We conducted 
a comprehensive literature search for case reports, original 
articles, and reviews published from 1960 to 2020 using 
the search terms “hepatotoxicity,” “DILI,” “liver injury,” 
“oxidative stress,” “hepatitis,” “steatosis,” and “fatty liver,” 
cross-referenced with “antidepressant” and “antipsychotic.” 
This time interval was chosen, because the first ADs and 
APs were introduced in practice in the 1950s, while the first 
publications considering their hepatotoxic effects emerged 
in the 1960s. This approach cannot be used to compare the 
risks carried by different drugs, since many were introduced 
at different times and have been prescribed in different doses 
and rates. It should also be borne in mind that the extent to 
which the results obtained by animal studies can reasonably 
be generalised to humans remains open to question. Given 
that even humans differ in their response to drugs, it is rea-
sonable to suspect if animal models are good predictors of 
human response (Shanks et al. 2009; Bailey et al. 2014). 
Thus, relevant in vitro studies with liver microsomes, hepat-
ocytes, liver slices, and recombinant enzymes are very valu-
able and usually the only source of information reflecting 
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the situation in humans (Martignoni et al. 2006). Taking 
all this into consideration, we made an effort to highlight 
the drugs associated with severe DILI cases, explain the 
potential molecular mechanisms underlying the phenom-
enon, and point out the ones which are less likely to cause 
DILI, reviewing relevant case studies, as well as in vivo and 
in vitro studies.

Hepatic metabolism of psychotropic drugs

Metabolism of psychotropic drugs occurs mainly in the 
liver, with the cytochrome P450-dependent monooxygenase 
(CYP) family of isoforms being the most important drug-
metabolizing enzymes. CYP450 is a superfamily of heme-
containing monooxidases that metabolize xenobiotics, ster-
oids, fatty acids, and vitamins (Furge and Guengerich 2006). 
The highest expressed isoforms in the liver are CYPs 3A4, 
2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19, and 
3A5 are less abundant but still more highly expressed in the 
liver than in any other organ (Zanger and Schwab 2013). It 
has been observed that drugs that are substrates of CYP450 
enzymes have a higher likelihood of causing DILI in a dose-
independent manner, while drugs that are CYP450 inhibitors 
have a higher likelihood of generating DILI only when they 
are administered at high daily doses (Yu et al. 2014). The 
majority of ADs and APs are substrates of CYP450 super-
family isoenzymes, whereby some of them were shown to be 
their inhibitors. CYP450 expression is influenced by genetic 
polymorphisms, xenobiotics, cytokines, and hormones, as 
well as sex and age. CYP3A4 is abundantly expressed in 
the liver in the majority of individuals and is responsible for 
the metabolism of > 50% of all clinically used drugs (Zanger 
and Schwab 2013).

Enzymes CYPs 3A4, 1A2, 2C9, 2C19, and 2D6 account 
for the metabolism of the majority of ADs and APs. The 
lipophilic property, which enables ADs to pass the cell mem-
branes, might be one of the reasons why these drugs undergo 
extensive metabolism in the liver and show the first-pass 
effect, leading to variable bioavailability ranging from 30 
to 80%. The linear relationship between dose and plasma 
concentrations exists for most ADs, except for paroxetine 
and fluvoxamine, whereby the time until peak plasma con-
centration is reached varies between 1 and 12 h (Mauri et al. 
2014). Concerning APs, the relationship between dose and 
effect of several drugs vary considerably between patients, 
mainly due to pharmacokinetic differences influenced by 
age, changes in the first-pass effect, and the induction or 
inhibition of the metabolic system (Mauri et al. 2018). Most 
of the APs are also lipophilic and move freely across the 
lipoidal membranes. When administered orally, APs are well 
absorbed and undergo substantial pre-systemic elimination 
(bioavailability: 10–70%). They are highly bound to plasma 

proteins (75–99%) and tissues, and are extensively distrib-
uted (Javaid 1994). However, co-medication can influence 
pharmacokinetics. The patients with multiple comorbidities, 
which take many medications, are exposed to the risk of 
drug–drug interactions. Drug interactions are classified as 
either pharmacodynamic or pharmacokinetic. Pharmacody-
namic drug interactions suggest that mechanisms of actions 
or adverse effects of two drugs used concomitantly are 
altered in nature, magnitude, or duration. Pharmacokinetic 
drug interactions occur where one drug alters the absorption, 
distribution, metabolism, or elimination of another (Preskorn 
and Werder 2006). Significant pharmacokinetic interactions 
with ADs and APs predominantly involve drug-induced 
changes in hepatic metabolism. Pharmacokinetic of these 
drugs can be altered by drugs that inhibit or induce metabo-
lizing routes of appropriate CYP enzymes. Besides, some 
ADs and APs are inhibitors of the certain CYP enzymes 
themselves, so they can increase levels of other medications 
(Bleakley 2016). Psychotropic drugs that act as CYP450 
inhibitors may cause adverse drug–drug interaction if co-
administered with another drug which is CYP450 substrate.

Even though drug metabolism usually yields an inactive 
metabolite (detoxication), in some cases, metabolites can 
be more reactive than the parent drug (bioactivation) (Park 
et al. 2011). This is the case with some tricyclic antidepres-
sants (TCAs) such as amitriptyline and imipramine, and APs 
like chlorpromazine and risperidone (Telles-Correia et al. 
2017). Reactive metabolites may covalently bind cellular 
proteins, lipids, and nucleic acids, causing cell structure and 
function disruption. Binding to mitochondrial proteins may 
impair mitochondrial respiration and cause the leakage of 
superoxide radical anion  (O2

·−), which is one of the respira-
tion mediators. Apart from producing reactive metabolites, 
CYP-mediated reactions during drug metabolism may also 
generate reactive oxygen species (ROS), including  O2

·−, 
hydrogen peroxide  (H2O2), hydroxyl radical (.OH), hydrop-
eroxyl radical  (HOO.), and singlet oxygen (1O2) (Hrycay and 
Bandiera 2015).

Hepatotoxicity of ADs

ADs are drugs that relieve symptoms of depression, but 
are also used in treatments of anxiety disorders, panic, and 
obsessive–compulsive disorders. Monoamine oxidase inhibi-
tors (MAOIs) and TCAs, the pioneering classes of ADs, 
were introduced in the clinical practice in the 1950s. MAOIs 
and TCAs were often related to liver toxicity (Table 1), but 
since their current use is infrequent, most of these cases 
were reported during the 1980s and ’90s. In the late 1990s, 
MAOIs and TCAs were largely replaced by safer and bet-
ter tolerated new generations of ADs: selective serotonin 
reuptake inhibitors (SSRIs), serotonin and norepinephrine 
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Table 1  DILI cases with type of lesion and suspected mechanism, as well as hepatic effect reported in animal studies for listed ADs

AD Class Type of lesion (case study) Suspected mechanism Hepatic effect (animal study)

Phenelzine MAOI Severe hepatitic and cholestatic lesion 
(Bonkovsky et al. 1986)

Metabolic and genetic origin Attenuate lipid accumulation (Mercader 
et al. 2019)

Liver angiosarcoma (Daneshmend 
et al. 1979)

N/A

Imipramine TCA Cholestasis and fibrosis (Horst et al. 
1980)

N/A Pro-oxidant (Duda et al. 2016)

Toxic hepatitis (Moskovitz et al. 1982) Direct toxic effect or a hypersensitiv-
ity reaction

Subfulminant hepatic failure (Ilan 
et al. 1996)

Direct toxic effect or a hypersensitiv-
ity reaction

Amitriptyline TCA Fulminant hepatitis (Danan et al. 
1984)

Immuno-allergic mechanism Pro-oxidant; pro-apoptotic (Bautista-
Ferrufino et al. 2011)

Centrilobular cholestasis (Larrey et al. 
1988)

Immuno-allergic mechanism Steatogenic (Sahini et al. 2014)

Acute hepatitis (Chen et al. 2019) N/A Steatogenic (Kampa et al. 2020)
Tianeptine TCA Acute hepatitis (Bricquir et al. 1994) Immuno-allergic mechanism Steatogenic (Fromenty et al. 1989)
Fluoxetine SSRI Acute hepatitis (Friedenberg and 

Rothstein 1996)
N/A Steatogenic; pro-inflammatory (Özden 

et al. 2005)
Acute hepatitis (Cai et al. 1999) Metabolic idiosyncratic reaction Pro-oxidant (Inkielewicz-Stêpniak 

2011)
Cholestatic hepatitis (Bellmann et al. 

2004)
Immunologic mechanism Pro-oxidant; pro-inflammatory 

(Zlatković et al. 2014)
Steatohepatitis (Agrawal et al. 2019) Idiosyncratic reaction Steatogenic (De Long et al. 2015)

Pro-oxidant (Yilmaz et al. 2016)
Steatogenic (Pan et al. 2018)
Pro-oxidant; Pro-inflammatory (Elge-

baly et al. 2018)
Paroxetine SSRI Transaminitis (Helmchen et al. 1996) Idiosyncratic reaction

Transaminitis (Azaz-Livshits et al. 
2002)

N/A

Cholestatic and hepatocellular injury 
(Colakoglu et al. 2005)

Immune-mediated hypersensitivity 
reaction

Severe acute hepatitis (Pompili et al. 
2008)

Idiosyncratic reaction

Sertraline SSRI Acute fatal hepatitis (Fartoux-Hey-
mann et al. 2001)

Immuno-allergic mechanism Pro-oxidant (Abdel-Salam et al. 2013)

Hepatitis (Persky and Reinus 2003) Immunologic mechanism Pro-inflammatory (Almansour et al. 
2018)

Transaminitis (Tabak et al. 2009) Immunologic or idiosyncratic reaction
Acute hepatocellular injury (Suen 

et al. 2013)
N/A

Acute hepatitis (Abdullah et al. 2015) Idiosyncratic reaction
Citalopram SSRI Cholestasis (Milkiewicz et al. 2003) N/A Pro-oxidant; pro-inflammatory (Ahma-

dian et al. 2017)
Acute hepatic injury (Neumann et al. 

2008)
N/A

Fluvoxamine SSRI Cholestasis and hepatocytolysis (Solo-
mons et al. 2005)

N/A Steatogenic (Rozenblit-Susan et al. 
2016)

Venlafaxine SNRI Acute hepatitis (Phillips et al. 2006) Idiosyncratic reaction Pro-inflammatory (Paulis et al. 2018)
Fulminant hepatic failure (Detry et al. 

2009)a
N/A

Cholestatic hepatitis (Stadlmann et al. 
2012)

Idiosyncratic reaction
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reuptake inhibitors (SNRIs), and serotonin antagonist and 
reuptake inhibitors (SARIs). MAOIs raised safety concerns 
due to their dietary and drug interactions (serotonin syn-
drome/toxicity, sympathomimetic drug interactions, and 
dietary tyramine interactions) (Grady and Stahl 2012), 
while both MAOIs and TCAs were associated with higher 
cardiac side-effects comparing to other ADs (Spindelegger 
et al. 2014). A major concern regarding TCAs is the exten-
sive side effect profile, including anticholinergic symptoms, 
orthostatic hypotension, cardiac dysrhythmia, and neurologi-
cal side-effects (including sedation and seizures) (Mullish 
et al. 2014). Thus, they are reserved primarily for depressed 
patients unresponsive to more commonly prescribed ADs 
such as the SSRIs or SNRIs. Fluoxetine, paroxetine, sertra-
line, citalopram, and fluvoxamine are SSRIs mostly linked 
with hepatotoxicity (Table 1). SNRIs venlafaxine and dulox-
etine, as well as SARI trazodone, are also strongly associ-
ated with hepatotoxic side-effects. All these drugs mostly 
demonstrate an idiosyncratic, unpredictable, and reversible 
hepatic injury. The injury may onset as early as after sev-
eral days or after up to 6 months after drug administration 
and generally ends after the drug is withdrawn. Voican et al. 
(2014) reviewed relevant clinical data related to AD-induced 
liver injury published from 1965 onward and concluded that 
0.5–3% of patients taking AD may develop asymptomatic 
mild elevation of serum aminotransferase levels.

AD-induced DILI is generally of hepatocellular pat-
tern, and less frequently of the cholestatic or mixed pattern. 
Regarding the pathophysiology, it is usually immune-allergic 
or metabolic (Voican et al. 2014). The observational study 
of Friedrich et al. (2016), based on data from a multicentre 
drug surveillance program conducted from 1993 to 2011 

in German-speaking countries, reported that ADs caused 
DILI in 0.08% of patients. Their findings also suggested 
that SSRIs are less likely to contribute to DILI develop-
ment compared to other classes of ADs. However, a recent 
study of Billioti de Gage et al. (2018) is not in line with this 
conclusion. These authors conducted a cohort study using 
data from the French National Health Insurance Database 
which included almost 5 million patients initiated on an AD 
from 2010 to 2015. They identified 382 severe DILI cases, 
but did not find evidence that SNRIs have a higher risk of 
serious liver injury than SSRIs. Interestingly, their analysis 
showed that duloxetine displays lower hepatotoxicity than 
SSRIs. However, one should bear in mind that duloxetine 
has previously been identified, in pre-marketing clinical tri-
als and post-marketing monitoring, as a causative agent of 
liver injury (DeSanty and Amabile 2007) and thereby it had 
not been prescribed to patients believed to present higher 
susceptibility to DILI (e.g., elderly, obese patients, individu-
als with diabetes, chronic renal failure, etc.). Taking both 
studies into consideration, it is safe to assume that SSRIs 
are less likely to precipitate DILI comparing to TCAs and 
MAOIs, but not comparing to SNRIs. With regard to SARI, 
the incidence of severe liver failure leading to death or liver 
transplantation due to nefazodone is 1 per 250,000–300,000 
patient-years of treatment. This drug carries a Food and 
Drug Administration (FDA) “black box” warning for hepa-
totoxicity and is withdrawn from use in many countries, so 
it will not be further discussed in this review. Fulminant 
hepatic failure leading to liver transplantation or death has 
also been reported for another SARI trazodone, but to a 
lesser extent comparing to nefazodone. Trazodone is still in 
wide use and will be discussed (Voican et al. 2014).

Table 1  (continued)

AD Class Type of lesion (case study) Suspected mechanism Hepatic effect (animal study)

Duloxetine SNRI Fulminant hepatic failure (Hanje et al. 
2006)

N/A Pro-oxidant (Mishra et al. 2016)

Hepatocellular and cholestatic hepatic 
injury (Vuppalanchi et al. 2010)

Idiosyncratic reaction

Cholestatic jaundice (Park et al. 2010) N/A

Acute hepatic failure (Yuan and Wil-
liams 2012)

N/A

Trazodone SARI Transaminitis (Fernandes et al. 2000) Idiosyncratic reaction
Acute hepatitis and cholestasis (Rett-

man and McClintock 2001)
N/A

Acute liver failure – hepatocellular 
injury (Carvalhana et al. 2016)b

Idiosyncratic reaction

DILI drug-induced liver injury, AD antidepressant, MAOI monoamine oxidase inhibitor, TCA  tricyclic antidepressant, SSRI selective serotonin 
reuptake inhibitor, SNRI serotonin and norepinephrine reuptake inhibitor, SARI serotonin antagonist and reuptake inhibitor, N/A not addressed
a Venlafaxine therapy combined with trazodone
b Trazodone therapy combined with diazepam
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It is also important to note that SSRIs have the potential 
to cause drug–drug interactions through inhibition of CYP 
isoforms, which can contribute to DILI (Crewe et al. 1992). 
Fluoxetine and paroxetine are potent CYP2D6 inhibitors, 
whereas norfluoxetine, the main metabolite of fluoxetine, has 
a moderate inhibitory effect on CYP3A4 isoenzyme. Sertra-
line is a moderate inhibitor of CYP2D6, while citalopram 
has little effect on the major CYP isoforms (Hemeryck and 
Belpaire 2002). Thus, these SSRIs can substantially elevate 
the levels of co-prescribed drugs, which are dependent on 
these specific CYP enzymes. Consequent high exposure 
to the co-prescribed drug may result in both hepatic and 
non-hepatic complications (Preskorn and Werder 2006). 
Given the long half-life of both fluoxetine (2–6 days) and 
norfluoxetine (7–15 days), a special attention should be 
paid to fluoxetine administration, as its inhibitory effects on 
CYP- isoenzymes can persist for weeks after drug discon-
tinuation (Bergstrom et al. 1993). Also, co-treatments with 
fluvoxamine and clozapine resulted in elevated plasma levels 
of clozapine, most likely due to drug–drug interaction. Of 
the SSRIs, fluvoxamine is one of the most potent inhibi-
tors of the CYP1A2, isoenzyme predominantly involved in 
clozapine metabolism (Heeringa et al. 1999). Fluvoxamine 
also inhibits CYP3A4 and CYP2D6 (van Harten 1995). Co-
administration of aripiprazole with fluvoxamine was shown 
to cause hepatic damage mediated by CYP3A4 inhibition 
and aripiprazole accumulation (Shastry et al. 2013). There-
fore, co-administration of fluvoxamine with clozapine or 
aripiprazole should be avoided if possible or co-prescribed 
with caution.

Growing evidence suggests that obesity and diabetes mel-
litus are both risk factors for DILI. It is important to point 
out that a reciprocal link between depression and obesity 
has been noted. The meta-analysis on the longitudinal rela-
tionship between depression, overweight, and obesity, which 
included 15 studies, confirmed that the risk of depression is 
increased in obese people, as well as vice versa; depression 
is predictive for developing obesity (Luppino et al. 2010). 
This, together with the fact that obesity increases the risk 
of DILI, highlights the need to recognize the hepatotoxic 
potential of ADs.

The available data show that all listed ADs are associated 
with the risk of hepatotoxicity. Life-threatening or severe 
DILI has been reported for MAOI phenelzine, TCA imipra-
mine, SSRI sertraline, SNRIs venlafaxine and duloxetine, 
and SARI trazodone, while SSRIs citalopram and fluvox-
amine are characterized by lower risk.

Hepatotoxicity of APs

APs are drugs primarily prescribed to control schizophrenia 
and bipolar disorders, but are also used in the treatment of 
dementia and major depression. Typical, classical, or first-
generation antipsychotics (FGA) were introduced more than 
60 years ago. Those drugs, strong dopamine  D2 receptor 
antagonists, are effective against hallucinations and delu-
sions, but cause heavy extra-pyramidal side-effects (Miy-
amoto et al. 2005). In addition, commonly prescribed FGA, 
such as chlorpromazine and haloperidol, frequently resulted 
in elevated serum levels of the liver enzymes but also with 
severe liver damage (Table 2).

Atypical, second-generation antipsychotics (SGA), 
including clozapine, risperidone, olanzapine, and quetia-
pine, are available since the 1990s. These drugs antagonize 
not only  D2 receptors but serotonin 5-HT2A/5-HT2C, hista-
minergic H1, and muscarinic M3 receptors as well (Meltzer 
2013). Besides managing hallucinations and delusions, they 
are effective against anhedonia and apathy. Therefore, they 
are used in the treatment of depressive disorders alone or in 
combination with ADs (Wang and Si 2013). Unlike FGAs, 
SGAs produce minimal extra-pyramidal side-effects. On 
the other hand, they are strongly associated with adverse 
metabolic effects like weight gain, obesity, hyperlipidaemia, 
insulin resistance, hyperglycaemia, and diabetes (De Hert 
et al. 2012).

Clozapine is mostly associated with hepatotoxicity among 
SGAs (Telles-Correia et al. 2017). The asymptomatic rise 
in serum transaminase level is noticed in up to 60% of 
patients treated with clozapine, whereby 15–30% experi-
enced twofold or threefold elevation (Wu Chou et al. 2014). 
The increase in serum levels of the liver enzymes is most 
often transient and asymptomatic. Still, many cases reported 
clozapine-induced liver damage and even fulminant liver 
failure accompanying moderate doses of clozapine (Table 2). 
A case report of hepatotoxicity from a low dose of clozapine 
(125 mg per day) was also reported (Wu Chou et al. 2014). 
However, in most cases, patients would recover from clo-
zapine-induced DILI after stopping the treatment. Although 
knowledge regarding side-effects mostly comes from case 
studies, the relationship between clozapine and the hepatic 
injury was also unequivocally demonstrated in animal stud-
ies (Table 2). Both case and animal studies provide solid 
evidence on risperidone hepatotoxicity, as well (Table 2). 
Risperidone has been associated with clinically non-signifi-
cant abnormalities in liver function tests, mostly with serum 
alkaline phosphatase increase, in 52.5% of cases. Marked 
elevation of serum levels of the liver enzymes was reported 
in 0.8% of cases, in a patient cohort encompassing 120 chil-
dren and adolescents (Erdogan et al. 2008). Also, several 
case studies reported olanzapine-induced hepatotoxicity. 
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Table 2  DILI cases with type of lesion and suspected mechanism, as well as hepatic effect reported in animal studies for listed APs

DILI drug-induced liver injury, AP antipsychotic, FGA first-generation antipsychotic, SGA second-generation antipsychotic, ALP alkaline phos-
phatase, N/A not addressed
a Chlorpromazine therapy combined with olanzapine
b Patient previously treated with risperidone

AP Class Type of lesion (case study) Suspected mechanism Hepatic effect (animal study)

Chlorpromazine FGA Chronic jaundice (Read et al. 1961) N/A Steatogenic (Mullock et al. 1983)
Hepatocellular cholestasis; extreme high 

ALP (Breuer 1965)
N/A Pro-oxidant (Dejanovic et al. 2017)

Biliary cirrhosis (Moradpolr et al. 1994) N/A Steatogenic (Yang et al. 2015)
Cholestasis lesions (Dusi 2019)a Idiopathic

Haloperidol FGA Hepatocellular damage and cholestasis 
(Fuller et al. 1977)

N/A Pro-oxidant (El-Awdan et al. 2015)

Cytolytic hepatitis (Ouanes et al. 2015) N/A Pro-oxidant (Andreazza et al. 2015)
Acute transaminitis (Gabriel et al. 2019) N/A Pro-oxidant; pro-inflammatory (Abdel-Salam 

et al. 2018)
Clozapine SGA Asymptomatic transaminitis (Hummer et al. 

1997)
Metabolic idiosyncrasy 

or immuno-allergic 
reaction

Pro-oxidant; pro-inflammatory; (Zlatković 
et al. 2014)

Fatal fulminant hepatic failure (Chang et al. 
2009)

N/A Pro-oxidant (Andreazza et al. 2015)

Hepatitis (Brown et al. 2013) Idiosyncratic reaction Steatogenic (Li et al. 2017)
Hepatitis (Wu Chou et al. 2014) Idiosyncratic reaction Steatogenic (Liu et al. 2017)
Transaminitis (Takács et al. 2019) N/A Steatogenic (Wang et al. 2019)

Risperidone SGA Cholestatic hepatitis (Krebs et al. 2001) Immuno-allergic reaction Steatogenic (Lauressergues et al. 2011)
Steatohepatitis (Holtmann et al. 2003) N/A Steatogenic (McNamara et al. 2012)
Cytolitic hepatitis (Esposito et al. 2005) Immuno-allergic reaction Steatogenic (Auger et al. 2014)
Cholestasis (Wright and Vandenberg 2007) N/A Pro-oxidant (Eftekhari et al. 2016)
Transaminitis (López-Torresa et al. 2014) Immuno-allergic reaction Steatogenic (Auger et al. 2018)

Steatogenic; pro-apoptotic (Azirak et al. 
2019)

Olanzapine SGA Acute hepatocellular-cholestatic injury 
(Jadallah et al. 2003)

N/A Steatogenic (Isaacson et al. 2020)

Transaminitis (Ozcanli et al. 2006) N/A Pro-inflammatory (Todorović et al. 2016)
Cholestasis (Lui et al. 2009)b N/A Pro-inflammatory (Elbakary 2017)
Cytolitic hepatitis (Domínguez-Jiménez 

et al. 2012)
Metabolic idiosyncrasy Steatogenic (Chen et al. 2018)

Dyslipidemia (Pawelczyk et al. 2014) N/A Pro-inflammatory; steatogenic (Mahmoud 
and El-deek 2019)

Steatogenic (Jiang et al. 2019)
Steatogenic (Liu et al. 2019)

Quetiapine SGA Fulminant hepatic failure (El Hajj et al. 
2004)

Idiosyncratic reaction Necrotic (Ilgin et al. 2018)

Cholestasis; transaminitis (Shpaner et al. 
2008)

Idiosyncratic reaction

Fulminant hepatic failure (Mutairi et al. 
2012)

N/A

Cholestatic injury (Das et al. 2017) N/A
Aripiprazole SGA Hepatitis with predominant cytolysis (Kor-

nischka and Cordes 2016)
Idiosyncratic reaction Steatogenic (Soliman et al. 2013)

Hepatocellular injury (Castanheira et al. 
2019)

Direct toxic effect
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In line with that, a number of animal studies demonstrated 
various hepatic biochemical and histological changes due to 
olanzapine (Table 2, discussed in more detail in further text). 
Quetiapine, another SGA, has been associated with choles-
tasis and rare fulminant hepatic failure (Table 2). Ilgin et al. 
(2018) demonstrated dose-dependent hepatotoxic effects of 
this drug in rats. Histopathology of the animal liver revealed 
necrotic regions accompanied by sinusoidal dilatation.

Most APs are hepatically metabolized by CYP2D6 and 
CYP3A4, although clozapine and olanzapine are predomi-
nantly metabolized via CYP1A2. Clozapine was shown to 
inhibit CYPs 2C19, 2D6, and 3A4, and therefore has the 
potential to cause pharmacokinetic drug–drug interactions 
(Urichuk et al. 2008). This is of particular importance for 
schizophrenia patients who are likely to take other drugs 
concomitantly.

The presented data show that both FGAs and SGAs are 
associated with a risk of hepatotoxicity. Life-threatening or 
severe DILI has been reported for FGA chlorpromazine and 
SGAs clozapine and quetiapine. Aripiprazole bears lower 
risk compared to other APs listed in Table 2. However, it 
should be borne in mind that this SGA was last introduced 
into practice, so it has been available for a shorter time for 
pharmacovigilance (pharmacological science related to the 
collection, detection, assessment, monitoring, and preven-
tion of adverse effects of pharmaceutical products) to detect 
post-marketing signals of DILI.

Major pathophysiological pathways in DILI

Drugs may induce damage in the liver through multiple 
molecular mechanisms, including direct hepatic toxicity, as 
well as innate and adaptive immune response. Drugs and/or 
their metabolites can cause direct hepatic toxicity through 
oxidative stress by accumulating ROS and inducing mito-
chondrial dysfunction. They can also trigger inflammation 
and lipid accumulation, causing impairments in hepatic 
structure and function (Ye et al. 2018). Oxidative stress, 
inflammation, and lipid accumulation, as major pathophysi-
ological pathways in DILI, will be discussed in more detail 
further in the text. Overview of molecular mechanisms will 
be followed by review and discussion of knowledge regard-
ing AD- and AP-related case reports, animal, and in vitro 
studies. Figures summarizing oxidative, inflammatory, and, 
finally, steatogenic pathways demonstrated for listed ADs 
(Table 1) and APs (Table 2) will be presented at the end of 
each section dedicated to respective phenomena.

Oxidative stress in DILI

Oxidative stress is strongly associated with DILI. Various 
drugs induce oxidative stress in the liver by promoting ROS 

production and lipid peroxidation, as well as by reducing 
antioxidants levels (Li et al. 2015). The main sources of 
ROS in the liver are mitochondria and CYP450 enzymes 
in hepatocytes. Besides, significant sources of ROS gen-
eration are immune cells, primarily Kupffer cells (resident 
hepatic macrophages), and neutrophils (Cesaratto et  al. 
2004). ROS introduce carbonyl groups into amino acid side 
chains, affecting protein structure and function (Stadtman 
and Levine 2000). Furthermore, ROS may oxidize polyun-
saturated fatty acids in the process of lipid peroxidation. 
Lipid peroxidation within the membrane bilayer increases 
membrane permeability and violates the integrity of the cells 
and organelles (Wong-Ekkabut et al. 2007). ROS may also 
cause different types of mutation of the DNA and oxida-
tive histone modifications, and affect DNA methylation and 
DNA-associated proteins, interfering with gene expression 
profiles (Kreuz and Fischle 2016).

Hepatocytes are provided with an antioxidant system 
consisting of several enzymatic (superoxide dismutase—
SOD, catalase—CAT, and glutathione peroxidase—GPx) 
and non-enzymatic (glutathione—GSH, vitamin E, vitamin 
C) antioxidant molecules. GSH, the most abundant thiol in 
cells, is capable of reacting directly with ROS and prevent 
damage to macromolecules. Besides, GSH is involved in 
peroxide reduction and drug detoxification in reactions that 
are catalysed by GPx and GST, respectively (Gupta et al. 
2005). This is why, the deficit in GSH is the main indicator 
of a pro-oxidant state and is commonly associated with liver 
injury (Han et al. 2006). Antioxidant enzymes in the liver 
are influenced by various factors, including stress (Filipović 
et al. 2010), hormones (Pajović and Saicić 2008), as well as 
xenobiotics (Durašević et al. 2010; Djurasevic et al. 2019).

Pro‑oxidant effects of ADs in the liver

Oxidative stress in the brain plays a major role in the patho-
physiology of depression, and the antioxidant effects of ADs 
may result in the remission of depression (Xu et al. 2014). 
However, ADs seem to have antioxidant or pro-oxidant 
effects, depending on the tissue and the dose applied. Thus, 
in the case of SSRIs, the majority of data highlight an anti-
oxidant effect in brain tissues, while in the liver, these drugs 
mainly show a pro-oxidant effect (Ștefan et al. 2020). The 
influence of ADs on hepatic mitochondria homeostasis and 
redox balance, in general, was mostly studied in the case of 
SSRI fluoxetine. Souza et al. (1994) showed that fluoxetine, 
as well as its main metabolite norfluoxetine, disturbed oxida-
tive phosphorylation and increased pro-oxidant production 
in isolated hepatic mitochondria, while our results showed 
that fluoxetine cause oxidative damage of lipids and proteins 
in rat liver (Zlatković et al. 2014). In line with that, increased 
total oxidant status paralleled with a decrease in total antiox-
idant capacity were reported in the liver of fluoxetine-treated 
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rats (Yilmaz et al. 2016). Accordingly, Elgebaly et al. (2018) 
reported a decreased level of GSH and activity of SOD, 
CAT, and GPx, accompanied by increased lipid peroxida-
tion and NO production in rat liver due to fluoxetine. The 
same study revealed the up-regulation of pro-apoptotic Bax 
and caspase-3 and down-regulation of anti-apoptotic Bcl-2, 
indicating pro-apoptotic events in hepatocytes (Fig. 1). The 
authors speculated that an imbalance between Bax and Bcl-2 
was a consequence of oxidative stress. It is known that ROS 
down-regulates Bcl-2 and originates the pro-apoptotic mito-
chondrial signalling (Herrera et al. 2001). Besides, fluoxetine 
easily crosses the mitochondrial membrane and interferes 
with membrane-bound proteins causing pro-apoptotic events 
(de Oliveira 2016). Hepatic oxidative stress due to fluoxetine 
is also, at least in part, a result of increased  O2

•− production 
coming from intensive CYP-mediated metabolism (Bondy 
and Naderi 1994). It is known that CYP-derived ROS can 
cause oxidative damage of macromolecules, impair mito-
chondrial function, and trigger signalling resulting in cell 
death (Begriche et al. 2011; Du et al. 2016).

Regarding SSRIs other than fluoxetine, sertraline and cit-
alopram have been associated with oxidative stress as well. 
Sertraline was demonstrated to inhibit mitochondrial respi-
ration complexes by uncoupling oxidative phosphorylation 
in isolated hepatic mitochondria (Li et al. 2012) (Fig. 1). In 
addition, 10-day sertraline treatment was found to increase 
lipid peroxidation and NO production in the mice liver 
(Abdel-Salam et al. 2013). It has been shown recently that 
DNA damage plays an important role in sertraline-induced 
hepatic cytotoxicity. The same study has shown that the 
parental form of sertraline is likely the main cause of liver 
toxicity, while CYP2D6, 2C19, 2B6, and 2C9-mediated 
metabolism is responsible for its detoxification (Chen et al. 
2020). Citalopram has also been associated with ROS over-
production and antioxidant defence depletion in rat liver. 
Ahmadian et al. (2017) indicate that metabolic activation 
plays a crucial role in citalopram-induced hepatotoxicity. 
TCAs imipramine (Duda et al. 2016) and amitriptyline (Bau-
tista-Ferrufino et al. 2011) were also shown to increase ROS 
production and lipid oxidation in rat and mice liver.

Concerning SNRIs, venlafaxine and duloxetine were 
demonstrated to induce oxidative stress in hepatocytes. 
Mitochondria and lysosomes are proposed as the primary 
targets in venlafaxine-mediated cell damage (Ahmadian 
et al. 2016). Mitochondrial dysfunction may be triggered 
by the drug itself or its reactive drug metabolite, generated 
through the activity of CYP450 enzymes. In the case of 
duloxetine, hepatotoxicity might come from oxidative stress 
triggered by hydroxylated and epoxide metabolites, which 
can release free radicals or ROS (Mishra et al. 2016). This 
is corroborated by our findings that duloxetine increase GPx 
and GST activity in the rat liver (Đorđević et al. 2016). SARI 
trazodone also demonstrated pro-oxidant action by inducing 

oxidative stress in isolated rat liver mitochondria (Dykens 
et al. 2008).

Pro‑oxidant effects of APs in the liver

There is a large body of data concerning the roles of oxi-
dative stress in psychiatric disorders and the redox status 
in patients treated with FGA and SGA, which is reviewed 
elsewhere (Padurariu et al. 2010; Hendouei et al. 2018; Lin 
and Lane 2019). However, far less data are available on how 
APs influence redox balance in the liver, as most studies 
were conducted on brain tissue and blood serum.

Chlorpromazine was shown to impair the antioxidant 
system by decreasing SOD and CAT activity and reducing 
GSH-dependent defence, as well as to cause lipid peroxi-
dation and nitrosative damage in the rat liver (Dejanovic 
et al. 2017). Chlorpromazine-induced hepatotoxicity is the 
result of its bioactivation in hepatocytes, which can be done 
by (1) CYP-catalysed pathway, which yields highly reac-
tive quinone imine metabolite; or (2) peroxidase-catalysed 
oxidation, which generates toxic radicals (MacAllister 
et al. 2013). Haloperidol, another FGA, was also shown to 
decrease GSH level and produce lipid peroxidation in rat 
and mice liver (Andreazza et al. 2015; El-Awdan et al. 2015; 
Abdel-Salam et al. 2018).

Regarding SGAs, clozapine was shown to cause severe 
adverse effects, including metabolic syndrome (Pillinger 
et al. 2020) and agranulocytosis (Mijovic 2020), as well 
as hepatotoxicity (Table 2). Both metabolic syndrome and 
agranulocytosis were previously linked to oxidative stress 
(Fischer et al. 1991; Ando and Fujita 2009). Oxidative bio-
activation of clozapine by CYP450 generates highly reac-
tive nitrenium ion, clozapine-N-oxide. This reactive metabo-
lite causes ROS formation, imposes oxidative stress, and 
requires GSH-mediated neutralization (Dragovic et al. 2013) 
(Fig. 1). In line with that, we found that clozapine increased 
GST activity, decreased GSH level, and caused oxidative 
damage of lipids and proteins in the rat liver (Zlatković 
et al. 2014). Due to noted severe adverse effects caused by 
highly reactive nitrenium metabolite, the use of clozapine 
is restricted. In an effort to modify the clozapine structure 
to minimize the nitrenium ion formation, another SGA 
was designed: quetiapine. This AP has not been associated 
with hepatic oxidative stress so far. On the other hand, ris-
peridone-induced hepatotoxicity, associated with oxidative 
stress, mitochondria, and lysosome damage, was reported 
in rats (Eftekhari et al. 2016). Our results also revealed that 
olanzapine, like clozapine, increases hepatic GST activ-
ity, probably due to the elimination of reactive olanzapine 
metabolites (Todorović et al. 2016). Four major oxidative 
metabolites of olanzapine, 4′-N-desmethyl olanzapine, 7-OH 
olanzapine, 2-OH olanzapine, and N–O olanzapine were 
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Fig. 1  Oxidative stress in AD- and AP-induced DILI. Summariz-
ing hepatic oxidative stress pathways demonstrated for listed anti-
depressants (ADs) and antipsychotics (APs). a Drug bioactivation 
by CYP450 enzymes into reactive metabolite that can bind mac-
romolecules covalently and impair cell structure and function: ami-
triptyline, imipramine, tianeptine, citalopram, duloxetine (ADs); 
chlorpromazine, risperidone, clozapine, olanzapine (APs); b CYP-
mediated generation of reactive oxygen species (ROS) and oxidative 
damage of macromolecules: fluoxetine, sertraline, citalopram (ADs); 
chlorpromazine, haloperidol, clozapine (APs); c Covalent binding of 

reactive drug metabolites to mitochondrial proteins, compromising 
mitochondrial respiration and causing  O2

·− hyperproduction: fluox-
etine, sertraline (ADs); d Initiating apoptosis by down-regulation of 
anti-apoptotic Bcl-2, up-regulation of pro-apoptotic Bax, cytochrome 
C release from mitochondria and caspase-3 activation: fluoxetine 
(AD); e Compromising antioxidant defence by decreasing glutathione 
(GSH) level and activity of glutathione-S transferase (GST), glu-
tathione peroxidase (GPx) and catalase (CAT): fluoxetine, citalopram 
(ADs); chlorpromazine, haloperidol, clozapine (APs)
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formed in vitro by human liver microsomes (Wrighton and 
Ring 1999).

Liver inflammation in DILI

Activation of the immune response in DILI involves activa-
tion of hepatic resident immune cells such as Kupffer cells, 
natural killer, and natural killer T cells, as well as recruit-
ment of peripheral immune cells like lymphocytes and neu-
trophils (Barnes et al. 2013).

Reactive drug metabolites may trigger apoptosis and 
necrosis and initiate an inflammatory response through the 
release of damage-associated molecular patterns (DAMP) 
from damaged cells. Kupffer cells express a plethora of 
receptors necessary for the detection of DAMP (e.g., Toll-
like receptors), and therefore mediate the initial response to 
acute cell injury, which may include the release of inflam-
matory cytokines and chemokines (Woolbright and Jaeschke 
2018). Toll-like receptor family activates nuclear factor-
kappa b (NF-κB), a pro-inflammatory transcription factor 
that promotes production not only of cytokines but ROS 
as well (Morgan and Liu 2011). Thus, activated Kupffer 
cells, a major source of inflammatory mediators, including 
cytokines,  O2

·−, NO, eicosanoids, chemokines, as well as 
lysosomal and proteolytic enzymes, demonstrate increased 
cytotoxicity and chemotaxis (Kolios et al. 2006).

DILI is often associated with immune cell infiltrates, and 
the nature and size of these infiltrates may serve as a progno-
sis of the progress and severity of tissue damage. The liver is 
a site where lymphocytes undergo apoptosis during the reso-
lution phase of the peripheral immune response. However, 
infiltrating activated B and T lymphocytes have been asso-
ciated with hepatic histopathology (Ikeda and Yoshikawa 
2003). Cytotoxic (CD8 +) T cells were found to be dominant 
lymphocytes present in liver biopsies of subjects with DILI 
(Foureau et al. 2014). Besides direct toxicity, reactive drug 
metabolite can act as a hapten which covalently binds to 
protein and form an immunogenic hapten–carrier adduct. 
These adduct molecules activate antigen-presenting cells, 
which further activate T cells that may be cytotoxic to other 
cells, including hepatocytes. Also, covalent modification of 
self-proteins by reactive drug haptens may trigger the loss of 
self-recognition. Consequently, immune cells whose primary 
role is to fight against non-self-cells, such as bacteria, would 
then attack self-cells, leading to autoimmune-mediated hep-
atitis (Pohl et al. 1989; Woolbright and Jaeschke 2018).

Liver eosinophilia has often been associated with DILI. It 
was reported in 40% of 570 case reports reviewed by Bjorns-
son et al. (2007). Eosinophils have been associated with det-
rimental effects on one hand, but also with remodelling and 
repairing ones on the other. Although the role played by 
eosinophils in DILI is ambiguous, in the clinical context, 

the presence of eosinophilia, in most cases, indicates a good 
prognosis (Bjornsson et al. 2007).

Finally, neutrophils in an infiltrate are common in the 
early response to tissue damage (Jaeschke and Tadashi 
2006). Neutrophils are essential mediators of drug hepato-
toxicity, since they are a significant source of ROS, mainly 
 O2

·− produced by NADPH oxidase 2. Inside neutrophils 
 O2

·− dismutates to  H2O2, which may diffuse into hepato-
cytes and provoke intracellular oxidative stress, or be used 
by myeloperoxidase to generate hypochlorous acid, a potent 
oxidant and chlorinating agent (Jaeschke and Tadashi 2006). 
Thus, neutrophil-derived ROS mediate further damage to 
liver tissue (Fig. 2).

Pro‑inflammatory effects of ADs in the liver

AD-associated DILI is generally immuno-allergic or meta-
bolic, regarding pathophysiology. Hepatitis, inflammatory 
liver disease, was reported in patients treated with vari-
ous TCA drugs. A case of disturbed hepatic architecture 
due to massive liver necrosis with portal areas containing 
lymphocytes and a significant amount of eosinophils was 
described in an imipramine-treated patient (Ilan et al. 1996). 
Amitriptyline-induced hepatitis with infiltration of mononu-
clear cells, neutrophils, and eosinophils (Larrey et al. 1988), 
as well as with massive necrosis and an intense inflamma-
tory reaction (Danan et al. 1984) were also demonstrated. 
Recently, another acute hepatitis case due to amitriptyline 
was reported (Chen et al. 2019). In addition, acute hepatitis 
was described in a patient 8 weeks after beginning tianeptine 
administration (Bricquir et al. 1994).

SSRI-induced hepatitis is rare, but can be serious. 
Chronic hepatitis has been rarely attributed to fluoxetine 
therapy, although acute hepatitis was reported in several 
cases (Table 1). A patient with moderately expanded por-
tal tracts, infiltrated by lymphocytes and plasma cells, was 
described in a case of hepatitis associated with paroxetine 
(Colakoglu et al. 2005) (Fig. 2). Curiously, fatal hepatitis 
was reported in a patient treated with sertraline (Fartoux-
Heymann et al. 2001), a drug that was considered less dan-
gerous for the liver, comparing to other SSRIs. The authors 
speculated that sertraline-induced hepatitis was due to 
immunization against self-proteins covalently modified by 
a reactive metabolite generated in situ in the liver. How-
ever, the reactive metabolites have not been identified yet, 
although it is known that sertraline is extensively metabo-
lized by hepatic CYP450 (Fartoux-Heymann et al. 2001). 
In addition, lobular inflammation and a mild prominence 
of eosinophils were reported in another patient treated with 
sertraline (Suen et al. 2013) (Fig. 2).

The other group of the new generation ADs, SNRIs, 
also rarely causes hepatitis. Venlafaxine-induced hepati-
tis was reported only in a few cases. Surprisingly, the first 
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case was described in a patient who received venlafaxine 
in a low dose (75 mg per day) (Phillips et al. 2006). How-
ever, fulminant hepatic failure was reported in a patient 
receiving venlafaxine combined with trazodone at normal 
therapeutic doses (Detry et al. 2009). Cholestatic hepatitis 
involving mixed portal inflammatory infiltrates along with 
eosinophils was also described in a patient taking venla-
faxine (Stadlmann et al. 2012). The post-marketing reports 

of hepatitis and cholestatic jaundice in patients receiving 
duloxetine emerged in late 2005. Fulminant hepatic failure in 
a duloxetine-treated patient reported by Hanje et al. (2006) 
was associated with a mixed inflammatory infiltrate within 
the portal and lobular areas composed mainly of neutro-
phils with occasional eosinophils and lymphocytes. Neutro-
phils are important mediators of drug hepatotoxicity, since 
they are a significant source of ROS, which further damage 

Fig. 2  Inflammation in AD- and AP-induced DILI. Summarizing 
hepatic inflammatory pathways demonstrated for listed antidepres-
sants (ADs) and antipsychotics (APs). a Necrosis and apoptosis 
caused by reactive drug metabolite and/or CYP-derived reactive oxy-
gen species (ROS) and release of damage-associated molecular pat-
terns (DAMP): amitryptiline, fluoxetine, duloxetine (ADs); haloperi-
dol, clozapine, olanzapine, quetiapine (APs); b activation of Kupffer 
cells through DAMP-mediated toll-like receptors (TLR) activation, 
and initiation of inflammatory response—activation of nuclear factor-
kappa B (NF-κB); increase in production and release of cytokines 

(TNF-α and IL-1β), ROS, NO and chemokines: fluoxetine, duloxe-
tine, sertraline (ADs); haloperidol (AP); c infiltration of inflammatory 
cells, mainly lymphocytes and eosinophils, triggered by chemokines/
cytokines leakage: amitriptyline, fluoxetine, paroxetine, sertraline, 
citalopram, venlafaxine, duloxetine (ADs); haloperidol, clozapine, 
risperidone, olanzapine, quetiapine (APs); d Neutrophil infiltration 
and activation; increased production and release of ROS; ROS diffu-
sion to hepatocytes and reinforcement of oxidative damage: fluoxetine 
(AD); clozapine, olanzapine (APs)
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liver tissue (Jaeschke and Tadashi 2006). Vuppalanchi et al. 
(2010) described in detail a case of duloxetine-associated 
hepatitis. The histological analysis showed a pronounced 
portal, and sinusoidal infiltrates consisted of activated lym-
phocytes. Besides, Kupffer cells appeared activated, and rare 
foci of necrosis were detected, while endothelitis was present 
in central and portal venules. SARI trazodone, combined 
with diazepam, was demonstrated to cause hepatocellular 
liver injury with confluent necrosis and modest inflammation 
(Carvalhana et al. 2016).

Regarding animal studies, there are little data about 
inflammatory changes in the liver under AD treatment. Most 
studies concerning the immuno-modulatory effects of ADs 
were conducted in blood and brain tissues. However, few 
studies described the pro-inflammatory effects of fluoxetine 
in rat liver. Özden et al. (2005) described lobular inflam-
mation, focal necrosis, apoptosis, portal area inflammation, 
and Kupffer cell hyperplasia. In line with that, we found the 
infiltrates of neutrophils, lymphocytes, and macrophages in 
portal triads; Kupffer and inflammatory cells in sinusoids, 
and focal necrosis in the liver of fluoxetine-treated rats 
(Zlatković et al. 2014) (Fig. 2). Like fluoxetine, sertraline 
was found to induce hepatic inflammation. Analysing the 
liver of rabbits exposed to sertraline, Almansour et al. (2018) 
noted sinusoidal dilatation; lobular and periportal hepatic 
spaces infiltrated mostly by lymphocytes and plasma cells; 
portal vessel congestion, as well as Kupffer cell increased 
number and hyperplasia. Similarly, a mild inflammatory cell 
infiltrate, composed mainly of lymphocytes, was detected in 
citalopram-treated rats (Ahmadian et al. 2017). SSRIs were 
also reported to increase the production of pro-inflammatory 
cytokines TNF-α, IL-6, and IL-1β in an in vitro whole blood 
assay (Munzer et al. 2013). Thus, scarce data regarding liver 
inflammatory changes under ADs are mostly related to SSRI 
drugs. However, it is noteworthy that liver inflammation, 
including infiltration of inflammatory cells and dilated sinu-
soids, was observed in rats treated with an SNRI venlafax-
ine, as well (Paulis et al. 2018). Here is also important to 
address the question concerning the applicability of rodent 
models for understanding hepatic pro-inflammatory effects 
of drugs. A recent study of Ölander et al. (2020) showed that 
human and murine hepatocytes were fairly similar, whereas 
non-parenchymal cells, including Kupffer cells, tended 
towards larger species differences. Namely, they found sub-
stantial proteomic differences between human and murine 
non-parenchymal cell types. This interspecies variability in 
protein expression contributes to the debatable predictive 
value of animal models in toxicity of drugs, including their 
hepatic pro-inflammatory effects.

Pro‑inflammatory effects of APs in the liver

Hepatitis has been associated with antipsychotic medication, 
since it was reported in patients treated with both FGAs 
and SGAs, including haloperidol, clozapine, risperidone, 
olanzapine, quetiapine, and aripiprazole (Table 2). Severe 
cases of hepatitis, even fatal in a small minority, have been 
observed. Massive infiltration of inflammatory cells, pre-
dominantly eosinophils, in the vicinity of portal bile ducts 
was noticed in a patient with haloperidol-induced hepati-
tis (Fuller et al. 1977) (Fig. 2). With regard to SGA, acute 
necrotic hepatitis, as well as cholestatic hepatitis with focal 
necrosis and eosinophil infiltration were reported after clo-
zapine treatment (Slim et al. 2016). Also, immune-allergic 
hepatitis with eosinophilia and high levels of anti-smooth-
muscle antibodies was described in a patient taking risperi-
done (Esposito et al. 2005). Hepatocellular damage, centri-
lobular necrosis, and infiltrates in the portal areas containing 
mononuclear granulocytes, lymphocytes, and eosinophils 
were observed in some patients treated with olanzapine 
(Slim et al. 2016) (Fig. 2). Extensive hepatocyte necrosis 
with nonspecific inflammatory infiltrates was found after 
quetiapine treatment (Shpaner et al. 2008; Slim et al. 2016). 
Finally, portal inflammatory cellular reaction with eosino-
philia was reported in a patient using aripiprazole (Kornis-
chka and Cordes 2016).

Animal studies have also shown hepatic inflammatory 
changes in response to AP treatment. Haloperidol-treated 
rats manifested centrilobular necrosis and inflammatory cell 
infiltration, especially in the periportal area, as well as high 
TNF-α immunoreactivity in the liver (Abdel-Salam et al. 
2018). Our study reported infiltrates of neutrophils, lym-
phocytes, and macrophages in portal triads; Kupffer and 
inflammatory cells in sinusoids, and focal necrosis in the 
liver of clozapine-treated rats (Zlatković et al. 2014) (Fig. 2). 
We also described portal inflammation and focal hepatocyte 
necrosis in olanzapine-treated rats (Todorović et al. 2016). In 
line with that, Elbakary (2017) detected various histological 
changes, including dilatation and congestion of central veins, 
inflammatory cellular infiltration in the portal areas, cyto-
plasmic vacuolation of hepatocytes, mitochondrial degenera-
tion, bile ducts dilatation, and excessive deposition of lipid 
droplets in olanzapine-treated rats. Noted cellular infiltration 
was described as the consequence of ROS, cytokines, and 
chemokines released from activated Kupffer cells. Besides, 
Mahmoud and El-deek (2019) (Fig. 2) recently reported lob-
ular hepatitis, marked dilation and congestion of central vein 
and blood sinusoids, spotty necrosis, and portal tract expan-
sion by inflammatory cells in rat liver due to olanzapine.
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Fatty liver changes in DILI

Hepatic steatosis, or fatty liver, is a reversible condition in 
which fat accumulates in hepatocytes due to an imbalance 
between lipid deposition and removal. An increase in fatty 
acid influx from the diet and adipose tissue lipolysis, or 
de novo lipogenesis, and a decrease in fatty acid removal 
through β-oxidation or very-low-density lipoprotein (VLDL) 
secretion, can all lead to the intracellular lipid droplets accu-
mulation and hepatic steatosis (Marchesini et al. 2016). All 
of the noted mechanisms can be affected by different ADs 
and APs.

Steatosis occurs in two primary forms, macrovesicular 
and microvesicular. Macrovesicular steatosis or macrosteato-
sis is characterized by a single, large fat vacuole per hepato-
cyte that fills up most of the cytoplasm and displaces the 
nucleus to the periphery of the cell. Macrosteatosis has a 
good long-term prognosis with rare progression to fibro-
sis or cirrhosis (Bessone et al. 2018). On the other hand, 
diffuse, microvesicular steatosis, or microsteatosis consists 
of enlarged hepatocytes with multiple small droplets in the 
cytoplasm, while the nucleus holds a central location. It is 
often associated with chronic lipid peroxidation, develop-
ment of steatohepatitis, liver insufficiency, and encephalop-
athy, and can be life-threatening when extensive or long-
lasting (Amacher and Chalasani 2014).

Steatogenic effects of ADs in the liver

Hepatic steatogenic effects of different AD classes were 
shown in patients, animal models, as well as in in vitro 
studies. Regarding case studies, moderate steatosis due to 
imipramine treatment was reported (Horst et al. 1980). Mod-
erate macro- and microvesicular fat accumulation, involving 
40% of hepatocytes, was detected in a patient who developed 
acute hepatitis after taking tianeptine for 8 weeks (Bricquir 
et al. 1994). Recently, a case of fluoxetine-induced hepa-
tomegaly (enlarged liver) with steatosis was described 
(Agrawal et al. 2019). In the case of SNRI, moderate-to-
marked steatosis was detected in patients who received ven-
lafaxine (Levine et al. 1996), as well as duloxetine (Hanje 
et al. 2006; Vuppalanchi et al. 2010).

In vitro and animal studies provided substantial evidence 
that various ADs have the steatogenic effect. TCAs amitrip-
tyline and imipramine were shown to promote the activation 
of sterol regulatory element-binding proteins (SREBP), the 
most important regulators of cellular cholesterol and free 
fatty acids’ (FFAs) biosynthesis (Fig. 3). This effect was 
observed in cultured human liver cells (Raeder et al. 2006). 
Besides, the steatogenic effect of amitriptyline was shown 
in vivo in rat liver (Sahini et al. 2014; Kampa et al. 2020). 
Interestingly, the other two TCAs, amineptine and tianeptine, 
were shown to cause mild hepatic steatosis due to heptanoic 

chain attached to a tricyclic moiety. This heptanoic chain 
undergoes mitochondrial β-oxidation, which shortens it to 
the 5-carbon and 3-carbon derivatives. Therefore, hepatic 
mitochondria of the patients receiving amineptine or tian-
eptine are exposed to C7, C5, and C3 analogues of natural 
FFAs, which reversibly inhibit β-oxidation of medium- and 
short-chain fatty acids (Fromenty et al. 1989; Pessayre et al. 
2012). As a result, FFAs increasingly undergo esterification 
into triglycerides that accumulate in hepatocytes as benign 
large lipid droplets (Bessone et al. 2018). As opposed to the 
steatogenic effects of ADs described so far, a recent study 
demonstrated that MAOI phenelzine reduced hepatic lipid 
content in mice fed with a high-fat diet (Mercader et al. 
2019).

The long-term use of SSRIs is associated with obesity/
weight gain, diabetes mellitus, and dyslipidemia in children 
and adults (Jerrell 2010). Also, prenatal exposure to SSRIs, 
the most common ADs used in pregnancy, increases the risk 
of childhood overweight (Grzeskowiak et al. 2013). The 
rodent model demonstrated that fetal and neonatal exposure 
to fluoxetine cause adiposity, fatty liver, and insulin resist-
ance (De Long et al. 2015). Indeed, the relationship between 
obesity, hepatic lipid accumulation, insulin resistance, and 
hepatic inflammation was described in both clinical and 
animal studies (Gruben et al. 2014). Obesity and fatty liver 
changes have been associated with increased production of 
pro-inflammatory cytokines, including TNF-α, IL-6, and 
IL-1β (Ma et al. 2008). As mentioned in the section “Pro-
inflammatory effects of ADs in the liver,” SSRIs were shown 
to increase the production of these pro-inflammatory media-
tors (Munzer et al. 2013). In vitro studies have found that 
fluoxetine regulates lipogenic and lipolytic genes to promote 
hepatic lipid accumulation (Fig. 3). Specifically, fluoxetine 
was reported to induce hepatic lipid accumulation in pri-
mary mouse hepatocytes via both promotion of de novo lipo-
genesis and reduction of lipolysis (Feng et al. 2012; Xiong 
et al. 2014). These findings are supported by the results of 
a recent in vivo study of Pan et al. (2018), who showed that 
fluoxetine increased hepatic triglyceride level by increasing 
the expression of lipogenic and decreasing the expression 
of lipolytic enzymes in the mice liver (Fig. 3). In line with 
that, we noticed macrovesicular fatty changes in the liver of 
rats treated with fluoxetine (Zlatković et al. 2014). Chronic 
exposure to sertraline was shown to down-regulate expres-
sion of drug- and arachidonic acid-metabolizing enzymes in 
hepatic tissue, indicating that patients using this drug may be 
at risk of hepatotoxicity with reduced capacity to metabolize 
drugs and fatty acids (Almansour et al. 2018). SSRI fluvox-
amine was also demonstrated to cause fat accumulation in 
the liver of mice by shifting the metabolism towards fatty 
acid synthesis (Rozenblit-Susan et al. 2016).
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Steatogenic effects of APs in the liver

Many AP drugs, particularly SGAs, are strongly associ-
ated with adverse metabolic effects, including steatosis. 
Even though some FGAs demonstrated steatogenic effects, 
like chlorpromazine did in the rat liver (Yang et al. 2015), 
steatosis is primarily associated with SGAs. Fatty liver was 
identified in two cases of pediatric patients treated with 
risperidone. Both cases were accompanied by obesity and 
abnormal serum levels of the liver enzymes (Kumra et al. 
1997). Risperidone-associated steatohepatitis, accompa-
nied by excessive weight gain, was also described (Holt-
mann et al. 2003). A study of Morlán-Coarasa et al. (2016) 
aimed to investigate the development of fatty liver during 
the first 3 years of SGA treatment (aripiprazole, risperidone, 
quetiapine, and ziprasidone) in 191 non-affective psychosis 
patients. After 3 years, 25.1% of individuals scored ≥ 60 on 
a fatty liver index, representing a strong prediction of stea-
tosis. The fatty liver index predicts fatty liver disease based 

on the body mass index, waist circumference, and blood 
levels of triglyceride and ɣ-glutamyltransferase, an enzyme 
involved in drug detoxification.

SGAs, primarily clozapine and olanzapine and, to a 
lesser extent, quetiapine, risperidone, and aripiprazole can 
trigger body weight gain, insulin resistance, and metabolic 
syndrome. All these metabolic disorders promote liver 
lipogenesis and can subsequently lead to fatty liver and 
steatohepatitis (Slim et al. 2016). Insulin resistance exposes 
hepatocytes to an overload of glucose and insulin due to 
decreased glucose uptake by peripheral tissues and com-
pensatory hyperinsulinemia, respectively. The resulting 
hyperglycaemia and hyperinsulinemia can promote de novo 
lipogenesis (Matsuzaka and Shimano 2011). Besides, insulin 
represses the synthesis of apolipoprotein B (apoB), the main 
VLDL protein cofactor, reducing the exportation of hepatic 
lipids via VLDL (Charlton et al. 2002). Thus, high insulin 
levels further increase hepatic triglyceride levels by block-
ing VLDL-mediated lipid secretion. Although AP-induced 

Fig. 3  Mechanisms of fat accumulation in hepatocytes due to AD- 
and AP-induced DILI. Summarizing hepatic steatogenic pathways 
demonstrated for listed antidepressants (ADs) and antipsychot-
ics (APs). a Activation of sterol regulatory element-binding pro-
teins (SREBR) and up-regulation of lipogenic enzymes resulting in 
increased triglycerides’ (TG) synthesis and accumulation in fat vacu-
ole: amitryptiline, imipramine (ADs); clozapine (AP); b down-regu-
lation of lipolytic enzymes and consequential accumulation of TG in 
fat vacuole: fluoxetine (AD); clozapine (AP); c reduced β-oxidation 

of free fatty acids (FFAs) in mitochondria: amineptine, tianeptine 
(ADs); clozapine (AP); d increased de novo lipogenesis induced by 
hyperglycaemia and hyperinsulinemia: fluoxetine (AD); clozapine, 
olanzapine (APs). e Reduced transport of long-chain fatty acids into 
the mitochondria due to decreased levels of available carrier l-car-
nitine: clozapine, olanzapine (APs); f decreased extrahepatic trans-
port of TG due to down-regulation of very-low-density lipoprotein 
(VLDL) secretion-related proteins apoB and apoE: olanzapine (AP)
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steatosis may be the indirect result of drug-induced obesity 
and insulin resistance, an experimental study on primary 
rat hepatocytes showed that clozapine and olanzapine can 
directly increase de novo lipogenesis, as well (Lauressergues 
et al. 2010) (Fig. 3). A later study on the human hepatocyte 
cell culture demonstrated that other APs like haloperidol, 
olanzapine, and risperidone activated SREBP and increased 
expression of target genes involved in FFAs biosynthesis, 
resulting in intracellular lipids accumulation (Lauresser-
gues et al. 2012). These results corroborated the findings 
of Raeder et al. (2006) that clozapine activates SREBP-
mediated lipogenic gene expression in cultured human liver 
cells. These findings were confirmed in our in vivo study, 
where clozapine was shown to induce rat liver steatosis 
(Zlatković et al. 2014). Liver steatosis, as well as an increase 
in plasma triglycerides and FFAs, due to clozapine treat-
ment, was confirmed by later studies (Li et al. 2017; Liu 
et al. 2017). Moreover, a single intraperitoneal injection of 
clozapine (50 mg/kg) was demonstrated to down-regulate 
genes involved in FFA β-oxidation and lipolysis, leading to 
lipid accumulation in rat liver (Fernø et al. 2009) (Fig. 3). 
It was found recently that clozapine can contribute to the 
fatty liver by reducing renal reabsorption of l-carnitine, an 
amino acid that acts as a carrier for transporting long-chain 
fatty acids into the mitochondria for β-oxidation (Wang et al. 
2019). Similar to clozapine, olanzapine is strongly associ-
ated with fatty liver changes. This AP dysregulated glucose 
and lipid metabolism, caused mild glucose intolerance, 
increased body weight, and caused hepatic steatosis in the 
mouse model after only 4 weeks. When combined with a 
high-fat diet, olanzapine caused an even greater increase in 
weight gain, dysregulation of glucose and lipid metabolism, 
and more pronounced liver damage (Isaacson et al. 2020). 
These results indicate that obesity may aggravate olanzap-
ine-induced side-effects. Soliman et al. (2013) reported that 
olanzapine- and aripiprazole-treated rats developed steatosis 
in the liver, whereby more prominent changes were caused 
by olanzapine. Hepatic abnormalities of lipid and glucose 
metabolism due to olanzapine have been intensively studied 
lately. All these studies accumulated evidence that olanzap-
ine has multifaceted effects on hepatic lipid metabolism, 
including (1) increasing de novo lipogenesis; (2) decreas-
ing lipoprotein internalization and cholesterol clearance; 
and (3) reducing VLDL secretion through down-regulation 
of VLDL secretion-related proteins, including apoB and 
apoE; which all together result with lipid accumulation in 
the liver (Chen et al. 2018; Liu et al. 2019; Mahmoud and 
El-deek 2019; Ren et al. 2019a, b) (Fig. 3). In addition, a 
recent study demonstrated that olanzapine, like clozapine, 
decreases the level of available l-carnitine and, therefore, 
negatively affects β-oxidation of FFAs in mice liver (Jiang 
et al. 2019). Thus, l-carnitine supplementation could be a 
promising strategy to prevent or ameliorate olanzapine- and 

clozapine-induced steatosis. Further on, visceral adiposity 
associated with hepatic steatosis in mice after long-term ris-
peridone treatment was demonstrated, as well (Auger et al. 
2014). Risperidone was also shown to significantly increase 
gene expression of major lipogenic factors, including fatty 
acid synthase, in the mouse and rat liver (Auger et al. 2018; 
Azirak et al. 2019) (Fig. 3).

Conclusions

All ADs and APs listed in this review have the potential to 
cause hepatotoxicity, even at therapeutic doses. AD- and AP-
induced DILI can be mediated through multiple molecular 
mechanisms, including unwanted side reactions and prod-
ucts of drug metabolism, hepatic oxidative stress, inflam-
mation, and steatosis. Although fulminant and irreversible 
liver injury due to ADs or APs is a rare event, hepatotoxicity 
of these drugs should be recognized and carefully consid-
ered. These drugs carry a potential risk for liver damage, 
particularly in patients with polypharmacy or reduced drug 
metabolism. Besides, patients suffering from disorders that 
share pathogenic mechanisms with DILI, such as diabetes 
and metabolic syndrome, bear a higher risk of develop-
ing psychotropics-induced hepatotoxicity. In this respect, 
therapy must be carefully planned, tailored, and monitored, 
not just in terms of the effect on a psychiatric disorder of 
patient, but hepatic homeostasis, as well. For example, 
patients prone to DILI may benefit from lower doses and 
slower upwards titration to avoid the hepatotoxic effects. 
When using ADs and APs associated with a greater risk of 
hepatotoxicity (nefazodone, phenelzine, imipramine, duloxe-
tine, and trazodone as well as chlorpromazine and clozapine, 
respectively), the serum levels of the liver enzymes should 
be monitored regularly. Also, these drugs should not be initi-
ated in individuals with pre-existing liver disease, as well as 
in elderly patients, and alcohol and illegal drug users. Even 
though there is no clear evidence that pre-existing chronic 
liver disease increases the likelihood of developing DILI, 
baseline abnormalities can complicate patient monitoring. 
Also, a special attention should be paid when implement-
ing therapy combining SGA and AD, which is often the 
case in treatment-resistant depressive patients. Even though 
SGA combined with an SSRI can ameliorate depressive 
symptoms, one should always bear in mind that drug–drug 
interactions may have serious, even life-threatening con-
sequences. Aripiprazole, quetiapine, and olanzapine have 
US FDA approval as an augmentation therapy to ADs, but 
one should always consider their association with metabolic 
disorders, which may promote liver lipogenesis. For exam-
ple, patients could benefit from monitoring for signs of the 
fatty liver when taking these drugs together with fluoxetine; 
SSRI also related to adiposity and steatosis. Besides, SSRI 
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fluvoxamine co-administration with SGAs clozapine or ari-
piprazole should be co-prescribed with special caution due 
to drug–drug interactions described in section “Hepatotox-
icity of ADs.” Thus, clinicians should carefully assess the 
potential risk-to-benefit ratio when planning to implement 
adjunctive pharmacotherapy. Personalized medicine should 
be the preferred approach whenever possible and manda-
tory for risk groups of patients. Finally, patients should be 
informed that ADs and APs can be associated with liver 
damage, even liver failure, and encouraged to refer to a 
primary care physician or psychiatrist if any DILI-related 
symptoms emerge. In addition, consumption of alcohol, ille-
gal drugs, and over-the-counter medications during ADs and 
APs treatment may increase the risk of severe liver abnor-
malities, so it should be strongly discouraged.
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