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Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of 
pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and 
induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a compre-
hensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human 
in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general 
presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an 
in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug 
interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP 
induction is presented to aid the understanding of the induction phenomena.
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Introduction

Inhibition and induction of cytochrome P450 (CYP) 
enzymes are central mechanisms, resulting in clinically sig-
nificant drug–drug interactions (DDI). Today, characteristics 
and regulatory factors of various CYP enzymes have been 
elucidated to a considerable extent (Manikandan and Nagini 
2018; Zanger and Schwab 2013). Detailed mechanisms of 
inhibition have been uncovered by studies on isolated or 
expressed enzymes and tissue fractions. Nuclear receptors 
as important xenobiotic-sensing transcription factors and as 

regulators of CYP induction have been elucidated (Wang 
et al. 2012).

Prediction on the basis of in vitro studies is now an inte-
gral part of early drug development (Lu and Di 2020) as 
well as of the medicines agency guidelines (EMA, FDA, 
and MHLW/PMDA). Computational models such as physi-
ologically based pharmacokinetic models are now being 
used for quantitative prediction of in vivo interactions from 
in vitro experiments (Kato 2020; Min and Bae 2017), and 
these models are used extensively by drug developers before 
and during clinical trials. After preclinical studies, there is 
an ultimate need of human in vivo studies and observations 
on inhibition and induction. Obviously, such information 
is absolutely needed for clinical drug treatment to prevent 
possible adverse outcomes and ensure safety.

In addition to drugs, humans are exposed to a large num-
ber of other chemical substances through diet, use of cos-
metics, in workplaces, by environmental pollutants, etc., and 
many of these chemicals are in vitro inhibitors or induc-
ers of CYP enzymes but compared to pharmaceutics often 
poorly characterized. The risk posed by these chemicals is 
difficult or impossible to assess without reliable in vitro–in 
vivo extrapolation, which is only possible by having proven 
in vivo inhibitors or inducers (and non-effective substances) 
as reference items.
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With these premises in mind, and pointing to the pro-
found developments in drug research and regulation (see 
the guest editorial, Pelkonen et al., in this issue), we have 
collected and updated the information about human in vivo 
inhibitors and inducers, which would constitute a curated 
compilation for the use as a reference for other in-depth stud-
ies. The main focus is on data published after 2008, and in 
many instances, we point to our earlier review for references 
before 2008 (Pelkonen et al. 2008).

Progress since 2008

We previously reviewed CYP inhibition and induction 
12 years ago (Pelkonen et al. 2008). In 2008, we stated that, 
because multiplicity and variability of CYP enzymes are 
an important complicating factor in pharmacological and 
toxicological research and regulation, and predictive and 
pre-empting measures are a top priority, and thus, the devel-
opment of predictive in vitro approaches is necessary and 
should be based on the firm background of basic research on 
the phenomena of inhibition and induction and their underly-
ing mechanisms. Consequently, we focused on covering both 
inhibition and induction of CYP enzymes, always keeping 
in mind the basic mechanisms on which to build predictive 
and preventive in vitro approaches to be validated by in vivo 
studies. These principles still apply today. Nevertheless, 
since 2008, further progress has been made in the research 
of CYP inhibition and induction and the application of the 
knowledge. Furthermore, very important development has 
happened in the characteristics of new drugs.

New pharmaceuticals since 2008

It is obvious that the spectrum of new drugs has changed 
since 2008 (see the guest editorial Pelkonen et al. in this 
issue and (de la Torre and Albericio 2020; Yu et al. 2019). 
Biological drugs, proteins, and peptides or oligonucleotides 
occupy nowadays a sizable share of new drugs (see Internet 
sites of major drug agencies: https ://www.acces sdata .fda.
gov/scrip ts/cder/daf/; https ://www.ema.europ a.eu/en/medic 
ines; https ://www.pmda.go.jp/engli sh/revie w-servi ces/revie 
ws/appro ved-infor matio n/drugs /0002.html) and their role in 
DDIs in general is supposed to be in the pharmacodynamics 
sphere; specifically, CYP-associated DDIs are not expected. 
Consequently, small-molecular new chemical entities repre-
sent a smaller contribution into the new drugs, and these are 
more thoroughly studied during the developmental phases 
with in vitro tools and during clinical trials with focus on 
specific enzymes and transporters depicted by the in vitro 
information. The efficiency of the in vitro and in vivo tools 
as formulated in guidance documents from major authorities 

(EMA 2012, FDA 2020, MHLW/PMDA 2018)1 is demon-
strated by the fact that there have been no major surprises 
leading to drug withdrawals among novel drugs during the 
last 10–15 years. Advancements in the pharmacokinetic 
research include the recognition that many less-studied 
non-CYP enzymes and especially several transporters have 
emerged as interaction targets.

Shifts in approved drug classes have led to the situation 
that anticancer and antiviral (HIV) drugs are major mol-
ecules in CYP-associated DDIs. These shifts are probably 
behind the observation that CYP3A4 substrates form a 
majority of the drugs suspected or shown as causing CYP-
associated interactions. The observation that there seem to 
be only a few inducers among newly approved drugs may be 
explained by the thrust in the development of small molecule 
drugs towards more potent and specific molecules. This has 
led to a relative decrease of clinical doses, which often are 
too small to cause a significant CYP induction.

Tyrosine (protein) kinase inhibitors 
as an example of CYP‑mediated DDIs

Tyrosine kinase inhibitors (TKIs) form a relatively novel 
class of (mainly) anticancer agents, which has been expand-
ing tremendously over the last 2 decades. Because of their 
“precision” targets, TKIs offer a more effective and safer 
option in many cancers compared to the cytostatic agents. 
Because their pharmacodynamic targets are a diverse, even 
if functionally related, set of enzymes, it is not surprising 
that their chemical structures as well as their metabolism and 
general pharmacokinetic characteristics are rather variable. 
However, TKIs actually are well represented in DDI sections 
of reference books and reviews, especially regarding their 
metabolic features and transporter involvements [see, e.g., 
(Gay et al. 2017; Hussaarts et al. 2019; Jackson et al. 2018)]. 
In this section, the TKI-associated CYP-DDIs are presented 
as an example of current concerns of clinically important 
CYP interactions.

Drugs selected

The drugs covered here include protein or tyrosine-kinase 
inhibitors (TKIs) approved by EMA and/or FDA until 2018. 
There are a number of TKIs that have been discarded in 
the last rounds of development, but this source of useful 

1 EMA 2012, https ://www.ema.europ a.eu/en/docum ents/scien tific 
-guide line/guide line-inves tigat ion-drug-inter actio ns-revis ion-1_
en.pdf; FDA 2020, https ://www.fda.gov/media /13458 2/downl oad and 
https ://www.fda.gov/media /13458 1/downl oad; MHLW/PMDA 2018, 
https ://www.pmda.go.jp/files /00022 8122.pdf.

https://www.accessdata.fda.gov/scripts/cder/daf/
https://www.accessdata.fda.gov/scripts/cder/daf/
https://www.ema.europa.eu/en/medicines
https://www.ema.europa.eu/en/medicines
https://www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0002.html
https://www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0002.html
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf
https://www.fda.gov/media/134582/download
https://www.fda.gov/media/134581/download
https://www.pmda.go.jp/files/000228122.pdf
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compounds remains largely untapped for the analysis of 
DDIs. However, a scan of literature and physician’s desk ref-
erences demonstrate that many of the approved TKIs are pre-
dominantly CYP3A4 substrates and many of them display a 
potential to inhibit or induce CYP enzymes. Consequently, 
it is a good opportunity to look at various interaction charac-
teristics of these TKIs for the purposes of this review. Some 
salient features are collected in Table 1.

Key publications

An important element in research of TKIs is that the crucial 
development leading to authorization has occurred at the 
time when in vitro and in vivo studies for predicting and 
estimating CYP interactions have been refined to the extent 
that there has been a possibility for fact-based go/no-go deci-
sions and that there are tools to estimate the contribution of 
particular CYP enzymes and their predictable interaction 
consequences. On the other hand, much of the available pub-
lished material is of regulatory nature, i.e., drug monographs 
in national formularies, and thus detailed experimental and 
clinical results may not be available for open scrutiny. Thus, 
we have been mostly dependent on material that is not pub-
licly peer-reviewed (naturally regulators have had access to 
original studies), but on the other hand, studies providing 
the basis for official drug monographs are expected to be of 
high quality. Furthermore, many of them have appeared in 
the public literature later on. Otherwise, publicly available 
studies are often rather sporadic regarding individual drugs, 
but, nevertheless, we have referred to them when they pro-
vide additional or confirmatory information.

TKI as a victim drug

As can be seen in Table 1, a large majority of TKIs, 41 out of 
43 drugs, is metabolized by CYP3A4/5 at least to a certain 
extent. Other CYP enzymes, such as CYP1A2, CYP2B6, 
CYP2C, and CYP2D6, contribute to the metabolism of some 
TKIs, but only binimetinib is metabolized to a small extent 
by CYP1A2 and CYP2C9 and not at all by CYP3A4/5. It 
is perhaps appropriate to note that the exact contribution of 
any single CYP is often rather difficult to quantitate pre-
cisely, but usually it is possible to state, whether CYP3A4 
is responsible for a major or minor share of the metabolism. 
In vitro studies with human liver preparations or human 
hepatocytes are often crucial in this respect. In any case, 
it is not often possible to find in regulatory filings impor-
tant parameters to describe enzyme kinetics, although some 
information may be found in the public literature.

The extent and relative isoform contribution of CYP-
associated metabolism of individual TKIs is one of the 
crucial factors leading to clinically significant DDI poten-
tial. As the anticancer effect is of paramount interest for the 

developer of the compound, the clinician, and ultimately the 
patient, some risks of off-target effects including DDIs are 
accepted that would not be deemed acceptable when devel-
oping drugs for other less serious indications.

In DDI clinical studies, it is customary to use inhibitors 
and inducers which are known to have a strong effect. In 
most cases, rifampicin is used as an inducer and ketocona-
zole or itraconazole as an inhibitor. However, the strength 
of effect of a perpetrator is dependent on the metabolic char-
acteristics of a victim, i.e., affinity to the principal enzyme, 
relative contribution of a specific enzyme to overall metabo-
lism or PK behavior of a drug, and alternative enzymatic 
and excretory clearance routes. Consequently, the interaction 
outcome of a “strong” perpetrator may be strong, moderate, 
or weak, dependent on a specific victim. The intensity of 
inhibition or induction is defined by the FDA on the basis 
of the AUC change (FDA 2020).2 Strong, moderate, and 
weak inhibitors give rise to an increase in AUC of a vic-
tim at least fivefold, between two and fivefold, and 1.25- 
to 2-fold, respectively. For induction, corresponding AUC 
classes are an AUC decrease by > 80%, between 50 and 80% 
and between 20 and 50%. As stated above, even a “strong” 
inhibitor or inducer could result in strong, moderate, or weak 
effect, dependent on characteristics of a victim. Obviously, 
this classification provides only a rough yardstick for assess-
ing the likelihood or clinical significance of an interaction 
and many other factors such as concentration–effect relation-
ships of a victim may be more significant.

Regarding 43 TKI drugs in Table 1, the metabolism of 30 
of them is strongly or moderately and seven weakly inhib-
ited and/or induced by “strong” CYP3A4 perpetrators and 
only five are classified as having no CYP3A4-associated 
DDIs as victims. Among these “negatives”, CYP3A4 plays 
either a minor or no role in elimination: afatinib is excreted 
mainly unchanged, binimetinib is metabolized by hydroly-
sis, lenvatinib is predominantly excreted unchanged and 
metabolized by aldehyde oxidase, nintedanib is eliminated 
by P-glycoprotein, and vismodegib is eliminated only to a 
minor extent by CYPs. It is fair to conclude that a majority 
of clinically used TKIs are CYP3A4 substrates, although the 
contribution of CYP3A4 to the overall elimination may be 
decreased by other metabolic or transporter routes [see, e.g., 
(Fenner et al. 2009; Yu et al. 2017a, b, 2019)].

TKIs as CYP inhibitors

Most TKIs in Table 1 have been screened for inhibitory 
potential using in vitro human liver microsomal assays con-
sisting of major CYP activities from CYP1A2 to CYP3A4/5. 
In seven cases, no inhibition in vitro was detected, whereas 

2 https ://www.fda.gov/media /13458 1/downl oad.

https://www.fda.gov/media/134581/download
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Table 1  Tyrosine (protein) kinase inhibitor anticancer drugs as CYP substrates, inhibitors, and inducers
TKI as a CYP substrate1 (vic�m) TKI as a CYP inhibitor 

(perpetrator)
TKI as a CYP inducer

An�cancer 
Drug

Role of CYPs in 
TKI elimina�on

Perpetrators in vivo –
inhibitors and 
inducers2

CYPs Inhibited 
in vitro

Vic�ms studied 
in vivo

CYPs studied in vitro 
and in vivo

References3

Abemaciclib
(2017)

M: 3A4
3 act. met.

clarithromycin (3A4 
inh) - moderate 

NR (transporters 
studied)

NR in vitro 1A2, 2B6, 3A4 
no induc�on (mRNAs)
NR in vivo

(Posada et al. 
2020; J. Yu et al. 
2019)rifampicin – strong

Afa�nib
(2013)

E: M negligible (PGP inhibitors and 
inducers moderate)

NR (PGP 
studied)

NR (not 
applicable)

NR in vitro or in vivo (Wind et al. 2017)

Alec�nib
(2015)

M: 3A4
1 act.met.

posaconazole (3A4 inh) 
and rifampicin - no 
effect

3A4, 2C8 weak 
inhibi�on

midazolam 
(3A4), 
repaglinide 
(2C8) - no 
inhibi�on

in vitro no or weak 
induc�on
NR in vivo

(Cleary et al. 2018; 
Hofman et al. 
2019; Morcos et al. 
2017)

Axi�nib
(2012)

M: 3A4, (1A2, 
2C19)

ketoconazole –
moderate

1A2, 2C8 weak 
inhibi�on

paclitaxel (2C8) 
no inhibi�on

no induc�on in vitro
NR in vivo

(Pithavala et al. 
2010; Pithavala et 
al. 2012)rifampicin – strong

Binime�nib
(2018)

M: UGT1A1 
(>50%), (1A2, 
2C19 minor)
2 act.met.

NR in vitro and in vivo 1A2, 2C9, 2D6, 
3A no inhibi�on

midazolam 
(3A4) – no 
effect

NR in vitro and in vivo [EMA, FDA]

Bosu�nib
(2012)

M: 3A4 ketoconazole and 
rifampicin – strong

2C8 weak 
inhibi�on

NR in vivo no induc�on in vitro
NR in vivo

(Abbas et al. 2012; 
Abbas et al. 2015; 
Abbas and Hsyu 
2016)

Briga�nib
(2017)

M: 2C8, 3A4
act.met.

gemfibrozil (2C8 inh) –
no

All major CYPs –
no inhibi�on

NR in vivo in vitro 3A, 2C 
induc�on

(Tugnait et al. 
2020)

itraconazole –
moderate

NR in vivo

rifampicin  – strong
Cabozan�nib
(2012)

M: 3A4, (2C9 
minor)

ketoconazole – weak in vitro 3A4, 
2C8/9/19

rosiglitazone 
(2C8) – no effect

in vitro, 1A1 induc�on, 
no induc�on others
NR in vivo

(Nguyen et al. 
2015)

rifampicin – moderate

Ceri�nib
(2014)

M: 3A4 (major) ketoconazole –
moderate

3A4 (TDI), 2C9 
(weak), 2A6, 
2E1 in vitro

NR in vivo NR in vitro or in vivo (Cho et al. 2017; D. 
Zhao et al. 2020)

rifampicin – strong

Cobime�nib
(2015)

M: 3A4, UGT2B7 itraconazole – strong in vitro 3A4, 
2D6

midazolam 
(3A4), 
dextromethorph
an (2D6) – no 
effect

in vitro 1A2, 2B6, 3A4 
no induc�on
NR in vivo

(Budha et al. 2016)

3A4 induc�on - only 
simula�on (strong 
effect)

Crizo�nib
(2012)

M: 3A4 ketoconazole –
moderate

3A4, 2B6 in vitro midazolam 
(3A4) –
moderate effect

no induc�on in vitro
NR in vivo

(van Leeuwen, 
Roelof W. F. et al. 
2014)rifampicin  – strong

Dabrafenib
2013)

M: 3A4, 2C8 
(minor)
Act. met.

ketoconazole and 
gemfibrozil (2C8) –
weak

3A4 (weak) in 
vitro

NR in vivo in vitro 3A4, 2C9, 2B6 
in vivo midazolam 
(3A4), warfarin (2C9) –
moderate

(Lawrence et al. 
2014)

inducers – NR

Dasa�nib
(2006)

M: 3A4 (FMO3, 
UGT), act.met. 
(5%)

ketoconazole and 
rifampicin – strong

3A4 (weak) in 
vitro

simvasta�n 
(3A4) – weak 
effect

no induc�on in vitro 
NR in vivo

(Johnson et al. 
2010)

Encorafenib
(2018)

M: 3A4 (major), 
2C19, 2D6 
(minor)

posaconazole (3A4) –
moderate

in vitro 3A4 
(TDI), 1A2, 2B6, 
2C8/9

NR in vivo in vitro 2B6, 2C9, 2A4 
no induc�on
in vivo -autoinduc�on

[EMA, FDA]

3A4 induc�on – NR
Erlo�nib
(2004)

M: 3A4, (1A2, 
1A1)

ketoconazole, 
ciprofloxacin (3A4, 1A2) 
– moderate

in vitro 3A4, 
(1A1, 2C9)

NR in vivo NR in vitro (Hamilton et al. 
2014; Svedberg et 
al. 2019; van den 
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Table 1  (continued)

rifampicin - moderate in vivo midazolam and 
quinine (3A4) – weak 
(moderate?) effect

Bent, Mar n J. et 
al. 2009)

smoking (1A1, 1A2)

(2015)
M: 3A4, (2D6 

al), act.met. 
(by 2D6, 14%)

ketoconazole and 
rifampicin – moderate

in vitro 2C19, 
2D6 (weak)

metoprolol (2D6 
minor effect)

NR in vitro or in vivo (Chhun et al. 2009; 
Swaisland et al. 
2005)

Gilterinib
(2018)

M: 3A4 itraconazole and 
rifampicin – moderate

NR in vitro midazolam 
(3A4) – minor 
effect

NR in vitro and in vivo (James et al. 2020)

(2013)
M: 3A4 (2D6 
minor), act.met.

ketoconazole and 
rifampicin  – strong

3A4 etc (weak) 
in vitro

NR in vivo CYPs (weak in vitro)
NR in vivo

(de Jong et al. 
2015)

Idelalisib
(2014)

M: AO, 3A4, 
UGT1A4

ketoconazole – weak 3A4, 2C in vitro -
strong effect

midazolam 
(3A4) – strong 
effect

2B6, 3A4 in vitro
NR in vivo

(Ramanathan et al. 
2016)rifampicin – moderate

(2001)
M: 3A4 (1A2, 
2D6, 2C9, 2C19
minor), act.met. 
(15% AUC)

ketoconazole – weak 2D6, 3A4, 2C9 in 
vitro (moderate) (3A4) – strong 

effect

NR in vitro or in vivo (Bolton et al. 2004; 
Dutreix et al. 2004; 
O'Brien et al. 2003; 
Pursche et al. 
2008)

rifampicin - moderate

Ixazomib
(2015)

e (3A4 
<50%, CYP1A2, 
2B6, 2D6)

rifampicin – moderate no effect in vitro NR in vivo no effect in vitro
NR in vivo

(Gupta et al. 2018)

clarithromycin (3A4) –
no effect

(2007)
M: 3A4/5, (2C19, 
2C8 minor) 

ketoconazole –
moderate

3A4, 2C8 in vitro paclitaxel (2C8) 
– weak effect

NR in vitro or in vivo (D. A. Smith et al. 
2009; Yin et al. 
2011)carbamazepine –

moderate
Larotrec ib
(2018)

M: 3A4 itraconazole –
moderate

in vitro 1A2,
2B6, 2C8/9/19, 
2D6, 3A4

midazolam 
(3A4) – weak 
effect

NR in vitro and in vivo [EMA, FDA]

rifampicin – strong

Lenva�nib
(2015)

M and E: 3A4, AO ketoconazole and 
rifampicin – no 
significant effect

mul�ple CYPs 
(3A4, 2C8 etc) in 
vitro

midazolam 
(3A4), 
repaglinide 
(2C8) – no effect

NR in vitro or in vivo [EMA, FDA]

Lorla�nib
(2018)

M: 3A4. UGT1A4
(2C8/19, 3A5, 
UGT1A3, all 
minor)

itraconazole – weak in vitro 3A4 
(TDI), others no 
effect

NR in vivo in vitro 2A6 2B6
in vivo 3A4 
autoinduc�on
midazolam (3A4) –
moderate effect

(J. Chen et al. 
2020)

rifampicin – strong

Midostaurin
(2017)

M: 3A4 ketoconazole and 
rifampicin – strong

in vitro all major 
CYPs inhibi�on

midazolam 
(3A4) – no 
effect (study not 
relevant?)

in vitro induc�on 1A2, 
2B6, 2C, 3A
in vivo midazolam –
weak

(Dutreix et al. 
2013; Gu et al. 
2018)

Nilo�nib
(2007)

M: 3A4 (2C8 
minor) 

ketoconazole –
moderate

3A4, (2C8, 2C9, 
2D6 weak) in 
vitro

midazolam 
(3A4) – strong 
effect

in vitro induc�on 2B6, 
2C9 
NR in vivo

(Tanaka et al. 
2011; Tian et al. 
2018)rifampicin – strong

Nintedanib
(2014)

M: hydrolysis 
(major), 3A4 
(minute)

PGP inhibitors and 
inducers – medium 
effects

PGP major NR in vivo NR in vitro
PGP (major) in vivo

(Filppula et al. 
2018)

Olaparib
(2014)

M: 3A4 (major) itraconazole –
moderate

3A4 (weak) NR in vivo 2B6, (1A2, 3A4 weak) in 
vitro
NR in vivo

(Dirix et al. 2016; 
McCormick et al. 
2018)rifampicin – strong

Osimer�nib
(2015)

M: 3A4 (3A5)
2 act.met.

itraconazole – no effect 3A4 inhibi�on NR in vivo (3A4, 1A2 weak) in 
vitro
NR in vivo

(Vishwanathan et 
al. 2019)

rifampicin – moderate

Palbociclib
(2015)

M: 3A, SULT2A1 itraconazole – weak in vitro 3A4
(TDI)

midazolam 
(3A4) – weak 
effect

in vitro 1A2, 2B6, 3A4 
no induc�on
NR in vivo

(Y. Yu et al. 2017)

rifampicin – strong
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Table 1  (continued)

Pazopanib
(2009)

M: 3A4 (1A2, 2C8, 
minor)

ketoconazole -
moderate 

1A2, 3A4, 2B6, 
2C8/9/19, 2D6, 
and 2E1 in vitro

midazolam 
(3A4), 
dextromethorph
an (2D6) – weak 
effect

3A4 (PXR) in vitro
NR in vivo

(Tan et al. 2013)

NR 3A4 induc�on

Pona�nib
(2012)

M: 3A4 (2C8, 2D6 
minor)
act.met.

ketoconazole - weak no CYP 
inhibi�on in 
vitro

NR in vivo no CYP induc�on in 
vitro
NR in vivo

(Narasimhan et al. 
2013)

3A4 inducers – NR 
(simula�on)

Regorafenib
(2012)

M: 3A4
2 act.met.

ketoconazole and 
rifampicin – weak 
effect (act.met.!)

2C8, 2C9, 2B6
(act.met. equal)

NR in vivo no induc�on in vitro
NR in vivo

[FDA]

Ribociclib
(2017)

M: 3A4 ritonavir (3A4 inh) –
moderate

in vitro 3A4 
(TDI), 1A2, 2E1 

midazolam 
(3A4) –
moderate effect

in vitro no induc�on
NR in vivo

(Sorf et al. 2018; J.
Yu et al. 2019)

rifampicin – strong caffeine (1A2) –
minimal effect

Ruxoli�nib
(2011)

M: 3A4, 2C9
2 act.met. (less 
than parent)

ketoconazole and 
rifampicin – weak

no CYP 
inhibi�on in 
vitro

NR in vivo no CYP induc�on in 
vitro
NR in vivo

(Shi et al. 2012)

Sonidegib
(2015)

M: 3A4 ketoconazole and 
rifampicin - moderate

in vitro 2B6, 2C9 NR in vivo no CYP induc�on in 
vitro
NR in vivo

J. Yu et al. 2016
Einolf et al 2017

Sorafenib
(2005)

M: 3A4
1 act.met.

rifampicin – weak inhibi�on of 
2C9, 2C19, 2D6, 
and 3A4 in vitro

midazolam 
(3A4), 
dextromethorph
an (2D6), 
omeprazole 
(2C19), warfarin 
(2C9) – no 
inhibi�on

no CYP induc�on (1A2, 
3A4) in vitro
NR in vivo

(Flaherty et al. 
2011; Gangadhar 
et al. 2011; 
Reardon et al. 
2011)

ketoconazole – no 
effect

Suni�nib
(2006)

M: 3A4
1 act.met.

rifampicin and 
ketoconazole – weak

all major CYPs 
no inhibi�on in 
vitro

NR in vivo no CYP induc�on in 
vitro
NR in vivo

(Bilbao-Meseguer 
et al. 2015; 
Sugiyama et al. 
2011)

Tivozanib
(2017)

M: 3A4 (1A1) rifampicin – weak in vitro 2B6, 2C8 
(weak)

NR in vivo NR in vitro and in vivo (Cotreau et al. 
2015)

ketoconazole – no 
effect

Vandetanib
(2011)

M (<50%): 3A4 
(par�al)

rifampicin – weak 3A4 no 
inhibi�on

no inhibi�on -
midazolam

NR in vitro or in vivo (Indra et al. 2019; 
Johansson et al. 
2014; Mar�n et al. 
2011)

itraconazole – no effect

Vemurafenib
(2011)

E and M: 3A4 
(1A2)

rifampicin –moderate all major CYPs in 
vitro - 1A2 
major

�zanidine and 
caffeine (1A2) –
moderate

3A4, (2B6) induc�on in 
vitro
in vivo midazolam 
(3A4) – weak effect 

(W. Zhang et al. 
2017; W. Zhang et 
al. 2019)3A4 inhibitors – only in 

vitro
Vismodegib
(2012)

E: major
M: (minor 2C9, 
3A4)

in clinical trials various 
2C9 or 3A4 inhibitors or 
inducers – no or minor 
effect

2C8, 2C9, 3A4 
weak inhibi�on 
in vitro

rosiglitazone 
(2C8) or EE 
(3A4) - no 
inhibi�on

no CYP induc�on in 
vitro
NR in vivo

(Malhi et al. 2016)

Act.met. active metabolite(s) (if reported or published), PGP P-glycoprotein, NR no results or not reported, TDI time-dependent inhibition
1 E: excretion of a drug as an unchanged parent. M: metabolism—the extent and contributions of CYP isoforms’ other xenobiotic-metabolizing 
enzymes if known
2 Usually, strong inducers (rifampicin) and inhibitors (ketoconazole, itraconazole) of CYP3A4 were studied. Other perpetrators are assigned with 
appropriate CYP enzyme. Color code: red, strong effect; orange, moderate effect; light brown, weak/minor effect; green, no (significant) effect; 
yellow, information in need
3 Major sources drug monographs from FDA, EMA, and FIMEA; the latest uploaded documents were retrieved. Publications in general literature 
were sought and used for additional evidence for conclusions
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for the rest of the drugs, the in vitro classifications ranged 
from “studied” to “some” or “weak inhibition”, and in a few 
cases even “moderate or strong inhibitory action”. However, 
on the basis of the published regulatory text, it is difficult 
to quantify “weak” or “strong” effect. Often, the regulatory 
text noted that inhibition was present or non-existent “at 
clinically relevant concentrations”. In certain cases, in vitro 
studies were followed by in vivo studies in which CYP-
selective probe drugs were employed. For example, with 
respect to CYP3A4 substrates, inhibition was classified as 
strong for idelalisib–midazolam, imatinib–simvastatin and 
nilotinib–midazolam, moderate for crizotinib–midazolam, 
dasatinib–simvastatin, and ribociclib–midazolam, and weak 
for larotrectinib–midazolam, palbociclib–midazolam, and 
pazopanib–midazolam. Regarding CYP2D6 substrates, inhi-
bition was classified as weak in two cases: gefitinib–metopr-
olol and pazopanib–dextromethorphan. Regarding CYP2C8, 
lapatinib inhibited weakly paclitaxel elimination, and with 
CYP1A2, vemurafenib inhibited moderately tizanidine and 
caffeine elimination. Altogether, it can be concluded that the 
cases CYP inhibition by TKIs, regarded worthy a warning 
in the regulatory desk reference, were rather few. However, 
occasionally, there were warnings that seemed to be based 
only on in vitro results and/or subsequent physiologically 
based pharmacokinetic (PBPK) simulations (Yu et al. 2019).

TKIs as CYP inducers

According to the guidelines of major regulatory agencies, 
potential CYP induction should be studied in human-cul-
tured hepatocytes in vitro or in an analogous cellular sys-
tem. In most cases, appropriate studies have been performed 
and the outcome registered in the drug monograph. In 14 
cases, no information on in vitro induction studies could be 
found (in Table 1, these are marked by NR, no results or not 
reported). No induction of the major inducible CYPs has 
been found in 14 cases and a clear response emerged in 10 
cases (brigatinib, dabrafenib, ibrutinib, idelalisib, midostau-
rin, nilotinib, olaparib, osimertanib, pazopanib, and vemu-
rafenib). In vivo studies were performed with 4 TKIs which 
resulted in a moderate induction with erlotinib–quinine or 
midazolam, and dabrafenib–midazolam or warfarin, and a 
weak induction with midostaurin–midazolam and vemu-
rafenib–midazolam. Encorafenib was suspected of exhibit-
ing autoinduction. However, regulatory texts are not always 
reliable regarding negative findings and it may well be that 
additional in vitro and in vivo studies have been performed 
but not reported. Based on this analysis, it can be concluded 
that TKIs do not often display clinically significant induction 
potency in humans in vivo.

Active metabolites

At least 13 TKIs have at least one active metabolite. How-
ever, there may be several types of active metabolites regard-
ing potential effects and outcomes. Several TKIs have phar-
macodynamically active metabolites with a similar, although 
not necessarily equipotent, pharmacodynamic action as 
the parent. In some cases, a pharmacodynamically active 
metabolite may also have CYP-interaction potential. A spe-
cial case is regorafenib, which has two CYP3A4-associated 
active metabolites with equal effect compared to the parent. 
This makes the assessment of interactions quite complex 
and uncertain. For example, although rifampicin expo-
sure slightly decreased the AUC of the parent compound, 
it increased the AUC of one active metabolite by 2.6-fold. 
Thus, it is quite difficult to estimate the net pharmacody-
namic effect.

Another mechanism is the so-called time-dependent inhi-
bition (TDI), often due to the tight or irreversible binding of 
an active metabolite with the catalyzing enzyme leading to 
its inactivation (mechanism-based inhibition) or potentially 
due to formation of a more potent inhibitory metabolite. 
Both terms, TDI and mechanism-based inhibition, are used 
in this review. The evaluation of TDI would require appro-
priate in vitro studies, which were not usually available con-
cerning TKIs. A recent review (Jackson et al. 2018) listed 
the following TKIs as potential candidates in this category: 
axitinib, bosutinib, dasatinib, imatinib, erlotinib, gefitinib, 
lapatinib, nilotinib, pazopanib, and sunitinib. However, com-
pany or authority data are not usually detailed enough in 
this respect, and more appropriate and detailed information 
is provided only rarely in published articles (Filppula et al. 
2018; Kenny et al. 2012; Mao et al. 2016).

The generation of reactive metabolites has quite often 
been studied by drug companies developing the TKIs, since 
the reactive metabolites could potentially induce hepatotox-
icity and form a threat for withdrawal during development 
or, worse, after the regulatory approval. Thus, at least in 
the following cases, reactive metabolites have been identi-
fied for clinically available tyrosine-kinase inhibitors: axi-
tinib (Wang et al. 2020), dasatinib (Li et al. 2009), erlotinib 
(Li et al. 2009; Zhao et al. 2018), gefitinib (Li et al. 2009), 
imatinib (Li et al. 2014), lapatinib (Takakusa et al. 2011; 
Teng et al. 2010), ponatinib (Lin et al. 2017), and sunitinib 
(Amaya et al. 2018). It is, however, difficult to ascertain a 
specific reactive metabolite to cause a certain TDI, espe-
cially when the presence of a reactive metabolite has been 
deduced on the basis of trapping agents (Mao et al. 2016).
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Antiretroviral HIV drugs

The antiretroviral human immunodeficiency virus (HIV) 
drugs (Table  2) are of considerable interest for DDIs 
in research and therapy for two main reasons. First, the 
group contains two drugs (ritonavir and cobicistat) that 
are mainly used as pharmacokinetic enhancers, “boosters”, 
due to their strong and mechanism-based inhibitory action 
towards CYP3A4, the predominant enzyme metabolizing 
anti-HIV-protease inhibitors (Tseng et al. 2017). These 
boosters are rather rare examples of intentional, benefi-
cial utilization of CYP-DDIs. The second reason is due 
to the frequent use of combinations of various antiviral 
drugs; up to four drugs in fixed combinations, although 
pharmacodynamic benefits are the major reasons to use 
such combinations.

The use of combinations makes it challenging to evalu-
ate, especially in therapeutic situations, potential DDIs with 
other drug treatments of individual patients. The FDA or 
EMA-approved drug monographs contain extensive tabu-
lated information about experimentally and/or clinically 
observed, or predicted DDIs, which often are difficult) to 
translate into clinically useful advice in actual patients. It 
is expected that in the future, DDI-predicting PBPK-mod-
els and artificial intelligence-based algorithms would aid 
clinical decisions [see, e.g., (Ryu et al. 2018; Varma et al. 
2015)].

Cobicistat and ritonavir are especially employed in com-
bination with HIV-protease inhibitors which are CYP3A4 
substrates. CYP3A4-associated metabolism is very potently 
inhibited, because both boosters are mechanism-based inhib-
itors and block protease inhibitor metabolism and clearance 
almost completely thus extending drug exposure and the 
ensuing effect. They are also used in combination with other 
classes of HIV drugs, especially in fixed multidrug combina-
tions containing protease inhibitors.

Pharmacokinetic interactions could also be based on 
processes involving transporters, e.g., P-glycoprotein. 
Many HIV drugs are ligands of various transporters 
and consequently interactions with other ligands may 
occur (Alam et  al. 2016). This review will not cover 
transporter-mediated interactions as the focus is on 
CYP-DDIs.

Nucleoside reverse transcriptase inhibitors (abacavir, 
emtricitabine, lamivudine, tenofovir alafenamide, tenofo-
vir disoproxil, and zidovudine) and the only fusion inhibi-
tor (enfuvirtide) are devoid of CYP inhibition potential, 
because they are not metabolized by, or interacting with, 
CYP enzymes and most of them are renally eliminated. They 
are also not known to cause CYP induction.

Herbal/botanical natural products 
interacting with drugs

Herbal and/or botanical (medicinal) products are used in 
the treatment of various diseases, often as a ‘self-treat-
ment’ by the patient and many times unbeknownst to the 
treating physician (Paine and Roe 2018). From the drug-
interaction point of view, a challenge is that herbal prod-
ucts are usually complex mixtures of constituents that 
can vary substantially in both content and concentration 
depending on the preparation and, furthermore, when 
isolated they can behave very differently (Kellogg et al. 
2019; Paine et al. 2018; Sevior and Ahokas 2017). These 
problems are exaggerated by inadequacies of product 
regulation and standardization, thus leaving a physician 
without essential information and thus being at the mercy 
of very variable and often blatantly poor-quality literature 
(Pelkonen et al. 2014). Especially, there is a dearth of 
quality scientific data on potential herb–drug interactions 
for even widely used herbal medicines. In this review, 
interactions resulting in induction of CYP enzymes are 
detailed in Table 14. Regarding inhibitory interactions, 
only a few well-characterized examples (resveratrol, 
quercetin) have been included as ‘clinically significant’ 
perpetrators (see Table 4). According to literature reviews 
on herbal-associated CYP interactions [see, e.g., (Her-
mann and von Richter 2012; Izzo and Ernst 2009)], a 
large number of herbal preparations are interacting with 
CYP enzymes at the level of in vitro incubations, but 
there are variable and uncertain evidence on interactions 
in vivo. Also, major agency guidances pay little attention 
to these natural products; only EMA has a rather general 
entry in the interaction guidance, while FDA is treating 
herbal products as food supplements. The WHO docu-
ment on herbal–drug interactions is under preparation and 
is expected shortly; it is hoped to set the stage for further 
scientific research and regulatory guidance to assess the 
clinical significance of herb–drug interactions.

CYP substrates and inhibitors

General

Data on substrates and inhibitors of major xenobiotic-
metabolizing CYP enzymes are collected in Tables 3, 4, 
5, 6, 7, 8, 9, 10 and 11. It is obvious that due to the vast 
literature, this survey cannot include all the possible sub-
strates and inhibitors for CYP enzymes, instead certain 
restrictions had to be applied. Obviously, ‘the clinical 
significance’ is one of the overriding criterium, although 
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Table 3  Substrates and inhibitors of CYP3A4/5 enzyme

Reference substrates recommended by major regulatory  agenciesa

Drug Reaction Km (μM) in vitro (HLMs) 
(plasma conc)b

Specificity near Km References

Midazolam in vitro, in vivo 1′-Hydroxylation/elimination 1–14 (0.8) High ☺
Triazolam in vitro, in vivo 4-Hydroxylation/elimination 238–304 (0.06) High ☺
Testosterone in vitro 6β-Hydroxylation 33–94 (na) High ☺
Substrates potentially affected by strong CYP3A4  inhibitorsc

Highly selective/sensitive: alfentanil, alprazolam, aprepitant, atorvastatin, avanafil, budesonide, buspirone, colchicine, conivaptan, cyclosporin 
A, darifenacin, darunavir, dasatinib, dihydroergotamine (and ergotamine), docetaxel, dronedarone, ebastine, eletriptan, eliglustat, eplerenone, 
everolimus, felodipine, fentanyl, flibanserin, guanfacine, ibrutinib, indinavir, lomitapide, lovastatin, lurasidone, maraviroc, midazolam, 
naloxegol, nifedipine, nisoldipine, pimozide, quetiapine, quinidine, rilpivirine, rivaroxaban, saquinavir, sildenafil, simeprevir, simvastatin, 
sirolimus, sonidegib, tacrolimus, tadalafil, ticagrelor, tipranavir, tolvaptan, triazolam, vardenafil, and vincristine

Additional protein tyrosine-kinase inhibitors, see Table 1 for details

Reference inhibitors recommended by major regulatory  agenciesa

Drug Mode of inhibition Ki/IC50 (μM) in 
in vitro (plasma 
conc)b

CYP selectivity and other 
CYPs inhibited

References

Ketoconazole in vitro, 
in vivo

Competitive 0.0037–0.028 (2–6) Moderate (2C, 1A2, 2D6) ☺

Itraconazole in vitro, in vivo Competitive (metabolites) 0.013–0.27 (0.6–2.8) High ☺ Yoshida et al. (2018)
Azamulin in vitro Mechanism-based 0.03–0.24 (na) High Parmentier et al. (2017), 

Stresser et al. (2004)
Fluconazole Competitive 5.4–13.1 (6–30) Moderate (2C9, 2C19) Niwa et al. (2005), Yoshida 

et al. (2018)
Troleandomycin in vitro Mechanism-based 0.26 High ☺ Yadav et al. (2018)
Verapamil Mechanism-based 2.3–2.9 (0.1–0.6) High ☺
Ritonavir in vivo Mechanism-based 0.019–0.17 (7–15) Moderate (2C9) ☺
Clarithromycin in vivo Mechanism-based (comp) 0.8 (5.5–10) (0.3–2.7) High ☺
Erythromycin in vivo Mechanism-based (comp) 1.0 (16–19) (1–8) High Akiyoshi et al. (2013), Kan-

amitsu et al. (2000)
Inhibitors of potential clinical significance
 Voriconazole Mechanism-based 3.0 (4–17) Poor (2B6, 2C9, 2C19) Jeong et al. (2009a)
 Posaconazole Competitive ? (< 0.1?) (1) High Groll et al. (2017), Krishna 

et al. (2009)
 Indinavir Competitive 0.17–0.5 (> 0.16) High ☺
 Nelfinavir Competitive 1–4.8 (> 1.4) Moderate (CYP2D6) ☺
 Saquinavir Mechanism-based 0.65–2.99 (> 0.37) High ☺

Diltiazem Mechanism-based 2.2–5.0 (0.1–0.6) High ☺
Telithromycin Mechanism-based (competi-

tive)
1.05 (3.65) (2.5) High Elsby et al. (2019)

Gestodene Mechanism-based 46 (0.02) High ☺ Palovaara et al. (2000)
Ceritinib Mechanism-based 0.16–0.2 (0.9–2.7) Moderate (2C9) Zhao et al. (2020)
Idelalisib Mechanism-based (metabo-

lite)
5.1 (0.5–5) High Ramanathan et al. (2016)

Imatinib Competitive? 8 (1–4) Moderate O’Brien et al. (2003)
Lapatinib Mechanism-based 1.7 High (3A5: 37.6 uM) Chan et al. (2012), Teng et al. 

(2010)
Nilotinib Competitive 0.4–7 (2–3) Moderate (2C8, 2C9, 2D6) Tian et al. (2018)
Osimertinib Mechanism-based competi-

tive
2.5–5.1 (1.5–3) Moderate (2C8) Pilla Reddy et al. (2018), 

Vishwanathan et al. (2019)
Stiripentol Competitive 80 (8–40) Moderate (CYP1A2, 2D6) Tran et al. (1997)
Dronedarone Mechanism-based 0.87 (0.15–0.3) Moderate (2J2) Hong et al. (2016)



3682 Archives of Toxicology (2020) 94:3671–3722

1 3

it is very difficult to define. In this review, ‘the clinical 
significance’ means that the first-hand assessment of the 
drug, mostly on the basis of information in the regula-
tory dossier, has resulted in the inclusion of the drug in 
the list (see above the section on tyrosine-kinase inhibi-
tors). However, ‘the clinical significance’ is dependent 
on many determinants including in vitro studies, clinical 
trials with reference substrates and inhibitors (these stud-
ies may be available at the time of approval), published 
non-regulatory studies and clinical experiences, etc. In the 
end, we have to admit that a certain measure of personal 
experience has been applied in the current review. Pre-
dominantly, only currently used drugs are listed, but some 
well-established, although withdrawn drugs are provided 
as reference. Also a few well-studied examples of in vitro 
substances are included because of their use as reference 
substrates or inhibitors.

Reference substrates and inhibitors

Reference substrates and inhibitors recommended by major 
regulatory agencies, FDA, EMA, and MHLW/PMDA, have 
been collected in the upper part of Tables 3, 4, 5, 6, 7, 8, 9, 
10 and 11. The basic requirement is that the compound is 
metabolized totally or preferably by a single CYP enzyme, 
and this has been demonstrated in vitro and in vivo. In 

in vitro assay, the formation of the CYP-associated metabo-
lite is followed, but in in vivo studies, often, the elimination 
of the parent is measured due to, e.g., further metabolism 
of a CYP-associated metabolite. Naturally, in the human 
in vivo studies, approved drugs have to be used, but the lists 
contain also a few substances which are either withdrawn 
drugs or experimental substances (e.g., azamulin). These 
are used only in in vitro tests to investigate basic in vitro 
interactions in connection with early drug development or 
in mechanistic studies later on.

Sensitive substrates

In addition to reference substrates and inhibitors, appro-
priate lists of substrates and inhibitors of definitive clini-
cal potential are compiled. Of potential substrates, only the 
so-called “strongly and/or moderately sensitive” substrates 
have been listed as extractions from reviews of individual 
CYP enzymes. Usually, sensitive substrates are metabolized 
almost completely or to a significant extent (> 25%) by the 
CYP enzyme concerned, so that the inhibition by a specific 
inhibitor will lead to a significant increase in the exposure to 
a substrate. However, there are a number of substrates which 
are actually metabolically activated by an enzyme and, con-
sequently, the inhibition of metabolism leads to a pharmaco-
dynamically reverse outcome and this is an important point 

na not available, nk not known
☺ For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold
a Appropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for 
in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recom-
mended
b Km or Ki/IC50 values were taken mostly from in  vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations were 
mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
c The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, MHLW/
PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioin forma tics.chari te.de/
trans forme r/

Table 3  (continued)

Reference inhibitors recommended by major regulatory  agenciesa

Drug Mode of inhibition Ki/IC50 (μM) in 
in vitro (plasma 
conc)b

CYP selectivity and other 
CYPs inhibited

References

Boceprevir Mechanism-based 6.1 (0.2–1.5) High Chu et al. (2013), Wilby et al. 
(2012)

Telaprevir Mechanism-based 0.19–0.36 (3–4.5) High Chapron et al. (2015)
Cobicistat Mechanism-based 0.032 (0.9) Moderate Hossain et al. (2017)
Netupitant Competitive 1.9–5.7 (0.3–1) Moderate (2C9) Giuliano et al. (2012)
Isavuconazole Competitive 0.62–1.93 (5.71) Moderate (2C, 2D6) Townsend et al. (2017), 

Yamazaki et al. (2017)
Grapefruit juice Mechanism-based Not applicable Low? (multiple CYPs) Bailey et al. (2013); Hanley 

et al. (2011)
Moderate  inhibitorsc (regulatory documents): amprenavir, aprepitant, atazanavir, ciprofloxacin, crizotinib, darunavir/ritonavir, diltiazem, fosa-

mprenavir, and gestodene

http://bioinformatics.charite.de/transformer/
http://bioinformatics.charite.de/transformer/
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Table 4  Substrates and inhibitors of CYP1A2 enzyme

na not available, nk not known
☺ For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold
a Appropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for 
in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recom-
mended
b Km or Ki/IC50 values were taken mostly from in  vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations were 
mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
c The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, and 
MHLW/PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioin forma tics.
chari te.de/trans forme r/

Reference substrates recommended by major regulatory  agenciesa

Drug Reaction/assay measurement Km (μM) in vitro 
(plasma conc)b

Specificity near Km References

Phenacetin in vitro probe (with-
drawn)

O-De-ethylation 10–50 (na) High ☺ Zhou et al. (2009)

Ethoxyresorufin in vitro probe 
(non-drug)

O-De-ethylation 0.11–0.23 (na) Moderate (CYP1A1) ☺

Caffeine in vivo probe N-Demethylation elimination rate 
(in vivo)c

200–500 (20–50) High ☺ Thorn et al. (2012)

Theophylline in vivo probe N-Demethylation elimination rate 
(in vivo)

280–1230 (10–30) High ☺ Britz et al. (2019)

Tizanidine in vivo probe Elimination rate (in vivo) nk (0.6) High ☺ (Granfors et al. (2005), 
Karjalainen et al. (2008)

Substrates potentially affected by strong CYP1A2  inhibitorsc (Faber et al. 2005; Wang and Zhou 2009)
Sensitive/moderate: agomelatine, alosteron, clozapine, duloxetine, flutamide, frovatriptan, guanabenz, leflunomide, lidocaine, melatonin, mexiletine, mirtazap-

ine, olanzapine, pirfenidone, propranolol, ramelteon, ramosetron, riluzole, ropinirole, ropivacaine, tacrine, tasimelteon, thalidomide, triamterene, zolmi-
triptan, zolpidem, and zileuton

Reference inhibitors recommended by major regulatory  agenciesa

Drug Mode of inhibition Ki/IC50 (μM) in vitro 
(plasma conc)b

CYP selectivity (other CYPs 
inhibited)

References

α-Naphthoflavone in vitro (non-
drug)

Competitive 0.01 (na) Moderate (CYP1A1) ☺

Furafylline in vitro (withdrawn) Mechanism-based 0.6–0.7 (nk) High ☺
Enoxacin in vivo Competitive 65–170 (3–12) High ☺
Fluvoxamine in vivo Competitive 0.12–0.24 (0.2–0.7) Moderate (minor 2B6, 2C9, 

2C19, 2D6)
☺

Inhibitors of potential clinical significance
 Amiodarone (metabolites) Mechanism-based 0.46 (1.5–3) Moderate (2D6, 3A4) McDonald et al. (2015), Ohy-

ama et al. (2000)
 Ciprofloxacin Competitive 90–290 (7.5–12) High ☺ Granfors et al. (2004), 

Raaska and Neuvonen (2000)
 Isoniazid Competitive mechanism-based 56 (36–73) Low (2C19, 3A4, 2A6) Wen et al. (2002)
 Mexiletine Competitive 4.3–8.3 (3–11) Moderate (1A1) ☺
 Propafenone Competitive 21 (1–6) Moderate (2D6, 3A4) ☺ Dean (2012)
 Thiabendazole Mechanism-based 1.4 (na) nk Bapiro et al. (2005), Coulet et al. 

(1998), Thelingwani et al. 
(2009)

 Vemurafenib Competitive ~ 30 (100) Moderate (2B6, 2C9, 3A4) Zhang et al. (2017a, b)
 Resveratrol (non-drug) Competitive? 500 (na) poor (1A1, 3A4) Chang et al. (2001), Chun et al. 

(1999)
Moderate/weak  inhibitorsc: acyclovir, allopurinol, caffeine, cimetidine, daidzein, disulfiram, Echinacea, ethinylestradiol, famotidine, gestodene, norfloxacin, piper-

ine, propafenone, propranolol, terbinafine, ticlopidine, verapamil, and zileuton

http://bioinformatics.charite.de/transformer/
http://bioinformatics.charite.de/transformer/
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to remember when assessing potential consequences of an 
interaction. However, perhaps, a more common situation is 
where pharmacologically active metabolites contribute to 
the action of the parent drug and the final outcome of the 
interaction may be more difficult to define.

Clinically significant inhibitors

Among inhibitors, the listed substances contain mostly 
“strong” or at least “moderate” inhibitors for a given CYP 
enzyme. This implies a relatively strong affinity to an 
enzyme at concentrations achieved in clinical situations. 
For this reason, an inhibition constant or a corresponding 

measure (IC50, Ki) and actual therapeutic concentration (if 
known) have been given in tables. Furthermore, mechanism 
of inhibition, most commonly competitive or mechanism-
based inhibition, is of importance for the extent and length 
of inhibition.

The extent of inhibition is also heavily dependent on char-
acteristics of a victim drug, its affinity to an enzyme, and a 
fraction of a victim metabolized by an enzyme. However, 
clinical situations could be much more complex. Conse-
quently, quantitative measures of inhibitory potency are only 
guiding by nature, but may still suggest at least a significant 
possibility of inhibitory interaction in clinical drug use.

Table 5  Substrates and inhibitors of CYP2B6 enzyme

na not available, nk not known
☺ For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold
a Appropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for 
in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recom-
mended
b Km or Ki/IC50 values were taken mostly from in  vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations were 
mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
c The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, and 
MHLW/PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioin forma tics.
chari te.de/trans forme r/

Reference substrates recommended by major regulatory  agenciesa

Drug Reaction/assay measurement Km (μM) in vitro 
(plasma conc)b

Specificity near Km References

Bupropion (in vitro, in vivo) Hydroxylation 89–130 (15–40) High ☺
Efavirenz (in vitro, in vivo) 8-Hydroxylation 17–23 (3–10) Moderate (CYP1A2, 3A4) ☺ Manosuthi et al. (2013)
Substrates potentially affected by strong CYP2B6  inhibitorsc (Hedrich et al. 2016)
Highly/moderately sensitive: artemether, artemisinin, cyclophosphamide, diazepam, Ifosfamide, ketamine, mephenytoin, mephobarbital, 

methadone, nicotine, pethidine (meperidine), propofol, piclamilast, selegiline, and temazepam

Reference inhibitors recommended by major regulatory  agenciesa

Drug Mode of inhibition Ki/IC50 (μM) 
in vitro (plasma 
conc)b

CYP selectivity and other 
CYPs inhibited

References

Ticlopidine (in vitro, in vivo) Mechanism-based 0.2–0.8 (3–8) Moderate (CYP1A2, 2C19, 
2D6)

☺ Palacharla et al. (2018)

ThioTEPA (in vitro) Mechanism-based 2.8–3.8 (3–20) High ☺ Bae et al. (2013)
Sertraline (in vivo) Competitive 3.2 (0.1–0.5) Moderate Hesse et al. (2000), Palacharla 

et al. (2018)
Phencyclidine (in vivo) Mechanism-based 2 (0.1–1) Moderate Jushchyshyn et al. (2006), 

Walsky and Obach (2007)
Inhibitors of potential clinical significance
 Canagliflozin Competitive 16 (0.6–3) Poor (2E1, 3A4, 2C19, 2C9) Yu et al. (2014)
 Clopidogrel (pro-drug) Mechanism-based 1.1 (0.02) Moderate (2C19, 2C9) ☺ Backman et al. (2016), 

Wang et al. (2015)
 17-α-Ethynylestradiol Mechanism-based 0.8 (0.3 nM) Moderate (1A2) ☺
 Sonidegib Competitive 0.045 (0.3–1) Moderate (CYP2C9) Yu et al. (2017a, b)
 Voriconazole Competitive 0.40 (5.7–11.5) Poor (2C9, 2C19, 3A) Jeong et al. (2009a, b)

Potential (moderate/weak)  inhibitorsc
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It should be kept in mind that the inhibition mechanisms 
may be very complex and may need extensive in-depth 
experiments to uncover the details of inhibition and the con-
sequent in vitro and in vivo outcomes (Asaumi et al. 2018; 
Korzekwa et al. 2014; Lutz and Isoherranen 2012; Roberts 
et al. 2008; Varma et al. 2015). We have used a dichotomous 

expression of competitive vs mechanism-based inhibition, 
although the outcome of inhibition may be modified by more 
complex mechanisms.

It should also be stressed that the concentration of a 
drug interacting with the enzyme may be different from the 
plasma concentration, which is usually readily available 

Table 6  Substrates and inhibitors of CYP2C8 enzyme

na not available, nk not known
☺ For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold
a Appropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for 
in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recom-
mended
b Km or Ki/IC50 values were taken mostly from in  vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations were 
mainly taken from two compilations (Schulz et al. 2012, Schulz et al. 2020) or the referenced publications listed
c The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, and 
MHLW/PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioin forma tics.
chari te.de/trans forme r/

Reference substrates recommended by major regulatory  agenciesa

Drug Reaction/assay measurement Km (μM) in HLMs 
(plasma conc)b

Specificity near Km References

Repaglinide (in vivo) Oxidation 24 (0.1–0.45) Moderate (CYP3A4) ☺
Paclitaxel (in vitro) 6α-Hydroxylation 2.5–19 (0.3–0.8) High ☺
Amodiaquine (in vitro) N-De-ethylation 1.9–3.4 (0.15) High ☺ Bohnert et al. (2016)
Substrates potentially affected by strong CYP2C8 inhibitors
Highly selective: pioglitazone, rosiglitazone, and tazarotenic acid
Moderately selective (other CYPs in parentheses): chloroquine (CYP3A4) and dasabuvir (3A4)
Poorly selective (other CYPs in parentheses): amiodarone (CYP1A2, 2C19, 3A4)

Reference inhibitors recommended by major regulatory agencies

Drug Mode of inhibition Ki/IC50 (μM) in vitro 
(plasma conc)b

CYP selectivity and other 
CYPs inhibited

References

Montelukast in vivo Competitive 0.009–0.15 (0.05–0.5) Moderate (CYP2C9, 3A4) ☺ Bohnert et al. (2016)
Quercetin in vivo (non-drug) Competitive 1.1–1.6 (0.4) Poor (CYP1A2, 2E1, 3A4) ☺
Phenelzine in vitro, in vivo Mechanism-based 1.2 (0.1–1.5) Kahma et al. (2019)
Clopidogrel in vitro, in vivo Mechanism-based na (0.02) Moderate (CYP2C19, 2C9) ☺ Backman et al. 

(2016), Kahma et al. 
(2019), Tornio et al. 
(2014)

Gemfibrozil (glucuronide) 
in vitro, in vivo

Mechanism-based 52–75 (100) High ☺ Kahma et al. (2019)

Inhibitors of potential clinical significance
 Dabrafenib Competitive 8.2 Poor (2C9, 2C19, 3A4) Lawrence et al. (2014)
 Deferasirox na na (50) Moderate (1A2. 3A4) Pakkir Maideen et al. 

(2018), Skerjanec 
et al. (2010), Tanaka 
(2014)

 Trimethoprim Competitive 29–32 (4–9) High ☺
 Teriflunomide na na (100) Moderate (1A2) Cada et al. (2013)
 Vorapaxar Competitive? 0.86 (0.15) Moderate (2C9) Yu et al. (2016a, b)
 Belinostat na 100 (80) Moderate (2C9) Monograph
 Idelalisib Competitive? 13 (4) Moderate (3A4, 2C9) Yu et al. (2016a, b)

Potential and/or putative inhibitors:c (Polasek et al. 2004) amiodarone, verapamil, nortriptyline, fluoxetine, and isoniazid. tasimelteon
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from clinical trials and later monitoring activities. It has 
been suggested that the use of unbound cytosolic concen-
trations—as a proxy for total/unbound plasma concentra-
tions—would improve the prediction of in vivo DDIs (Filp-
pula et al. 2019). For practical reasons, we have listed the 
total plasma concentrations, not unbound concentrations, 
because there exists some uncertainty about which one is in 
better correlation with the drug concentration at the enzyme 
site. Also, it is not known whether there is a direct relation 
between unbound concentrations in plasma and cell cytosol. 
It has to be recognized that drugs bind to intracellular struc-
tures, mainly proteins and lipids, and the ensuing unbound 
concentration could be different from the unbound plasma 

concentration. A reliable method to measure the drug con-
centration at the effector site of an enzyme is needed.

Because the available literature on CYP inhibition 
is enormous, we have made use of our previous review 
(Pelkonen et al. 2008) as a collective reference to the older 
literature (Tables 3, 4, 5, 6, 7, 8, 9, 10, 11). In addition, 
we have referred to more recent papers if they have added 
significant new information. For many newer substances, 
publicly available regulatory dossiers have been a primary 
source of information, although they do not necessarily pro-
vide strictly quantitative information about DDIs.

Table 7  Substrates and inhibitors of CYP2C9 enzyme

na not available, nk not known
☺ For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold
a Appropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for 
in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recom-
mended
b Km or Ki/IC50 values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations, either 
range or maximal, were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
c The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, and 
MHLW/PDMA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioin forma tics.
chari te.de/trans forme r/

Reference substrates recommended by major regulatory  agenciesa

Drug Reaction Km (μM) in 
HLMs (plasma 
conc)b

Specificity near Km References

S-warfarin in vitro, in vivo 7-Hydroxylation 3–4 (3–23) High ☺
Diclofenac in vitro 4-Hydroxylation 2–22 (2–10) High ☺
Tolbutamide in vivo Hydroxylation 60–580 (150–340) High ☺
Substrates potentially affected by strong CYP2C9 inhibitors:c (Daly et al. 2017; Van Booven et al. 2010) bosentan, celecoxib, cyclophospha-

mide, flurbiprofen, fluvastatin, glibenclamide, glimepiride, glipizide, ibuprofen, indomethacin, irbesartan, lornoxicam, losartan, mefenamic 
acid, meloxicam, naproxen, nateglinide, phenytoin, tamoxiphen, and tenoxicam

Reference inhibitors recommended by major regulatory  agenciesa

Drug Mode of inhibition Ki (μM) in HLMs 
(plasma conc)2

CYP selectivity and 
other CYPs inhibited

References

Sulphaphenazole in vitro Competitive 0.3 (300–500) High ☺
Tienilic acid in vitro (withdrawn) Mechanism-based 5 (150) na Hutzler et al. (2009)
Fluconazole in vivo Mixed type 7–8 (6–30) Poor (2C19, 3A4) Back et al. (1988), Kunze et al. (1996)
Inhibitors of potential clinical significance
 Amiodarone Non-competitive 95 (0.8–4) Poor (2D6, 3A4) Heimark et al. (1992), Ohyama et al. (2000)
 Ceritinib Mechanism-based 0.24 (0.9–2.7) Moderate (3A4) Zhao et al. (2020)
 Etravirine Competitive? na (0.7–5) Moderate (2C19) Havens et al. (2020)
 Sonidegib Competitive 1.7 (0.3–1) Moderate (3A4) Yu et al. (2016a, b)
 Stiripentol Competitive na (4–40) Poor (1A2, 2D6, 3A4) Tran et al. (1997)
 Vemurafenib Competitive 5.9 (100) Poor (1A2, 2B6, 3A4) (RW.ERROR—unable to find reference:doc

:5ef341eae4b0f33707a95cec)
Moderate/weak  inhibitorsc: capecitabine, cotrimoxazole, fluvastatin, fluvoxamine, metronidazole, miconazole, oxandrolone, sulfinpyrazone, 

voriconazole, and zafirlukast (Wu et al. 2013)
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Substrates and inhibitors of individual CYPs

CYP3A4/CYP3A5

Table 3 presents a collection of compounds participat-
ing as substrates and/or inhibitors in clinically relevant 
CYP3A4-associated DDIs, which is by far the most 
important area of CYP-based interactions. The table lists 

also > 10 inhibitors (in bold), which have come to the 
market since our previous review in 2008 (Pelkonen et al. 
2008).

On the basis of analyses of Yu et al. (2014, 2016a, b, 
2017a, b, 2018, 2019) on FDA-approved drugs (close to 150 
between 2013 and 2017), roughly 65% were substrates, 30% 
inhibitors and about 5% inducers of CYP3A. This is not to 
say that a similar portion should cause DDI consequences of 
clinical significance, because the establishment of clinical 

Table 8  Substrates and inhibitors of CYP2C19 enzyme

na not available, nk not known
☺ For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold
a Appropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for 
in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recom-
mended
b Km or Ki/IC50 values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations, either 
range or maximal, were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
c The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, MHLW/
PDMA) as well as publicly available databases(Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioin forma tics.chari te.de/
trans forme r/

Reference substrates recommended by major regulatory  agenciesa

Drug Reaction Km (μM) in HLMs 
(plasma conc)c

Specificity near Km References

S-Mephenytoin (in vitro) 4′-Hydroxylation 23–169 (0.4–2) High ☺
Omeprazole (in vivo) 5-Hydroxylation elimination 6–10 (0.2–10) High ☺
Lanzoprazole (in vivo) 5-Hydroxylation elimination 15–17 (0.1–1) Moderate (3A4) ☺
Substrates potentially affected by strong CYP2C19  inhibitorsc

Citalopram (2D6, 3A4), clobazam, clomipramine, diazepam (3A4), lansoprazole (3A4), pantoprazole (3A4), phenytoin, proguanil (3A4), 
propranolol, and rabeprazole (CYP3A4)

Reference inhibitors recommended by major regulatory  agenciesa

Drug Mode of inhibition Ki/IC50 (μM) 
in vitro (plasma 
conc)b

CYP selectivity and other 
CYPs inhibited

References

-(−)-N-3-Benzyl-phenobarbital 
in vitro (non-drug)

Competitive 0.079–0.12 (na) “Not specific” Cai et al. (2004), Suzuki et al. 
(2002)

S-(+)-N-3-Benzyl-nirvanol 
in vitro (non-drug)

Competitive 0.2 (na) “Not specific” Suzuki et al. (2002)

Nootkatone in vitro (non-drug) nk 0.5 (nk) Poor (CYP2A6) Tassaneeyakul et al. (2000)
Loratadine Competitive 0.76 (0.05) Poor (2D6, 3°4, 2E1) Barecki et al. (2001), Ram-

anathan et al. (2018)
Ticlopidine Mechanism-based 1.2 (3–8) Poor (CYP2B6, 1°2, 2D6) Ha-Duong et al. (2001), Ko 

et al. (2000), Turpeinen 
et al. (2006)

Inhibitors of potential clinical significance
 Omeprazole Competitive 2–3 (0.2–10) Moderate (2C9, 3A4) Chiba et al. (1993), Funck-

Brentano et al. (1997)
 Fluvoxamine Competitive 0.29 (0.13–0.53) Moderate (1A2) Iga (2016), Kong et al. (2014), 

Yasui-Furukori et al. (2004)
 Modafinil competitive 39 (6–15) High Robertson et al. (2000), Row-

land et al. (2018)
Moderate/weak  inhibitorsc: Wu et al. (2013)
Carbamazepine, cimetidine, esomeprazole, etravirine, felbamate, fluconazole, fluoxetine, ketoconazole, moclobemide, and voriconazole
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significance would require at least some in vivo trials and/
or observations. Currently, the use of reference perpetra-
tors (e.g., ketoconazole and rifampicin) or substrates (e.g., 
midazolam) is practically mandatory to aid the assessment 
of clinical significance.

Usually, it is not possible to indicate what would be a con-
tribution of CYP3A5 for the DDI effect. However, if need 
be there are in vitro tools to study the CYP3A5 contribution 
into the metabolism or the effect of a studied drug (Guo 
et al. 2020; Lolodi et al. 2017). The most comprehensive 

literature on the role of CYP3A5 is available for tacrolimus, 
see (Birdwell et al. 2015; Chen and Prasad 2018).

CYP1A2

The list of substrates potentially affected by CYP1A2 inhibi-
tors (Table 4) contains at least 13 “new” drugs [compared 
with the previous review in 2008 (Pelkonen et al. 2008)], 
whereas only one inhibitor of potential clinical significance, 
vemurafenib (see also Table 1), has appeared since 2008. 

Table 9  Substrates and inhibitors of CYP2D6 enzyme

na not available, nk not known
☺ For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold
a Appropriate guidance documents of EMA/EU (2012), FDA/USA (2020), and MHLW/PMDA (2018) recommending the listed reference com-
pounds for in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibi-
tion is recommended
b Km or Ki/IC50 values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations, either 
range or maximal, were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
c The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, MHLW/
PDMA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioin forma tics.chari te.de/
trans forme r/

Reference substrates recommended by major regulatory  agenciesa

Drug Reaction Km (μM) in vitro 
(plasma conc)b

Specificity near Km References

Bufuralol (withdrawn) in vitro 1′-Hydroxylation 3–30 (2) High ☺
Dextromethorphan in vitro, in vivo O-Demethylation 2.8–22 (0.5) High ☺
Metoprolol in vivo Elimination 7.4 (1.85) High Dean (2011), Berger et al. (2018)
Desipramine in vivo 2-Hydroxylation 10–15 (2.0) High ☺
Nebivolol in vivo Elimination 1.8 (0.05) High Hu et al. (2016), Lefebvre et al. 

(2007)
Substrates potentially affected by strong CYP2D6  inhibitorsc

Highly sensitive: atomoxetine, codeine, nortriptyline, perphenazine, tolterodine, and R-venlafaxine
Moderately sensitive (other CYPs in parentheses): eliglustat (CYP3A4), encainide, imipramine, propafenone (CYP3A4), propranolol, thiori-

dazine (CYP2C19, CYP3A4), tramadol (CYP3A4), trimipramine, and S-venlafaxine

Reference inhibitors recommended by major regulatory  agenciesa

Drug Mode of inhibition Ki (μM) in vitro (HLMs) 
(plasma conc)b

CYP selectivity and 
other CYPs inhibited

References

Quinidine in vitro, in vivo Competitive 0.018–0.06 (6–15) High ☺
Paroxetine in vitro, in vivo Competitive 0.15 (0.01–0.2) Moderate (2C9, 2C19) ☺
Fluoxetine in vivo Competitive 0.6 (0.5–1.6) Moderate (2C9, 2C19) ☺
Mirabegron in vivo Mechanism-based 4.3 (0.01–0.2) Moderate (CYP3A4) Krauwinkel et al. (2014), 

Takusagawa et al. (2012)
Inhibitors of potential clinical significance
 Bupropion Competitive 21 (15–40) High Reese et al. (2008), Sager et al. 

(2017)
 Sertraline Competitive 0.7 (0.02–0.5) Moderate (2C9, 2C19) ☺
 Terbinafine Competitive 0.028–0.044 (0.03–0.1) High ☺
 Stiripentol Competitive (4–40) Poor Tran et al. (1997)
 Rolapitant Competitive >7 (1) High Wang et al. (2017), Wang et al. 

(2018)
Potential inhibitors (mostly weak and/or putative)c: aprepitant, alogliptin, cobicistat, crizotinib, eliglustat, and panobinostat
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Resveratrol has been added to the table as an example of an 
ingredient in a large number of consumable products, includ-
ing red wine. However, it seems to be a moderate CYP1A2 
inhibitor at the best.

CYP2B6

There are only three “new” drugs added into the list of inhib-
itors, canagliflozin, sonidegib, and voriconazole, and the first 
two are probably only moderate-to-weak inhibitors. The list 
of substrates potentially affected by strong CYP2B6 inhibi-
tors contains almost exclusively “old” drugs.

CYP2C8

In addition of recommended substrates and inhibitors, 
Table 6 lists 6 ‘new’ inhibitors of CYP2C8. However, in the 
immediate analysis, some recently registered drugs, which 
were shown to be CYP2C8 inhibitors in in vitro studies, were 
difficult to classify. For example, according to the regulatory 
dossier studies, tasimelteon was shown to be a weak in vitro 
inhibitor of CYP2C8  (IC50 > 100 µM), whereas vorapaxar 
was a relatively potent in vitro inhibitor  (IC50 0.86 µM), but 

still both did not affect CYP2C8-associated rosiglitazone 
elimination in vivo [drug monographs, (Yu et al. 2016a, b)]. 
Consequently, tasimelteon is mentioned only in the group 
of putative inhibitors, waiting for additional in vivo inves-
tigations to classify more convincingly, whereas vorapaxar 
is listed in the category of inhibitors of potential clinical 
significance due to its low  IC50 value as compared with the 
in vivo plasma concentration.

CYP2C9

The list of victim drugs of CYP2C9 (Table 7) is relatively 
long, altogether 20 substances. It reflects the importance of 
CYP2C9 in metabolizing clinically widely used drugs, prac-
tically all of which are “old” drugs and many of them used 
for 20–30 years. There are five “new” drugs as CYP2C9 
inhibitors of potential clinical significance, three of them 
kinase inhibitors (ceritinib, sonidegib, and vemurafenib). 
The only “old” inhibitor is the widely used antiarrhythmic 
amiodarone, which is used in research projects as an exam-
ple of a drug with a very long half-life, complex kinetics 
and multiple potential interactions (McDonald et al. 2015).

Table 10  Substrates and inhibitors of CYP2A6 enzyme

na not available, nk not known
☺ For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold
a Km or Ki/IC50 values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations, either 
range or maximal, were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
b The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, and 
MHLW/PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioin forma tics.
chari te.de/trans forme r/
c Nicotine and coumarin are used in various commodities, and could be used as probes also in vivo in small doses

Reference substrates (no recommendations by major regulatory agencies)

Drug Reaction/assay measurement Km (μM) in in vitro 
HLMs (plasma conc)a

Specificity near Km References

Nicotine in vitro (in vivo)c N-1′-Oxidation (elimination) 65–95 (0.03–0.2) High ☺
Coumarin in vitro (in vivo)c 7-Hydroxylation 0.2–2.4 (max. 5) High ☺
Substrates potentially affected by strong CYP2A6  inhibitorsb (see (Tanner and Tyndale 2017)
artemisinin, artesunate, caffeine, cotinine, letrozole, efavirenz, pilocarpine, tegafur, tyrosol, and valproic acid

Reference inhibitors (no recommendations by major regulatory agencies)

Drug Mode of inhibition Ki (μM) in HLMs 
(plasma conc)a

CYP selectivity and 
other CYPs inhibited

References

Tranylcypromine Competitive 0.08–0.2 (0.4) Moderate (2E1) ☺
Methoxsalen Mechanism-based 0.2–0.8 (0.12–1) Moderate (1A2) ☺
Inhibitors
 Letrozole Competitive 4.6 (0.5) Moderate (2C19) Jeong et al. (2009a, b)
 Pilocarpine Competitive 1 (0.05) High? ☺
 Trans-cinnamic aldehyde 

(non-drug)
Mechanism-based 6.1 (nk) High Chan et al. (2016)

 Tryptamine (non-drug) Competitive 0.2 (nk) Poor (CYP1A2) ☺
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CYP2C19

Since the previous review (Pelkonen et al. 2008), only one 
“new” drug (modafinil) has been added in the list of inhibi-
tors of potential clinical significance. Reference inhibitors 
recommended by major regulatory agencies are not specific 
for CYP2C19-mediated metabolism; however, they can be 
used together with other information such as data obtained 
from experiments done with recombinant enzyme systems.

CYP2D6

The classic polymorphic CYP enzyme was discovered dec-
ades ago, mainly based on debrisoquine hydroxylation stud-
ies. Debrisoquine, a classic probe drug [see (Pelkonen et al. 
2008)], was withdrawn from clinical use a long time ago, and 
consequently from the lists of reference probe drugs. The 
current list of recommended reference inhibitors includes 
the only “new” drug, mirabegron (Table 9). In fact, there are 
not many “new” drugs listed in Table 9. One of the reasons 
may be the well-known problems related to CYP2D6 phar-
macogenetics and drug–drug interactions, and likelihood of 

“killing” of molecules displaying CYP2D6 metabolism and/
or inhibitory potency early in the drug development process.

CYP2A6

Since our review in 2008 (Pelkonen et al. 2008), only one 
drug (letrozole) has been added to the list of substrates or 
inhibitors (Table 10). Letrozole was added to the list of 
CYP2A6 inhibitors on the basis of an in vitro study (Jeong 
et al. 2009b); no clinical studies have been undertaken. Only 
5 out of 102 FDA-approved drugs between 2013 and 2016 
were at least partial substrates and/or inhibitors of CYP2A6 
principally on the basis of in vitro experiments and none 
of them were considered as ‘clinically significant’ even 
potentially (Yu et al. 2018). Our own view over the years 
since 2007 (see the accompanying article, Pelkonen et al., 
this volume) is similar: although CYP2A6 was occasionally 
mentioned in drug labels as a target of in vitro inhibition (no 
quantitative information provided), no in vitro observations 
were translated into potentially clinical significance.

CYP2E1 is another enzyme that has been only rarely 
observed to associate with clinically significant interactions 

Table 11  Substrates and inhibitors of CYP2E1 enzyme

na not available, nk not known
☺ For older references, see (Pelkonen et al. 2008)
a  Km or Ki/IC50 values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations, either 
range or maximal, were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
b The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, MHLW/
PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioin forma tics.chari te.de/
trans forme r/

Reference substrates (no recommendations by major regulatory agencies)

Drug Reaction Km (μM) in vitro 
(HLMs) (plasma 
conc)a

Specificity near Km References

Chlorzoxazonea,b 6-Hydroxylation 39–157 (170) High ☺ Ernstgård et al. (2004)
p-Nitrophenol (non-drug) 3-Hydroxylation (nk) 24–30 High ☺ Collom et al. (2008)
Aniline (non-drug) 4-Hydroxylation 6–24 High ☺
Lauric acid (non-drug) 11-Hydroxylation 130 Moderate (CYP4A) ☺
Substrates potentially affected by strong CYP2E1  inhibitorsb acetaminophen (paracetamol), theophylline, enflurane, and halothane

Reference inhibitors (no recommendations by major regulatory agencies)

Drug Mode of inhibition Ki/IC50 (μM) 
in vitro (plasma 
conc)b

CYP selectivity and other CYPs inhibited References

4-Methylpyrazole Competitive 2.0 (17–250) High Collom et al. (2008)
Diethyldithiocarbamate 

(DDC, non-drug)
Mechanism-based 5.3–34 (na) Poor (1A2, 2A6, 2B6, 2C8, 3A4) ☺ Pratt-Hyatt et al. (2010)

Pyridine (non-drug) Not known 0.4, 11.8 (na) High ☺ Jones et al. (2011)
Disulfiram (in vivo) Mechanism-based Via DDC Moderate (CYP2A6) ☺
Clomethiazole Mechanism-based 1.0 (10) Moderate (2A6) ☺ Stresser et al. (2016)
Diallyl sulfide (non-drug) COMPETITIVE? 6.3–17.3 (na) High? ☺ Rao et al. (2015)

http://bioinformatics.charite.de/transformer/
http://bioinformatics.charite.de/transformer/
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(Table 11). According to our own experiences (Pelkonen 
et al., this volume) and those of Yu et al. (2014, 2016a, b, 
2017a, b, 2018, 2019), CYP2E1 has been mentioned only 
rarely in drug monographs and there have been no ‘clinically 
significant’ interactions since 2008. This is also reflected in 
a lack of officially recommended reference compounds to 
study metabolism or inhibition associated with CYP2E1. 
However, it is known that CYP2E1 is of importance in the 
metabolism of several small-molecular xenobiotics and its 
role in biochemical consequences of heavy alcohol con-
sumption should be duly noted.

Mechanisms of CYP induction

Xenobiotic‑sensing receptors as mediators of CYP 
induction

The induction of drug metabolism has been known since 
1950s and it was early on understood to have important con-
sequences for the action of drugs. However, the mechanistic 
basis behind induction remained enigmatic for decades. Dis-
covery of the xenobiotic-sensing receptors, aryl hydrocarbon 
receptor (AHR) at 1970s and pregnane X receptor (PXR) 
and constitutive androstane receptor (CAR) at 1990s, as the 
molecular mediators of the CYP induction was a major step 
forward in understanding the mechanisms of induction (Baes 
et al. 1994; Honkakoski et al. 1998; Kliewer et al. 1998; 
Poland et al. 1976).

The xenobiotic-sensing receptors are ligand-activated 
transcription factors belonging structurally either to the 
nuclear receptors or the basic-helix–loop–helix Per-Arnt-
Sim (bHLH-PAS) proteins. Today, activation of these recep-
tors and subsequent CYP induction can be studied with a 
number of in silico, in vitro, and cell-based methods ena-
bling relatively good prediction of in vivo induction (Ber-
nasconi et al. 2019; Kato 2020; Pelkonen et al. 2008). How-
ever, not all the compounds found to be activators in cell or 
other in vitro assays are actual in vivo activators because of 
pharmacokinetic or other factors. It has also become clear 
that AHR, PXR, and CAR not only control the elimination 
of xenobiotics, but regulate also many other endogenous 
functions and signaling pathways and their activation may 
be involved in many chronic diseases such as metabolic dis-
eases and cancer (Hakkola et al. 2018).

PXR and CAR, the xenobiotic‑sensing nuclear 
receptors

PXR, systematic name NR1I2, and CAR, systematic name 
NR1I3, belong to the same subfamily of nuclear receptors. 
Their tissue expression profile is quite limited, and both 

are predominantly expressed in the liver, PXR also in the 
intestine (Wang et al. 2012). Low levels can be found in 
some other tissues. PXR and CAR ligand-binding sites have 
evolved to accommodate various foreign chemicals, and 
therefore, they play a major role in sensing of the chemical 
environment. The basis for their ligand promiscuity is large 
and flexible ligand-binding pockets that can accommodate 
a wide range of ligands with diverse structural and physico-
chemical properties (Buchman et al. 2018).

Especially, the PXR ligand-binding pocket is very large 
(1200–1600 Å3) and adaptable allowing a great number of 
compounds with different structures to bind and activate 
PXR, thus making PXR an ideal sensor for chemical envi-
ronment (Buchman et al. 2018). The CAR ligand-binding 
pocket is smaller (~ 600 Å3) and less flexible than that of 
PXR and, therefore, apparently can accommodate a smaller 
number of chemicals (Buchman et al. 2018). However, also 
CAR can be activated with many different compounds. From 
the point of view of clinically important drug–drug interac-
tions, PXR activation probably represents the most impor-
tant induction mechanism. However, PXR and CAR also 
share many important pharmaceuticals as ligands.

While the DNA-binding domains of PXR and CAR are 
quite conserved across species, the ligand-binding domains 
differ significantly. Consequently, there are important spe-
cies differences in the ligand preferences of these xenobi-
otic-sensing receptors hindering translation of in vivo results 
from the experimental animals to the humans (Blumberg 
et al. 1998; Lehmann et al. 1998). A classic example is 
rifampicin that induces efficiently the human PXR but poorly 
the mouse counterpart. Vice versa, PCN (pregnenolone-16α-
carbonitrile) prefers the mouse PXR over the human PXR. 
Similarly, TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]
benzene, 3,3′,5,5′-tetrachloro-1,4-bis(pyridyloxy)benzene) 
activates the mouse CAR, but not the human CAR, while 
CITCO (6-(4-Chlorophenyl)imidazo[2,1-b][1,3]thiazole-
5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) is an agonist 
for the human CAR with little affinity to the mouse CAR 
(Chai et al. 2016). To overcome the problem of species dif-
ferences in ligand preference, PXR and CAR-humanized 
mouse models have been developed (Scheer et al. 2008).

Aptly named as constitutive androstane receptor (or less 
frequently constitutively active receptor), CAR displays 
ligand-independent, constitutive transcriptional activity 
(Chai et al. 2016; Kobayashi et al. 2015). This has been espe-
cially evident in experiments utilizing exogenous expression 
of CAR in hepatic cell lines. In primary hepatocytes or in 
the liver in vivo, the constitutive activity may be limited by 
mainly cytoplasmic localization of the unliganded recep-
tor as part of a multiprotein complex. Upon ligand bind-
ing, CAR dissociates from the chaperone proteins allow-
ing translocation to nucleus. In addition to classical ligand 
binding, CAR may be activated indirectly. Phenobarbital is 
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the prime example of an indirect CAR activator (Kobayashi 
et al. 2015). The mechanism of CAR activation by pheno-
barbital is complex and involves repression of epidermal 
growth factor (EGF) receptor (EGFR) signaling through the 
competitive inhibition of EGF–EGFR interaction. Subse-
quently, phosphorylation of receptor for activated C kinase 1 
(RACK1) is reduced allowing RACK1 to interact with CAR 
and protein phosphatase 2A. This ternary interaction then 
enables CAR dephosphorylation and, consequently, translo-
cation to nucleus (Kobayashi et al. 2015).

In response to ligand binding, both PXR and CAR trans-
fer from the cytosol to the nucleus and form heterodimers 
with another nuclear receptor, retinoid X receptor (RXR). 
The heterodimer is then able to bind to the DNA elements 
including both direct and everted repeats of the sequence 
AGG TCA  and its variants. The agonist-bound nuclear recep-
tor activates transcription through coactivator recruitment 
modifying chromatin structure and engaging transcription 
initiation complex. In addition to this classical nuclear 
receptor function, PXR and CAR form also protein–protein 
interactions broadening the cellular functions under the con-
trol of these nuclear receptors (Oladimeji et al. 2016; Pavek 
2016). This mode of action may be especially important for 
the gene repression by the receptors. Furthermore, the PXR 
and CAR function may be fine-tuned by phosphorylation 
status and other posttranslational modifications (Cui et al. 
2016; Smutny et al. 2013; Staudinger et al. 2011).

PXR targets several CYP enzymes with major impor-
tance in drug metabolism including the most predominant 
drug-metabolizing CYP enzyme CYP3A4. Along with the 
CYP3A subfamily, PXR regulates many other important 
drug-metabolism CYPs. Chromatin immunoprecipitation 
sequencing (ChIP-Seq) analysis of PXR binding in HepG2 
cells in response to rifampicin treatment detected rifampicin-
induced regions close to CYP2A6, CYP2B6, CYP2C8, 
CYP2C9, CYP2C19, CYP3A4, and CYP3A7 genes (Smith 
et al. 2014). In addition, several CYP genes with less-defined 
roles in drug metabolism and many phase 2 enzymes were 
found to interact with PXR (Smith et al. 2014).

CYP2B6 has been much studied as a classical CAR target 
gene, but the CAR target gene profile appears to be fairly 
overlapping with PXR (Kobayashi et al. 2015). No ChIP-Seq 
analysis revealing the CAR binding to human CYP genes has 
been published so far, although the human CAR interactome 
has been studied in a mouse model (Niu et al. 2018). Inter-
estingly, this investigation showed that CAR targets several 
genes coding for other transcription factors including PXR 
and AHR introducing additional level of complexity to the 
induction mechanisms (Niu et al. 2018).

RXR functions as a binding partner for PXR and CAR 
as well as several other type 2 nuclear receptors. Although 

RXR is often regarded as a passive partner, RXR may also 
bind ligands such as 9-cis retinoic acid (de Almeida and 
Conda-Sheridan 2019) and it has been reported that RXR 
ligands may modulate function of the dimers formed by RXR 
and the xenobiotic-sensing receptors (Chen et al. 2010). It 
has also been reported that retinoids could induce CYP3A4 
through RXR/VDR heterodimers and RXR homodimers 
(Wang et al. 2008).

AHR

Aryl hydrocarbon receptor (AHR) belongs to the bHLH-PAS 
family of transcription factors (Nebert 2017). AHR is acti-
vated especially by toxins and environmental contaminants 
including the classical activator 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) and it has great toxicological significance 
(Kawajiri and Fujii-Kuriyama 2017). However, also some 
pharmaceutical ligands such as omeprazole activate AHR 
(Quattrochi and Tukey 1993). Many endogenous ligands 
have been identified for AHR including some originating 
from the microbiota (Bock 2019; Kawajiri and Fujii-Kuri-
yama 2017).

AHR is ubiquitously expressed in most tissues with high 
expression in placenta, lung, heart, pancreas, and liver (Dol-
wick et al. 1993). In absence of a ligand, AHR is sequestered 
to the cytosol in a complex with several proteins. Ligand 
binding-induced conformational change releases AHR 
from the chaperone proteins and allows translocation to 
the nucleus, where it heterodimerizes with another bHLH-
PAS protein, aryl hydrocarbon receptor nuclear translocator 
(ARNT) (Kawajiri and Fujii-Kuriyama 2017; Nebert 2017). 
AHR/ARNT-dimer is then able to bind the so-called xeno-
biotic-response-elements (XRE) in the vicinity of the target 
genes to promote transcription. One of the target genes is 
aryl hydrocarbon receptor repressor (AHRR), which acts as 
a negative feedback mechanism (Bock 2019).

Among the CYPs, AHR mainly regulates the members of 
the CYP1 family, of which only CYP1A2 plays an important 
role in hepatic drug metabolism. In several extrahepatic tis-
sues, AHR efficiently induces CYP1A1 and CYP1B1 (Bock 
2019). In the other CYP families, AHR has been found 
to regulate some members in the CYP2 family including 
CYP2S1 (Saarikoski et al. 2005). In mouse, also Cyp2a5 
is regulated by AHR, but no similar evidence exist for the 
human ortholog CYP2A6 (Arpiainen et al. 2005). AHR 
also regulates several phase 2 drug-metabolizing enzymes. 
In addition to drug metabolism, AHR plays important role 
in multiple physiological functions such as immunity, cell 
growth and differentiation, and prolonged activation may 
cause toxicity (Hakkola et al. 2018; Kawajiri and Fujii-Kuri-
yama 2017; Nebert 2017; Rothhammer and Quintana 2019).
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Other transcriptional mechanisms mediating CYP 
induction

In addition to the xenobiotic-sensing receptors, some other 
transcription factors have been shown to mediate induction 
of CYP enzymes in response to chemical exposure. Some 
classical steroid receptors have been shown to regulate CYP 
genes. In contrast to the xenobiotic-sensing nuclear recep-
tors, these nuclear receptors are more restricted in ligand 
preference and act as homodimer. Accordingly, estradiol 
induces CYP2A6 directly through estrogen receptor α (ERα) 
binding to the 5′-flanking region of the gene (Higashi et al. 
2007).

Glucocorticoids regulate CYP expression; however, the 
mechanisms are diverse. Some glucocorticoids such as 
dexamethasone are PXR ligands explaining the observed 
CYP induction. However, others like methylprednisolone 
activate poorly the human PXR (Shukla et al. 2011). In fact, 
glucocorticoid receptor (GR) activation induces expression 
of PXR and CAR that may explain in many cases the CYP 
induction by glucocorticoids (Pascussi et al. 2001, 2003). 
However, also direct GR-mediated regulation of the CYP2C 
and CYP3A genes has been reported (Chen et al. 2003; Fer-
guson et al. 2005; Gerbal-Chaloin et al. 2002; Hukkanen 
et al. 2003; Matsunaga et al. 2004). For the CYP3A genes, 
this has been shown in the lung and fetal liver, i.e., in the 
absence of PXR and CAR expression (Hukkanen et al. 2003; 
Matsunaga et al. 2004).

Nuclear factor-erythroid 2-related factor 2 (NRF2) (the 
official name: Nuclear factor-erythroid-derived 2-like 2, 
NFE2L2) is a transcription factor belonging to the cap-n-
collar subfamily of basic region–leucine zipper-type tran-
scription factors (Suzuki and Yamamoto 2015). NRF2 
expression is controlled at the level of protein stability and 
under unstressed conditions NRF2 is targeted to proteasomal 
degradation by its interaction partner Kelch-like ECH-asso-
ciated protein 1 (KEAP1). KEAP1 functions as a redox sen-
sor and contains several highly reactive cysteines that, upon 
modification by electrophilic molecules, prevent it from 
targeting NRF2 for proteasomal degradation. Therefore, in 
response to oxidative stress, NFR2 is stabilized, accumulates 
to the nucleus, and forms heterodimers with small muscu-
loaponeurotic fibrosarcoma oncogene homologue (sMAF) 
proteins. The NRF2/sMAF-dimer binds to the antioxidant 
response element (ARE) in the regulatory regions of the 
target genes (Cuadrado et al. 2019).

NRF2 pathway is activated in response to oxidative stress 
produced by many toxic compounds such as heavy metals 
like cadmium and lead (Abu-Bakar et  al. 2013). NRF2 
regulates multiple cell functions, among them antioxida-
tive response and xenobiotic biotransformation (Cuadrado 
et al. 2019). However, within the xenobiotic metabolism 

machinery, NRF2 mainly targets phase 2 enzymes, and 
among the CYP enzymes, only a limited number of CYP2 
genes are regulated by NRF2 (K. C. Wu et al. 2012). The 
best-characterized CYP target is the mouse gene Cyp2a5 
(Abu-Bakar et al. 2007; Lämsä et al. 2010). Also the closely 
related human gene CYP2A6 is regulated by NRF2 (Abu-
Bakar et al. 2013; Yokota et al. 2011). Interestingly, the 
AHR and NRF2 pathways crosstalk at multiple levels (Köhle 
and Bock 2007).

Post‑transcriptional regulation

Some CYPs are regulated at the post-transcriptional level. 
The most important example is CYP2E1. CYP2E1 protein 
has a short half-life and protein stabilization represents a 
major level of CYP2E1 regulation. The labile CYP2E1 pro-
tein is stabilized by xenobiotics such as ethanol, acetone, 
pyrazole, and isoniazid (Carroccio et al. 1994; Song et al. 
1989). A few CYPs have been shown to be regulated by 
xenobiotics at the level of mRNA stability. mRNA sta-
bilization has been shown convincingly for the mouse 
form Cyp2a5, which, in response to pyrazole treatment, 
is regulated by heterogeneous nuclear ribonucleoprotein 
A1 (hnRNP A1) binding to the 3′-untranslated region of 
the Cyp2a5 mRNA (Abu-Bakar et al. 2013). The human 
CYP2A6 appears to be regulated by a similar mechanism 
(Christian et al. 2004). During the recent years, many CYPs 
have been shown to be targeted by microRNAs that may 
also potentially mediate the post-transcriptional effects of 
chemical exposure (Yu et al. 2016a, b).

The in vivo induction of human CYP 
enzymes with drugs, herbal medicines, 
and environmental chemicals

In the following section, we will present the current status 
on the knowledge of the human in vivo induction. The fol-
lowing tables present the medications (Table 12), environ-
mental contaminants (Table 13), and the herbal remedies 
and nutritional exposures (Table 14) known to induce human 
CYP enzymes. Only human in vivo inducers are listed based 
on the following criteria: the compound induces a specific 
CYP enzyme as assessed by (1) the pharmacokinetics of an 
established CYP-specific probe, (2) the established CYP-
specific metabolic pathway of an endogenous metabolite 
(such as 6β-hydroxycortisol and 4β-hydroxycholesterol for 
CYP3A4), or (3) tissue-level expression of a CYP enzyme 
mRNA or protein. Also, supporting in vitro mechanistic evi-
dence was required for compounds with only one published 
report of in vivo induction. However, the mechanistic evi-
dence was not required if the inducer was a structural analog 
of a well-established inducer (this pertains especially to 
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various barbiturates). Supporting evidence was not required 
if at least two studies report the induction. For medications, 
only those in current clinical use are listed. For withdrawn 
pharmaceuticals, reader is advised to consult previously 
published reviews (Hukkanen 2012; Zanger and Schwab 
2013). Only CYP enzymes in families 1–3 are covered here.

The search strategy included searching PubMed with the 
specific CYPs as keywords (e.g., CYP2B6 and [induction or 
inducer or induce]). Also searches with the specific probe 
compounds were performed (e.g., for CYP2B6 “bupropion 
and [induction or inducer or induce]”). The bibliographies 
of the publications were checked for additional articles. As 
the clinical and toxicological significance of the induction 
is often difficult to evaluate, the compounds are listed on the 
tables with no regard to the consequences or magnitudes of 
the induction. However, for CYP-inducing TKIs, Table 1 
provides the estimates of potency. For the sake of brevity, 
the following paragraphs do not systematically repeat the 
data and the references given in Tables 12, 13 and 14.

The most important xenobiotic-activated receptor regulat-
ing the induction of enzymes in the CYP1 subfamily is AHR. 
Several environmental chemicals such as PAHs, dioxins, 
polychlorinated biphenyls, and heterocyclic aromatic amines 
induce CYP1A1, CYP1A2, and CYP1B1 enzymes via AHR 
(Tables 12, 13, 14). Human in vivo induction of CYP1A1 
and CYP1B1 is difficult to study with phenotyping probes 
owing to their very low or non-existent hepatic expression 
and overlap with CYP1A2 substrates (Chang et al. 2003). 
However, their expression can be measured more easily as 
these enzymes are widely expressed in various extrahepatic 
tissues where tissue sampling is more convenient than with 
liver. Only one medication (omeprazole for CYP1A1 in duo-
denum and CYP1A2 in liver) (Buchthal et al. 1995; Diaz 
et al. 1990; McDonnell et al. 1992; Rost et al. 1994; Rost and 
Roots 1994) and one nutritional exposure (indole-3-carbinol 
present in cruciferous vegetables for hepatic CYP1A2) (Pan-
tuck et al. 1979; Reed et al. 2005) are currently known to 
induce CYP1 enzymes via AHR-mediated pathways. PXR 
and CAR are not known to directly induce CYP1 enzymes 
but several CAR/PXR agonists do induce CYP1A2-related 
activities in vivo. It is quite likely that CAR/PXR agonists 
induce the expression of AHR and lead to the induction of 
CYP1 enzymes indirectly (Maglich et al. 2002; Oscarson 
et al. 2006). Recent evidence suggests that teriflunomide, 
an immunosuppressant, induces CYP1A2 activity as shown 
with caffeine phenotyping possibly via phenobarbital-like 
indirect CAR activation (Carazo et al. 2018).3

CYP2A6 is induced in humans in vivo by CAR, PXR, 
ERα, and NRF2 agonists (Tables 12, 13, 14). The regulation 

of CYP2A6 by ERα and NRF2 sets it apart as no other CYP 
enzyme is known to be regulated in vivo by these transcrip-
tion factors. CYP2A6 is induced through ERα by phytoes-
trogens such as genistein (in legumes such as soybeans)
(Y. Chen et al. 2011; Mazur 1998) and quercetin (in tea, 
vegetables, fruits, and berries) (Chen et al. 2009; Chun 
et al. 2012) as well as ethinyl estradiol of oral contracep-
tives (Benowitz et al. 2006; Berlin et al. 2007; Sinues et al. 
2008). Exposure to cadmium measured as urine cadmium 
excretion is associated with CYP2A6 activity probed with 
coumarin 7-hydroxylation but only in non-smokers (Satarug 
et al. 2004a, b). In smokers, CYP2A6 activity is known to be 
reduced (inhibition) by an unknown mechanism (Hukkanen 
et al. 2005) and as smoking is also an important source of 
cadmium (induction), it is not surprising that smoking can 
confound the association between cadmium exposure and 
CYP2A6 activity. The effect of cadmium on CYP2A6 is 
most likely mediated by NRF2 as is the induction caused by 
sulforaphane present in cruciferous vegetables (Abu-Bakar 
et al. 2004; Yokota et al. 2011). All medications known to 
induce CYP2A6 are combined CAR/PXR activators and it 
is not known which nuclear receptor is more important for 
CYP2A6 induction in vivo as there is some evidence for the 
involvement of both (Itoh et al. 2006). Rifampicin treatment 
for 6 days had no effect on CYP2A6 activity measured as 
coumarin hydroxylation (Rautio et al. 1994) arguing against 
the role of PXR in the in vivo regulation.

Several medications with PXR and combined CAR/
PXR-activating properties induce CYP2B6 (Table 12). The 
mechanism mediating the effect of metamizole, an antipy-
retic analgesic with spasmolytic properties, on the induction 
of CYP2B6 is currently unknown (Qin et al. 2012; Saussele 
et al. 2007). It is not acting as a direct ligand of PXR or CAR 
and an indirect phenobarbital-like mechanism has been sug-
gested (Qin et al. 2012; Saussele et al. 2007). No environ-
mental toxicant has been shown to induce CYP2B6 in vivo, 
but constituents of herbal remedies such as baicalin (CAR/
PXR), hyperforin (PXR) of St. John’s wort, and sodium feru-
late (PXR) induce CYP2B6 (Fan et al. 2009; Gao et al. 2012, 
2013; Lei et al. 2010) (Table 14). The effects of baicalin 
and sodium ferulate on CYP2B6 were demonstrated only 
as purified compounds in high doses. Thus, it is not known 
if dosing as herbal preparations containing Angelica sin-
ensis, Cimicifuga heracleifolia, or Lignsticum chuangxiong 
(sodium ferulate) or Baikal skullcap (Scutellaria baicalen-
sis) (baicalin) induce CYP2B6.

The induction of CYP2C8 has been demonstrated 
only with a few CAR or PXR-activating pharmaceuticals 
(Table 12). No environmental chemicals or constituents of 
herbal remedies are known to induce CYP2C8 in vivo in 
humans. Similarly, CYP2C9 is not known to be induced by 
environmental toxicants and only one herbal preparation, 
St. John’s wort, induces CYP2C9-related activities in vivo 

3 Summary of Product Characteristics, https://www.accessdata.fda.
gov/drugsatfda_docs/label/2020/202992s010lbl.pdf.



3700 Archives of Toxicology (2020) 94:3671–3722

1 3

(Jiang et al. 2004, 2006). However, a multitude of medica-
tions (PXR agonists and combined CAR/PXR activators) 
induce CYP2C9 (Table 12). CYP2C19 induction has been 
demonstrated with baicalin-containing Chinese multicompo-
nent herbal preparation Yin Zhi Huang and hyperforin-con-
taining St. John’s wort (Fan et al. 2007; Wang et al. 2004a, 
b) (Table 14), while no environmental chemical is known to 
induce CYP2C19. Several medications with PXR and CAR/
PXR-activating properties induce CYP2C19 (Table 12).

The induction of CYP2E1 is regulated unlike any other 
CYP enzyme. The stabilization of mRNA and protein by 
inducing compounds, many of which are also CYP2E1 sub-
strates, is the main mechanism of induction (Cederbaum 
2006). Benzene derivatives such as styrene and toluene 
encountered by workers in print and plastic industries are 
known to induce CYP2E1 (Mendoza-Cantu et al. 2006; Pri-
eto-Castello et al. 2010; Wongvijitsuk et al. 2011) and the 
same compounds may also be responsible for the CYP2E1 
induction detected in tobacco smokers (Benowitz et al. 2003; 
Oyama et al. 2007) (Table 13). The most well-known toxi-
cant inducing CYP2E1 is ethanol (Table 14). Two medica-
tions have been demonstrated to induce CYP2E1, namely 
isoniazid (stabilization) and oral all-trans retinoic acid with 
RXR agonism as the most likely mode of induction (Gyamfi 
et al. 2006) (Table 12). St John’s wort induces CYP2E1 in 
long-term administration (28 days), but the mechanism is 
unknown (Gurley et al. 2002, 2005). It is not known if the 
well-established PXR agonist hyperforin is involved or if 
some other St. John’s wort ingredient is responsible for the 
induction of CYP2E1.

CYP2S1 is induced in skin and bronchoalveolar mac-
rophages with exposures containing AHR agonists such 
smoking and topical coal tar (G. Smith et al. 2003; Thum 
et al. 2006) (Table 13). Ultraviolet-B (UVB) radiation has 
been demonstrated to induce CYP2S1 in skin with AHR-
mediated mechanism which is also involved in the induc-
tion of cutaneous CYP1A1 and CYP1B1 by UVB (Katiyar 
et al. 2000; Smith et al. 2003). UVB exposure leads to the 
formation of 6-formylindolo[3,2-b]carbazole, a tryptophan 
photoproduct and an endogenous AHR ligand (Fritsche 
et al. 2007). The only medication known to induce CYP2S1 
expression is topical all-trans retinoic acid, possibly via 
RXR (McNeilly et al. 2012).

As CYP3A4 is involved in the metabolism of approxi-
mately 50% of all marketed medications (Zhou 2008), its 
induction is of special importance. There are also numer-
ous pharmaceutical CYP3A4 inducers leading to increased 
risk of drug–drug interactions (Table 12). CAR, GR, and 
PXR are known to mediate the induction. The mechanism 
of induction is unknown for antiepileptic rufinamide, stimu-
lants modafinil and its R-enantiomer armodafinil, antiher-
petic medication amenamevir, and metamizole (Table 12). 
Also RXR agonists alitretinoin (9-cis retinoic acid) and 

bexarotene are known to induce CYP3A4-related activities 
in phenotyping studies (Padda et al. 2013; Schmitt-Hoff-
mann et al. 2011; Wakelee et al. 2012).

In addition to CYP3A4-inducing medications, quite 
many herbal remedies and food ingredients induce CYP3A4 
(Table 14). Also the occupational and environmental expo-
sure to organochlorine pesticides dichlorodiphenyltrichlo-
roethane (DDT) and endrin is associated with the induction 
of CYP3A4 as measured with urinary 6β-hydroxycortisol 
(Petersen et al. 2007; Poland et al. 1970) (Table 13). One 
often neglected CYP3A4 inducer is ethanol. Chronic alco-
holics had a higher ratio of urine 6β-hydroxycortisol/cortisol 
compared with healthy volunteers (Luceri et al. 2001). Also 
oral bioavailability of midazolam was significantly lower in 
subjects with moderate alcohol consumption in compari-
son with abstaining controls suggesting intestinal CYP3A4 
induction (Liangpunsakul et al. 2005). In a twin study, alco-
hol consumption was significantly associated with greater 
St. John’s wort-induced CYP3A4 activity as assessed with 
quinine phenotyping (Rahmioglu et al. 2011). There are also 
indications that CYP3A4 protein could be induced in liver 
of the alcoholics with liver disease (Niemela et al. 2000).

The evaluation of induction phenomena of CYP3A 
enzymes is complicated by the closely related CYP3A5 
enzyme. CYP3A4 and CYP3A5 have widely overlapping 
substrate specificities and their regulation shares certain 
features such as crucial role of PXR and CAR (Burk et al. 
2004). A notable difference is the extensive influence of 
genetics on CYP3A5 expression. The CYP3A5*3 allele 
with severely decreased enzymatic activity is more com-
mon than the CYP3A5*1 allele (CYP3A5*3 allele frequency 
is ~ 90% in Caucasians and 50% in African–Americans) 
(Lamba et al. 2002). Thus, most Caucasians do not have a 
functional CYP3A5 enzyme. The phenotyping studies per-
formed with probes metabolized by CYP3A4 and CYP3A5 
are classified here as showing only CYP3A4 induction if 
there are no enzyme-specific data on CYP3A5 induction. 
It is conceivable that many of the CYP3A4 inducers are 
also CYP3A5 inducers in those patients carrying one or two 
functional CYP3A5*1 alleles. There are only a few known 
CYP3A5 in vivo inducers. Rifampicin induced duodenal 
CYP3A5 mRNA in the subjects carrying a CYP3A5*1 allele, 
while no induction was detected in CYP3A5*3/*3 subjects 
(Burk et al. 2004). Topical administration of the glucocorti-
coid clobetasol 17-propionate induced cutaneous CYP3A5 
mRNA (Smith et al. 2006).

The induction of minor CYP3A forms has also been dem-
onstrated. The use of carbamazepine is associated with the 
increased expression of hepatic CYP3A7 and CYP3A43 
mRNA (Oscarson et al. 2006). Rifampicin induces intes-
tinal CYP3A7 and CYP3A43 mRNA in healthy volunteers 
(Oscarson et al. 2007) (Table 12).
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Table 13  Chemical toxicants and radiation as in vivo inducers of human cytochrome P450 enzymes

Enzyme Class of inducers Compound or exposure Receptor(s) implicated Tissues References

CYP1A1 Dioxins Various environmental 
exposures, and a case 
of massive TCDD 
poisoning

AHR Skin Fabbrocini et al. (2015), 
Saurat et al. (2012)

PAHs Charbroiled meat AHR Duodenum Fontana et al. (1999)
Smoking AHR Adipose tissue, lung, 

oral and pharyngeal 
mucosa, placenta, 
uroepithelium, fetal 
lung, fetal liver

Boyle et al. (2010), Chi 
et al. (2009), Dor-
renhaus et al. (2007), 
Hukkanen et al. (2002), 
Huuskonen et al. (2008), 
McLemore et al. (1990), 
O’Shaughnessy et al. 
(2011), Pasanen et al. 
(1990), Tsai et al. 
(2018), Ullrich et al. 
(1997), Vyhlidal et al. 
(2013)

Topical coal tar AHR Skin, hair follicles Merk et al. (1987), Smith 
et al. (2006)

Polychlorinated biphe-
nyls

Consumption of contami-
nated rice oil

AHR Placenta Lucier et al. (1987)

Radiation Therapeutic ultraviolet-B 
radiation

AHR Skin Katiyar et al. (2000)

CYP1A2 Dioxins Dioxins, mainly TCDD, 
from environmental and 
occupational exposures, 
an occupational acci-
dent, and a case of mas-
sive TCDD poisoning

AHR Liver (phenotyping) Abraham et al. (2002), 
Chernyak et al. (2016), 
Samer et al. (2020)

Heterocyclic aromatic 
amines

Pan-fried meat AHR Liver (phenotyping) Sinha et al. (1994)

PAHs Charbroiled meat AHR Liver (phenotyping) Fontana et al. (1999), 
Kappas et al. (1978), 
Pantuck et al. (1976)

Coffee AHR Liver (phenotyping) Djordjevic et al. (2008), 
Horn et al. (1995)

Smoking AHR Liver (phenotyping, 
expression in liver 
autopsy samples)

Baker et al. (2001), Hunt 
et al. (1976), Pantuck 
et al. (1972)

Topical coal tar AHR Skin Smith et al. (2006)
Polybrominated and 

polychlorinated biphe-
nyls

Consumption of con-
taminated fish and farm 
products

AHR Liver (phenotyping) Fitzgerald et al. (2005), 
Lambert et al. (1990)

CYP1B1 PAHs Smoking AHR Adipose tissue, lung, 
oral mucosa, placenta, 
white blood cells, 
whole-blood cells, fetal 
lung

Boyle et al. (2010), Chi 
et al. (2009), Hukkanen 
et al. (2002), Huuskonen 
et al. (2008), Lampe 
et al. (2004), Tsai et al. 
(2018), van Leeuwen 
et al. (2007), Vyhlidal 
et al. (2013), Willey 
et al. (1997)

Topical coal tar AHR Skin Smith et al. (2006)
Work in coke ovens and 

waste incinerators
AHR White blood cells Hanaoka et al. (2002), Hu 

et al. (2006)
Radiation Therapeutic ultraviolet-B 

radiation
AHR Skin Katiyar et al. (2000)

CYP2A6 Heavy metals Cadmium NRF2 Liver (phenotyping) Satarug et al. (2004a, b)
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Consequences and relevance of CYP 
induction

The induction of CYP enzymes as a cause of DDIs, as dis-
tinct from the enzyme inhibition, is unique as the induction 
becomes apparent more slowly and it takes more time for 
the induction to abate. This is caused by the delay due to the 
synthesis of new enzymes when the inducer is introduced, 
and then for the additional enzymes to degrade after the 
inducer is withdrawn. These effects take usually days to even 
weeks to fully manifest when concerning rapidly metabo-
lized compounds (Tran et al. 1999). The time-dependent 
effects are even slower when dealing with steady-state levels 
of compounds with long half-lives. Thus, the outcome of 
adding an inducer to the patient’s established drug regimen 
can be difficult to detect in clinical setting if the physician is 
unaware of the anticipated effect. The effect of the induction 
is even more difficult to discern when dealing with intermit-
tent exposures as is common with environmental toxicants 
as both victims and perpetrators of induction. For drugs 
and toxicants active in their parent form, CYP induction 
increases the elimination of compounds and decreases thera-
peutic and toxic effects, respectively. For prodrugs and toxi-
cants that have active metabolites formed by CYP enzymes, 
enhanced pharmacodynamic and toxic effects could result.

The consequences of CYP induction are even more dif-
ficult to evaluate when dealing with mixtures of chemical 
compounds comprised of all the pharmaceutical, herbal, and 
environmental chemical exposures encountered by individu-
als in their daily lives. This is due to newly emerging find-
ings on the combinatorial effects of chemical mixtures as 
activators of xenobiotic-sensing receptors. This phenomenon 

has been best demonstrated with PXR. It has been shown 
that combinations of toxic compounds such as bisphenol 
A analogs (Sui et al. 2012), and drugs and toxicants such 
as the combination of pesticide trans-nonachlor and drug 
17α-ethinylestradiol (Delfosse et al. 2015), potentiate the 
PXR activation even at the low concentrations incapable to 
activate PXR by themselves. The science of the combina-
tions is still very much a work in progress.

Concluding remarks and lessons learnt

After intense investigation for several decades, the research 
field of CYP inhibition and induction has reached a rather 
matured stage. The basic mechanisms of both CYP inhibi-
tion and induction are now fairly well understood, although 
further details continue to be revealed.

The experimental tools to study CYP inhibition and 
induction in vitro have been well established and adopted in 
guidelines regulating drug development. The in vitro results 
can further guide the in vivo experiments. Indeed, we have 
moved from testing clinically commonly used individual 
drugs together to the rational design of studies using index 
drugs and reference inhibitors based on mechanistic under-
standing of drug–drug interactions (Tornio et al. 2019). Fur-
ther development has been made in the computational tools, 
and the physiologically based pharmacokinetic modeling can 
be used to simulate in vivo conditions, extend the knowledge 
gained from the clinical studies, and even avoid unnecessary 
clinical studies (Shebley and Einolf 2019; Venkatakrishnan 
and Rostami-Hodjegan 2019). However, human in vivo 
DDI studies are still needed to definitively demonstrate the 
consequences of inhibition/induction, especially for the 

Table 13  (continued)

Enzyme Class of inducers Compound or exposure Receptor(s) implicated Tissues References

CYP2E1 Benzene derivatives Smoking (cigarette 
smoke contains both 
styrene and toluene, see 
below)

Stabilization? Liver (phenotyping), 
bronchial epithelium

Benowitz et al. (2003), 
Oyama et al. (2007)

Occupational exposure to 
styrene

Stabilization? Blood lymphocytes, 
whole-blood cells

Prieto-Castello et al. 
(2010), Wongvijitsuk 
et al. (2011)

Toluene Stabilization? Blood lymphocytes Mendoza-Cantu et al. 
(2006)

CYP2S1 PAHs Smoking AHR Bronchoalveolar mac-
rophages

Thum et al. (2006)

Topical coal tar AHR Skin Smith et al. (2003)
Radiation Ultraviolet-B radiation AHR Skin Smith et al. (2003)

CYP3A4 Organochlorine pesti-
cides

Dichlorodiphenyltrichlo-
roethane (DDT)

PXR Liver (phenotyping) Petersen et al. (2007), 
Poland et al. (1970)

Endrin PXR Liver (phenotyping) Jager (1970)
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regulatory filings, and it is not likely that these studies would 
be deemed unnecessary in the near future.

As a result of the methodological developments, the 
CYP-mediated drug–drug interactions are identified early in 
the pharmaceutical development and no longer big surprises 
appear in the clinical use after approval. The early awareness 
of the potential CYP-mediated drug–drug interactions may 
also guide the drug development process to avoid strong 
inhibitors and inducers. Thus, especially the number of new 
inducers has been low among the recently approved drugs. 
However, there may still be unidentified inducers and inhibi-
tors among the compounds present in our diet and various 
herbal remedies as well as in the environment as chemical 
toxicants.

The CYP-mediated interactions are now mastered rather 
well in the drug development process. The use of differ-
ent databases and prescription aid tools has also improved 
application of the interaction data in the clinical practice. 
The widespread application of these information technology 
solutions is crucial as the amount of DDI data are too exten-
sive for any individual physician to master. The progress 
in the pharmaceutical drug development during the recent 
years has resulted in design of small-molecular drugs with 
increasing metabolic stability. While this decreases the risk 
of CYP-mediated drug–drug interactions, this development 
may induce other types of interactions such as those medi-
ated by various transporters (Venkatakrishnan and Rostami-
Hodjegan 2019).

Although, in general, there is a good potential for pre-
diction of the CYP inhibition and induction, unusual cases 
may still continue to provide surprises. For example, it was 
described that co-binding of two non-activating compounds 
to the active site of PXR may result in synergistic effect and 
receptor activation (Delfosse et al. 2015). This kind of cock-
tail effect may be possible among drugs, but perhaps more 
relevant in the toxicological exposure to complex mixtures. 
Naturally, also drugs and environmental compounds or natu-
ral substances could interact or act together. Thus, although 
much has been learned in the last decades regarding inhibi-
tion and induction of CYP enzymes, novel discoveries may 
still be made by inquiring minds.
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