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Abstract
Organophosphorus (OP) pesticides and nerve agents still pose a threat to the population. Treatment of OP poisoning is an 
ongoing challenge and burden for medical services. Standard drug treatment consists of atropine and an oxime as reactiva-
tor of OP-inhibited acetylcholinesterase and is virtually unchanged since more than six decades. Established oximes, i.e. 
pralidoxime, obidoxime, TMB-4, HI-6 and MMB-4, are of insufficient effectiveness in some poisonings and often cover 
only a limited spectrum of the different nerve agents and pesticides. Moreover, the value of oximes in human OP pesticide 
poisoning is still disputed. Long-lasting research efforts resulted in the preparation of countless experimental oximes, and 
more recently non-oxime reactivators, intended to replace or supplement the established and licensed oximes. The progress 
of this development is slow and none of the novel compounds appears to be suitable for transfer into advanced development 
or into clinical use. This situation calls for a critical analysis of the value of oximes as mainstay of treatment as well as the 
potential and limitations of established and novel reactivators. Requirements for a straightforward identification of superior 
reactivators and their development to licensed drugs need to be addressed as well as options for interim solutions as a chance 
to improve the therapy of OP poisoning in a foreseeable time frame.

Keywords Organophosphorus compounds · Nerve agents · Pesticides · Acetylcholinesterase · Oximes · Reactivation

Introduction

Two contradictory statements “Hitherto, alkylphosphate 
poisoning has been treated mainly by atropine, but now 
atropine is replaced by PAM [pralidoxime]” (Namba and 
Hiraki 1958) and “Based on the current available data on 
human organophosphate poisoning, oxime was associated 
with either a null effect or possible harm” (Peter et al. 2006) 
impressively underline the ongoing discussion on the value 
of oxime therapy in human poisoning by organophosphorus 
compound-based (OP) pesticides.

Since the discovery of pralidoxime (2-PAM; Fig. 1) in 
1955 by UK and US research groups (Childs et al. 1955; 
Wilson and Ginsburg 1955) a countless number of oxime 
structures were synthetized, initially focused on the iden-
tification of an effective antidote against the nerve agent 
soman and more recently on the development of CNS active 
reactivators and oximes with a broader spectrum against OP 

nerve agents and pesticides (Boskovic 1981; Clement 1981; 
Musilek et al. 2011; Katalinic et al. 2013; Kovarik et al. 
2013; Worek and Thiermann 2013; Eyer and Worek 2007; 
Kuca et al. 2006; Chambers and Meek 2020). Early work 
was mainly based on the development of charged mono- 
(pralidoxime-type) and bis-pyridinium (trimedoxime-/
obidoxime-type) oximes (Fig. 1), while in the last decade a 
variety of structural elements were introduced cumulating in 
uncharged oximes and non-oxime reactivators (Fig. 2) (Bis-
muth et al. 1992; Gray 1984; Gorecki et al. 2017; Sharma 
et al. 2015; Korabecny et al. 2014; Cadieux et al. 2016; de 
Koning et al. 2018; Castro et al. 2020).

Oxime and non-oxime reactivators are developed to 
remove the phosphyl moiety from the active site serine of 
acetylcholinesterase (AChE) (Hobbiger 1963). Such a nucle-
ophilic attack shall restore the activity of the enzyme, enable 
AChE to split the neurotransmitter acetylcholine leading to 
a reduction or cessation of the toxic signs in OP poisoning 
(Eyer 2003).

In fact, since decades the standard therapy of OP poi-
soning includes a muscarinic antagonist, e.g. atropine, an 
oxime, mostly pralidoxime or obidoxime (Sidell 1974; Oku-
mura et al. 1996; Newmark 2004; Eddleston et al. 2008; 
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Pawar et al. 2006), and benzodiazepines as neuroprotectants 
and anticonvulsants (Marrs and Sellström 2007). In princi-
ple, there is no doubt that rapid administration of atropine 
and an oxime may be lifesaving in nerve agent poisoning 
(Vale et al. 2007; Eyer and Worek 2007; Sidell 1997; Thi-
ermann et al. 2016) but the benefit of the oxime component 
may be limited in case of poisoning by reactivation-resistant 
nerve agents such as soman and tabun (Wolthuis et al. 1994; 
Worek and Thiermann 2013; Dawson 1994).

In contrast, a fierce debate on the value of oximes in 
human OP pesticide poisoning is ongoing since decades 
(Bajgar et al. 2007), yet on the base of rather small studies 
or case reports (Eddleston et al. 2002; Due 2014; Shivaku-
mar et al. 2006; Banerjee et al. 2014; Lin et al. 2016; Tang 
et al. 2013; Pawar et al. 2006; Peter et al. 2006; Rahimi 
et al. 2006), which prompts many clinical toxicologists to 
refrain from using an oxime even in cases of severe OP 
pesticide poisoning. The reasons for the supposed failure 
of oximes to improve the survival rate are not fully under-
stood but are most likely a result of mega-dose poisoning 
with high and long-lasting in vivo OP concentrations lead-
ing to negligible net reactivation despite oxime therapy, 
premature aging of the inhibited AChE due to delayed start 
of oxime therapy, poisoning with reactivation resistant OP, 
inadequate oxime dosing and premature discontinuation 
of oxime administration (Eyer 2003; Kharel et al. 2020). 

Further, coformulants of agricultural OP formulations, 
alcohol co-ingestion and underlying health conditions 
may increase OP toxicity and reduce the benefit of oxime 
therapy (Eddleston et al. 2009a, b; Eddleston et al. 2012).

A closer look at the research on in-service and novel 
reactivators in the last decade reveals a peculiar situation. 
Despite ongoing national and international efforts to ban 
highly toxic OP pesticides self-poisoning with pesticides 
remains a major medical problem, especially in devel-
oping countries, causing more than 100,000 deaths each 
year (Mew et al. 2017). However, research on reactivators 
is mainly focused on nerve agents and covers pesticides 
only marginally (Gorecki et al. 2017; Castro et al. 2020).

In this way, the last decade was characterized by the 
presentation of a large number of novel reactivators, the 
investigation of the in vitro reactivation potential; with 
some compounds the in vivo efficacy and the pharma-
cokinetic properties were assessed. This deserves a criti-
cal analysis of the potential value of novel reactivators 
together with a reconsideration of the concept of use of 
(oxime) reactivators in OP poisoning.

Fig. 1  Chemical structure of in-service oximes developed in the 1950s and 1960s. Oximes with different counterions, e.g. pralidoxime chloride 
(2-PAM) and methanesulfonate (P2S) are available and are used in research and clinical practice
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The threat

Intensive research on the organic chemistry of phospho-
rus for more than one century resulted in the invention 
of various groups of organophosphorus compounds (OP), 
e.g. phosphates, phosphonates, phosphinates and phos-
phorothioates, and a countless number of structurally and 
toxicologically different OP (Moralev and Rozengart 2007; 
Timperley 2015; Worek et al. 2016c). Highly toxic OP 

were further developed and stockpiled for use as chemical 
warfare agents (Black 2016). Despite the ban of chemical 
warfare agents by the Chemical Weapon Convention in 
1997 (United Nations Treaty Collection 1997), OP nerve 
agents were used repeatedly in the recent past in the Syrian 
Civil War since 2013 resulting in thousands of casualties 
and for assassinations against individuals in Malaysia 2017 
and UK 2018 emphasizing the ongoing threat to the popu-
lation (Costanzi et al. 2018; John et al. 2018).
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Fig. 2  Chemical structure of selected novel oxime and non-oxime reactivators according to de Koning et  al. (2011a, b, 2018), Mercey et  al. 
(2011), Radic et al. (2012), Kalisiak et al. (2011), Katz et al. (2015), Santoni et al. (2018)
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The ban of highly toxic class I pesticides such as para-
thion or mevinphos contributed to the decrease of annual 
worldwide fatalities by OP pesticide self-poisoning from 
estimated more than 258,000 in 2007 to ~ 110,000 in 2017 
(Gunnell et al. 2007; Mew et al. 2017; Bertolote et al. 
2006), still an appalling high number and a continuing 
burden for the medical service in many countries.

A comprehensive understanding of the toxicity and 
toxic properties of OP is fundamental for the develop-
ment of effective therapies, therapeutic concepts but 
also for the evaluation of limitations of antidotes and 
treatment regimen. There is consensus that the primary 
mechanism of acute OP toxicity is covalent binding of the 
OP to the active site of AChE resulting in AChE inhibi-
tion and development of cholinergic crisis (Jandorf et al. 
1955; Holmstedt 1959; Main 1979; Sidell 2007). All OP 
classified as nerve agents or pesticides inhibit AChE, the 
potency being dependent on the agent specific inhibitory 
properties as a result of structural elements such as dif-
ferent residues bound to the central phosphorus as well as 
leaving groups (Fig. 3). In vitro determination of the bimo-
lecular inhibition rate constant ki with isolated (human) 
AChE enables the quantification of the inhibitory potency 
of specific agents and may provide an initial estimate on 
the toxic potential. As shown in Table 1, there is a huge 
range of ki values, nerve agent and nerve agent analogs 
being in general more potent than pesticides with some 
exceptions, e.g. chlorpyrifos-oxon, the active metabolite 
of the pesticide chlorpyrifos, being more potent compared 
to the nerve agent tabun. Knowledge of these values allows 
an initial rough estimation of the potential in vivo toxicity. 
However, the actual in vivo toxicity is determined by mul-
tiple interconnected factors including volatility, chemical 
and biological stability, lipophilicity and finally the route 
of exposure (Rice 2016; Young and Watson 2020).

Vapor pressure and volatility of nerve agents are essen-
tial determinants for the key route of exposure. High vola-
tility and water solubility qualify sarin (vapor pressure of 
2.9 mmHg at 25 °C) to enter the body primarily via mucous 
membranes resulting in a rapid onset of toxic signs while 
the extremely low volatile and lipophilic VX (vapor pressure 
of 0.0007 mmHg at 25 °C) is of high percutaneous toxicity 

with a delayed onset of signs (Rice 2016; Czerwinski et al. 
2006; Nozaki et al. 1995; Okumura et al. 1996).

In (suicidal) OP pesticide poisoning agent incorporation 
occurs mostly via the oral route and toxicity is determined 
by (a) cytochrome P450 mediated transformation of organo-
phosphorothioates into the active oxon form (Buratti et al. 
2003; Menzer and Dauterman 1970), (b) the agent specific 
inhibitory potency towards AChE causing a rapid or delayed 
onset of toxic signs (Thiermann et al. 1997), (c) the detoxi-
fication of the parent compound and its active metabolite by 
endogenous enzymes such as paraoxonase (PON1) (Furlong 
et al. 2000; Kaur et al. 2017) and (d) the lipophilicity as a 
main factor for the persistence of a specific pesticide in fat 
tissue and prolonged re-distribution into the systemic cir-
culation, being of relevance with lipophilic pesticides such 
as parathion but less with more hydrophilic agents such as 
dimethoate (Eyer et al. 2009, 2003; Eyer 2003; Eddleston 
et al. 2008).

X

R
P

O1

R2

Fig. 3  Generic structure of organophosphorus compounds with resi-
dues  R1 and  R2 and leaving group X. In many OP pesticides the oxy-
gen is replaced by sulfur to reduce mammalian toxicity

Table 1  In vitro inhibition kinetics of human AChE with selected OP

Inhibitory potency of selected OP (pesticides, pesticide oxon metabo-
lites, nerve agents and nerve agent analogues) toward human AChE 
in  vitro. Data are from (Aurbek et  al. 2006, 2010), (Worek et  al. 
2007a), (Bartling et  al. 2007), (Worek et  al. 2004, 2009) and from 
unpublished data. The bimolecular inhibition rate constant ki is given 
as  105 M−1 min−1

OP ki OP ki

Fenamiphos 0.002 TEPP 59.7
Propophos 0.03 Methylsarin 105
Tetrachlorvinphos 0.03 Dimethyl-VE 125
Methamidophos 0.05 Leptophos 134
Monocrotophos 0.06 Tabun 182
Trichlorfon 0.07 Dimethyl-VX 222
Dicrotophos 0.15 Chlorpyrifos-oxon 269
Omethoat 0.16 Ethylsarin 327
Ethoprophos 0.23 Diisopropyl-VE 368
Heptenophos 1.38 Naled 377
Bromfenvinphos 1.43 Sarin 398
Chlorfenvinphos 1.72 VE 433
Pirimiphos-methyl-oxon 2.81 Diethyl-VX 551
Dichlorvos 3.55 VX 1150
Profenofos 4.08 n-Propylsarin 1260
Malaoxon 4.74 Soman 1930
Mevinphos 6.64 n-Butylsarin 2790
N-Diethyltabun 7.77 Chinese VX 3210
Dimethyl-amiton 8.57 neo-Pentylsarin 3240
Paraoxon-methyl 11.3 Cyclosarin 4390
N-n-Propyltabun 11.8 Russian VX 4580
Amiton 18.9 sec-Pentylsarin 4870
Diisopropyl-amiton 27.4 iso-Butylsarin 5330
O-Methyltabun 32.1 iso-Pentylsarin 5460
Paraoxon-ethyl 33.0 n-Pentylsarin 9500



2279Archives of Toxicology (2020) 94:2275–2292 

1 3

Chemical and biological stability, lipophilicity and route 
of exposure are important determinants for the toxicoki-
netic behavior of OP nerve agents (Benschop and de Jong 
2001). Detailed studies, in part even quantifying nerve agent 
stereoisomers, demonstrated huge differences of toxicoki-
netic parameters depending on the agent and the route of 
exposure. Intravenous injection and inhalation exposure of 
sarin resulted in rapid distribution and elimination of the 
agent in guinea pigs with a terminal half-life of less than 
60 min (Spruit et al. 2000), an even shorter terminal half-life 
of 23 min was determined for (−)-tabun after intravenous 
administration of tabun in swine (Tenberken et al. 2010). 
Intravenous injection of VX in guinea pigs and marmosets 
gave a terminal half-life between 98 and 165 min while the 
maximum VX concentration was reached only after 4 h in 
guinea pigs with percutaneous VX exposure and remained 
at a high level for several hours (van der Schans et al. 2003). 
In swine, percutaneous VX exposure again resulted in a slow 
increase of VX concentration in blood, a maximum at ~ 2 h 
followed by a plateau for at least 5 h (Reiter et al. 2011). In 
the end, distinct toxicokinetic properties of each individual 
OP have a major impact on the therapeutic regimen, i.e. 
duration of antidote administration and planning of medical 
resources.

Post-inhibitory reactions of OP-inhibited AChE (Fig. 4), 
namely spontaneous reactivation and spontaneous dealkyla-
tion (aging), are important factors for the efficacy of, espe-
cially oxime, therapy. Again, huge differences in aging 
and spontaneous reactivation kinetics exist and have to 
be considered. Examples are aging half times of ~ 2 min 
with soman-inhibited AChE and almost 140 h with VR-
inhibited AChE and a negligible spontaneous reactivation 
with G-agent inhibited AChE while AChE inhibited by a 
dimethyl-OP, e.g. malaoxon, exhibits a rapid spontaneous 
reactivation with a t½ of 0.7 h (Worek and Thiermann 2013). 
Hence, soman poisoning will lead to aged AChE and inef-
fective oxime therapy while in a moderate poisoning with 
dimethyl-OP (e.g. malathion, dimethoate) spontaneous reac-
tivation of the inhibited AChE may contribute to the oxime 
effect.

Consequently, OP pesticides and nerve agents have a 
common mechanism of action, i.e. covalent binding to AChE 
and inhibition of its physiological function, but depending 
on the structure and resultant physico-chemical and biologi-
cal properties a large variability of toxic effects and inherent 
susceptibility towards oxime therapy has to be taken into 
account (Table 2). Hence, the large amount of influencing 
variables needs to be considered for the development of opti-
mized therapies.

The oxime concept

General aspects

Treatment of OP poisoning with atropine and an oxime is 
the general procedure since the implementation of 2-PAM in 
the 1950s and obidoxime in the 1960s into clinical use (Eyer 
2003; Jokanovic 2009; Worek and Thiermann 2013; Eddles-
ton et al. 2002). There is no doubt that antimuscarinics, 
primarily atropine, are essential to counteract OP-induced 
cholinergic overstimulation at muscarinic receptors and may 
resolve severe toxic signs such as central nervous respiratory 
depression, bradycardia, bronchoconstriction and bronchor-
rhoe (McDonough and Shih 2007). The reversible muscarine 
receptor antagonist atropine may be considered as a generic 
antidote being effective against all OP, major disadvantages 
are the solely symptomatic effect and the inability to coun-
teract OP effects on nicotinic receptors. In case of sufficient 
reactivation of inhibited AChE the life threatening periph-
eral respiratory block, mediated by nicotinic receptors, 
can be resolved. This was the primary reason to introduce 
nucleophilic oximes as reactivators of inhibited AChE at 
nicotinic, but also at muscarinic, synapses.

Already at the beginning of the oxime era, experimental 
and clinical data indicated that oximes have a limited effect 
under various circumstances (Hobbiger 1963). It turned out 
that the available oximes 2-PAM and obidoxime reactivate 
AChE inhibited by different OP to various extent, fail to 
reactivate aged AChE and have an uncertain therapeutic 
effect in human OP pesticide poisoning (Namba 1971; Wil-
lems et al. 1971; Erdmann 1968; Zech et al. 1967; Loomis 
and Salafsky 1963; Heilbronn and Tolagen 1965). Hereby, 
obidoxime exhibits a markedly higher reactivating potency 
compared to 2-PAM with a variety of nerve agents and pes-
ticides (Fig. 5) but also fails to reactivate soman-inhibited 
AChE (Wolthuis et al. 1994). Numerous oximes were syn-
thesized in the following decades, these research efforts have 
been reviewed extensively and shall not be addressed further 
(cf. Bismuth et al. 1992; Dawson 1994; Kassa 2002; Reiner 
and Simeon-Rudolf 2006; Eyer and Worek 2007; Worek and 
Thiermann 2013).

[E] + [OP] [EP] 

[E] + [P][EA]

Inhibition

Aging Spontaneous
reactivation

Fig. 4  Scheme of reactions between OP and AChE [E] resulting in 
inhibited AChE [EP]. Post-inhibitory reactions may lead to spontane-
ously reactivated AChE [E] or to aged AChE [EA]
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At present, pralidoxime (2-PAM, P2S) is the most widely 
used oxime while obidoxime and TMB-4 are limited to a few 
countries (Worek and Thiermann 2013). Only two bispyri-
dinium oximes, MMB-4 and HI-6, synthetized in 1959 and 
1968, respectively (Hobbiger and Sadler 1959; Stark 1968), 
were transferred to advanced development and are consid-
ered as potential replacement of 2-PAM for the treatment of 
nerve agent poisoning (Lundy et al. 2011). Many promising 
oximes never reached this stadium, the reasons, apart from 
limited funding, being widely unknown. The HI-6 analog 
HLö 7, bearing two oxime functions in position 2 and 4 at 
one pyridinium ring, was considered to be a broad spectrum 
oxime with superior reactivating potency compared to HI-6 
and good therapeutic efficacy against different nerve agents 
including tabun (Eyer et al. 1992; Lundy et al. 1992). A 
higher toxicity compared to HI-6, low stability in aqueous 
solutions and a challenging synthesis were the most likely 

reasons for the limited interest into HLö 7 in the recent years 
and the focus on HI-6 as the prime candidate oxime (Psotka 
et al. 2017; Hsu et al. 2019).

The peculiar situation of having thousands of experimen-
tal oximes, only five oximes, developed between 1955 and 
1968, in clinical use or advanced development but an ongo-
ing need for a better reactivator deserves a closer and critical 
look on the oxime concept and on factors influencing the 
in vivo efficacy of oximes.

Theoretical and kinetic considerations

Reactivation of OP-inhibited AChE is the primary mecha-
nism of action of oximes. Additionally, there are specula-
tions about postulated direct pharmacological effects of 
oximes. Such effects, namely improved survival in soman 
poisoning in the absence of AChE reactivation, could be 
shown in various animal models but there is no evidence in 
humans (van Helden et al. 1996; Seeger et al. 2011). Accord-
ing to the generally accepted reaction scheme (Fig. 6) the 
reactivation is determined by the affinity and reactivity of 
an oxime towards the OP-inhibited AChE which can be 
quantified in vitro by the dissociation constant KD and the 
reactivity constant kr. These parameters were determined in 
numerous studies using AChE from different origin, differ-
ent experimental protocols and different methods of calcula-
tion (Miller et al. 1984; Hrvat et al. 2018) resulting in a wide 
range of numbers even for a specific OP-oxime combination 
(Worek and Thiermann 2013).

In vitro reactivation constants allow model calculations to 
estimate minimum kr and KD values for achieving a sufficient 
reactivation level and to calculate necessary oxime concen-
trations to reach a certain reactivation level after a defined 
time (Worek et al. 2011b). From these calculations a reactiv-
ity constant kr of > 0.1 min−1 and a dissociation constant of 

Table 2  Impact of differential toxic properties of OP pesticides and nerve agents on oxime therapy

a Extent of net AChE reactivation will strongly depend on the incorporated OP dose

OP subclass OP Primary route 
of exposure

Onset of toxic signs Agent persistence Oxime effi-
cacy (AChE 
reactivation)a

Duration of (oxime) therapy

Nerve agents Sarin Inhalation Rapid (min) Low Rapid Initial emergency adminis-
trationTabun Inhalation Rapid (min) Low Slow, partial

Soman Inhalation Rapid (min) Low Absent (aging)
VX Percutaneous Delayed (h) High Rapid Prolonged (days)

Pesticides Diazinon (parathion) Oral (suicide) Rapid (min) Moderate to high Rapid Prolonged (days) in case of 
high OP body load

Malathion, dimethoate Oral (suicide) Delayed (h) Moderate to high Rapid, may be 
absent due to 
rapid aging

Prolonged (days) in case of 
high OP body load and 
incomplete aging

Profenofos Oral (suicide) Delayed (h) Unknown Absent (aging) Initial emergency adminis-
tration

Fig. 5  Ratio of bimolecular reactivation rate constants kr2 of obi-
doxime and 2-PAM for GA tabun, GB sarin, GF cyclosarin, VX, VR 
Russian VX, CVX Chinese VX, PXE paraoxon-ethyl and PXM par-
aoxon-methyl
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KD < 100 µM were proposed. Hereby, a kr as high as possible 
is desirable since it determines the reactivation half-time. An 
extremely high affinity of an oxime, i.e. very low KD, may 
lead to negative effects due to an oxime-induced inhibition 
of native or reactivated AChE which may limit the tolerable 
concentration in vivo (Wille et al. 2010; Worek et al. 2012; 
Kovarik et al. 2010).

It has to be considered that in vitro determination of reac-
tivation kinetics does not adequately resemble the in vivo 
situation. Purified AChE is inhibited by a defined OP con-
centration and excess inhibitor is removed. Then, OP-inhib-
ited AChE is incubated with a constant oxime concentration 
for a defined time in the absence of substrate and potential 
side reactions which may be present in vivo are excluded. 
Otherwise, side reactions such as re-inhibition of reactivated 
AChE by phosphyloxime formed during the reactivation pro-
cess may affect in vitro assays but was not verified in vivo 
(Ashani et al. 2003; Eyer and Worek 2007).

An even greater impact on oxime-induced reactivation 
has the presence of OP in vivo. This is determined by the 
aforementioned physico-chemical properties, exposure route 
and dose. The effect of OP concentration can be simulated 
by theoretical calculations based on kinetic constants and 
pharmaco- and toxicokinetic parameters (Worek et al. 2005) 
and in appropriate in vitro models. Figure 7 demonstrates 
the effect of different paraoxon concentrations (0–10 µM) on 
the net reactivation of inhibited AChE by a therapeutic obi-
doxime concentration (10 µM) in a dynamic in vitro model 
with online determination of AChE activity. Reactivation of 
pre-inhibited AChE by obidoxime in the absence of excess 
paraoxon resulted in an almost complete reactivation being 
very comparable to calculated activities based on reactiva-
tion constants. In the presence of 1 µM paraoxon, a con-
centration indicating a severe suicidal parathion poisoning 
(Eyer et al. 2003), the net reactivation was already reduced 
to some 30% and was only marginal at higher paraoxon 
concentrations.

Percutaneous poisoning of guinea pigs with VX resulted 
in long-lasting, toxicologically relevant VX concentrations 
in blood (Joosen et al. 2010). A single injection of a high 

obidoxime dose (24.6 mg/kg i.m.) resulted in an initial 
increase of AChE activity followed by a constant decrease 
due to the short obidoxime plasma half-live. Repeated injec-
tions of a lower obidoxime dose (8.2 mg/kg i.m.) preserved 
an at least partial AChE activity underlining the need to 
adopt the treatment regimen to the individual case. A thor-
ough analysis of clinical cases demonstrated the decisive 
impact of the OP concentration on net AChE reactivation 
in patients treated by obidoxime (Eyer et al. 2003, 2009; 
Thiermann et al. 2009). In the end, an oxime with high 
reactivating potency such as obidoxime with diethyl-OP- or 
VX-inhibited AChE may fail to achieve sufficient net reac-
tivation in vivo due to persisting, toxicologically relevant 
OP concentrations.

Eyer and co-workers presented models for the calculation 
of steady-state AChE activities in the presence of differ-
ent OP and oxime concentrations and for the estimation of 
oxime concentrations necessary to achieve a defined level 
of AChE reactivation (Thiermann et al. 1999; Eyer 2003; 
Worek et al. 2011b, 2016b). Here, the agent-specific reac-
tivating potency of an oxime and the inhibitory potency 
of an OP are decisive for the required therapeutic oxime 
concentration, indicating that the necessary oxime concen-
tration will vary for different OP. Figure 8 exemplifies the 
effect of increasing tabun and sarin concentrations on the 
reactivation of AChE by obidoxime and 2-PAM. Due to the 
differential reactivating potency of these oximes recom-
mended therapeutic concentrations, i.e. 10 µM obidoxime, 
initially ~ 30 µM pralidoxime, now the proposed target con-
centration is 100 µM pralidoxime (Thiermann et al. 1999; 
Eddleston et al. 2009a, b; Sundwall 1961), will reach a cut-
off AChE activity only at low nanomolar tabun concentra-
tions (obidoxime) or even fail (2-PAM). Due to the sub-
stantially higher reactivating potency of both oximes with 
sarin-inhibited AChE obidoxime and 2-PAM should reach 
the minimum AChE level even at sarin concentrations up 

[E] + [POX][EP] + [OX] [EPOX]
KD kr

kr2

Fig. 6  Reaction scheme for the reactivation of OP-inhibited AChE 
by oximes. [E] native AChE; [EP] OP-inhibited AChE; [OX] oxime; 
[EPOX] Michaelis complex; [POX] phosphyloxime; KD dissociation 
constant; kr reactivity constant; kr2 bimolecular reactivation rate con-
stant

Fig. 7  Reactivation of paraoxon-inhibited human AChE by obidox-
ime (10  µM) in the presence of paraoxon (0–10  µM) in a dynamic 
model with online recording of AChE activity (Worek et  al. 2015). 
Calculation gives the theoretical reactivation based on in vitro reacti-
vation constants (Worek et al. 2011a)
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to some 50 nM. Hence, this example underlines the need to 
analyze the potential oxime-induced reactivation separately 
for each oxime-OP combination to assess the potential value 
of a specific reactivator.

Finally, the selection of the AChE source has a major 
impact on the evaluation of oxime potency and eventually 
efficacy. Various studies demonstrated in part significant 
and hardly predictable differences in the reactivation kinet-
ics depending on the species (human vs animal AChE), OP 
and oxime (Luo et al. 2005, 2007; Worek et al. 2002, 2010, 
2011a).

Impact of oxime toxicity

Therapeutically necessary oxime concentrations may not be 
tolerable due to the intrinsic toxicity of oximes (Calesnick 

et al. 1967; Marrs 1991). Multiple studies demonstrated a 
broad range of in vitro, i.e. AChE inhibition, and animal 
in vivo toxicity of established and experimental oximes 
ranging from > 800 mg/kg (HI-6) down to ~ 2 mg/kg (K108) 
after i.m. administration in different species (Marrs 1991; 
Kassa 2002; Reiner and Simeon-Rudolf 2006; Lorke and 
Petroianu 2009; Musilek et al. 2010). Unfortunately, rel-
evant toxicity data are missing for most of the experimental 
oximes.

Data on toxicity of oximes in non-poisoned humans are 
sparse and are mainly a by-product of pharmacokinetic 
investigations. Only 2-PAM (P2S), TMB-4, obidoxime and 
HI-6 were tested in humans at doses related to the assumed 
therapeutic dose and only mild to moderate side effects (cir-
culatory, gastrointestinal, sensory) were observed, TMB-4 
being considered to be the most toxic of these oximes 

Fig. 8  Calculated steady-state AChE activities in the presence of 
tabun (a, b) or sarin (c, d) and obidoxime (a, c) or 2-PAM (b, d). 
Calculations are based on experimental reactivation constants of obi-
doxime (tabun: kr 0.04  min−1, KD 97.3  µM; sarin: kr 0.937  min−1, 
KD 31.3  µM) and 2-PAM (tabun: kr 0.01  min−1, KD 695  µM; 
sarin: kr 0.25  min−1, KD 27.6  µM) and the bimolecular inhibi-

tion rate constants ki of tabun (7.4  ×  106  M−1  min−1) and sarin 
(2.7 × 107 M−1 min−1) (Worek et al. 2004) and were performed for 
oxime concentration of 10–200 µM. The dotted horizontal line resem-
bles the cutoff AChE activity (20%). For calculation the equation 
[E]/[EP + EPOX] = kr/(ki × [OP] × (1 + KD/[OX])) was applied (Eyer 
2003)
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(Calesnick et al. 1967; Wiezorek et al. 1968; Sidell and Groff 
1970; Erdmann et al. 1965; Holland and Parkes 1976; Xue 
et al. 1985; Clement et al. 1995).

Most of these human volunteer studies administered 
parenteral oxime doses recommended as initial dose for 
treatment of OP patients, i.e. ~ 2 g 2-PAM (Eddleston et al. 
2004; Newmark 2007), 250 mg obidoxime (Erdmann and 
Clarmann 1963) and 500 mg HI-6 (Kusic et al. 1991). Cale-
snick et al. injected up to 45 mg/kg 2-PAM chloride i.m. or 
i.v. (Calesnick et al. 1967), Wiezorek et al. up to 1400 mg 
2-PAM iodide (Wiezorek et al. 1968), Holland and Parkes 
up to 23.5 mg/kg P2S i.m. (Holland and Parkes 1976), Kusic 
et al. and Clement et al. up to 500 mg HI-6 dichloride i.m. 
(Kusic et al. 1985; Clement et al. 1995).

The situation is slightly different with obidoxime and 
TMB-4. Sidell and Groff injected up to 10 mg/kg obidox-
ime i.m. (~ 700 mg) and got a Cmax of almost 140 µM in 
plasma, exceeding the recommended therapeutic concentra-
tion more than tenfold (Sidell and Groff 1970). Only a tran-
sient increase in blood pressure and heart rate, generalized 
warmth and numbness of the facial area were reported. At 
present, Israel uses a combination autoinjector with 80 mg 
TMB-4 (Bentur et al. 2006). Two volunteer studies used 
substantially higher doses and recorded only mild adverse 
effects. The intravenous injection of 800 mg TMB-4 resulted 
in a slight, transient increase in heart rate and decrease in 
blood pressure, generalized warmth, numbness of the facial 
area and dizziness (Wiezorek et al. 1968). TMB-4, up to 
30 mg/kg i.v. or i.m. (~ 2100 mg) resulting in a maximum 
concentration of ~ 200 µM, induced a delayed hypotension, 
other adverse effects were not reported (Calesnick et al. 
1967). These data indicate that higher than the recom-
mended initial obidoxime or TMB-4 doses could be toler-
ated in healthy volunteers while the available human data do 
not allow an estimation of the maximum tolerable 2-PAM 
and HI-6 dose.

Although oximes were tolerated well in healthy vol-
unteers, limited case reports hypothesize that the oximes 
2-PAM and obidoxime may have unexpected heart effects in 
OP poisoned patients. In two cases with suicidal OP poison-
ing heart arrest was attributed to administration of 2-PAM 
(Scott 1986; Jeong et al. 2015) and Finkelstein and cow-
orkers observed a high frequency of cardiac arrhythmias in 
patients treated with high dose obidoxime (Finkelstein et al. 
1989). However, these findings are not suited for a direct 
connection of oximes and pathological cardiac effects. It 
has to be mentioned that OP poisoning may result in severe 
effects on the cardiovascular system and adverse effects of 
other drugs such as atropine have to be considered. In fact, 
multiple studies demonstrated a variety of cardiac distur-
bances, e.g. prolonged QTc time, ventricular arrhythmia 
and Torsades de Pointes, in patients treated exclusively with 
atropine (Kiss and Fazekas 1979; Ludomirsky et al. 1982; 

Brill et al. 1984; Vijayakumar et al. 2011). In conclusion, 
a proper assessment of the toxicity of novel reactivators is 
essential and potential differences between healthy volun-
teers and OP poisoned patients have to be considered in the 
development and selection of new oximes.

Interim résumé

To this end, oximes are the only therapeutic option to over-
come the toxic effects of OP nerve agents and pesticides. 
Alternative approaches such as prevention of toxic OP con-
centrations in target tissues by stoichiometric and catalytic 
(bio)scavenger or antagonizing of downstream effects of 
acetylcholine at nicotinic receptors, e.g. by antinicotinics, 
are in an (early) experimental stage or not yet available as a 
licensed drug (Masson 2016; Tattersall 2016; Seeger et al. 
2011; Niessen et al. 2018). Under ideal conditions oximes 
may ensure survival by restoring neuromuscular transmis-
sion and may reverse other toxic effects, probably except 
of the CNS, in the early phase of OP poisoning. However, 
irrespective of the kinetic properties of an oxime the success 
of (ongoing) oxime therapy will strongly rely on additional 
factors, OP properties and dose, adequate atropine dosing, 
administration of anticonvulsants, rapid whole body decon-
tamination in case of percutaneous exposure, rapid gastric 
lavage after oral uptake and eventually intensive care treat-
ment including artificial ventilation. Hence, oximes cannot 
be considered as an independent treatment but are always 
part of a holistic therapeutic concept.

Novel reactivators

Oxime reactivators

In the past 10–15 years various research groups presented 
novel reactivators, primarily oximes (e.g. Fig. 2, compounds 
1–6) but more recently also non-oxime reactivators (e.g. 
Fig. 2, compounds 7 and 8). This research was directed to 
identify more effective broad spectrum reactivators and 
compounds which easily penetrate the blood–brain-barrier. 
Additional research is focused on reactivators with improved 
reactivating potency towards OP-inhibited butyrylcholinest-
erase (BChE) as a prerequisite to enable multiple reactiva-
tion—inhibition cycles of this enzyme and to reduce the 
OP concentration in blood more rapidly, these efforts were 
reviewed repeatedly and shall not be discussed in detail (cf. 
Kuca et al. 2006; Musilek et al. 2011; Mercey et al. 2012b; 
Korabecny et al. 2014; Sharma et al. 2015; Masson and 
Nachon 2017; Gorecki et al. 2017; Taylor et al. 2019; Kob-
rlova et al. 2019; Chambers and Meek 2020; Castro et al. 
2020).
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Some novel reactivators were considered promis-
ing by their inventors and deserve a more detailed 
evaluation. The bispyridinium oxime K203, [(E)-1-(4-
carbamoylpyridinium)-4-(4-hydroxyiminomethylpyri-
dinium)-but-2-ene dibromide], was initially considered as a 
universal reactivator of nerve agent-inhibited AChE (Kuca 
et al. 2015). However, in vitro tests with rat brain AChE 
revealed only a moderate reactivation of tabun-, sarin- and 
VX-inhibited AChE using an extraordinary high K203 con-
centration (1 mM) but virtually no activity against cyclosarin 
and Russian VX. In later studies, K203 was proposed as a 
superior reactivator of tabun-inhibited AChE and in fact it 
turned out that K203 was a better reactivator compared to 
obidoxime but still too weak with a second order reactivation 
rate constant of 0.92 mM−1 min−1 (Kuca et al. 2018; Gorecki 
et al. 2019; Winter et al. 2016).

Sit et al. presented a large series of uncharged, zwitteri-
onic oximes aimed to provide centrally acting reactivators 
(Sit et al. 2011). Among these, RS194B (Fig. 2, compound 
4) was considered as new lead compound but turned out 
to be a weak reactivator of paraoxon-, sarin-, cyclosarin-, 
VX- and tabun-inhibited human AChE and in most cases 
substantially less potent compared to 2-PAM (Radic et al. 
2012; Kovarik et al. 2013; Sit et al. 2018). Post-exposure 
therapy of OP poisoned mice by RS194B (125 mg/kg) and 
atropine (10 mg/kg) provided good protective ratios for par-
aoxon, sarin and VX (unfortunately, the protective ratios of 
atropine alone therapy were not provided for comparison) 
but had no effect with soman and tabun (Radic et al. 2012). 
In mice exposed to 0.75  LD50 sarin or VX s.c. 125 mg/
kg RS194B i.m. resulted only in a partial reactivation of 
blood AChE in VX poisoned mice which raises the ques-
tion whether the therapeutic effect of this oxime is related 
to AChE reactivation (Sit et al. 2018). In guinea pigs chal-
lenged with 0.85  LD50 nerve agents or pesticides RS194B 
(126 mg/kg in combination with 0.4 mg/kg atropine) had 
no convincing therapeutic effect (Wilhelm et al. 2014). In 
contrast, RS194B treatment of macaques after inhalation 
exposure to sarin and paraoxon resulted in substantial AChE 
reactivation and clinical improvement which may indicate 
substantial species differences in the effect of this oxime 
(Rosenberg et al. 2017, 2018).

French research groups presented a larger number of 
uncharged oximes which were in general less potent com-
pared to the lead oximes obidoxime and HI-6 (Mercey et al. 
2012a, b; Renou et al. 2013, 2014; Saint-Andre et al. 2011; 
Kliachyna et al. 2014; Zorbaz et al. 2018; Santoni et al. 
2018). Exceptions are shown in Fig. 2 with compounds 5 
and 6 having a comparable and in part higher reactivating 
potency compared to obidoxime and HI-6 (Mercey et al. 
2012a; Santoni et al. 2018). With compound 6 s order reac-
tivation constants > 10 mM−1 min−1 were determined with 
paraoxon-, sarin-, VX- and even tabun-inhibited human 

AChE. Unfortunately the use of this oxime will be most 
likely limited by a high intrinsic inhibitory potency towards 
native human AChE  (IC50 2.3 µM).

In general, there is a huge difference in the reactivating 
potency of oximes towards OP-inhibited human AChE and 
BChE, BChE being substantially more reactivation resist-
ant (Aurbek et al. 2009). In consequence a further line of 
research is directed to the identification of oxime structures 
with markedly improved reactivating potency towards OP-
inhibited human BChE with the ultimate goal to provide a 
system where plasma and tissue BChE is transferred to a 
pseudo-catalytic scavenger (Radic et al. 2013). Using dif-
ferent scaffolds charged and uncharged oximes were pre-
sented and showed in part a remarkable improvement in 
comparison to standard oximes (Sit et al. 2014; Katalinic 
et al. 2016; Zorbaz et al. 2019; Malinak et al. 2020). This 
approach is presumably of low relevance in case of poi-
soning by OP with short residence time such as sarin but 
may be beneficial in intoxications by persistent OP such as 
VX or lipophilic pesticides. Further studies are needed to 
investigate in detail potentially effective and tolerable con-
centrations and to assess whether the repeated reactivation 
of low, physiological BChE concentrations may result in a 
significant reduction of an OP concentration in the body. 
This is an important question which may be illustrated by a 
simplified calculation. Assuming a percutaneous exposure 
by 10 mg VX, resorption of 50% agent and a blood vol-
ume of 5 L would result in a concentration of ~ 3700 nmol/l 
VX. By taking a plasma BChE concentration of ~ 50 nmol/l 
(Nachon et al. 2013) and using an oxime with a rather rapid 
reactivation half-time of 1 min it may take up to 150 min to 
detoxify the agent. This example neglects dynamic processes 
such as ongoing agent resorption after percutaneous expo-
sure, distribution of agent into tissues and rapid clearance 
of the oxime after bolus injection but may point to the fact 
that the concept of pseudo-catalytic scavenging will require 
highly reactive BChE reactivators which are not available at 
present, will at best reduce the residence time of an OP but 
will not prevent severe toxic OP effects.

Non‑oxime reactivators

A recent approach is the search for non-oxime reactivators 
as an alternative to oxime-based reactivators. First, Katz and 
coworkers investigated the ability of the antimalarial drug 
amodiaquine and its analog ADOC (Fig. 2, compound 7) 
to reactivate paraoxon-, sarin- and DFP-inhibited human 
AChE and demonstrated reactivation by ADOC being 
superior compared to 2-PAM for all three OP (Katz et al. 
2015). Later, Bierwisch et al. found partial reactivation of 
VX-inhibited human AChE by amodiaquine but also pointed 
to the limitation of high intrinsic inhibitory potency of this 
compound (Bierwisch et al. 2016). The reactivating potential 
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of ADOC was verified with nerve agent-inhibited human 
AChE and selected ADOC analogues exhibited at least 
some reactivating potential (Cadieux et al. 2016). Different 
ADOC derivatives were synthetized by de Koning et al. and 
the Mannich phenol PADOC (Fig. 2, compound 8) demon-
strated a good reactivating effect towards paraoxon-, sarin-, 
cyclosarin- and VX-inhibited human AChE but failed with 
tabun-inhibited AChE (de Koning et al. 2018). The reactivat-
ing potency of PADOC was higher (paraoxon), comparable 
(VX) and lower (sarin, cyclosarin) compared to HI-6 (Horn 
et al. 2018). So far no convincing structure–activity-rela-
tionship could be derived for the available ADOC deriva-
tives but there seems to be a relationship between the ability 
to reactivate and the affinity towards native AChE which 
limits the maximum compound concentrations in vitro and 
potentially in vivo. Further research on non-oximes should 
not be limited to ADOC derivatives but should investigate 
a broader spectrum of scaffolds (Bhattacharjee et al. 2012, 
2015).

The challenging oxime development

The discovery of pralidoxime (2-PAM) in 1955 (Childs et al. 
1955; Wilson and Ginsburg 1955) and rapid implementation 
into clinical use (Namba and Hiraki 1958) was a milestone 
in the development of more effective therapies of OP poi-
soning. Surprisingly, this oxime, as well as obidoxime, was 
licensed in many countries for use in OP poisoning despite 
of a limited agent spectrum, unspecified therapeutic concen-
tration and largely unknown toxicity; it is hardly conceivable 
that these oximes would get a license under present regula-
tions having only the dataset of the late 1950s and early 
1960s. Extensive research was initiated in various Western 
countries and led to the synthesis of a countless number 
of oximes until end of the 1980s. Interest in new oximes 
increased again some 10–15 years ago, again leading to the 
publication of a huge number of oximes and more recently of 
non-oxime reactivators. Despite the discovery of thousands 
of compounds only five oximes, 2-PAM, obidoxime, HI-6, 
TMB-4 and MMB-4, synthesized between 1955 and 1968, 
are in use by civilian and military medical services or in 
advanced development (Worek and Thiermann 2013). The 
cause of this peculiar situation needs further consideration 
since it may impact the advanced development and transfer 
into clinical use of promising, new reactivators.

In the past six decades oxime research and develop-
ment was primarily funded by military organizations and 
was focused on improved therapies against nerve agents, 
primarily soman and tabun. The emphasis was put on the 
initial emergency treatment of military personnel by auto-
injectors and less on the follow-up therapy in military or 
civilian medical facilities. Accordingly, a huge number of 

studies on oxime effectiveness were performed using human 
autoinjector equivalents, thereby neglecting species depend-
ence. Moreover, Hamilton and Lundy pointed to the fact that 
the intended use in a military community should ease the 
licensing of a new oxime since there is no need to consider 
risk groups such as children, elderly and pregnant women 
(Hamilton and Lundy 2007). On the other hand, the focus 
on military use limits the procurement quantity and is not 
attractive for the pharmaceutical industry. In consequence, 
advanced development and licensing is performed by mili-
tary organizations which may be one reason for the long-
lasting process to develop new autoinjectors with HI-6 or 
MMB-4 as active ingredients (Lundy et al. 2011; Harvil-
chuck et al. 2013). In fact, the program for the development 
of a HI-6 autoinjector started more than 20 years ago in 
several European countries and Canada and of a MMB-4 
autoinjector more than a decade ago in the USA, both efforts 
are still in progress.

The selection and implementation of new and more effec-
tive oximes for treatment of OP pesticide poisoning faces 
different problems. Most intentional OP pesticide intoxica-
tions occur in developing countries having limited financial 
resources (Mew et al. 2017; Eddleston 2019). Despite a huge 
number of patients requiring effective medical treatment the 
ongoing controversy on the virtue of oximes (Blumenberg 
et al. 2018; Kharel et al. 2020), the difficulty in designing 
meaningful phase II clinical studies (Eddleston 2019) and 
the reluctance of the pharmaceutical industry to engage in 
oximes hampers a broader and optimized use of the estab-
lished oximes 2-PAM and obidoxime and makes intensi-
fied research on improved reactivators against OP pesticides 
unlikely.

Do we need better (oxime) reactivators?

The “big five”, 2-PAM, obidoxime, HI-6, TMB-4 and 
MMB-4, are afflicted with numerous disadvantages. Agent 
specific reactivating potency, limited agent spectrum, poor 
blood–brain-barrier penetration and limited stability are 
major issues and call for more effective reactivators.

Yes, we need better reactivators but the presently avail-
able database on reactivators presented in the past few years 
gives no indication of a candidate which is clearly superior 
to the classical oximes, especially to obidoxime and HI-6. 
One reason for this judgement is the lack of sufficient experi-
mental data. A summary of available reactivation constants 
of selected oximes is shown in Table 3. It exemplifies that 
even for these compounds, being considered by the authors 
as promising or even lead compounds, no complete data set 
on in vitro reactivation is available.
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In the end, limited resources require a structured, step-
wise approach and a comprehensive set of in vitro and 
in vivo studies for the successful identification and down-
selection of candidate reactivators (Table 4). In vitro reacti-
vation kinetics with human and animal AChE (and BChE) 
using a broad spectrum of OP is the basis for the initial 
selection of promising compounds, for the evaluation of 
potential species differences and for the estimation of thera-
peutic concentrations. In vivo efficacy studies, again using 
different animal species, multiple OP with different route of 
exposure, different treatment regimen and extensive moni-
toring of physiological, biochemical and clinical param-
eters as well as OP and oxime concentrations will allow 
a sound assessment of the therapeutic value of candidate 
reactivator(s) in experimental animals and will be the base 
for an initial extrapolation to humans. Additional studies 
such as pharmacokinetics, safety pharmacology and toxicity 
are mandatory to finalize the preclinical phase.

Phase I clinical studies are an essential component in 
the licensing process but human efficacy studies (Phase II) 
will be a specific challenge. For obvious ethical reasons it 
will never be possible to expose humans intentionally to 

nerve agents or pesticides. Hence, the way out could be 
the use of specific regulations for medical countermeasure 
drugs such as the US Federal Drug Administration animal 
rule (Aebersold 2012). Alternatively, one could envisage 
to test candidate reactivators in OP pesticide poisoned 
patients. This would only be ethical if such a compound 
has convincing reactivating potency towards AChE inhib-
ited by anticipated pesticides and would require a careful 
preselection of patients, e.g. exclusion of patients with 
mega dose poisoning or premature aging, i.e. a too long 
time-span between resorption and initial onset of oxime 
administration, to demonstrate the therapeutic efficacy.

Most likely it will not be possible to identify a single 
reactivator fulfilling all requirements, e.g. broad spectrum 
efficacy and blood–brain-barrier penetration. Combining 
two or more reactivators with an overlapping spectrum and 
desired properties could be an alternative or interim solu-
tion (Kovacevic et al. 1991). Various in vitro and in vivo 
studies demonstrated a beneficial effect of combination 
of appropriate oximes such as obidoxime and HI-6 or 
TMB-4 and HI-6 primarily by broadening the spectrum 
(Maksimovic and Kovacevic 1989; Clement et al. 1987; 

Table 3  Second order 
reactivation rate constants of 
selected novel oximes

Second order reactivation rate constants are given as  mM−1 min−1. Data are from a(Winter et  al. 2016), 
b(Kovarik et al. 2013), c(Sit et al. 2018), d(Mercey et al. 2012a), e(Santoni et al. 2018). GA tabun; GB sarin; 
GF cyclosarin; VR Russian VX; PXE paraoxon; MAL malaoxon. n.a. not available

Oxime GA GB GF VX VR PXE MAL

K203a 0.93 n.a 0.5 n.a n.a 3.6 n.a
RS194B 0.001b 1.3c 0.23c 1.6c n.a 0.05c n.a
Compound  5d 1.7 n.a n.a 20 n.a 19 n.a
Compound  6e 11.5 12.2 n.a 13.6 n.a 19.2 n.a

Table 4  Requirements for the investigation and down-selection of candidate oximes

Study phase Keystones Study types (examples)

Preclinical phase In vitro reactivation kinetics Human and animal AChE/BChE; multiple OP; species differences
Ex vivo pharmacodynamics Isolated organs (e.g. diaphragm)
In vivo efficacy Different animal species (guinea pig, swine, NHP); multiple OP; different route of OP exposure; 

single, multiple oxime injections; various oxime concentrations; different adjuncts; physi-
ological, biochemical, behavioral monitoring; OP & oxime concentrations; AChE & BChE 
activities

In vitro pharmacokinetics Cell culture; isolated organs (metabolism, blood–brain-barrier penetration)
In vivo pharmacokinetics Different animal species (guinea pig, swine, NHP); single, multiple oxime injections
In vitro toxicity Human and animal AChE / BChE (inhibition); cell culture (e.g. cytotoxicity, mutagenicity, 

carcinogenicity)
In vivo toxicity Different animal species (acute, subchronic, chronic toxicity)
Safety pharmacology Central nervous, cardiovascular, respiratory, gastrointestinal and renal system
Drug interactions In vitro and in vivo interactions with adjuncts (atropine, anticonvulsants)

Clinical phase Phase I Safety screening; adverse effects; pharmacokinetics (oxime alone and in combination with other 
antidotes)

Phase II Case reports; case series; randomized clinical trials (OP pesticides)
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Kassa et al. 2010, 2011a, b; Caisberger et al. 2018; Worek 
et al. 2007b, 2016a). This approach could be considered 
with (future) experimental reactivators by combining 
compound(s) with high reactivating potency and improved 
blood–brain-barrier penetration.

Conclusion and outlook

Despite long-lasting and extensive research on alternative 
therapies such as (bio)scavengers, oximes will remain a 
vital component for the treatment of OP poisoning. The 
oximes in use (“big five”) have well-known limitations and 
more effective reactivators being superior against a broad 
spectrum of OP nerve agents and pesticides, showing an 
improved blood–brain-barrier penetration and potentially 
offering the option to transform blood and tissue AChE 
and BChE into a pseudo-catalytic scavenger are needed. 
Up to now, none of the countless experimental oximes and 
non-oxime reactivators exhibit superior properties being 
suitable as replacement of established oximes.

Investigation of future reactivators should include stand-
ard nerve agents, nerve agent analogs, novel agents and pes-
ticides to evaluate the potential and the limitations for an 
as broad as possible agent spectrum. Identifying a reactiva-
tor or combination of reactivators with sufficient efficacy 
against all potential OP threat agents and conceivable sce-
narios should be the ultimate goal; however, its realization 
is not foreseeable.

Advanced development, licensing and procurement of 
candidate reactivators will depend on available resources 
and, in view of the experiences with HI-6 and MMB-4, 
will most likely be a longsome process. Hence, an interim 
solution could be the combination of established oximes 
with a complimentary spectrum such as obidoxime and 
HI-6 for the treatment of nerve agent poisoning.
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