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Abstract
Glyphosate (N-[phosphonomethyl]-glycine) is the most widely used herbicide worldwide. Due to health concerns about 
glyphosate exposure, its continued use is controversially discussed. Biomonitoring is an important tool in safety evaluation 
and this study aimed to determine exposure to glyphosate and its metabolite AMPA, in association with food consumption 
data, in participants of the cross-sectional KarMeN study (Germany). Glyphosate and AMPA levels were measured in 24-h 
urine samples from study participants (n = 301). For safety evaluation, the intake of glyphosate and AMPA was calculated 
based on urinary concentrations and checked against the EU acceptable daily intake (ADI) value for glyphosate. Urinary 
excretion of glyphosate and/or AMPA was correlated with food consumption data. 8.3% of the participants (n = 25) exhib-
ited quantifiable concentrations (> 0.2 µg/L) of glyphosate and/or AMPA in their urine. In 66.5% of the samples, neither 
glyphosate (< 0.05 µg/L) nor AMPA (< 0.09 µg/L) was detected. The remaining subjects (n = 76) showed traces of glyphosate 
and/or AMPA. The calculated glyphosate and/or AMPA intake was far below the ADI of glyphosate. Significant, positive 
associations between urinary glyphosate excretion and consumption of pulses, or urinary AMPA excretion and mushroom 
intake were observed. Despite the widespread use of glyphosate, the exposure of the KarMeN population to glyphosate and 
AMPA was found to be very low. Based on the current risk assessment of glyphosate by EFSA, such exposure levels are not 
expected to pose any risk to human health. The detected associations with consuming certain foods are in line with reports 
on glyphosate and AMPA residues in food.
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Introduction

Glyphosate (N-[phosphonomethyl]-glycine; Fig. 1) is a 
broad-spectrum herbicide most frequently used as the active 
ingredient in agricultural formulations worldwide. In 2014, 
the global use of glyphosate-based formulations was approx-
imately 825,000 tons applied to a total area of about 400 
million hectares worldwide (Benbrook 2016). Glyphosate 
is widely used in agriculture for various purposes, not only 
weed control but also reduced soil tillage, seed bed prepara-
tion, stubble management, and pre-harvest application (des-
iccation). Pre-harvest treatment is used for cereals, rapeseed, 
and pulses to reduce weed density as well as grain moisture 
content to achieve faster and more uniform maturation.

Glyphosate inhibits 5-enolpyruvylshikimate 3-phos-
phate synthase, a key enzyme in the biosynthetic pathway 
of essential aromatic amino acids, which consequently 
strongly affects protein biosynthesis in plants and limits their 
growth. Aminomethylphosphonic acid (AMPA; Fig. 1) is 
the main metabolite of glyphosate in the environment and 
is formed by microbial degradation in the soil (Franz et al. 
1997). In the US, an actual chronic population adjusted dose 
(cPAD) of 1.0 mg/kg body weight (BW)/day for glyphosate 
was established by the Environmental Protection Agency 
(EPA), derived from a maternal no-observed-adverse-effect 
level (NOAEL) of 100 mg/kg BW/day from a pre-natal 
developmental toxicity study in rabbits and by applying an 
uncertainty factor (UF) of 100 (EPA 2018). In the EU, the 
acceptable daily intake (ADI) of glyphosate is 0.5 mg/kg 
BW/day, based on the maternal and developmental NOAEL 
of 50 mg/kg BW/day from a developmental toxicity study in 
rabbits and by applying a standard UF of 100 (EFSA 2015). 
The acute reference dose (ARfD) is 0.5 mg/kg BW, based 
on the NOAEL of 50 mg/kg BW/day from a developmental 
toxicity study in rabbits, due to the occurrence of severe 
toxicity including mortality observed in pregnant rabbits and 
the increased incidence of post-implantation losses observed 
in two out of seven developmental toxicity studies in rabbits, 
and by applying an UF of 100 (EFSA 2015).

Humans may be exposed to glyphosate in occupational 
as well as environmental settings (OCSPP, Office of Chemi-
cal Safety and Pollution Prevention 2017) through various 
routes such as food and drinking water. Foods with potential 
higher glyphosate residue levels include some dried pulses 

and some cereals (EFSA 2018). In the EU, this is in part 
reflected by higher glyphosate maximum residue levels 
(MRLs), such as for oats (20 mg/kg), barley (20 mg/kg), 
wheat (10 mg/kg), lentils (10 mg/kg), beans (2 mg/kg), peas 
(10 mg/kg), and canola seeds (10 mg/kg) (EU, European 
Union 2013).

Valid data on the extent of human exposure to glypho-
sate in the general population are essential for scientifically 
substantiated risk assessments. Human exposure can be 
monitored by measuring the urinary levels of glyphosate 
and AMPA, although the available data sets are very limited 
in number (Gillezeau et al. 2019). EFSA reported that pub-
lished glyphosate levels in human urine samples resulting 
from dietary intake of glyphosate represented 0.1–0.66% of 
the ADI, while the maximum levels of AMPA in human 
urine samples were estimated to remain below 0.1% of the 
ADI (EFSA 2015). Interestingly, there was no direct correla-
tion between glyphosate and AMPA (EFSA 2015).

Regarding human exposure to glyphosate in Germany, 
only one report in a peer-reviewed journal could be iden-
tified. The German Environment Agency (Umweltbunde-
samt) monitored glyphosate and AMPA levels in 24-h urine 
samples from young adults between 2001 and 2015 with 
a GC-MS/MS technique (Conrad et al. 2017). The urinary 
concentrations of glyphosate and AMPA were at or above 
the limit of quantitation (0.1 µg/L in both cases) in about 
32 and 40% of the 399 samples analyzed (15 samples each 
year), respectively. The maximum values were 2.80 µg 
glyphosate/L and 1.88 µg AMPA/L, both of them measured 
in samples from 2013. With regard to studies from addi-
tional countries dealing with human exposure to glyphosate, 
we refer to the current review of Gillezeau et al. (2019). 
This review listed three studies investigating the association 
between glyphosate/AMPA exposure and food consumption 
or dietary pattern in the general population (no occupational 
exposure) (Knudsen et al. 2017; McGuire et al. 2016; Parvez 
et al. 2018). The number of participants in these three stud-
ies was between 27 and 71, and one of the studies (McGuire 
et al. 2016) only examined the differences in urinary glypho-
sate and AMPA concentrations between subjects consum-
ing organic and conventionally grown food. Thus, urinary 
glyphosate/AMPA measurements in a well-characterized 
study population with available data regarding food con-
sumption are lacking.

To fill this gap, we performed further analyses in bio-
logical samples from volunteers who participated in the 
cross-sectional Karlsruhe Metabolomics and Nutrition (Kar-
MeN) study. The KarMeN study was conducted at the Max 
Rubner-Institut in Karlsruhe, Germany. The main aim was 
to characterize the blood plasma and urine metabolome of 
healthy women and men (range 18–80 years) by targeted and 
non-targeted metabolite profiling, and to assess the influence 
of sex, age, body composition, diet, and physical activity on 

Fig. 1  Chemical structures of glyphosate (N-[phosphonomethyl]-glycine)  
and aminomethylphosphonic acid (AMPA)
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the metabolite profiles of the participants (Armbruster et al. 
2018; Biniaminov et al. 2018; Bub et al. 2016; Krüger et al. 
2017; Mack et al. 2018; Merz et al. 2018; Rist et al. 2017).

The main objective was to determine the glyphosate 
exposure of a metabolically very well-characterized popu-
lation of around 300 participants in association with food 
consumption data collected via a 24-h dietary recall.

Materials and methods

Study design

The KarMeN Study was a cross-sectional study conducted 
at the Max Rubner-Institut in Karlsruhe, Germany, between 
2012 and 2013, aiming to determine the impact of a num-
ber of factors on the human metabolome in healthy men 
and women. Study design and examination procedures were 
described in detail elsewhere (Bub et al. 2016). In brief, a 
total of 312 volunteers aged 18–80 years were recruited. 
Exclusion criteria were smoking, acute or regular medica-
tion including hormonal contraceptives for women, illness 
requiring treatment, supplement use and, additionally, preg-
nancy or breast-feeding. Each individual visited the study 
center three times for detailed characterization (Bub et al. 
2016). The study was registered at the German Clinical 
Trials Register (No. DRKS00004890) and conducted after 
its approval by the local ethics committee (State Medi-
cal Chamber of Baden-Württemberg, Stuttgart, Germany, 
F-2011-051), according to the guidelines of the Declaration 
of Helsinki. All participants gave written informed consent 
prior to participating in the study.

24‑h urine collection

Participants were examined by trained study personnel 
according to standard operating procedures, and anthropo-
metric, clinical, and functional parameters were assessed 
(Bub et al. 2016). Participants collected their urine for 24 h 
on the day prior to their examination including the first morn-
ing urine. Collection bottles were stored in a refrigerator or in 
cool bags with cooling pads for transportation. Upon delivery 
of the collected 24-h urine samples to the study center, the 
volume was recorded, 2 × 14 mL were centrifuged at 1850×g 
at 20 °C and aliquoted into small portions. All samples were 
initially frozen at −20 °C for 1 day and then cryopreserved 
in liquid nitrogen at −196 °C until analysis.

Glyphosate and AMPA measurements in 24‑h urine 
samples

Glyphosate and AMPA were quantified in the 24-h urine 
samples by LC-MS/MS according to the method of Jensen 

et  al. (2016) with the following minor modifications. 
13C2,15N-glyphosate (precursor/product ion transitions: 
171/63 and 171/126) instead of 13C3,15N-glyphosate was 
used as the internal standard. Matrix-matched calibration 
samples instead of calibration standards in pure solvent were 
prepared for quantitation. For this purpose, a mixture of two 
analyte-free urine samples was used. To reach the final target 
concentration of 0.1% formic acid (v/v) in all samples at 
the end of the sample preparation, the working calibration 
standard solutions (glyphosate and AMPA) as well as the 
working internal standard solution  (D2,13C,15N-AMPA and 
13C2,15N-glyphosate) were prepared in 1.3% (v/v) formic 
acid in water.

Glyphosate and  D2,13C,15N-AMPA (both purchased from 
Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) as 
well as AMPA and 13C2,15N-glyphosate (both purchased 
from LGC Standards GmbH, Wesel, Germany) were 
obtained as aqueous solutions (certified reference mate-
rial). The LC-MS/MS analyses were performed on a QTrap 
5500 mass spectrometer (AB Sciex, Darmstadt, Germany) 
equipped with a Nexera LC system (Shimadzu, Duisburg, 
Germany).

After establishing the method, verification of the valida-
tion parameters (accuracy, precision, matrix effect, linear-
ity, limit of detection [LOD], limit of quantitation [LOQ], 
and selectivity) was performed. The results are summarized 
in the Supplemental Material: verification of validation 
parameters.

Dietary assessment

Trained study personnel assessed the food consumption of 
each individual (in g/day) on two non-consecutive days at 
least 2 weeks apart in a personal and telephone interview 
using 24-h dietary recalls with the validated software EPIC-
Soft (Slimani et al. 1999, 2000). The first 24-h recall covered 
the same period as the 24-h urine sample collection. Partici-
pants used standard units (e.g. a slice of bread), household 
measurements (e.g. a tablespoon), and a picture booklet 
providing photographs of portion sizes for various foods to 
indicate the consumed amount per meal.

Based on the national reports on residues of plant pro-
tection products between 2011 and 2017 from the Federal 
Office of Consumer Protection and Food Safety (BVL) 
in Germany, we identified foods that were reported to be 
considerably contaminated with glyphosate and/or AMPA, 
including pulses (dried lentils, dried peas, and dried beans), 
cereals (wheat, rye, and buckwheat), soy, mushrooms, and 
honey (BVL 2013, 2014, 2015, 2016, 2017, 2018, 2019). 
The data basis used for this evaluation is based on the 
analysis results submitted to the BVL from the Federal 
States (Länder). Since a number of German beers were 
reported to contain significant levels of glyphosate (Munich 
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Environmental Institute 2016, 2017), beer was also included 
in the further analyses. These foods, except cereals, which 
were grouped under the term “bread”, were then aggre-
gated into food groups for further analyses (Supplementary 
Table 1).

Statistical analyses

The values of the urinary concentrations of glyphosate and 
AMPA below LOD were set to zero. Values between LOD 
and LOQ (defined as traces) were considered as determined 
by a measurement; since they were lower than LOQ, these 
values are associated with a higher uncertainty. However, 
the advantage of using these real values instead of possibly 
replacing them by some imputation technique is that the 
ranks of the values are retained. This is important in our 
case, since Spearman rank correlation analyses were also 
used (see below).

To calculate the 24-h urinary excretion of glyphosate and 
AMPA, the measured urine concentrations were multiplied 
by the corresponding recorded 24-h urine volume of each 
participant.

Spearman correlation analyses were used to investigate 
the association between current (past 24 h) consumption of 
food groups and the concurrent 24-h urinary excretion of 
glyphosate, AMPA, or their sum. The Benjamini–Hochberg 
method was applied to adjust for multiple testing (Benjamini 
and Hochberg 1995). The Mann–Whitney-U test was used 
to test differences between consumers (> 0 g/day reported 
consumption) and non-consumers (0 g/day reported con-
sumption) regarding the food groups of interest. Sensitivity 
analyses including covariate age and sex in partial Spearman 
correlation analyses were performed to investigate the effect 
of these covariates on the observed associations. Since the 
glomerular filtration rate was not associated with the excre-
tion of glyphosate and AMPA metabolites in urine (data not 
shown), this variable was not included. All statistical analy-
ses were performed using software SAS Version 9.4 (SAS 
Institute, Cary, NC, USA) with p values < 0.05 considered 
statistically significant.

Toxicological safety evaluation

To estimate extent by which the current ADI value for 
glyphosate (0.5 mg/kg BW/day) in the European Union 
(EFSA 2015) is exhausted in our study population, the 
intake of glyphosate was calculated by assuming the fol-
lowing: about 20% of the ingested glyphosate is absorbed, 
glyphosate absorption occurs rapidly, the absorbed glypho-
sate is poorly metabolized and rapidly eliminated via 
urine, showing no potential for bioaccumulation (EFSA 
2015). Hence, the 24-h urinary excretion data of glypho-
sate and AMPA were multiplied by 5 and divided by the 

corresponding body weight to calculate the intake of 
glyphosate per kg BW for each study participant. EFSA 
(2015) reported that AMPA shows a toxicological profile 
similar to glyphosate, thus additional calculations were 
also performed in a similar way for AMPA, as well as for 
the sum of glyphosate and AMPA.

Results

Study population

We excluded 11 individuals due to acute medication or ill-
ness requiring treatment. The study population analyzed 
included 301 individuals, 172 men (57.1%), and 129 women 
(42.9%) with a mean age of 44.4 and 51.7 years, respec-
tively. The anthropometric data of the study population are 
shown in Table 1. Quantitative information about consump-
tion of the food groups of interest is given in Supplementary 
Table 2.

Glyphosate and AMPA exposure

To determine the glyphosate and AMPA exposure in the 
study population, urine samples collected over 24 h were 
analyzed by a validated LC–MS/MS method. In 66.5% 
of the study population samples, neither glyphosate 
(LOD = 0.05  µg/L) nor AMPA (LOD = 0.09  µg/L) was 
detected (from now on called subgroup 1). Traces (values 
between LOD and LOQ) of glyphosate and/or AMPA were 
detected in 25.2% of the participants (subgroup 2). Only 
8.3% of the subjects exhibited glyphosate and/or AMPA 
levels above the LOQ (LOQ = 0.2 µg/L for glyphosate and 
AMPA), the maximum concentrations measured being 1.36 
and 1.53 µg/L, respectively (subgroup 3). The distribu-
tion and descriptive statistics of the measured glyphosate 
and AMPA urine concentrations revealed that participants 
with detectable levels of glyphosate (≥ 0.05 µg/L, n = 93) 
exhibited glyphosate urine concentrations with a median 
of 0.11 µg/L, an arithmetic mean of 0.16 µg/L and a range 
from 0.05 to 1.36 µg/L. The participants with detectable 
levels of AMPA (≥ 0.09 µg/L, n = 31) showed urine con-
centrations with a median of 0.14 µg/L, an arithmetic mean 
of 0.20 µg/L, and a range from 0.09 to 1.53 µg/L (Fig. 2; 
Table 2).

The mean glyphosate and AMPA 24-h urinary excre-
tion rates were 0.103 ± 0.175 and 0.052 ± 0.149 µg/24 h for 
men in subgroups 2 and 3, respectively, and 0.070 ± 0.172 
and 0.007 ± 0.035 µg/24 h for women in subgroups 2 and 
3, respectively (Table  1). A weak positive correlation 
(rho = 0.32, p < 0.0001, Supplementary Fig. 1) between the 
excreted amounts of glyphosate and the excreted amounts of 
AMPA was observed.
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Toxicological safety evaluation

Intakes of glyphosate, AMPA, and the sum of both were 
calculated to provide potential data about toxicology. In the 
case of glyphosate, the maximum intake level in our study 
population was 0.063 µg/kg BW, which corresponds to a 

0.13‰ exhaustion of the ADI value. Another participant 
showed a maximum intake of AMPA of 0.057 µg/kg BW 
(0.11‰ exhaustion of the ADI value) and also exhibited 
the maximum intake of the sum of glyphosate and AMPA 
(0.079 µg/kg BW; 0.16‰ exhaustion of the ADI value) 
(Fig. 3).

Table 1  Anthropometric data and 24-h urinary excretion rates of glyphosate and AMPA

The KarMeN study population (women + men) was divided into three subgroups, depending on whether glyphosate and/or AMPA was detected 
in the collected urine  samplesa

a Subgroup 1: neither glyphosate nor AMPA were detected. Subgroup 2: traces of glyphosate and/or AMPA were detected. Subgroup 3: glypho-
sate and/or AMPA levels were above the limit of quantitation
b Values are given as arithmetic mean ± standard deviation or percentage
c Chi-square test was used for categorical data, linear regression models were used to test a linear trend across subgroups
d n.d. not detected

Variableb Subgroup 1 (n = 200) Subgroup 2 (n = 76) Subgroup 3 (n = 25) plinear trend
c

Percentage of study population (%) 66.5 25.2 8.3
Age (years) 49.0 ± 16.0 46.2 ± 19.0 39.6 ± 17.0 0.0088
Body mass index (kg/m2) 23.7 ± 2.7 24.3 ± 3.2 23.9 ± 2.9 0.8124
Men in each subgroup (%) 50.5 69.7 72.0 0.0046
Glyphosate (µg/24 h) n.d.d 0.206 ± 0.142 0.446 ± 0.269  < 0.0001
Maximum n.d 0.759 1.088
Minimum n.d n.d n.d
AMPA (µg/24 h) n.d 0.063 ± 0.127 0.202 ± 0.281  < 0.0001
Maximum n.d 0.489 1.012
Minimum n.d n.d n.d

Fig. 2  Distribution of the measured glyphosate and AMPA urine concentrations in the study population. The numbers displayed at the top of the 
columns are the number of samples per column
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Associations between urinary glyphosate 
and/or AMPA excretion and concurrent food 
consumption

A positive Spearman correlation between the consumption of 
pulses and urinary glyphosate excretion (rho = 0.26, p < 0.0001) 

and between the consumption of mushrooms and urinary 
AMPA excretion (rho = 0.18, p = 0.0102) was observed. Fur-
thermore, the sum of glyphosate and AMPA excretion was 
significantly associated with the consumption of pulses in 
our study population (rho = 0.24, p = 0.0003) (Table 3). The 
observed results were independent of age and sex, since adjust-
ments for age and sex did not substantially alter the observed 
correlation coefficients (Supplementary Table 3).

Comparing consumers and non-consumers of selected 
food groups also revealed a significant correlation between 
the consumption of pulses and glyphosate excretion as well as 
between the consumption of mushrooms and AMPA excretion 
(Table 4, Supplementary Table 4; Supplementary Figs. 2–4).

Discussion

Glyphosate and/or AMPA were detected in around 1/3 
of the KarMeN study population, with urine concentra-
tions of up to 1.36 µg/L for glyphosate and 1.53 µg/L for 

Table 2  Descriptive statistics of the measured glyphosate and AMPA 
urine concentrations

Only the participants with detectable levels of glyphosate 
(≥ 0.05  µg/L urine) or AMPA (≥ 0.09  µg/L urine) were taken into 
account. For the calculations, the values for traces (values between 
LOD and LOQ) were used as determined in the measurement instead 
of replacing them by imputation techniques (for more information see 
“Statistical analyses”)

Analyte Number of 
considered 
participants

Median 
(µg/L 
urine)

Arithmetic 
mean  
(µg/L urine)

Range  
(µg/L urine)

Glyphosate 93 0.11 0.16 0.05 – 1.36
AMPA 31 0.14 0.20 0.09 – 1.53

Fig. 3  Calculated intakes of glyphosate (circle), AMPA (diamond), and the sum of both (square) in the study population. In each diagram, only 
the participants with detectable levels are displayed

Table 3  Spearman correlation 
coefficients and corresponding  
p values of associations between 
24-h urine metabolite excretion 
and consumption of specific 
food groups

Significant correlations are marked in bold; reported p values are corrected for multiple testing

Food group  
(g/day)

Glyphosate  
(µg/24 h)

AMPA  
(µg/24 h)

Sum glyphosate +  
AMPA (µg/24 h)

rho p rho p rho p

Honey 0.09 0.4758 − 0.05 0.7769 0.05 0.7769
Pulses 0.26  < 0.0001 − 0.01 0.9188 0.24 0.0003
Mushrooms − 0.06 0.7769 0.18 0.0102 0.01 0.9188
Bread 0.05 0.7898 0.03 0.9013 0.03 0.3013
Beer − 0.08 0.6866 0.03 0.9013 − 0.04 0.8880
Soy products 0.01 0.9188 0.02 0.9188 − 0.002 0.9725
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AMPA: median and arithmetic mean glyphosate urine 
levels were 0.11 µg/L and 0.16 µg/L (only for participants 
with ≥ 0.05 µg/L, n = 93), and median and arithmetic mean 
AMPA urine levels were 0.14 µg/L and 0.20 µg/L (only 
for the participants with ≥ 0.09 µg/L, n = 31). In general, 
these results support outcomes from two previous studies 
with fewer participants in Europe. In one of those study in 
Germany in 2013, the same year as the KarMeN study, the 
maximum glyphosate and AMPA concentrations in 24-h 
urine samples (n = 39) were 2.80 µg/L (median: 0.11 µg/L) 
and 1.88 µg/L (median: < LOQ) (Conrad et al. 2017). More 
recently, Connolly et al. (2018) reported glyphosate levels 
of up to 1.35 µg/L (median: 0.87 µg/L, based on 10 out of 50 
samples with > 0.5 µg/L) in spot urine samples from 50 Irish 
adults. By comparison, exposure to glyphosate seems to be 
somewhat higher in the US, where glyphosate concentra-
tions of up to 7.20 µg/L (median 3.25 µg/L, mean 3.40 µg/L, 
n = 71) were recently reported in spot urine samples from 
pregnant women (Parvez et al. 2018). In conclusion, the 
measured urinary concentrations of glyphosate and AMPA 
in our study were in the lower range, and the estimated 
glyphosate and AMPA intake levels were clearly below the 
ADI value valid in the EU.

The second task of our study was to unravel possible 
associations between glyphosate and AMPA exposure lev-
els and food consumption. Among the various food groups 
tested, significant associations were found for pulses and 
mushrooms. The significant correlation detected between 
the consumption of pulses and the excretion of glyphosate 
(p < 0.0001), as well as that of the sum of glyphosate and 
AMPA (p = 0.0003) may be a consequence of glyphosate 
being used as a pre-harvest desiccant (Benbrook 2016), 
which is allowed in various countries such as Canada, and 
also in the EU. Here it is applied to reduce the moisture 
content of harvested seeds and for perennial weed control. 
Glyphosate is administered only a few days before harvest, 
which may result in higher glyphosate and AMPA residues. 
Studies that measured glyphosate residues in diverse food 
items show that pulses and their products are always in the 
group with the highest glyphosate load (BVL 2013, 2014, 
2015, 2016, 2017, 2018, 2019; Stephenson et al. 2018; 

Zoller et al. 2018). However, in almost all cases, the meas-
ured residues were below the legally tolerated maximum 
residue levels (MRLs), which in the case of lentils (dry) was 
raised from 0.1 mg/kg to 10 mg/kg in 2012 in the EU (EFSA 
2012; European Union (EU) 2012).

The mean consumption of pulses in KarMeN participants 
in subgroup 3 was 18.8 g/day. Since most individuals in 
Western countries do not consume pulses every day, expo-
sure to glyphosate by habitual consumption is expected to 
be much lower. Yet, dietary recommendations worldwide 
recommend increasing the consumption of pulses due to 
their health benefits and environmental sustainability (FAO 
2016). Pulse consumption may thus increase and in turn lead 
to higher glyphosate exposure levels, although even then 
critical exposure levels may not be reached. Although the 
correlation of glyphosate excretion with the consumption of 
pulses is interesting and explainable, the findings should be 
interpreted with care, since it is only based on a low number 
of consumers with an appreciable pulse consumption within 
the KarMeN study.

The consumption of mushrooms correlated significantly 
with urinary AMPA excretion rates, but not with urinary 
glyphosate excretion rates, which is in line with National 
Reports on Plant Protection Product Residues of the Fed-
eral Office of Consumer Protection and Food Safety (BVL) 
in Germany (BVL 2013, 2014, 2015, 2016, 2017, 2018, 
2019). These reports stated that AMPA, but not glyphosate, 
was almost exclusively detected in contaminated mush-
rooms. The majority of mushrooms consumed are button 
mushrooms, most likely cultivated button mushrooms, 
which are grown on a substrate commonly consisting of 
cereal straw in combination with dung. Cereals have been 
reported to be contaminated with glyphosate (BVL 2013, 
2014, 2015, 2016, 2017, 2018, 2019; Stephenson and Har-
ris 2016; Stephenson et al. 2018); thus, the resulting straw 
of contaminated cereals may contain significant amounts of 
glyphosate residues. A (microbial) degradation of glypho-
sate to AMPA in this substrate (Sviridov et al. 2015) with 
subsequent absorption of AMPA by the cultivated mush-
rooms could be a potential pathway leading to the observed 
associations.

Table 4  Mann–Whitney U test  
statistics (p values) for 
comparing 24-h urinary 
glyphosate and AMPA excretion 
rates between consumers and 
non-consumers of selected food 
groups

Significant differences are marked in bold

Food group (g/day) Glyphosate (µg/24 h) AMPA (µg/24 h) Sum glyphosate + AMPA
(µg/24 h)

Honey 0.0998 0.3106 0.3400
Pulses  < 0.0001 0.8852  < 0.0001
Mushrooms 0.3379 0.0016 0.8342
Bread 0.6278 0.9314 0.5012
Beer 0.1227 0.5525 0.3784
Soy products 0.8286 0.7515 0.9660
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No statistically significant associations between the excre-
tion rates of either glyphosate or AMPA and the consumption 
of beer or bread could be observed in the KarMeN study. 
Unlike pulses and mushrooms, where potentially contami-
nated foods are consumed directly, bread and beer are prod-
ucts based on potentially contaminated cereals, which in turn 
may result in reduced contamination of the consumed foods. 
Furthermore, it is possible that the glyphosate concentra-
tions in the 24-h urine samples were too low to be detected, 
considering the reported glyphosate concentrations for beer 
(Munich Environmental Institute 2016, 2017) in combination 
with the consumed quantity (mean consumption of 489 mL/
day in the case of beer consumers) and the postulated absorp-
tion rate of 20% for glyphosate (EFSA 2015).

The same explanation might be true for honey and soy 
product consumption, where no significant association 
could be observed. While potentially contaminated honey 
is commonly consumed in small amounts (mean consump-
tion of honey by consumers in the KarMeN study = 13.8 g/
day), the resulting dietary glyphosate exposure is rather low. 
Furthermore, soy is rarely consumed directly and mostly as 
processed soy products such as tofu or soy drinks. Thus, a 
dilution effect might occur in the case of soy as postulated 
for beer and bread.

Our study has several strengths. First, we determined 
glyphosate exposure in a large number of very well-char-
acterized participants. Second, rather than using spot urine 
samples, we collected 24-h urine samples and thus moni-
tored the complete excretion of both glyphosate and AMPA 
using a validated analytical LC–MS method with isotopi-
cally labelled standards. Third, urine collection could be 
related to a concurrent 24-h dietary recall.

One could argue that a limitation of our study is that the 
dietary recall data did not provide information about whether 
conventional or organic foods were consumed. Organic 
foods have lower levels of pesticide residues. For example, 
in a Swiss study, 86% of the organic food samples showed 
no detectable glyphosate residues (Zoller et al. 2018). In 
consequence, exposure to pesticides including glyphosate 
can be anticipated to be considerably lower when mainly 
organic foods are consumed (Hyland et al. 2019).

In conclusion, although glyphosate is one of the most 
widely used pesticides worldwide, the exposure of healthy 
adult individuals to this pesticide in our study was very low. 
However, some food items, such as pulses, which are occa-
sionally subjected to a pre-harvest treatment with glypho-
sate, contribute higher residue levels to the food basket, 
leading to higher excretion levels in adults consuming high 
amounts of such foods. The data presented in this study dem-
onstrate that political decisions on permitted quantities and 
allowed agricultural uses/applications of pesticides might 
have a direct impact on individual exposure levels, despite 
a generally very low background of exposure.
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