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Abstract
The uncertainty regarding the safety of chemicals leaching from food packaging triggers attention. In silico models provide 
solutions for screening of these chemicals, since many are toxicologically uncharacterized. For hazard assessment, informa-
tion on developmental and reproductive toxicity (DART) is needed. The possibility to apply in silico toxicology to identify 
and quantify DART alerts was investigated. Open-source models and profilers were applied to 195 packaging chemicals 
and analogues. An approach based on DART and estrogen receptor (ER) binding profilers and molecular docking was able 
to identify all except for one chemical with documented DART properties. Twenty percent of the chemicals in the database 
known to be negative in experimental studies were classified as positive. The scheme was then applied to 121 untested 
chemicals. Alerts were identified for sixteen of them, five being packaging substances, the others structural analogues. Read-
across was then developed to translate alerts into quantitative toxicological values. They can be used to calculate margins 
of exposure (MoE), the size of which reflects safety concern. The application of this approach appears valuable for hazard 
characterization of toxicologically untested packaging migrants. It is an alternative to the use of default uncertainty factor 
(UF) applied to animal chronic toxicity value to handle absence of DART data in hazard characterization.

Keywords Developmental and reproductive toxicity · Endocrine activity · Food contact chemicals · In silico · Read-across · 
Structural alert

Introduction

The uncertainty regarding the safety of food contact mate-
rials (FCM) has triggered increasing public, scientific and 
regulatory attention. The most consistent data gap deals with 
migrating substances, which originate from impurities in 
starting raw materials and from reaction and degradation 
products formed during material manufacture (the so-called 
Non-intentionally Added Substances, NIAS). For many of 

these chemicals, no toxicological data is available, and there-
fore, to assess their potential health risk is highly challeng-
ing. Schilter et al. (2014) developed an approach to estab-
lish the level of safety concern of chemicals lacking toxicity 
data. This approach, allowing to prioritize toxicologically 
untested chemicals, requires quantitative prediction of toxi-
cological endpoints as well as exposure estimate to calculate 
a margin of exposure (MoE). Up to now it has only relied 
on prediction of chronic toxicity (such as from 2-year rodent 
studies), which in general constitutes the most sensitive end-
point (Kroes et al. 2000). However, for a complete hazard 
assessment, information on developmental and reproductive 
toxicity (DART) is also needed (such as obtained from two-
generation and teratogenicity studies).

DART includes a number of adverse outcomes, such as 
abnormalities in fetal growth, fetal death, structural dysmor-
phogenesis, reproductive impairments and cognitive dys-
functions. Importantly, the occurrence of maternal toxicity 
increases the complexity of the interpretation of such end-
points, since it may indirectly induce developmental effects 
(Marzo et al. 2016). Experimental research has suggested 
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that DART may be elicited by a diversity of mechanisms 
(Wu et al. 2013), although for most chemicals known to 
produce such types of effects, exact mechanisms of action 
are not fully elucidated (National Research Council 2000). 
Activation or/and inhibition of hormone nuclear receptors 
are well described mechanisms of action of certain endo-
crine disruptors and are considered as highly plausible 
molecular initiating events involved in chemical-induced 
DART (National Research Council 2000; UNEP/WHO 
2013). Indeed, hormonal systems play major roles in normal 
developmental processes and interfering with these during 
critical windows of development is known to often result in 
permanent adverse effects later in life (UNEP/WHO 2013). 
Therefore, endocrine activity such as through nuclear recep-
tor interaction can be considered as a strong alert for DART.

In absence of appropriate DART data, the use of uncer-
tainty factors (UF) (3 or 10) to be applied to chronic animal 
no observed adverse effect level (NOAEL) has been recom-
mended by governmental bodies, i.e., the US Environmental 
Protection Agency (EPA). In other framework, the size of 
such factor has been revised based on the level of incom-
pleteness of available toxicological databases, e.g., when 
chronic NOAEL is available only in one species (Gadagbui 
et al. 2005). More recently, Blackburn et al. (2015) proposed 
that the results of in silico models [i.e., the DART decision 
tree developed by Wu et al. (2013)] could be valuable in 
informing the appropriate magnitude of uncertainty regard-
ing developmental and reproductive toxicity.

The present work investigates the possibility to apply in 
silico toxicology to identify and quantify alert for DART 
with the ultimate aim to avoid the systematic application of 
conservative default UF to handle absence of experimental 
DART data in hazard characterization.

Publicly available predictive in silico tools exist, e.g., 
models implemented in the VEGA platform (www.vegah 
ub.eu) and in the OECD QSAR Toolbox profilers (www.
qsart oolbo x.org/). Some of them address developmental tox-
icity only, others combine developmental and reproductive 
toxicity, while several refer to endocrine potential (i.e., estro-
genic and androgenic potential) (Roncaglioni et al. 2008; 
Cassano et al. 2010; Marzo et al. 2016; Porta et al. 2016; 
Manganelli et al. 2019). However, they often only give a 
qualitative information related to the presence or absence of 
DART alert. This approach is suitable for hazard identifica-
tion (identification of intrinsic properties of a chemical to 
cause harm) but it does not provide any information about 
hazard characterization (how much is needed to trigger a 
toxic effect) and even less on its potential health risk. Moreo-
ver, some models have a quite restricted domain of applica-
bility in terms of chemical diversity, while others are appli-
cable to a broader chemical space. Due to this large variety 
of data and chemical diversity their integration and applica-
tion is very challenging. Aside from (quantitative) structure 

activity relationship ((Q)SAR) models, molecular docking 
is an efficient means for identifying potentially endocrine 
active chemicals (Vedani et al. 2006; Zhang et al. 2016). 
Compared to (Q)SAR, this method is more time-consuming.

In this context, the present work was aimed at develop-
ing and applying a fast in silico strategy to predict potential 
developmental and reproductive toxicity of FCM chemicals 
for which experimental data is missing. It follows basic prin-
ciples similar to those reported by Blackburn et al. (2015). 
A stepwise approach, incorporating structural alerts (SA) 
and docking on nuclear receptors followed by read-across 
to quantify the alert (i.e., defining a NOAEL/LOAEL), was 
designed. Before being applied to a large list of FCM chemi-
cals, the value of this new approach was tested in a pilot 
study to a restricted set of toxicologically uncharacterized 
FCM substances. Importantly, it assigns a quantitative infor-
mation (NOAEL/LOAEL) for comparison with exposure 
to obtain a MoE (ratio between toxic level and exposure). 
The size of the MoE is a reliable indicator of the level of 
safety concern. Introducing this DART prediction approach 
to the decision tree proposed by Schilter et al. (2014) will 
significantly improve the establishment of safety concern of 
toxicologically uncharacterized food chemicals and could 
replace the use of default factor to account for the uncer-
tainties related to the absence of experimental DART data.

Materials and methods

Data set curation

The list of 195 chemicals used to develop and validate this 
strategy includes plastic and ink FCM migrating substances 
(Price and Chaudhry 2014). We extended the list of 183 
chemicals used in our previous work on mutagenicity predic-
tion (Manganelli et al. 2018) by adding twelve FCM struc-
tural analogues identified by Price and Chaudhry (2014). In 
the curation process, experimental values, reported by Price 
and Chaudhry (2014), were revised and some new ones were 
introduced following literature and database searches, e.g., 
from freely available databases compiled for building (Q)
SAR models:

• Experimental information from the database of VEGA 
Estrogen receptor Relative Binding Affinity (ERRBA) 
model (Roncaglioni et  al. 2008), containing human 
Estrogen Receptor alpha (ERα) binding, from the Min-
istry of Economy Trade and Industry (METI) of Japan.

• ER experimental binding activities from the database of 
the VEGA CERAPP model. Data were curated by the 
United States Environmental Protection Agency (US 
EPA) under the Collaborative Estrogen Receptor (ER) 
Activity Prediction Project (CERAPP) (Judson et al. 
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2015; Mansouri et al. 2016) derived from 18 in vitro ER 
high-throughput screening (HTS) assays developed by 
the US ToxCast and Tox21 programs.

• AR experimental binding activities from the database of 
CoMPARA models (Manganelli et al. 2019). Structures 
of these chemicals were curated by US EPA in the frame-
work of the Collaborative Modeling Project for Androgen 
Receptor (AR) Activity (CoMPARA) derived from 11 
AR in vitro HTS assays developed by the US ToxCast 
and Tox21 programs. In CERAPP and CoMPARA, a 
chemical was considered as a binder if it was either an 
active agonist or antagonist. We considered classifica-
tion data only. For more information about the ToxCast 
assays and how they were combined see Kleinstreuer 
et al. (2017).

• The data set collected to build VEGA CAESAR v.2.1.7 
model for developmental toxicity (Cassano et al. 2010), 
combining subsets of information from the Teratogen 
Information System (TERIS) and US Food and Drug 
Administration (FDA) guidelines. Both sources contain 
assessments of human and animal data on potentially 
teratogenic chemicals.

• The P&G data set with DART effects mediated by 
nuclear receptors, and by other mechanisms obtained 
from a detailed literature review (Wu et al. 2013). It also 
includes effects, which occur in the presence of maternal 
toxicity. This data set has been used to build the develop-
mental/reproductive models (P&G) implemented in the 
VEGA platform (Marzo et al. 2016).

The final data set of 195 chemicals included 74 chemicals 
with experimental data: 14 substances gave at least one evi-
dence for DART and/or endocrine activity, the 60 remaining 
ones were negative for one or more endpoints.

Curation of chemical structures was performed as 
described previously (Manganelli et al. 2018). The 74 toxi-
cologically characterized chemicals were used to define our 
approach, which was then used to evaluate and prioritize the 
121 remaining chemicals.

Profilers selected for DART hazard identification

The stepwise approach was developed on the 74 experi-
mentally characterized chemicals with the aim to build a 
workflow easily and quickly applicable to prioritize long 
lists of chemicals. Therefore, predictions using several 
models, most of them freely available in the VEGA plat-
form [CAESAR for developmental toxicity, IRFMN/CER-
APP, ERRBA and in the OECD QSAR ToolBox (P&G 
DART and ER binding profilers)], mentioned in the data 
set curation section, were evaluated. From a toxicologi-
cal perspective, to have a consistent coverage of potential 
DART all these models need to be used. However, since 

experimental data were mostly collected from the train-
ing sets of these models and due to the relatively small 
number of chemicals of interest, the selection of only two 
OECD QSAR Toolbox profilers was sufficient to establish 
the proof of concept for this pilot study. Indeed, Toolbox 
profilers are not intended to be used as models per se, 
due to recognised limitations (e.g., lack of an applicability 
domain). We selected the following profilers, keeping in 
mind these weaknesses.

P&G DART v.1.0 scheme Toolbox v 4.1

This profiler of the QSAR Toolbox is an adaptation of 
the decision tree for identifying chemicals with structural 
features associated with DART potential, developed by Wu 
et al. (2013), based on a detailed review of 716 chemicals. 
These chemicals were grouped into different categories 
and sub-categories. After running a chemical through the 
decision tree, the results indicate if the chemical of inter-
est is associated or not with chemical structures known 
to have DART, or that it has structural features outside 
the chemical domain of the decision tree. We used the 
P&G DART to achieve a broad coverage of the relevant 
endpoints described by Wu et al. (2013), since it was built 
based on the evidence of both reproductive and develop-
mental effects, mediated by nuclear receptors, e.g., AR and 
ER, and/or other mechanisms. P&G developed an inter-
nal automated version of the DART decision tree, defin-
ing a chemical domain of the tree and considering out 
of domain a chemical if the chemical scaffold structure 
does not overlap with any of the structures considered in 
the development of the tree. One limitation of the QSAR 
Toolbox version is that it does not assess the match of 
the underlying chemical scaffold of the target compound 
compared to structures addressed by the DART decision 
tree. Consequently, determination of whether a chemical 
is in or outside of the chemical domain of the tree needs to 
be done manually (Blackburn et al. (2015)). In our study 
we highlighted these limitations.

Estrogen receptor (ER) binding profiler Toolbox v 4.1

The Toolbox profiling scheme for ER binding classifies 
chemicals based on their molecular weight (MW) and on 
structural features, as very strong, strong, moderate and non- 
binders based on experimental data and literature evidences 
(Schultz et al. 2002; Gallegos Saliner et al. 2003; Hamblen 
et al. 2003). This profiler was selected to have a coverage 
of available experimental data on ER mediated effects, not 
necessarily linked to DART effects, or for which DART 
potential has not been yet identified.
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VirtualToxLab (VTL, version 5.8)

VTL is an in silico tool for predicting the endocrine activity 
potential of chemicals. The technology is based on an auto-
mated protocol that simulates and quantifies the binding of 
small molecules towards a series of sixteen proteins, mainly 
nuclear receptors. The approach is not training set depend-
ent, and therefore, the applicability domain concept cannot be 
applied with the only restriction that the ligand should have 
MW less than 500. The approach has been extensively vali-
dated (Vedani et al. 2012), and in our study, the predictions 
were used to confirm ER and AR structural alerts highlighted 
by the other models. VTL is based on the three-dimensional 
interactions between the ligand and nuclear receptors, but it 
does not provide information on if the binding affinity will 
trigger or not an endocrine effect. Predicted binding affini-
ties were converted in -log units and expressed in the follow-
ing ranges: i. strong binders: binding affinity ≥ 9 (nanoM); ii. 
moderate binders; 9 > binding affinity ≥ 6 (microM); iii. weak 
binders: 6 > binding affinity ≥ 3 (milliM).

Read‑across for DART hazard characterization

To assign a quantitative developmental/reproductive toxic 
value to chemicals for which a DART alert was identified, 
read-across was performed. Developmental/reproductive (N)
LOAEL values of the most similar chemical belonging to 
the relevant P&G (sub)category were used for that purpose. 
Similarity was based on Tanimoto coefficient implemented 
in KNIME (Berthold al. 2008), ranging from 0 (i.e., maxi-
mum dissimilarity) to 1 (i.e., maximum similarity). Similar 
chemicals were promoted for read-across based on expert 
judgment.

Reproductive or developmental NOAELs and LOAELs 
were retrieved from several sources such as: Agency for 
Toxic Substances and Disease Registry (ATSDR, https ://
www.atsdr .cdc.gov/toxpr ofile docs/index .html), OECD 
Screening Information DataSet (SIDS, https ://www.inche 
m.org/pages /sids.html, TOXNET (https ://toxne t.nlm.nih.
gov/newto xnet/hsdb.htm), EFSA Scientific Reports or Sci-
entific publications (https ://efsa.onlin elibr ary.wiley .com/doi/
epdf/10.2903/j.efsa.2006.76r), European Chemicals Agency 
(ECHA) Registered substances data (https ://echa.europ a.eu/
web/guest /infor matio n-on-chemi cals/regis tered -subst ances 
) Preference was given to studies with oral rather than any 
other exposure routes.

Results

The stepwise approach (shown in Fig. 1) was developed 
on the 74 experimentally characterized chemicals to first 
identify and then characterize their DART potential. P&G 

DART and ER binding profilers were used for hazard iden-
tification followed by docking to confirm nuclear receptor 
binding mediated mechanisms. A read-across step was then 
introduced and applied to chemicals identified as positive 
for their DART potential.

Hazard identification

Structural profiler application on experimentally positive 
chemicals

The P&G DART scheme correctly categorized seven out of 
fourteen experimentally positive chemicals, the ER binding 
profiler classified five of the remaining ones as potential 
binders. Their combination gave alerts for twelve toxicologi-
cally positive substances (see Table 1 and Supplementary 
Table 1S). Overall, six of the experimentally positive chem-
icals were associated with ER binding. These substances 
were identified only by the ER binding profiler (see Table 1), 
except for BPA, which was associated with nuclear recep-
tor mediated DART according to the P&G DART scheme. 
VTL confirmed the binding profiles of these chemicals, giv-
ing more specific details on binding affinity, also consid-
ering different receptor subtypes. For example, unlike the 
ER binding profiler giving the same label of “very strong 
binder” for bisphenol F isomers, VTL was able to discrimi-
nate between them, highlighting higher affinity (moderate) 
of 4, 4′-bisphenol F towards  ERβ and weak binding for 2,2′- 
and 2,4′- isomers.

Two chemicals were not covered by any of the profilers: 
2,6-ditert-butyl-4-(3,5-ditert-butyl-4-hydroxyphenyl)phenol, 

Fig. 1  Stepwise approach for DART hazard identification and char-
acterization. The stepwise approach consists of: (1) Running P&G 
DART and ER binding Toolbox profilers to identify DART hazard. 
(2) Chemicals assigned to nuclear receptor binding mediated effects 
are screened by VTL to confirm binding to Nuclear Receptors (NR) 
through docking method. (3) For chemicals associated with a SA 
from P&G scheme and/or ER binding profiler, read-across is per-
formed to assign an experimental quantitative (N)LOAEL value 
based on the most similar compound contained in the SA class

https://www.atsdr.cdc.gov/toxprofiledocs/index.html
https://www.atsdr.cdc.gov/toxprofiledocs/index.html
https://www.inchem.org/pages/sids.html
https://www.inchem.org/pages/sids.html
https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2006.76r
https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2006.76r
https://echa.europa.eu/web/guest/information-on-chemicals/registered-substances
https://echa.europa.eu/web/guest/information-on-chemicals/registered-substances
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which was labelled as positive by Price and Chaudhry 
(2014), and chlorobenzilate with a positive AR activity label 
from CoMPARA. Further literature and database searches 
did not provide any experimental data for 2,6-ditert-butyl-
4-(3,5-ditert-butyl-4-hydroxyphenyl)phenol, and we con-
cluded that the experimental value reported by Price is 
highly uncertain. Regarding chlorobenzilate, it was used as 
a pesticide and it is reported as FCM structural analogue by 
Price, thus it is not specifically a food contact chemical. This 
chemical was evaluated as a probable human carcinogen by 
US EPA. Injury to the sperm and atrophy of the testes have 
been observed in rats exposed to chlorobenzilate in their 
diet (US EPA 1999), which confirms that this chemical is a 
false negative.

Structural profiler application on experimentally negative 
chemicals

We also examined the 60 chemicals which were experimen-
tally negative for DART/estrogenic/androgenic potential. 
Twelve of them were classified as positive by at least one 
profiler (nine by P&G DART and three by ER binding pro-
filer) (see Tables 2 and 2S). We examined experimental data 
of these to understand if their positive labels indicate true 
misclassification.

Triphenyl phosphate and triethyl phosphonoacetate were 
categorized by P&G DART profiler as organophosphorus 
compounds. Triphenyl phosphate, a printing ink compound 
(Bradley et al. 2013), showed no evidence of toxicity to 
fertility in an old one-generation study in rat (Welsh et al. 
1987) and in a recently performed prenatal developmental 
toxicity study in rabbit according to ECHA registration 
data (NOAEL = 200 mg/kg BW/day) (ECHA 2019). It was 
also negative for in vitro AR binding, according to CoM-
PARA data. For Triethyl phosphonoacetate, an additive with 
restricted use in PET (EFSA 2008), there were no direct 
effects on visceral and/or skeletal development of foetuses in 
prenatal developmental toxicity study and the repeated-dose 
toxicity study did not show any effect on fertility, as reported 
in ECHA registration data (ECHA 2019). Even if in this case 
the two chemicals falling in this category were not develop-
mental toxicants according to our experimental data search, 
this is still an important information given by the profiler. 
Indeed, organophosphates represent a large subcategory 
of chemicals potentially generating neurodevelopmental 
toxicity primarily by the inhibition of acetylcholinesterase 
(AChE) enzyme inhibition (Wu et al. 2013).

4-Methylbenzophenone, a photoinitiator for printing inks 
in the packaging field (EFSA 2009a), was classified as nega-
tive by Price and Chaudhry (2014) and falls in P&G DART 
category “Toluene and small alkyl toluene derivatives 
(8a)”. Chemicals associated to this category are primar-
ily developmental toxicants, and reprotoxic in the presence 

of a nitro-group (Wu et al. 2013). Unfortunately, literature 
searches fail to identify any experimental data which could 
inform on potential DART activity. Therefore, it was not 
possible to confirm or refuse the hypothesis that it is a false 
positive.

Propane-1,2-diol and butane-1,3-diol fall in the P&G 
DART category “Di-substituted hydrocarbons (24a)”. This 
category is mostly based on evidence of toxicity exerted 
by chemicals, which are not reproductive or developmen-
tal toxicants per se; however, they are converted into active 
metabolites (Wu et al. 2013). This class does not refer to AR 
and ER mediated mechanisms, inline with available AR and 
ER experimental data reported in our database. For propane-
1,2-diol, a food additive in the EU, no adverse effects were 
observed in the available oral reproductive and developmen-
tal toxicity studies (EFSA 2018). Similarly, 1,3-butanediol 
(1,3-butylene glycol), included in the EU register of flavor-
ings substances used in or on foodstuffs, was considered to 
be non-developmentally toxic (EFSA 2011).

n-Butyl acrylate is classified in the P&G category “Vinyl 
amide, aldehyde and ester derivatives (21a)”, which is based 
on teratogenic chemicals acting through non-NR mediated 
DART mechanism, inline with available absence of AR and 
ER experimental activity. For this chemical, adverse effects 
were observed only in the presence of maternal toxicity after 
exceeding the upper limit dose recommended by the respec-
tive OECD guidelines according to ECHA registration data. 
Since the P&G scheme considers also DART effects occur-
ring in the presence of maternal toxicity (Wu et al. 2013), 
the information available indicates that this chemical may 
not be misclassified according to the intrinsic P&G DART 
criteria. However, classifying a chemical as developmental 
toxicant when the effect is observed at maternally toxic dose 
is a matter of debate. n-Butyl methacrylate and ethyl acrylate 
fall in the same P&G category as butyl acrylate and similar 
reasoning may be applied.

The three remaining chemicals were not classified for 
DART effects by P&G but they are labelled as binders by the 
ER binding profilers and by VTL. 2- hydroxybenzophenone 
is a false positive, since it is experimentally negative for ER 
binding. We did not find further experimental information 
on DART/endocrine activity for this chemical through data-
bases and literature search.

Octabenzone and 2-aminoanthraquinone are structural 
analogues of certain FCM chemicals. Octabenzone is experi-
mentally negative for AR and ER binding activity but is clas-
sified as binder by ER Toolbox profiler, confirmed by VTL. 
It cannot be considered a false positive, since experimental 
negative data refer to binding related to activity, while the 
ER-binding profiler refers solely to binding. 2-Aminoan-
thraquinone, profiled as strong ER binder by Toolbox, is 
classified as weak binder towards ER receptors and as non-
binder towards AR receptor by VTL, inline with available 
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in vitro experimental activity. Since in vitro experimental 
activity of 2-aminoanthraquinone refers to AR and predic-
tion to ER binding, the chemical cannot be considered a 
false positive.

Hazard characterization

Read‑across

For each chemical associated with a P&G DART category 
and/or with nuclear receptor binding confirmed by VTL, the 
most similar compound of the relevant P&G category was 
identified and proposed for read-across. Experimental devel-
opmental/reproductive (N)LOAEL data of the most similar 
chemicals were used to fill the toxicological data gaps of 
these target chemicals when appropriate. Organophosphates 
were not considered for read-across, since a specific thresh-
old of toxicological concern is available and can be readily 
applied (Kroes et al. 2004).

Some chemicals [i.e., bisphenol A (BPA), Glycolic acid, 
2-ethylhexan-1-ol, 2-ethylhexanoic acid, 2-propylhexanoic 
acid] are part of the categories/data collected by Wu et al. 
(2013), thus the most similar compound is the compound 
itself (similarity index = 1). Among the remaining chemi-
cals, 2- and 4-methylbenzophenone, falling in the P&G (sub)
category, “Toluene and small alkyl toluene derivatives (8a)”, 
have a similarity index of 0.42 and 0.48 with o-xylene and 
4-tert-butyltoluene, their most similar chemicals in this P&G 
category (see Supplementary Tables 1S and 2S). They share 
only the toluene ring with this chemical and not the meth-
ylbenzophenone, i.e., meaning similarity is insufficient to 
support read-across and may not lead to a fair comparison 
in read-across. Similarly, octabenzone, 3-tert-butyl-4-hy-
droxyanisole (3-BHA) and 2-aminoanthraquinone, profiled 
by ER Binding Profiler share only some functional groups 
when associated with their most similar chemicals in the 
P&G category 2b (related to ER and AR binding), which are 
tamoxifen, BPA and isoproteron, respectively, with similar-
ity values of 0.42, 0.48, and 0.32, respectively. Based on this 
evidence, for chemicals falling in these two categories, i.e., 
Toluene and small alkyl toluene derivatives (8a) and ER and 
AR binding (2b), we established a cut-off similarity value 
of 0.5 as initial criterion to consider read-across reliable. 
For most chemicals associated to ER binding confirmed by 
VTL (i.e., Bisphenol F isomers, 2- and 4-hydroxybenzophe-
none, 3-BHA) the most similar chemical found in the P&G 
category 2b (related to ER and AR binding) was BPA (see 
Tables 1S and 2S). Their similarity values in comparison 
with BPA were greater than 0.5 except for 3-BHA, which 
was slightly below this threshold. 2-aminoanthraquinone and 
octabenzanone are structural analogues of FCM (as reported 
by Price) and not food contact chemicals as such. For ana-
logues exceeding the expert-based 0.5 cut-off value in these 

two classes, we searched for their developmental/reproduc-
tive (N)LOAEL values to be assigned to the target chemicals 
through read-across (see Table 3). In some cases, inhalation 
values were found, which may be converted into oral values 
(Schilter et al. 2014). Actual (N)LOAEL values for devel-
opmental/reproductive toxicity of target chemicals, where 
available, are reported to test the approach. However, in most 
cases experimental designs were different from each other 
and the highest doses tested were too far from each other to 
enable a fair comparison between (N)LOAEL values.

Design of a stepwise approach

Based on the results described above, a stepwise approach 
for DART hazard identification and characterization was 
designed, as depicted in Fig. 1. Toolbox profilers are the first 
steps to identify DART hazard. Based on the limited number 
of chemicals of this study, sequential or parallel applica-
tion of these two profilers did not affect final classification 
and results. Chemicals assigned to nuclear receptor binding 
mediated effects are screened using VTL to confirm bind-
ing to nuclear receptors docking method. Considering the 
limitations of the application of structural profilers, positive 
ER binding from Toolbox is considered only if confirmed 
by VTL. For each chemical associated with a SA from P&G 
scheme and/or ER binding profiler, similarity search to 
identify the most similar chemical contained in the relevant 
P&G category is conducted. For SA not identified by P&G 
DART scheme but identified by the ER binding profiler and 
confirmed by VTL, similarity search is performed with the 
compounds contained in the relevant P&G category related 
to ER and AR binding (2b) (Wu et al. 2013). Read-across 
is used to assign an experimental quantitative (N)LOAEL 
value based on the most similar compound contained in the 
SA class.

Application of the stepwise approach 
to toxicologically uncharacterized FCM chemicals

Finally, the stepwise approach was applied to the 121 
untested chemicals (for DART) starting with profilers’ appli-
cation: overall, alerts were identified for 18 chemicals (see 
Table 4). The P&G DART scheme raised alerts for 13 out of 
121 substances and ER binding profiler for seven of them, 
two were classified positive by both.

Chemicals predicted as DART positive

Benzanthracene-5,6-oxide, an FCM structural analogue 
identified by Price, fell in the P&G subcategory “AhR bind-
ers. Polycyclic aromatic hydrocarbons (PAHs) (3b-3)”. We 
applied VTL, which confirmed AhR binding as stronger 
than the other screened receptors. For all chemicals falling 
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Table 3  Experimentally characterized chemicals promoted for read-across and their most similar chemicals in the relevant P&G category

Chemical associated to structural alerts The most similar in the relevant P&G category

4-benzoylphenol (4-hydroxybenzophenone; p-hydroxybenzophenone), 
CAS 1137–42-4

No DART data
Bisphenol A (BPA), CAS 80-05-7; SI = 0.74
Oral NOAEL (multigeneration studies in rodents) = 5 mg/kgBW/day 

(EFSA 2015)

2-hydroxyacetic acid (Glycolic acid), CAS 79-14-1

Compound itself (SI = 1)
Oral developmental and maternal toxicity NO(A)EL in rat = 150 mg/

kgBW/day (Munley et al. 1999)

2-ethylhexan-1-ol, CAS 104-76-7

Compound itself (SI = 1)
Maternal and fetal oral NOAEL in rat = 130 mg/kgBW/day (McGinty 

et al. 2010)

2-(2-hydroxyethoxy)ethanol (Diethylene glycol), CAS 111-46-6 Ethylene glycol monoethyl ether (2-etoxyethanol), CAS 110–80-5; 
SI = 0.94

Oral developmental and maternal toxicity NO(A)EL in rats (gav-
age) = 1118 (Ballantyne and Snellings 2005)

Oral Reproductive LOAEL in rat (gavage) = 100 mg/kgBW/d (Adedara 
and Farombi 2010)

2-ethylhexanoic acid, CAS 149-57-5

Compound itself (SI = 1)
Rat oral NOAEL = 100 mg/kgBW/day (EFSA 2009b)

2,2′-Bisphenol F, CAS 2467-02-9
No DART studies

BPA; SI = 0.62
Oral NOAEL (multigeneration studies in rodents) = 5 mg/kgBW/day 

(EFSA 2015)
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Table 3  (continued)

Chemical associated to structural alerts The most similar in the relevant P&G category

2,4′-Bisphenol F, CAS 2467-03-0
No DART studies

BPA; SI = 0.66

4,4′-Bisphenol F, CAS 620–92-8
No DART studies

BPA; SI = 0.80

2-propylhexanoic acid, CAS 3274-28-0

Compound itself; SI = 1
Oral Developmental LOAEL (rat) = 900 mg/kgBW/day (Narotsky et al. 

1994)

Bisphenol A, CAS 80-05-7

Compound itself; SI = 1
Oral NOAEL (multigeneration studies in rodents) = 5 mg/kgBW/day 

(EFSA 2015)

2-benzoylphenol (2-hydroxybenzophenone), CAS 117-99-7; No DART 
data

BPA; SI = 0.59; Oral NOAEL (multigeneration studies in 
rodents) = 5 mg/kg BW/day (EFSA 2015)

Propane-1,2-diol (propylene glycol), CAS 57–55-6
Oral prenatal developmental/reproductive and maternal NOAEL in 

rat = 1000 mg/kg BW/day (only dose tested) (EFSA 2018)
2-Methoxy-1-propanol, CAS 1589-47-5; SI = 0.64
Inhalation prenatal toxicity LOAEL in rabbit = 225 ppm (Hellwig et al. 

1994)
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in “Toluene and small alkyl toluene derivatives (8a)” (sub)
category, the most similar chemicals have very low simi-
larity indices when compared to their most similar chemi-
cals, ranging from 0.25 to a higher one of 0.43 only for 
3-methylbenzophenone. Similarly, 9,10-epoxystearic acid 
and 1,2-cyclohexanedione fall in P&G categories “glycidyl 
ether derivatives (16c)” and “piperazine-, dioxane-, mor-
pholine-, tetrahydrothiopyran-like derivatives and cyclohex-
anamine (17c)” respectively. Their most similar chemicals 
are N-butyl glycidyl ether (similarity index = 0.41), and 
cyclohexylamine (similarity index = 0.27).

Since for two chemicals (labeled only by ER binding 
profiler),  ER binding by Toolbox was not confirmed by 
VTL, sixteen chemicals were prioritized. Eleven of them 
are structural analogues of FCM. The remaining five 
include: (i) [3-(3-tert-butyl-4-hydroxy-5-methylphenyl)
propyl]oxyphosphonous acid, which is part of a cyclic 
ester with the substance 3,3′,5,5′-tetrakis(tert-butyl)-2,2′-
dihydroxybiphenyl, intended to be used as an antioxidant 
in the manufacture of polyolefins for contact with all types 
of foodstuffs (EFSA 2009c); (ii) 4-(4-Methylphenylthio) 

Table 3  (continued)

Chemical associated to structural alerts The most similar in the relevant P&G category

Butane-1,3-diol (1,3-butylene glycol), CAS 107–88-0

1,4-Butanediol; CAS 110–63-4; SI = 0.83

Oral developmental and maternal NOAEL in rat (gavage) = 706 mg/kg 
bw (EFSA 2012)

Oral reproductive NOAEL in combined repeat dose and reproductive/
developmental OECD TG 422 study in rat = 800 mg/kgBW/d; devel-
opmental NOAEL in mice = 600 mg/kg BW/day (OECD 2000)

n-butyl acrylate, CAS 141-32-2
Isobutyl methacrylate, CAS 97–86-9; SI = 0.696

Oral rat reproductive NOAEL in extended one-generation study 
according to OECD 443 = 150 mg/kg BW/day (ECHA 2019)

Only outdated experimental studies or read-across results

n-butyl methacrylate, CAS 97–88-1
Rat oral developmental/reproductive and maternal NOAEL in com-

bined repeat dose and reproductive/developmental OECD TG 422 
study = 300 mg/kg/day (OECD 2009)

Isobutyl methacrylate, CAS 97–86-9
SI = 0.82

Methyl methacrylate, CAS 80-62-6
Rat oral dev/repro NOAEL = 400 mg/kg BW/day (ANSES 2018)

Ethyl methacrylate, CAS 97-63-2; SI = 0.77
Rat inhalation developmental
NOAEC = 600 ppm, LOAEC 1200 ppm (Saillenfait et al. 1999a)

Ethyl acrylate, CAS 140-88-5
Methyl acrylate, CAS 96–33-3
SI = 0.79

Rat inhalation developmental NOAEC = 100 ppm and developmental 
and maternal LOAEC = 200 ppm (Saillenfait et al. 1999b)

Rat inhalation developmental/maternal NOAEC = 50 ppm, 
LOAEC = 100 ppm (Saillenfait et al. 1999b)
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benzophenone, (iii) N-ethyl-p-toluenesulfonamide and 
(iv) 3-methylbenzophenone, which are printing ink com-
pounds (Bradley et al. 2013); (v) 4-{4-[(4-methylphenyl)
sulfanyl]phenyl}benzaldehyde, for which no information 

on application or source was found. For these chemicals, 
similarity was too low to apply read-across only within 
P&G categories (see Supplementary Table 3S).

Table 4  Toxicologically uncharacterized chemicals, P&G DART, ER binding profilers, VTL classification and the most similar chemicals in the 
relevant P&G category

SI similarity index
a Not known precedent DART potential

CAS Name P&G DART ER binding profiler VirtualToxLab 
binding confirma-
tion

The most similar in the 
relevant P&G category

116-83-6 anthraquinone, 1-amino-
4-methoxy

Not  knowna Strong binder Weak (ERs) Tamoxifen (SI = 0.32)

129-43-1 1-hydroxyanthracene-
9,10-dione

Not known Strong binder Weak (ERs) BPA (SI = 0.45)

790-60-3 Benzanthracene-5,6-oxide AhR binders, PAHs (3b-3) Non binder Moderate (AhR) Benzo[a]pyrene (SI = 0.4)
10048-13-2 8-hydroxy-6-methoxy-

3a,12c-dihydro-
7h-furo[3′,2′:4,5]furo[2,3-
c]xanthen-7-one

Not known Strong binder Moderate (ERs) Tamoxifen (SI = 0.29)

85-83-6 1-({2-methyl-4-[(2-methyl-
phenyl)diazenyl]phenyl}
diazenyl)naphthalen-2-ol

Toluene and small alkyl 
derivatives (8a)

Strong binder Not binding (ERs) 4-tert-Butyltoluene 
(SI = 0.26)

10254-99-6 Anthraquinone, 2-hexanoyl-
1,3,6,8-tetrahydroxy

Not known Very strong binder Not binding (ERs) N/A

137-17-7 2,4,5-trimethylaniline Not known Weak binder Not binding (ERs) N/A
13394-86-0 2′,3-dimethyl-(1,1′-

biphenyl)-4-amine
Toluene and small alkyl 

derivatives (8a)
Moderate binder Weak (ERs) o-xylene (SI = 0.30)

2426-07-5 1,2,7,8,diepoxyoctane Glycidyl ether derivatives 
(16c)

Non binder N/A N-Butyl glycidyl ether 
(SI = 0.36)

2443-39-2 9,10-epoxystearic acid Glycidyl ether derivatives 
(16c)

Non binder N/A N-Butyl glycidyl ether 
(SI = 0.41)

765-87-7 1,2-cyclohexanedione piperazine-, dioxane-, mor-
pholine-, tetrahydrothi-
opyran-like derivatives 
and cyclohexanamine 
(17c)

Non binder N/A cyclohexylamine (SI = 0.27)

643-65-2 3-methylbenzophenone Toluene and small alkyl 
derivatives (8a)

Non binder N/A m-xylene (SI = 0.43)

– 4-{4-[(4-methylphenyl)
sulfanyl]phenyl}benzal-
dehyde

Toluene and small alkyl 
derivatives (8a)

Non binder N/A p-xylene (SI = 0.27)

80-39-7 N-Ethyl-p-toluenesulfon-
amide

Toluene and small alkyl 
derivatives (8a)

Non binder N/A o-xylene (SI = 0.27)

83846-85-9 4-(4-Methylphenylthio) 
benzophenone

Toluene and small alkyl 
derivatives (8a)

Non binder N/A 4-tert-Butyltoluene 
(SI = 0.31)

1077-56-1 n-ethyl-2-methylbenzene-
sulfonamide

Toluene and small alkyl 
derivatives (8a)

Non binder N/A o-xylene (SI = 0.27)

82–28-0 1-amino-2-methylanthra-
cene-9,10-dione

Toluene and small alkyl 
derivatives (8a)

Non binder N/A 4-tert-Butyltoluene 
(SI = 0.25)

– [3-(3-tert-butyl-4-hydroxy-
5-methylphenyl)propyl]
oxyphosphonous acid

Toluene and small alkyl 
derivatives (8a)

Non binder N/A 4-tert-Butyltoluene 
(SI = 0.29)
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Discussion

The approach proposed is an improved strategy for trans-
lating DART alerts into a quantitative value to be used 
to establish a level of safety concern according to risk 
assessment principles. It represents a proof of concept 
study based on a limited number of FCM substances with 
the ultimate aim to be applied later to a significantly larger 
number of compounds. Here we applied profilers related 
to DART covering different mechanisms of action repre-
sented by the SA embedded in the P&G scheme and by 
NR-binding prediction. The selection of models used was 
tested on a limited number of chemicals. It can be refined 
at any time if required, i.e., through inclusion of new mod-
els for hazard identification. The stepwise approach can be 
considered as a workflow that can be applied using other 
(even proprietary) validated DART models both for SA/
QSAR as well as docking. In addition, read-across will be 
more reliably applicable if based on a bigger library of 
either food contact chemicals and/or other chemicals with 
appropriate toxicity data available.

The Toolbox profilers are not intended to be used as inde-
pendent in silico models. However, for documented DART 
chemicals the combination of the P&G DART scheme and 
ER binding profilers followed by VTL delivered almost a 
full coverage of positive hits on the small set of molecules 
we considered, leading to only one misclassification for the 
FCM analogue chlorobenzilate. For this chemical, AR bind-
ing activity was not identified by the Toolbox, highlighting 
the need to apply at least an additional model to cover spe-
cifically AR binding activity. Consequently, the inclusion of 
more in silico models covering a broader range of NRs in the 
first screening phase is advisable. This will be addressed in 
the next stage, when this stepwise approach will be applied 
to a larger number of substances. On the other hand, for 
experimentally negative chemicals, positive toxicity profil-
ing does not indicate misclassification by default. Indeed, 
AR or ER binding may not always be associated with devel-
opmental and/or reproductive toxicity.

The first screening phase of chemicals allowed to reduce 
the number of chemicals to be tested with docking, which 
is a more sophisticated but more time-consuming technique 
requiring sharper competences. For some toxicologically 
characterized and uncharacterized chemicals docking high-
lighted stronger binding affinities on specific receptors. This 
may help to define the best analogues to conduct read-across. 
Additionally, docking did not confirm ER binding for two 
uncharacterized structural analogues of FCMs and, there-
fore, constituted the driver for actual classification.

Most importantly, we propose a read-across approach 
allowing to translate structural alerts into a quantitative (N)
LOAEL to be compared with exposure estimate to obtain 

a margin of exposure (MoE). The size of the MoE informs 
on the level of safety concern. The read-across approach is 
based on structural similarity and is, furthermore, backed up 
by mechanistic plausibility. Chemical similarity search was 
performed among chemicals belonging to the same P&G cat-
egory of the target mostly sharing the same mode of action 
(MoA). Importantly, similarity analysis highlighted some 
weaknesses of the P&G DART scheme profiler implemented 
in the QSAR Toolbox. In particular, chemicals labeled as 
“Toluene and small alkyl derivatives (8a)” have low simi-
larity indices when compared to their analogues and, most 
importantly, contain more than 50% of other significant stuc-
tural moieties in addition to the toluene structural scaffold.

In a number of cases, prioritized chemicals were in the 
database of the model, thus their quantitative reproductive/
developmental (N)LOAEL were directly used to quantify 
structural alerts. For most of the others, read-across could 
be applied using the most suitable analogue of the proper 
class. For the remaining, read-across assessment by apply-
ing a one-to-one comparison between target and the most 
similar chemical in the relevant P&G category was not fea-
sible due to a lack of appropriate experimental data for the 
comparator. It is important to note that read-across can be 
performed using a category approach, extending the com-
parison to relevant chemicals (with suitable DART data) 
falling in the same category but not contained in the P&G 
database. Finally, when read-across is not applicable on 
chemicals presenting clear DART alerts, the possibility to 
apply an UF of 10 on chronic L(N)OAEL is still possible, as 
proposed by Blackburn et al. (2015). These authors showed 
that chemicals identified by the original DART tree (Wu 
et al. 2013) as being related to structures with known DART 
toxicity would potentially have lower DART NOAELs com-
pared to their respective repeated-dose toxicity NOAELs 
than structures that lacked this association. They proposed to 
apply an UF of 10 to chronic NOAELs for chemicals giving 
exact match with structures with DART precedent according 
to P&G decision tree, or an UF of three for chemicals not 
matching with DART alert but in domain of the decision 
tree. In our case the most conservative UF of 10 would be 
recommended, since the P&G DART profiler implemented 
in Toolbox does not provide info on applicability domain.

The results described in the present paper indicate that 
methodologies (e.g., Schilter et al. 2014) aimed at estab-
lishing level of safety concern of chemicals without toxico-
logical data may significantly benefit from integrating the 
approach proposed in the present paper. Indeed, bringing 
evaluation of DART potential would allow a more complete 
hazard assessment complying better with risk assessment 
principles. However, limitations and uncertainties have to 
be kept in mind. The models/profilers limitations are high-
lighted in the material and method section. One remaining 
uncertainty is the adequacy of the selected models/profilers 
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to cover all DART endpoints/mechanisms. The P&G scheme 
has been documented to cover an array of alerts and mecha-
nisms of DART. In our investigation, the addition of tools to 
predict interactions with estrogen receptor was considered 
sufficient to identify correctly all chemicals of our dataset 
documented to produce DART effects, probably due to the 
relatively low number of active substances in our dataset.

The uncertainties linked to the application of the pro-
posed approach are more difficult to characterize. Schilter 
et al. (2014) observed and concluded that establishing safety 
concern based on an integration of high quality and relevant 
in silico toxicology predictions was unlikely to be signifi-
cantly more uncertain than that based on experimental data 
(Schilter et al. 2014). Such conclusion may apply to the pre-
sent approach dealing with DART hazard characterization, 
although uncertainties associated with read-across may be 
higher. The main uncertainties associated with read-across 
concern the number and degree of similarity of the chemical 
analogues, as well as the uncertainties related to the toxico-
logical data found for the analogues.

Recent trends on read-across extended the concept of 
similarity not only to the chemical structure, but also to other 
features, related to the toxicological profile and toxicoki-
netics aspects, including metabolism (Schultz et al. 2015; 
Patlewicz et al. 2017). The use of SA in read-across sup-
ports this concept. Thus, read-across can be extended in this 
direction. Any improvement in read-across and in the set of 
in silico models will have an impact in two directions: (1) 
to increase elements for the evaluation, covering potential 
gaps; (2) allowing a refinement of the uncertainty of the 
overall strategy. With a reference to the EFSA Guidance 
on weight-of-evidence (EFSA 2017), the inclusion of these 
models will represent additional lines of evidence. Accord-
ing to this guidance, the different lines of evidence must be 
evaluated considering their relevance, reliability and consist-
ency. In the case of read-across, if similar substances are not 
so similar to a given target, as in several cases we discussed, 
their relevance is very low, and they can be disregarded. 
We discussed also about the reliability of the experimental 
values for the case of the read-across. Another element to 
consider is the consistency between multiple lines of evi-
dence. The acceptability of the level of uncertainty is not an 
absolute value. The integration of results of multiple in silico 
models and read-across within the conceptual scheme of 
the EFSA guidance (2017) has been discussed by Benfenati 
et al. (2019).

Conclusions

The present approach offers the possibility to identify and 
assess chemicals for which hazards are driven by develop-
mental and/or reproductive toxicity. For such chemicals, 

MoE based on DART could be used for safety assessment. 
The major drawback of the present approach is the scar-
city of developmental/reproductive data which may reduce 
the possibility to conduct read-across. However, in cases of 
chemicals with DART alerts but not eligible for read-across 
because of the absence of appropriate analogues, chronic 
toxicity values may still be applied but with the application 
of a factor to take into account the uncertainty regarding 
DART effects.

Acknowledgements This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under 
the Marie Sklodowska-Curie grant agreement No 799288.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Adedara IA, Farombi EO (2010) Induction of oxidative damage in 
the testes and spermatozoa and hematotoxicity in rats exposed 
to multiple doses of ethylene glycol monoethyl ether. Hum Exp 
Toxicol 29:801–812. https ://doi.org/10.1177/09603 27109 36011 5

ANSES (2018) Substance evaluation conclusion as required by 
REACH Article 48 and evaluation report for Methyl methacrylate 
EC No 201–297–1 CAS No 80–62–6. https ://echa.europ a.eu/
docum ents/10162 /c92fa a6c-7134-fc58-5266-5b373 cdc92 86. 
Accessed 11 Dec 2019

Ballantyne B, Snellings WM (2005) Developmental toxicity study with 
diethylene glycol dosed by gavage to CD rats and CD-1 mice. 
Food Chem Toxicol 43:1637–1646. https ://doi.org/10.1016/j.
fct.2005.05.005

Benfenati E, Chaudhry Q, Gini G, Dorne JL (2019) Integrating in silico 
models and read-across methods for predicting toxicity of chemi-
cals: a step-wise strategy. Environ Int 131:105060. https ://doi.
org/10.1016/j.envin t.2019.10506 0

Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, 
Thiel K, Wiswedel B (2008) KNIME: the konstanz information 
miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker 
R (eds) Data analysis, machine learning and applications. Stud-
ies in classification, data analysis, and knowledge organization. 
Springer, Berlin, pp 319–326

Blackburn K, Daston G, Fisher J, Lester C, Naciff JM, Rufer ES, 
Stuard SB, Woeller K (2015) A strategy for safety assessment 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0960327109360115
https://echa.europa.eu/documents/10162/c92faa6c-7134-fc58-5266-5b373cdc9286
https://echa.europa.eu/documents/10162/c92faa6c-7134-fc58-5266-5b373cdc9286
https://doi.org/10.1016/j.fct.2005.05.005
https://doi.org/10.1016/j.fct.2005.05.005
https://doi.org/10.1016/j.envint.2019.105060
https://doi.org/10.1016/j.envint.2019.105060


953Archives of Toxicology (2020) 94:939–954 

1 3

of chemicals with data gaps for developmental and/or reproduc-
tive toxicity. Regul Toxicol Pharmacol 72:202–215. https ://doi.
org/10.1016/j.yrtph .2015.04.006

Bradley EL, Stratton JS, Leak J, Lister L, Castle L (2013) Printing ink 
compounds in foods: UK survey results. Food Additiv Contam: 
Part B 6:73–83. https ://doi.org/10.1080/19393 210.2012.72577 4

Cassano A, Manganaro A, Martin T, Young D, Piclin N, Pin-
tore M, Bigoni D, Benfenati E (2010) CAESAR models 
for developmental toxicity. Chem Cent J 4:S4. https ://doi.
org/10.1186/1752-153X-4-S1-S4

CIR (2018) Safety assessment of triphenyl phosphate as used in cos-
metics. https ://www.cir-safet y.org/sites /defau lt/files /triph o0620 
18FR.pdf. Accessed 4 Dec 2019

ECHA (2019) https ://echa.europ a.eu/. Accessed 4 Dec 2019
EFSA (2008) Scientific Opinion of the Panel on food additives, flavour-

ings, processing aids and materials in contact with food (AFC) on 
substances in food contact materials. EFSA J 6:699

EFSA (2009) EFSA statement on the presence of 4-methylbenzo-
phenone found in breakfast cereals. EFSA J 7:243. https ://doi.
org/10.2903/j.efsa.2009.243r

EFSA (2009) Scientific opinion of the panel on food additives, flavour-
ings, processing aids and materials in contact with food (AFC) on 
a request from the European Commission on Flavouring Group 
Evaluation 4: 2-Ethylhexyl derivatives from chemical group 2. 
EFSA J 7:929. https ://doi.org/10.2903/j.efsa.2009.929

EFSA (2009) Scientific Opinion of the Panel on food contact mate-
rials, enzymes, flavourings and processing aids (CEF) on 23rd 
list of substances for food contact materials. EFSA J. https ://doi.
org/10.2903/j.efsa.2009.1028

EFSA (2011) Scientific Opinion on the evaluation of the substances 
currently on the list in the Annex to Commission Directive 96/3/
EC as acceptable previous cargoes for edible fats and oils—Part 
I of III. EFSA J 9:2482. https ://doi.org/10.2903/j.efsa.2011.2482

EFSA (2012) Scientific Opinion on Flavouring Group Evaluation 10, 
Revision 3 (FGE.10Rev3): Aliphatic primary and secondary sat-
urated and unsaturated alcohols, aldehydes, acetals, carboxylic 
acids and esters containing an additional oxygenated functional 
group and lactones from chemical groups 9, 13 and 30. EFSA J 
10:2563. https ://doi.org/10.2903/j.efsa.2012.2563

EFSA (2015) Scientific Opinion on the risks to public health related to 
the presence of bisphenol A (BPA) in foodstuffs: Executive sum-
mary. EFSA J 13:3978. https ://doi.org/10.2903/j.efsa.2015.3978

EFSA (2017) Scientific Opinion on the guidance on the use of the 
weight of evidence approach in scientific assessments. EFSA J 
15:4971. https ://doi.org/10.2903/j.efsa.2017.4971

EFSA (2018) Re-evaluation of propane-1, 2-diol (E 1520) as a 
food additive. EFSA J 16:5235. https ://doi.org/10.2903/j.
efsa.2018.5235

Gadagbui B, Zhao J, Maier A, Dourson M (2005) The scientific ration-
ale for deriving database and toxicodynamic uncertainty factors 
for reproductive or developmental toxicants. Toxicology Exel-
lence for Risk Assessment, Cincinnati, USA

Gallegos Saliner A, Amat L, Carbó-Dorca R, Schultz TW, Cronin 
MT (2003) Molecular quantum similarity analysis of estrogenic 
activity. J Chem Inf Comput Sci 43:1166–1176. https ://doi.
org/10.1021/ci034 014a

Hamblen EL, Cronin MT, Schultz TW (2003) Estrogenicity and acute 
toxicity of selected anilines using a recombinant yeast assay. 
Chemosphere 52:1173–1181. https ://doi.org/10.1016/S0045 
-6535(03)00333 -3

Hellwig J, Klimisch HJ, Jäckh R (1994) Prenatal toxicity of inhalation 
exposure to 2-methoxypropanol-1 in rabbits. Fundam Appl Toxi-
col 23:608–613. https ://doi.org/10.1006/faat.1994.1147

Judson RS, Magpantay FM et al (2015) Integrated model of chemi-
cal perturbations of a biological pathway using 18 in  vitro 

highthroughput screening assays for the estrogen receptor. Toxicol 
Sci 148:137–154. https ://doi.org/10.1093/toxsc i/kfv16 8

Kleinstreuer NC, Ceger P, Watt ED, Martin M, Houck K, Browne P, 
Thomas RS, Casey WM, Dix DJ, Allen D et al (2017) Devel-
opment and validation of a computational model for androgen 
receptor activity. Chem Res Toxicol 30:946–964. https ://doi.
org/10.1021/acs.chemr estox .6b003 47

Kroes R, Galli C, Munro I, Schilter B, Tran L, Walker R, Würtzen 
G (2000) Threshold of toxicological concern for chemical sub-
stances present in the diet: a practical tool for assessing the need 
for toxicity testing. Food Chem Toxicol 38:255–312. https ://doi.
org/10.1016/S0278 69159 90012 09

Kroes R, Renwick AG, Cheeseman M et al (2004) Structure-based 
thresholds of Toxicological concern (TTC): guidance for applica-
tion to substances present at low levels in the diet. Food Chem 
toxicol 42:65–83. https ://doi.org/10.1016/j.fct.2003.08.006

Manganelli S, Schilter B, Benfenati E, Manganaro A, Piparo LE (2018) 
Integrated strategy for mutagenicity prediction applied to food 
contact chemicals. ALTEX 35: 169–178. 10.14573/altex.1707171.

Manganelli S, Roncaglioni A, Mansouri K, Judson RS, Benfenati E, 
Manganaro A, Ruiz P (2019) Development, validation and inte-
gration of in silico models to identify androgen active chemi-
cals. Chemosphere 220:204–215. https ://doi.org/10.1016/j.
chemo spher e.2018.12.131

Mansouri K, Abdelaziz A et al (2016) CERAPP: collaborative estro-
gen receptor activity prediction project. Environ Health Persp 
124:1023–1033. https ://doi.org/10.1289/ehp.15102 67

Marzo M, Kulkarni S, Manganaro A, Roncaglioni A, Wu S, Barton-
Maclaren TS, Lester C, Benfenati E (2016) Integrating in silico 
models to enhance predictivity for developmental toxicity. Toxi-
cology 370:127–137. https ://doi.org/10.1016/j.tox.2016.09.015

McGinty D, Scognamiglio J, Letizia CS, Api AM (2010) Fragrance 
material review on 2-ethyl-1-hexanol. Food Chem Toxicol 
48:S115–S129. https ://doi.org/10.1016/j.fct.2010.05.042

Munley SM, Kennedy GL, Hurtt ME (1999) Developmental toxicity 
study of glycolic acid in rats. Drug Chem Toxicol 22:569–582. 
https ://doi.org/10.3109/01480 54990 89931 68

Narotsky MG, Francis EZ, Kavlock RJ (1994) Developmental toxic-
ity and structure-activity relationships of aliphatic acids, includ-
ing dose-response assessment of valproic acid in mice and rats. 
Fundam Appl Toxicol 22:251–265

National Research Council (2000) Scientific frontiers in developmen-
tal toxicology and risk assessment. National Academies Press, 
Washington DC

OECD (2000) Screening Information Dataset (SIDS) Initial Assess-
ment Report. 1,4-butanediol. CAS No 110–63–4. SIAM 10 
(Tokyo, March 15–17, 2000). https ://hpvch emica ls.oecd.org/
ui/handl er.axd?id=e38c2 11c-0860-4f74-bd71-8c6da 25560 4d 
Accessed 11 Dec 2019

OECD (2009) Screening information data set for short chain alkyl 
methacrylates. https ://hpvch emica ls.oecd.org/ui/SIDS_Detai 
ls.aspx?id=319e0 a7e-feac-4468-824d-f9661 b37a8 ac. Accessed 
11 Dec 2019

Patlewicz G, Helman G, Pradeep P, Shah I (2017) Navigating through 
the minefield of read-across tools: a review of in silico tools for 
grouping. Comput Toxicol 3:1–18. https ://doi.org/10.1016/j.
comto x.2017.05.003

Porta N, Roncaglioni A, Marzo M, Benfenati E (2016) QSAR 
Methods to Screen Endocrine Disruptors. Nucl Receptor Res. 
10.11131/2016/101203.

Price N, Chaudhry Q (2014) Application of in silico modelling to 
estimate toxicity of migrating substances from food packag-
ing. Food Chem Toxicol 71:136–141. https ://doi.org/10.1016/j.
fct.2014.05.022

Roncaglioni A, Piclin N, Pintore M, Benfenati E (2008) Binary 
classification models for endocrine disrupter effects mediated 

https://doi.org/10.1016/j.yrtph.2015.04.006
https://doi.org/10.1016/j.yrtph.2015.04.006
https://doi.org/10.1080/19393210.2012.725774
https://doi.org/10.1186/1752-153X-4-S1-S4
https://doi.org/10.1186/1752-153X-4-S1-S4
https://www.cir-safety.org/sites/default/files/tripho062018FR.pdf
https://www.cir-safety.org/sites/default/files/tripho062018FR.pdf
https://echa.europa.eu/
https://doi.org/10.2903/j.efsa.2009.243r
https://doi.org/10.2903/j.efsa.2009.243r
https://doi.org/10.2903/j.efsa.2009.929
https://doi.org/10.2903/j.efsa.2009.1028
https://doi.org/10.2903/j.efsa.2009.1028
https://doi.org/10.2903/j.efsa.2011.2482
https://doi.org/10.2903/j.efsa.2012.2563
https://doi.org/10.2903/j.efsa.2015.3978
https://doi.org/10.2903/j.efsa.2017.4971
https://doi.org/10.2903/j.efsa.2018.5235
https://doi.org/10.2903/j.efsa.2018.5235
https://doi.org/10.1021/ci034014a
https://doi.org/10.1021/ci034014a
https://doi.org/10.1016/S0045-6535(03)00333-3
https://doi.org/10.1016/S0045-6535(03)00333-3
https://doi.org/10.1006/faat.1994.1147
https://doi.org/10.1093/toxsci/kfv168
https://doi.org/10.1021/acs.chemrestox.6b00347
https://doi.org/10.1021/acs.chemrestox.6b00347
https://doi.org/10.1016/S0278691599001209
https://doi.org/10.1016/S0278691599001209
https://doi.org/10.1016/j.fct.2003.08.006
https://doi.org/10.1016/j.chemosphere.2018.12.131
https://doi.org/10.1016/j.chemosphere.2018.12.131
https://doi.org/10.1289/ehp.1510267
https://doi.org/10.1016/j.tox.2016.09.015
https://doi.org/10.1016/j.fct.2010.05.042
https://doi.org/10.3109/01480549908993168
https://hpvchemicals.oecd.org/ui/handler.axd?id=e38c211c-0860-4f74-bd71-8c6da255604d
https://hpvchemicals.oecd.org/ui/handler.axd?id=e38c211c-0860-4f74-bd71-8c6da255604d
https://hpvchemicals.oecd.org/ui/SIDS_Details.aspx?id=319e0a7e-feac-4468-824d-f9661b37a8ac
https://hpvchemicals.oecd.org/ui/SIDS_Details.aspx?id=319e0a7e-feac-4468-824d-f9661b37a8ac
https://doi.org/10.1016/j.comtox.2017.05.003
https://doi.org/10.1016/j.comtox.2017.05.003
https://doi.org/10.1016/j.fct.2014.05.022
https://doi.org/10.1016/j.fct.2014.05.022


954 Archives of Toxicology (2020) 94:939–954

1 3

through the estrogen receptor. SAR QSAR in Environ Res 
19:697–733. https ://doi.org/10.1080/10629 36080 25506 06

Saillenfait AM, Bonnet P, Gallissot F, Peltier A, Fabries JF (1999a) 
Developmental toxicities of methacrylic acid, ethyl meth-
acrylate, n-butyl methacrylate, and allyl methacrylate in rats 
following inhalation exposure. Toxicol Sci 50:136–145. https 
://doi.org/10.1093/toxsc i/50.1.136

Saillenfait A, Bonnet P, Gallissot F, Protois JC, Peltier A, Fabries JF 
(1999b) Relative developmental toxicities of acrylates in rats 
following inhalation exposure. Toxicol Sci 48:240–254. https 
://doi.org/10.1093/toxsc i/48.2.240

Schilter B, Benigni R, Boobis A, Chiodini A, Cockburn A, Cronin 
MTD, Lo Piparo E, Modi S, Thiel A, Worth A (2014) Establish-
ing the level of safety concern for chemicals in food without 
the need for toxicity testing. Regul Toxicol Pharm 68:275–296. 
https ://doi.org/10.1016/j.yrtph .2013.08.018

Schultz TW, Sinks GD, Cronin MT (2002) Structure-activity rela-
tionships for gene activation oestrogenicity: evaluation of a 
diverse set of aromatic chemicals. Environ Toxicol 17:14–23. 
https ://doi.org/10.1002/tox.10027 

Schultz TW, Amcoff P et al (2015) A strategy for structuring and 
reporting a read-across prediction of toxicity. Regul Toxicol Phar-
macol 72:586–601. https ://doi.org/10.1016/j.yrtph .2015.05.016

UNEP, WHO (2013) State of the science of endocrine disrupting chem-
icals-2012. World Health Organization, Geneva

US EPA (1999) Integrated risk information system (IRIS) on chlo-
robenzilate. National Center for Environmental Assessment, 
Office of Research and Development, Washington, DC. https ://
www.epa.gov/sites /produ ction /files /2016-09/docum ents/chlor 
obenz ilate .pdf. Accessed 1 Aug 2019

Vedani A, Dobler M, Lill MA (2006) The challenge of predicting drug 
toxicity in silico. Basic Clin Pharmacol Toxicol 99:195–208. https 
://doi.org/10.1111/j.1742-7843.2006.pto_471.x

Vedani A, Dobler M, Smieško M (2012) VirtualToxLab—a platform 
for estimating the toxic potential of drugs, chemicals and natu-
ral products. Toxicol Appl Pharmacol 261:142–153. https ://doi.
org/10.1016/j.taap.2012.03.018

Welsh JJ, Collins TFX, Whitby KE, Black TN, Arnold A (1987) 
Teratogenic potential of triphenyl phosphate in Sprague–Dawley 
(Spartan) rats. Toxicol Ind Health 3:357–369

Wu S, Fisher J, Naciff J, Laufersweiler M, Lester C, Daston G, Black-
burn K (2013) Framework for identifying chemicals with struc-
tural features associated with the potential to act as developmental 
or reproductive toxicants. Chem Res Toxicol 26:1840–1861. https 
://doi.org/10.1021/tx400 226u

Zhang J, Begum A, Brännström K, Grundström C, Iakovleva I, Olofs-
son A, Sauer-Eriksson AE, Andersson PL (2016) Structure-based 
virtual screening protocol for in silico identification of potential 
thyroid disrupting chemicals targeting transthyretin. Environ Sci 
Technol 50:11984–11993. https ://doi.org/10.1021/acs.est.6b027 
71

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/10629360802550606
https://doi.org/10.1093/toxsci/50.1.136
https://doi.org/10.1093/toxsci/50.1.136
https://doi.org/10.1093/toxsci/48.2.240
https://doi.org/10.1093/toxsci/48.2.240
https://doi.org/10.1016/j.yrtph.2013.08.018
https://doi.org/10.1002/tox.10027
https://doi.org/10.1016/j.yrtph.2015.05.016
https://www.epa.gov/sites/production/files/2016-09/documents/chlorobenzilate.pdf
https://www.epa.gov/sites/production/files/2016-09/documents/chlorobenzilate.pdf
https://www.epa.gov/sites/production/files/2016-09/documents/chlorobenzilate.pdf
https://doi.org/10.1111/j.1742-7843.2006.pto_471.x
https://doi.org/10.1111/j.1742-7843.2006.pto_471.x
https://doi.org/10.1016/j.taap.2012.03.018
https://doi.org/10.1016/j.taap.2012.03.018
https://doi.org/10.1021/tx400226u
https://doi.org/10.1021/tx400226u
https://doi.org/10.1021/acs.est.6b02771
https://doi.org/10.1021/acs.est.6b02771

	Value and limitation of structure-based profilers to characterize developmental and reproductive toxicity potential
	Abstract
	Introduction
	Materials and methods
	Data set curation
	Profilers selected for DART hazard identification
	P&G DART v.1.0 scheme Toolbox v 4.1
	Estrogen receptor (ER) binding profiler Toolbox v 4.1
	VirtualToxLab (VTL, version 5.8)

	Read-across for DART hazard characterization

	Results
	Hazard identification
	Structural profiler application on experimentally positive chemicals
	Structural profiler application on experimentally negative chemicals

	Hazard characterization
	Read-across

	Design of a stepwise approach
	Application of the stepwise approach to toxicologically uncharacterized FCM chemicals
	Chemicals predicted as DART positive


	Discussion
	Conclusions
	Acknowledgements 
	References




