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Abstract
It is difficult to identify mutagen-induced genome-wide somatic mutations using next generation sequencing; hence, muta-
genic features of each mutagen and their roles in cancer development require further elucidation. We described Hawk-Seq™, 
a highly accurate genome sequencing method and the optimal conditions, for using it to construct libraries that would enable 
the accurate (c.a. 1 error/107–108 bp) and efficient survey of genome-wide mutations. Genomic mutations in gpt delta mice or 
Salmonella typhimurium TA100 exposed to methylnitrosourea (MNU), ethylnitrosourea (ENU), diethylnitrosamine (DEN), 
benzo[a]pyrene (BP), and aristolochic acid (AA) were profiled using Hawk-Seq™ to analyse positions, substitution pat-
terns, or frequencies. The resultant vast mutation data provided high-resolution mutational signatures, including for minor 
mutational fractions (e.g. G:C>A:T by AA), which enabled the clarification of the mutagenic features of all mutagens. 
The 96-type mutational signatures of MNU, AA, and BP indicate their partial similarity to signature 11, 22, and 4 or 29, 
respectively. Meanwhile, signatures attributable to ENU and DEN were highly similar to each other, but not to signature 
11, suggesting that the mechanisms of these agents differed from those of typical alkylating agents. Thus, Hawk-Seq™ can 
clarify genome-wide chemical mutagenicity profiles at extraordinary resolutions, thereby providing insight into mutagen 
mechanisms and their roles in cancer development.

Keywords Mutational signatures · Next generation sequencing · Somatic mutation · Genotoxicity tests · Mutagenesis · 
Cancer genomics

Introduction

The analysis of genomic mutations using next generation 
sequencing (NGS) has enabled us to generate large-scale, 
genome-wide catalogues of somatic mutations in human 
cancer patients (Meyerson et al. 2010; Garraway and Lander 
2013). These large-scale cancer mutation data, which reflect 
the features of mutation profiles for each type of cancer, have 

enabled us to analyse mutation spectra at extraordinary reso-
lutions and the underlying processes for the development of 
each type of cancer (Stratton et al. 2009; Stratton 2011). For 
example, mutation catalogues were used to explore historical 
information about DNA damage and repair in genomes dur-
ing cancer development (Nik-Zainal et al. 2012a, b). Signa-
tures of mutational processes have been identified in patients 
with various types of human cancers using mathematical 
algorithms (Alexandrov et al. 2013a, b, 2016), and used not 
only to investigate the contribution of environmental muta-
gens to cancer development, but also to establish the link 
between mutagens and human cancer development.

To validate and utilize the knowledge derived from can-
cer genome analyses more effectively, data regarding muta-
tions induced by cancer-related mutational processes, such 
as those associated with environmental mutagens, need to be 
obtained. The associated large-scale, genome-wide mutation 
data would provide clarity regarding the mutagenic features 
of mutagens at high resolutions, as observed during cancer 
research and would provide insight into their role in cancer 
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development, while mutually referring to mutations in can-
cer genomes. Genome-wide mutational profiles were previ-
ously characterized via exposure of experimental models 
to mutagens through clonal expansion (Mimaki et al. 2016; 
Phillips 2018; Kucab et al. 2019). However, in these experi-
mental models, some mutagens exhibited mutation patterns 
that were different from those observed in human cancers, 
which could be attributable to the differences in cell types, or 
effects of the cell selection process during clonal expansion. 
Therefore, to precisely elucidate the mutagenic profiles of 
mutagens in each cell type and thereby understand their role 
in human cancer development, it is important to develop a 
method for analysing the primary mutation profiles of muta-
gens using various experimental resources.

However, unlike mutation analysis in cancer genomes, 
it is difficult to detect mutagen-induced somatic mutations 
in very small fractions of cells using NGS. Because of the 
high error rate in NGS, which is primarily attributable to 
PCR errors that occur due to processes such as spontaneous 
DNA oxidation, NGS is not widely used for this purpose 
(Costello et al. 2013). Our knowledge of mutation profiles 
of environmental mutagens has mostly been obtained from 
results of traditional genotoxicity tests, such as the Ames test 
and transgenic mouse models (Mortelmans and Zeiger 2000; 
Lambert et al. 2005). Varied mutational data for multiple 
species, which have been accumulated using these models, 
form the basis of our knowledge about mutagenicity (Kirk-
land et al. 2014). However, the resolution of the currently 
available data is insufficient to thoroughly understand the 
difference between mutagenic profiles and their association 
with human cancer (Richardson et al. 1987; Watson et al. 
1998; Ohta et al. 2000). Therefore, it is extremely important 
to develop a methodology for a large-scale, genome-wide 
survey of somatic mutations.

Several challenges are associated with the detection of 
rare mutations using NGS. Several promising approaches 
reportedly increased sequencing accuracy and enabled the 
utilization of data for both strands of double-stranded DNA 
(dsDNA) (Travers et al. 2010; Schmitt et al. 2012; Greg-
ory et al. 2016). While PCR errors usually occur only in 
single strands of dsDNA, true mutations are fixed in both 
strands through DNA replication within the cell. These 
techniques involve the sequences of both original dsDNA 
strands and enable the accurate detection of true mutations, 
after they are distinguished from sequencing errors. The 
sequence accuracy of these techniques reportedly proved 
to be sufficient for the detection of mutations induced by 
chemical exposure (Matsuda et al. 2013; Chawanthayatham 
et al. 2017). However, most existing methods require either 
additional molecular barcodes during library preparation 
to discriminate between molecules or a specific sequence 
apparatus that has been used only in a few studies. Certain 
accurate sequencing techniques reportedly used endogenous 

sequences as an alternative to exogenous tags. However, 
none of these existing techniques were optimized to maxi-
mize sequence output or the covered genomic region; thus, 
the efficiency of genome-wide mutation profiling was not 
maximal (Kinde et al. 2011; Hoang et al. 2016). Therefore, 
a simple method with a substantial throughput is required to 
enhance our knowledge of mutation profiles rapidly.

Here, we developed a simple, highly accurate genome 
sequencing procedure for performing high-throughput muta-
tion analysis across large genomic regions. We named our 
procedure ‘Hawk-Seq™’, after ‘hypothesis alignment with 
weak overlap’, in which we controlled the overlap rate of 
DNA fragments, by controlling the input DNA amount 
for PCR (IDAP) per unit genome length; this has been 
described in detail in another section. Additionally, it ena-
bles the accurate detection of single mutations from large 
genomic regions, such as that of the ‘hawk-eye’. Hawk-
Seq™ achieves an experimental throughput that is equiva-
lent to that of standard Illumina libraries, because it requires 
only slight modifications in PCR steps and no additional 
external barcodes. Therefore, it can be easily applied to the 
evaluation of various samples in different laboratories; this 
is critically important for expanding our knowledge of muta-
tion profiles via mutagen exposure. Here, we identified the 
IDAP to be a key parameter for maximizing the sequence 
efficiency and covered genomic regions, and determined 
the optimal experimental conditions for performing Hawk-
Seq™. Furthermore, we prove that Hawk-Seq™ is applica-
ble to the clarification of mutagen-induced, genome-wide 
somatic mutations in bacteria and mammals using Salmo-
nella typhimurium TA100 and the transgenic mouse model 
(gpt delta mice). We assessed the ability of Hawk-Seq™ 
to characterize somatic mutations via mutagen exposure. 
This technology will further accelerate our understanding 
of mutagens as a superior alternative to genotoxicity tests.

Materials and methods

Mutagens

Methylnitrosourea (MNU; CASRN. 684-93-5) and Eth-
ylnitrosourea (ENU; CASRN. 759-73-9) were purchased 
from Toronto Research Chemicals (Toronto, Canada). 
Aristolochic acid I (AA; CASRN. 313-67-7) was obtained 
from Sigma-Aldrich (MO, USA). Diethylnitrosamine (DEN; 
CASRN. 55-18-5) was purchased from the Tokyo Chemi-
cal Industry Co. Ltd. (Tokyo, Japan). Benzo[a]pyrene (BP; 
CASRN. 50-32-8) was obtained from FUJIFILM Wako Pure 
Chemical Corporation (Osaka, Japan).
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Bacterial DNA sample preparation

The Salmonella typhimurium Ames tester strain, TA100, 
was supplied by the NITE Biological Resource Center 
(Tokyo, Japan). The TA100 strain was cultured for 4 h 
at 37 °C with Nutrient Broth No. 2 (Oxoid, UK) con-
taining 24 µg/mL ampicillin (Sigma-Aldrich, MO, USA). 
The resulting bacterial cell suspensions were used for 
preparing DNA samples exposed to mutagens. Mutagen 
exposure was performed according to the pre-incubation 
procedure of the standard Ames test, which included 
slight modifications for DNA extraction (Mortelmans 
and Zeiger 2000; Matsumura et al. 2018). Briefly, 100 
µL of bacterial cell suspensions was mixed with 500 µL of 
phosphate buffer, pH 7.4 (Nacalai Tesque, Kyoto, Japan), 
and 100 µL of DMSO or test substance solutions. During 
BP exposure, 500 µL of the rat liver S9-mix (Kikkoman 
Biochemifa Company, Tokyo, Japan) was used instead of 
phosphate buffer. The resultant mixture was agitated at 
100 rpm and 37 °C, for 20 min. Then, to prepare DNA 
samples for sequencing, 50 µL of mixture was inoculated 
into 2 mL of nutrient broth and cultured at 37 °C for 
14 h, to fix mutations. Subsequently, genomic DNA was 
isolated using a DNeasy Blood and Tissue Kit (Qiagen, 
Valencia, CA), according to the manufacturer’s instruc-
tions. The standard Ames test was also performed using 
minimum glucose medium plates  (Tesmedia®AN; Orien-
tal Yeast Co. Ltd., Tokyo, Japan). Plates were incubated 
at 37 °C for 48 h and the number of colonies generated 
was counted.

Mouse DNA sample preparation

Male C57BL/6JJmsSlc-Tg (gpt delta) mice (7–9 weeks old) 
supplied by Japan SLC, Inc. (Shizuoka, Japan) were accli-
matized for 1 week before use. Then, 12.5 and 25 mg/kg 
of MNU, 75 and 150 mg/kg of ENU, and 40 and 80 mg/kg 
of DEN were dissolved into saline and administered intra-
peritoneally (i.p.) once daily, for 5 consecutive days. Mean-
while, 150 and 300 mg/kg of BP and 5 and 10 mg/kg of AA 
were dissolved into olive oil and administered orally (p.o.) 
once daily, for 5 consecutive days. Saline and olive oil were 
administered in the same manner as controls. Mice were 
euthanized by carbon dioxide inhalation, 7 days after final 
administration. Genomic DNA samples were extracted from 
the organs listed in Table 1 and Supplementary Table S3, 
using the RecoverEase DNA Isolation Kit (Agilent Technol-
ogies, CA, USA), according to the manufacturer’s instruc-
tions. All animal experiment protocols were approved by the 
Animal Testing Committee at Kao Corporation.

Library construction and sequencing

TA100 and mice genomic DNA samples were sheared to 
350 bp sized fragments using a sonicator (Covaris, MA, 
USA). The resultant DNA fragments were used for library 
construction, using the TruSeq nano DNA library prepara-
tion kit (TruSeq; Illumina, San Diego, USA), with a slight 
modification for Hawk-Seq™. Briefly, after fragmentation 
with a sonicator, DNA fragments were subjected to end 
repair, 3′ dA-tailing, and ligation to TruSeq indexed adap-
tors, according to the manufacturer’s instructions. Then, 

Table 1  The summary of the 
gpt assay indicating the number 
of colonies induced by exposure 
to mutagens (n = 4 or 5)

*(S): p < 0.05 by Steel’s test, *(D): p < 0.05 by Dunnett’s test

Materials Administration 
route (vehicle)

Organ Dose 
(mg/kg/
day)

No. of animals for 
gpt assay (for Hawk-
Seq™)

Mutant frequency 
(× 10−6)

Mean SD Statistics

MNU i.p. (saline) Bone marrow 0 5 (4) 3.31 0.87
12.5 5 (4) 8.53 4.38 *(S)
25 5 (4) 20.44 3.84 *(S)

ENU i.p. (saline) Bone marrow 0 5 (4) 2.36 1.26
75 5 (4) 37.80 28.24 *(S)
150 5 (4) 126.33 38.64 *(S)

DEN i.p. (saline) Liver 0 5 (4) 3.85 3.19
40 5 (4) 26.54 25.90 *(S)
80 4 (4) 31.48 2.40 *(S)

BP p.o. (olive oil) Bone marrow 0 5 (4) 1.27 0.73
150 5 (4) 15.22 8.36 *(S)
300 5 (4) 48.66 22.23 *(S)

AA p.o. (olive oil) Kidney 0 5 (4) 4.64 2.40
5 5 (4) 6.70 1.54
10 4 (4) 13.45 4.70 *(D)
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the DNA concentration of each sample was measured using 
Agilent 4200 TapeStation (Agilent technologies, CA, USA). 
Ligated products were diluted to an appropriate concentra-
tion with suspension buffer and subjected to PCR enrich-
ment. To perform the experiment for determining the opti-
mal IDAP, several dilutions of ligation products of TA100 
DNA samples exposed to DMSO or ENU were prepared, 
with concentrations ranging from 800 to 0.2 amol/μL, and 
25 μL of each sample was used for PCR enrichment. These 
were equivalent to 20,000, 2500, 1250, 625, 313, 156, 78, 
39, 20, 10 and 5 amol of IDAP. After PCR enrichment, the 
resultant PCR products were sequenced on the HiSeq 2500 
platform using v4 chemistry (Illumina, San Diego, USA). 
To determine the optimal conditions for maximizing the 
recovery of dsDNA consensus sequences (dsDCS), these 
samples were sequenced to obtain a yield of ~ 10 Gbp (50 M 
read pairs at 2 × 100 bp) per sample and the sequencing effi-
ciency (SE, %) was calculated, by dividing the number of 
dsDCS read pairs by the number of read pairs used for each 
sample. To evaluate the effect of the original sequencing 
amount on SE, we also calculated the SE, using about 1/5th 
of the number of read pairs subsampled from original read 
pairs (i.e. 10 M read pairs per sample). To perform mutation 
analysis of TA100 and gpt delta mice samples, the ligated 
products were diluted to a concentration of ~ 3.1 amol/μL 
(i.e. 78 amol at 25 μL), subjected to enrichment by PCR, and 
sequenced to yield ~ 50 M of read pairs, using HiSeq 2500. 
For samples used to calculate the rate of ‘overlap by accident 
(OBA)’, two different TruSeq indexed adaptors were used 
per sample, to construct libraries. Index data were used as 
markers to calculate the rate of OBA. The index data were 
connected to each read pair upon the addition of the index 
sequence to the header region of the fastq file.

Data processing for Hawk‑Seq™

Adapter sequences and low-quality bases were removed 
from the generated read pairs using Cutadapt (Martin 
2011). Then, edited paired-end reads were mapped to refer-
ence genome sequences and their format was changed to 
the SAM format using Bowtie2 software (Langmead and 
Salzberg 2013). For TA100 and gpt delta mice genome sam-
ples, the S. typhimurium LT-2 genome (GCA000006945.2) 
and mouse genome (GRCm38) were used as reference 
genome sequences, respectively. SAM format processing 
was performed using SAMtools-1.2 (Li et al. 2009). Then, 
to prepare dsDCS sequences, read pairs that shared the same 
genomic locations were grouped into the SP-Gs (Fig. 1 and 
Supplementary Fig. S1). To utilize the sequence information 
from both strands of dsDNA fragments, SP-Gs that included 
at least one read pair from both R1R2-Gs and R2R1-Gs were 
identified and used to generate dsDCS (Fig. 1 and Supple-
mentary Fig.S1). The output for the resulting dsDCS read 

pairs included new paired fastq files; they were mapped 
again to the reference genome sequence using Bowtie2 soft-
ware. The resulting SAM files were processed using SAM-
tools and mutations were detected.

Mutation detection and statistical analyses

To analyse mutation frequency, the number of base substitu-
tions for each type was separately enumerated. The mutation 
frequencies for each mutation type per  106 G:C or A:T base 
pairs were calculated, by dividing each mutation count by 
the total read base count mapped to the G:C or A:T base 
pair, respectively. Statistical analyses were performed based 
on the frequencies of each mutation type, per  106 bp using 
the Dunnett’s multiple comparison test or Student’s t test. 
In analyses using DNA samples of mice, to reduce back-
ground mutation call frequencies caused by single nucleo-
tide polymorphisms (SNPs), the genomic positions listed in 
the ensemble variation list (version 92) were removed from 
the analysis (Chen et al. 2010). Additionally, 898 genomic 
positions in which mutations were frequently detected in 
control samples were removed from the analysis. For the 
analysis using TA100, known variant positions observed 
in our laboratory strain were removed from the analysis 
(Matsumura et al. 2017). To estimate the dependency of 
mutation frequencies on the sequence context, the bases 
immediately 5′ and 3′ of each mutation were analysed, and 
mutation frequencies were calculated within the context of 
each trinucleotide. To evaluate the similarity of each 96-tri-
nucleotide format mutation pattern, the cosine similarities 
(CS) between signatures of mutagens or signatures listed in 
COSMIC were calculated (Alexandrov et al. 2013a). The 
detected mutations were annotated based on their genomic 
positions and base substitution types, using SnpEff (Cingo-
lani et al. 2012).

Data availability

The gpt delta mice genome sequence data used in this study 
are available in the Sequence Read Archive of the DNA Data 
Bank of Japan, under Accession Number DRA008304.

Results

Overview of Hawk‑Seq™ and definition of terms

Hawk-Seq™ utilizes the sequences of both strands of 
dsDNA in a manner similar to that for existing accurate 
sequencing techniques (Fig. 1). Here, to explain its optimiza-
tion processes, we describe the algorithm briefly and define 
terms. In HiSeq, paired reads were obtained from both ends 
of the DNA fragment. Therefore, the read pairs originating 
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from each dsDNA strand would be mapped to the same posi-
tion in the reference genome sequence (RGS). These read 
pairs can be categorized as ‘same position groups (SP-Gs)’. 
Furthermore, because Illumina uses y-shaped asymmetric 
adapters, if two read pairs in an SP-G are derived from dif-
ferent strands of parent dsDNA, the direction of R1 and R2 
would be opposite. Therefore, read pairs in an SP-G were 
further separated into two groups, based on the read direc-
tion (i.e. R1R2-G or R2R1-G), which represent the parent 
strand in the original dsDNA fragment. Thus, we devel-
oped an algorithm to identify dsDNA consensus sequences 
(dsDCSs) in which (1) read pairs were grouped into SP-Gs 
based on mapping positions, (2) read pairs in an SP-G were 
further classified as R1R2-G or R2R1-G, based on the 
read direction, and (3) if both R1R2-G and R2R1-G were 
included in an SP-G, the consensus read pairs (CRPs) were 
constructed separately within R1R2-G or R2R1-G; finally, 
(4) dsDCSs were prepared by comparing these CRPs (Fig. 1 
and Supplementary Fig. S1). In Hawk-Seq™, an individual 
SP-G was made as far as the positions of either end of paired 

reads were different from each other by at least 1 bp. Addi-
tionally, we made dsDCSs from an SP-G as long as one read 
pair from each of R1R2-G and R2R1-G was included in that 
SP-G. Thus, the number of prepared dsDCSs was sufficient 
to cover large genomic regions, using only mapping results 
and no external barcode sequences.

Optimization of Hawk‑Seq™ using Salmonella DNA 
samples

To optimize Hawk-Seq™, two conflicting parameters 
needed to be identified. First, the conditions for maximiz-
ing sequencing efficiency (SE) needed to be clarified to 
increase sequence output and the genomic regions covered. 
These would be influenced by the sequenced amount and 
molecular diversity of the library, which depends on the 
IDAP. Meanwhile, the possibility of incorrectly assigning 
read pairs from a different parent dsDNA fragment into an 
SP-G could inhibit SE maximization during the detection 
of each somatic mutation and needs to be minimized. This 

Fig. 1  The Hawk-Seq™ concept. Genomic DNA samples extracted 
from cell populations (mice or bacteria) after mutagen exposure were 
used to perform Hawk-Seq™. First, libraries for Illumina sequences 
were constructed according to the standard library preparation meth-
ods and sequenced. The obtained read pairs were mapped to reference 
genome sequences. The mapped read pairs were grouped into SP-Gs 
(surrounded by dashed line above), based on the genomic coordinates 
of their R1 start (i.e. one end of the fragment) and R2 start (i.e. the 

other end of the fragment) positions. Then, read pairs in an SP-G 
were further classified into two groups, based on their R1 and R2 ori-
entation (i.e. R1R2-G or R2R1-Gs), which depended on the strand 
they were derived from. Among the above 5 SP-Gs, SP-G 1 and 5 
are excluded from the following analysis because they included either 
R1R2-G or R2R1-G alone. SP-Gs that included both R1R2-G and 
R2R1-Gs (i.e. SP-G 2, 3, and 4 above) are used for preparing dsDNA 
consensus sequences (dsDCS), followed by mutation analysis
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phenomenon, which we have named ‘overlap by accident 
(OBA)’, is especially critical for the performance of Hawk-
Seq™, as it causes mutations to be overlooked as sequencing 
errors. This would occur if DNA fragments from multiple 
cells that were sheared at the same genomic locus were 
sequenced independently. It is speculated that the smaller 
the target genome size, the higher the possibility of OBA; 
besides, it would also be affected by IDAP. Thus, we opti-
mized Hawk-Seq™ by manipulating the IDAP with regard 
to these two parameters, using genomic DNA samples of S. 
typhimurium TA100, whose genome is the smallest among 
resources used for evaluating mutagenicity.

First, we calculated SE using libraries prepared with dif-
ferent IDAPs while sequencing a fixed amount per sample 
(c.a. 50 M read pairs) (Fig. 2a). In the first experiment (Exp. 
1: 20,000–156 amol), the SE increased with a decrease in 
the IDAP and reached a maximum value of 8.5%, when 
the IDAP was 156 amol. In the second experiment (Exp. 
2: 156–5 amol), the SE reached a maximum value of 7.1% 
when the IDAP was 78 amol, after which it decreased. 
Based on these results, after taking the experimental error 
into account, we concluded that the optimum IDAP value 
that maximized the SE was ~ 156–39 amol in about 50 M 

of sequencing read pairs, which yielded ~ 5–9% of dsDCSs, 
as compared to the number of read pairs used for mapping 
(Fig. 2a). These corresponded to 0.2–2 read pairs/IDAP 
(amol) or 1–2 read pairs/SP-G (Supplementary Table S1). 
To evaluate the effect of the original sequencing amount 
on SE, we also calculated the SE using ~ 1/5th of the num-
ber of read pairs subsampled from original read pairs (i.e. 
10 M read pairs per sample). As a result, the most efficient 
IDAP was 20 amol and it decreased almost proportionally 
with the sequencing amount, as compared to that in origi-
nal experiments (Fig. 2a, Supplementary Fig. S2a). The 
numbers of read pairs/IDAP or the number of read pairs/
SP-G in optimal conditions were equivalent to those in the 
original experiments (Supplementary Fig. S2a). Therefore, 
these parameters can be used as indicators to determine the 
optimal experimental conditions for Hawk-Seq™.

Next, we calculated the rate of SP-Gs with read pairs 
of two indexes (SPG-2idxs), within SP-Gs with 2 or more 
read pairs in the Exp. 1 and Exp. 2 above (Fig. 2b), as they 
were indicative of OBA probability. As expected, the rate of 
SPG-2idxs decreased as IDAP decreased and became < 1%, 
when IDAP was ≤ 78 amol (i.e. approx. ≤ 16 amol/Mbp 
genome). These values were not significantly affected by 

Fig. 2  Optimization of Hawk-Seq™ using DNA samples of TA100 
exposed to DMSO or ENU. Libraries using 20,000, 2500, 1250, 625, 
313, or 156 amol of IDAP (Exp. 1), and 156, 78, 39, 20, 10, or 5 
amol of IDAP (Exp. 2) were subjected to Hawk-Seq™. a As an indi-
cator for S.E., the mean rates of the number of generated dsDCS read 
pairs within the number of read pairs used for mapping to reference 
genome sequences were shown (mean of DMSO and ENU, i.e. n = 2). 
b The mean overlap rate of 2 idxs was calculated by dividing the no. 
of SPG-2idxs by no. of SP-Gs of 2 or more read pairs using the map-
ping results for the libraries in Exp. 1 and Exp. 2 (mean of DMSO 
and ENU, i.e. n = 2). c The mutation frequencies in six types of base 

substitutions were calculated using libraries in Exp. 1 of DMSO- and 
ENU-exposed samples. Each circle represents the value in each IDAP 
in Exp. 1 (i.e. 20,000, 2500, 1250, 625, 313, and 156 amol from the 
left). The frequency of each mutation type was negatively correlated 
with IDAP. d The mutation frequencies in six base substitution types 
were calculated with libraries in Exp. 2 (i.e. 156, 78, 39, 20, 10, and 
5 amol from the left) of DMSO- and ENU-exposed samples. The fre-
quency of each mutation type was almost unchanged with different 
IDAP values in Exp. 2. e Mutation frequencies in 6 types of base sub-
stitution in DNA samples of TA100 exposed to DMSO or ENU at 78 
amol of IDAP (n = 3). ‡p < 0.001 by Student’s t test
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the sequenced amount (Supplementary Fig. S2b) and were 
considered to be determined by IDAP per unit size of target 
genomic sequence. To evaluate the effect of OBA on muta-
tion detection, we also analysed mutation frequencies in 
DNA samples from Exp. 1 and Exp. 2 that were exposed to 
DMSO or ENU (Fig. 2c, d). As the rate of OBA decreased, 
the mutation frequencies in the ENU-exposed samples were 
increased. Therefore, taking the optimal conditions for SE 
into account, we decided that the most optimal IDAP in ~ 5 
Mbp of genomic regions and 50 M of sequence read pairs 
was 78 amol. As these conditions were applicable to larger 
genomic sequence analyses, we performed the following 
experiments using mice samples with this IDAP value. Fig-
ure 2e shows the results of analysis of mutations induced 
by ENU at 78 amol of IDAP. Hawk-Seq™ clearly detected 
increased mutation frequencies after bacteria were exposed 
to ENU, with a sensitivity that was comparable to that of the 
traditional Ames test (Supplementary Table S2). The muta-
tions induced by MNU, BP, and AA in TA100 were also ana-
lysed and mutational spectra that reflected the mechanism 
of each mutagen were obtained (Supplementary Fig. S3).

Analyses of mutagen‑induced mutations in gpt 
delta mice

Next, as a representative mammalian resource, we analysed 
genomic DNA samples of gpt delta mice exposed to the 
ENU, MNU, DEN, BP, and AA mutagens using Hawk-
Seq™. DNAs were extracted from organs targeted by these 
mutagens [i.e. bone marrow (BM) for MNU, ENU, and 
BP; liver for DEN; kidney for AA (Table 1); and liver (BM 
for DEN) as the second organ (Supplementary Table S3)]. 
These representative mutagens were selected, because of 
their ability to efficiently induce base substitutions in mice, 
including gpt delta mice (Lambert et al. 2005). Additionally, 
their mutational patterns or signatures have been thoroughly 
studied in mutagenicity assays and human cancer samples 
(Richardson et al. 1987; Bigger et al. 2000; Hunter et al. 
2006; Arlt et al. 2007; Poon et al. 2015). In the gpt assay, the 
number of colonies significantly increased after exposure to 
these mutagens (Table 1, Supplementary Table S3), which 
indicated a substantial level of induction of mutations. Dur-
ing the representative analyses of saline- or ENU-treated BM 

samples (n = 12), 69 ± 11 million (M) read pairs per sample 
were subjected to Hawk-Seq™, and 5.5 ± 1.0 M dsDCS 
read pairs were obtained; the mean SE was 7.97 ± 0.50% 
(n = 12). The mean percentage of the genomic region cov-
ered by at least 1 dsDCS was 25.8 ± 3.9%, and the mean 
depth within these mapped regions was 1.24 ± 0.05 (n = 12); 
this indicated that the large genomic regions were uniformly 
sequenced. The rate of SPG-2idxs within SP-Gs with 2 or 
more read pairs was analysed with multiple samples and 
confirmed to be sufficiently low (Supplementary Table S4), 
as observed during TA100 analysis. These data indicated 
that Hawk-Seq™ was successfully performed and mutations 
were analysed across large genomic regions. Within 8 gpt 
delta mice samples for each mutagen (i.e. 4 samples each for 
low and high doses, Table 1), 12,137, 63,320, 13,830, 6498, 
and 2478 base substitutions were detected for MNU, ENU, 
DEN, BP, and AA, respectively. The detected mutations in 
a sample for each mutagen were plotted onto the genome 
using a Circos plot (Supplementary Fig. S4) (Krzywinski 
et al. 2009). In mice, a majority of mutations occurred in 
intergenic or intronic regions, as expected (Table 2). Among 
mutations found in protein-coding regions, non-synony-
mous mutations were more frequently observed than syn-
onymous mutations, for which the ratio was equivalent to 
that observed in cancer genomes (Greenman et al. 2007; 
Kandoth et al. 2013). In TA100, a majority of mutations 
were detected on coding genes (Supplementary Table S5). 
In TA100, the non-synonymous/synonymous mutation ratio 
exhibited values specific to each mutagen, with small errors 
between samples. This parameter might be indicative of the 
mutagenic features of mutagens.

Analysis of mutagen‑induced mutation spectra 
in gpt delta mice

As mutations were widely distributed throughout the entire 
genome, it was assumed that Hawk-Seq™ provides less 
biased mutation spectra. Based on the obtained mutation 
data, we determined the mutation spectra in the six base 
substitution subtypes induced by each mutagen (Fig. 3a–e). 
The major mutation patterns induced by mutagens, such 
as those of A:T>T:A, A:T>G:C, and G:C>A:T in ENU-
exposed samples, and G:C>A:T in MNU, G:C>T:A in BP, 

Table 2  Summary of 
annotations of mutations 
observed in samples of gpt 
delta mice exposed to mutagens 
(eight samples per mutagen)

MNU ENU DEN BP AA

Organ Bone marrow Bone marrow Liver Bone marrow Kidney
Total 12,137 63,320 13,830 6498 2478
Outside of the gene 7727 40,731 8449 4235 1562
CDS 211 735 216 117 47
Synonymous 70 189 60 25 12
Non-synonymous 141 546 155 92 35
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and A:T>T:A in AA-exposed samples (Richardson et al. 
1987; Bigger et al. 2000; Arlt et al. 2007), were consist-
ent with those reported previously. We also identified other 
previously unreported minor mutation patterns that had been 
induced, including G:C>T:A in ENU, G:C>A:T in BP, and 
G:C>A:T in AA-exposed samples. Furthermore, regarding 
ENU and AA, there were clear differences in the mutation 
spectra of gpt delta mice and TA100 (Supplementary Fig. 
S3). In both these mutagens, mutations on G:C base pairs 
were more frequently observed in TA100 than in gpt delta 
mice. These results indicated that Hawk-Seq™ could clarify 
the mutation spectra of mutagens at sufficiently high resolu-
tions and enable us to speculate about the mechanisms of 
mutagens, including in mammals. Thus, Hawk-Seq™ pro-
vides useful data for the analysis of the mutagenic reactions 
of each mutagen in multiple species, which were difficult to 
obtain via traditional genotoxicity assays.

Analysis of trinucleotide mutational signatures 
in gpt delta mice

Mutation signatures usually occurring in 96 types of trinu-
cleotide formats (6 types of base substitution × 4 types of 5′ 
bases × 4 types of 3′ bases) have been extracted from a vari-
ety of human cancers; currently, 30 signatures are registered 
in COSMIC (Alexandrov et al. 2013a). We obtained muta-
tion signatures associated with ENU, MNU, DEN, BP, and 
AA exposure in mice, by examining the 5′ and 3′ bases of 

mutations in the immediate vicinity (Fig. 4a, b, each muta-
tion type was represented by the pyrimidine bases C and T). 
Furthermore, we analysed the similarity of these signatures 
to those in COSMIC (Fig. 4c). Although MNU, ENU, and 
DEN are categorized as alkylating agents, the signature for 
MNU was not similar to that for ENU and DEN [cosine 
similarity (CS) was 0.41 and 0.24, respectively]. Only the 
signature associated with MNU exhibited a significantly 
high CS (0.91) with signature 11 (alkylating agent) and 
had peaks representing G:C>A:T mutations on NpCpY (Y: 
pyrimidine base) consensus sequences, which are patterns 
known to be typical to alkylating agents (Alexandrov et al. 
2013a; Matsumura et al. 2018). Meanwhile, the signatures 
for ENU and DEN were not similar to signature 11 (CSs are 
0.28 and 0.18, respectively). The signatures for ENU and 
DEN exhibited a comparatively high CS with regard to each 
other (0.69). Particularly, it was observed in the liver that the 
CS for the signatures for ENU and DEN was 0.93 (Supple-
mentary Figs. S5, S6). These results suggested that ENU and 
DEN have common mutagenic mechanisms that probably 
originated from ethyl cations. Meanwhile, the mutational 
signature for ENU observed in TA100 exhibited different 
patterns, which indicated a high CS (0.92) to signature 11 
(supplementary Fig. S7). These results suggested that ENU 
might cause mutagenicity via a typical mode of action of an 
alkylating agent in Salmonella, but not in mice. Signatures 
of BP exhibited CS values that were comparatively high, 
as compared to COSMIC signatures 4, 24, and 29 (0.55, 

Fig. 3  Analysis of the frequencies of mutations induced by expo-
sure to a MNU (BM, 12.5, 25 mg/kg/day), b ENU (BM, 75, 150 mg/
kg/day), c DEN (liver, 40, 80 mg/kg/day), d BP (BM, 150, 300 mg/
kg/day), and e AA (kidney, 5, 10 mg/kg/day) in gpt delta mice. The 

mutation frequencies per  106 of G:C or A:T base pairs are presented 
(n = 4). Asterisks and daggers indicate p values in Dunnett’s multiple 
comparison test (*p < 0.05, †p < 0.01, and ‡p < 0.001)
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0.54, and 0.51, respectively). Among these, signatures 4 
and 29 were known to be caused by tobacco carcinogens. 
High CS values were observed for the signatures for AA 
and signatures 1, 6, 22, and 25 (0.70, 0.66, 0.58, and 0.63, 
respectively). The mutation patterns of A:T>T:A in AA sig-
natures especially indicated that they were highly similar to 
the mutation pattern for signature 22 (CS: 0.94), caused by 
AA exposure. Interestingly, the G:C mutations observed in 
samples exposed to BP or AA were apparently more fre-
quently observed in the CpG context. This might be attrib-
utable to the previously reported tendency of mutagens to 
bind to methylated CpG during in vitro and in vivo analysis 
in mice (Chen et al. 1998; Weisenberger and Romano 1999; 
Beal et al. 2015; O’Brien et al. 2016).

Discussion

We developed the Hawk-Seq™, a novel, highly accurate 
genome sequencing method, which enabled the high-
throughput characterization of somatic mutations across 
large genomic regions. We proved that this method enabled 
the accurate and efficient genome-scale characterization of 
mutagen-induced somatic mutations. Additionally, because 
no additional exogenous barcodes are necessary, the flow of 
the library preparation process is as simple as that of stand-
ard Illumina library preparation. These characteristics are 
critical while evaluating a substantial number of mutagens 
during high-throughput analysis. Therefore, Hawk-Seq™ is 
extremely important for the accumulation of data of various 

environmental mutagens, thereby enabling us to achieve a 
systemic understanding of mutagenic profiles of mutagens.

The possibility of OBA during Hawk-Seq™ could be 
disadvantageous, as it might adversely affect the detection 
of true mutations. However, as indicated in our results, this 
possibility could be lowered sufficiently, by controlling 
IDAP per unit genome size. In our experiments, the rate 
could be lowered to ~ ≤ 1%, which was sufficiently lower 
than the standard deviation in mutation frequencies, even for 
the small bacterial genome. Because this possibility would 
decrease as the size of the target genome increases, Hawk-
Seq™ can be applied for examining the overall mutation 
landscape across large genomic regions without any discern-
ible influence of OBA, using various biological resources. 
Hawk-Seq™ is the simplest sequencing technique that 
can be used for this purpose. However, during the analy-
sis of mutations in relatively small genomic regions, OBA 
might substantially influence the detection of mutations. In 
our experiments using the TA100 genome, this possibility 
increased in proportion to IDAP, and the detected mutation 
frequency in the ENU-exposed TA100 sample decreased 
accordingly (Fig. 2). Therefore, it is advisable to estimate 
the OBA rate using multiple indexed adapters per sample, 
while analysing relatively small genomic regions. Other-
wise, it is recommended to use other sequencing techniques 
that utilize molecular barcodes (Schmitt et al. 2012; Greg-
ory et al. 2016). Here, this possibility was sufficiently low 
(approx. ≤ 1%) at a concentration of 78 amol during bacterial 
genome analysis (approx. 5 Mbp genome). Considering the 
SE, this IDAP is sufficient for producing ~ 1 Gbp of dsDCS 

Fig. 4  The pattern of mutational signatures after exposure to muta-
gens in the 96-trinucleotide format in gpt delta mice. a The muta-
tion patterns obtained from the analysis of samples exposed to MNU 
(BM, 25 mg/kg), ENU (BM and liver, 150 mg/kg), and DEN (liver, 
80 mg/kg). MNU exhibited a similar pattern to signature 11 in COS-
MIC, which has peaks in the context of the trinucleotide consensus, 

NpCpY (where Y indicates a pyrimidine base). b The mutation pat-
terns obtained from the analysis of samples exposed to BP (BM, 
300  mg/kg) and AA (kidney, 10  mg/kg). c The cosine similarities 
between obtained mutation signatures of mutagens and COSMIC sig-
natures were calculated and shown as a heatmap
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per sample (i.e. approx. × 200 coverage). Therefore, Hawk-
Seq™ can be used for at least × 200 genomic coverage and 
analysis, without being influenced by OBA. As the genome 
of mammals is much larger than that of bacteria, the effect of 
OBA would be even lower, as compared to that of bacteria.

In analyses performed using gpt delta mice and TA100 
samples, Hawk-Seq™ sensitively provided catalogues of 
genome-wide somatic mutations induced by 5 mutagens. In 
the Ames assay, the n-fold increase in mean colony number 
was the smallest in AA-treated samples, and the maximum 
n-fold increase was observed to be 7.26 in the group treated 
with 313 μg/tube of mutagens. The coefficient of variation 
(CV) for this group was 0.43. During Hawk-Seq™ analysis, 
the frequencies of A:T>T:A mutations increased by 57.7 
fold in AA-treated samples (Supplementary Fig. S3), and 
the CV for this mutation pattern was 0.73. Meanwhile, in gpt 
assays, the minimum n-fold increase in mean colony number 
was 2.90 and was observed in kidneys of mice treated with 
10 mg/kg of AA. The CV for this group was 0.35. How-
ever, in mutation spectra obtained using Hawk-Seq™, the 
n-fold increase in the mean A:T>T:A mutation frequency for 
this group was 29.5 and the associated CV was 0.14. Thus, 
Hawk-Seq™ would enable us to conduct a more sensitive 
and stable evaluation of mutations than the existing geno-
toxicity assays. Furthermore, we exhibited that in the TG 
animal model, Hawk-Seq™ could detect mutation induction 
in three organs, i.e. BM, liver, and kidney. As these organs 
are susceptible to the toxicity associated with mutagens and 
widely evaluated in the toxicological field (Lambert et al. 
2005), mutation analysis by Hawk-Seq™ is considered as a 
valuable replacement for existing TG animal model assays. 
Thus, Hawk-Seq™ would enable the replacement of muta-
genicity assay models using bacteria or mammalian cells and 
would dramatically improve the current system for evaluat-
ing the mutagenicity of chemical substances.

Additionally, the mutation catalogues obtained by Hawk-
Seq™ enable the construction of refined mutation spectra 
and trinucleotide signatures, including the minor fractions 
of mutation patterns induced by each mutagen, which 
would help us to understand the mutagenic mechanisms of 
mutagens and their association with cancer in humans. For 
example, during the analysis of gpt delta mice exposed to 
AA, which was thought to mainly cause A:T>T:A muta-
tions (Arlt et al. 2007), our results showed that G:C>A:T 
mutation frequencies were also increased. This probably 
reflects the mechanism of action of AA, which is known 
to form adducts on G bases (Arlt et al. 2002). The pattern 
of G:C>A:T mutations in 96-trinucleotide signatures also 
indicated that they were similar to signatures observed in 
AA-related cancers (Poon et al. 2015). However, the increase 
in the number of G:C>A:T mutations has generally been 
attributed to ageing. Our results suggested that mutations 
observed in these cancers could possibly be attributed to AA 

exposure. The signatures of MNU and BP exhibited similari-
ties to signatures 11 and 4 (or 29), respectively. These results 
are thought to be reasonable, considering the mechanisms of 
these mutagens. However, in previous studies that analysed 
mutational signatures, the patterns associated with the sig-
natures for MNU were not similar to patterns for signature 
11 (Phillips 2018; Kucab et al. 2019). Although this could be 
attributed to several reasons, such as differences in cell type, 
it is difficult to achieve clarity using previous approaches. 
These results also indicated the usefulness of Hawk-Seq™ 
for precisely clarifying the mutational signatures in vari-
ous cell types and directly linking mutagens with cancer in 
humans. The relatively small CS values between the pat-
tern of BP and those of tobacco carcinogens were probably 
attributable to concurrent exposure to other mutagens in 
tobacco, such as aldehydes (Hecht 2008; Weng et al. 2018). 
This suggests that BP exposure is only one of the causes of 
mutagen-induced lung cancer. Therefore, obtaining muta-
tional signatures with various mutagens using Hawk-Seq™ 
would help us to determine the signatures associated with 
human cancers and achieve a systemic understanding of the 
roles of mutagens in cancer development.

In BP- or AA-treated animals, mutations within G:C 
base pairs were frequently observed in the CpG context, but 
were not clearly observed in MNU, ENU, and DEN-treated 
samples, suggesting that this phenomenon is specific only 
to certain mutagens. Mutagens such as BP and aflatoxin 
B1 (AFB1) could reportedly preferentially form adducts 
with G bases in the methylated CpG context (Chen et al. 
1998; Weisenberger and Romano 1999; Beal et al. 2015; 
O’Brien et al. 2016). Therefore, it can be hypothesized that 
these kinds of mutagens could possibly influence epigenetic 
regulation, by introducing mutations into the methylated 
genomic region. BP and AFB1 reportedly induced epige-
netic alterations in cultured human liver cells (Tryndyak 
et al. 2018). BP also reportedly affected CpG methylation 
levels in zebrafish and adversely affected normal cellular 
development (Fang et al. 2013). This feature might influ-
ence the carcinogenicity or developmental toxicity of these 
materials. Therefore, an analysis to determine whether these 
agents targeted methylated CpG in vivo and thereby dis-
turbed epigenetic regulation needs to be performed in the 
future.

Although these trinucleotide-based mutational signa-
ture analyses would increase the level of knowledge about 
mutagens and cancer, some questions about signatures 
remain unanswered. For example, the factors that deter-
mine characteristic trinucleotide patterns in each mutagen 
have remained largely unknown. In our analysis, unlike 
MNU, signatures attributable to ENU did not exhibit a 
pattern similar to that for signature 11 in mice, while 
their pattern was highly similar to that for signature 11 in 
Salmonella. One possible cause for this difference is the 
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involvement of DNA repair enzymes. In bacteria, ethyl 
adducts on G and T bases were repaired efficiently by alky-
lguanine DNA transferase (AGT). However, the mamma-
lian AGT enzyme is known to be relatively inefficient for 
the repair of O4-alkylT or O2-alkylT, as compared to the 
repair of these enzymes in bacteria; other repair systems 
were reportedly involved (Singer 1986; Jenkins et al. 2005; 
Nieminuszczy and Grzesiuk 2007). Additionally, the DNA 
sequence specificity of repair enzymes has been reported 
(Li et  al. 2017). Therefore, the differences in relevant 
repair systems might cause differences in ENU-induced 
trinucleotide patterns. Therefore, the analysis of mutation 
patterns of various mutagens associated with relevant 
repair systems using experimental models is important. 
Thus, as Hawk-seq™ enables high-throughput analysis to 
be performed using multiple biological resources, the data 
obtained in these analyses would promote our understand-
ing of mutational signatures.

Because Hawk-Seq™ provides a simple and high-
throughput platform for accurate genome sequencing, it 
would be also useful for analysing clinical sequences. 
Yamashita et al. demonstrated that the number of somatic 
mutations in pre-cancerous tissues could be used as a 
marker for risk quantification in some types of cancer 
(Yamashita et al. 2018). Because the throughput ability of 
Hawk-Seq™ is superior to that of other accurate genome 
sequencing techniques, it would be especially useful in 
clinical applications for cancer risk assessment. The risk 
of emergence of neoplastic cells because of the accumu-
lation of somatic mutation data for various pre-cancerous 
and cancerous tissues would become quantifiable.

This study is the first to use Hawk-Seq™ to derive 
genome-wide somatic mutation profiles of multiple muta-
gens in mice and identify some of the mutagenic features 
of chemical mutagens. The accumulation of these large-
scale mutation data would provide clarity about the muta-
genic features of mutational processes at extraordinary 
resolutions and their roles in human cancer development.
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