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Abstract
Consumers are constantly exposed to chemical mixtures such as multiple residues of different pesticides via the diet. This 
raises questions concerning potential combination effects, especially because these substances are tested for regulatory 
purposes on an individual basis. With approximately 500 active substances approved as pesticides, there are too many pos-
sible combinations to be tested in standard animal experiments generally requested for regulatory purposes. Therefore, the 
development of in vitro tools and alternative testing strategies for the assessment of mixture effects is extremely important. 
As a first step in the development of such in vitro tools, we used (tri)azoles as model substances in a set of different cell 
lines derived from the primary target organ of these substances, the liver (human: HepaRG, rat: H4IIE). Concentrations 
were reconciled with measured tissue concentrations obtained from in vivo experiments to ensure comparable effect levels. 
The effects of the substances were subsequently analyzed by transcriptomics and metabolomics techniques and compared 
to data from corresponding in vivo studies. The results show that similar toxicity pathways are affected by substances and 
combinations, thus indicating a similar mode of action and additive effects. Two biomarkers obtained by the approach, CAR 
and Cyp1A1, were used for mixture toxicity modeling and confirmed the concentration-additive effects, thus supporting the 
selected testing strategy and raising hope for the development of in vitro methods suitable to detect combination effects and 
prioritize mixtures of concern for further testing.
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Introduction

Since consumers are constantly exposed to mixtures of 
chemicals, e.g., to multiple pesticide residues via the daily 
diet, it is important to take chemical mixtures into account 
in risk assessment. In the European Union (EU), the corre-
sponding legislation such as Regulation (EC) No. 1107/2009 
states that plant protection products (PPP) and their residues 
‘‘[…] shall have no immediate or delayed harmful effect 
on human health, […], taking into account known cumu-
lative and synergistic effects where the scientific methods 
accepted by the Authority to assess such effects are avail-
able; […]’’ (EC 2009). However, pesticide active substances 
are extensively tested on an individual basis in conventional 
standard toxicity tests, mostly in animal experiments, rather 
than in combination or as formulated products. These stand-
ardized animal studies facilitate the identification of target 
organs, toxic effects and no observed adverse effect levels 
(NOAELs) for the derivation of reference values for single 

Bettina Seeger, Almut Mentz, Constanze Knebel, Philip Marx-
Stoelting and Tanja Heise contributed equally to this paper.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0020​4-019-02502​-w) contains 
supplementary material, which is available to authorized users.

 *	 Philip Marx‑Stoelting 
	 philip.marx‑stoelting@bfr.bund.de

1	 Institute for Food Toxicology and Center for Alternatives 
and Complementary Methods to Animal Experiments, 
University of Veterinary Medicine Hannover, Foundation, 
Hannover, Germany

2	 Department for Pesticide Safety, German Federal Institute 
for Risk Assessment, Berlin, Germany

3	 Center for Biotechnology, Bielefeld University, Bielefeld, 
Germany

4	 Max Rubner‑Institute, Federal Research Institute of Nutrition 
and Food, Karlsruhe, Germany

http://orcid.org/0000-0002-4653-2841
http://orcid.org/0000-0002-6487-2153
http://crossmark.crossref.org/dialog/?doi=10.1007/s00204-019-02502-w&domain=pdf
https://doi.org/10.1007/s00204-019-02502-w


2322	 Archives of Toxicology (2019) 93:2321–2333

1 3

active substances but are generally not subjected to a detailed 
mechanistic analysis. Such a mechanistic analysis is, how-
ever, relevant for the assessment of mixture toxicity, because 
the mode of action of substances in a mixture defines the 
nature of the potential combination effect (Kortenkamp et al. 
2009; EFSA 2019; OECD 2018). Substances with a similar 
mode or mechanism of action (e.g., affecting the same tar-
get organ and toxicity pathway by interference with similar 
receptors) are considered to cause mixture effects in a dose- 
or concentration-additive manner (DA/CA model, OECD 
2018). Thus, there are two major challenges to mixture 
toxicity testing that may be solved by an alternative testing 
strategy making use of omics analysis and in vitro assays: 
the need for mechanistic understanding and the large number 
of possible combinations.

With approximately 500 active substances having been 
approved in Europe, there are far more possible binary or 
ternary combinations due to their occurrence as multiple 
residues (EFSA 2018) than one could test in animal studies 
for economical and ethical reasons (Solecki et al. 2014). 
Hence, the development of in vitro tools for the assessment 
of mixture effects and corresponding testing strategies are 
urgently needed.

The inclusion of data obtained using ‘omics’ techniques 
such as transcriptomics and metabolomics in the risk assess-
ment of chemical mixtures’ fuels hopes to uncover com-
bined effects at a mechanistic level, giving hints for modes 
of action or adverse outcome pathways (AOPs) (Alten-
burger et al. 2012; Marx-Stoelting et al. 2015; Brockmeier 
et al. 2017). The AOP concept has become widely used in 
toxicology to link a molecular initiating event (MIE) as a 
first response of an organism to a chemical stressor at the 
molecular level via one or more key events (KEs) at the 
molecular and/or cellular level to an adverse outcome (AO) 
at the organism level (Ankley et al. 2010; Vinken 2013). 
AOPs may thus facilitate understanding mixture effects by 
helping to identify key toxicity pathways affected by sub-
stances and their combinations. Omics analysis may reveal 
AOPs and, consequently, MIEs such as the activation of 
nuclear receptors or other key signaling molecules that are 
involved. Results could then be used to differentiate between 
substances with a similar or a dissimilar mode of action and, 
thus, the nature of the mixture effect. Additionally, the com-
prehensive analysis of effects at a specific molecular target 
(e.g., the activation of a nuclear receptor) might further be 
used for modeling mixture effects. Therefore, in the present 
study a combined in vivo–in vitro approach was chosen mak-
ing use of omics techniques to analyze mixture effects of 
azole fungicides at a mechanistic level in their major target 
organ.

Azole fungicides are a group of widely used fungicides 
designed to specifically inhibit a fungal CYP enzyme 
(CYP51) involved in membrane synthesis, which have 

been selected by EFSA as model compounds to build a 
cumulative assessment group, since exposure to multiple 
residues of azoles is likely to occur (EFSA 2009). The main 
target organ of azoles in mammals is the liver, but some 
of these substances also show developmental toxicity and 
effects on endocrine organs (EFSA 2009). Supplementary 
Table 1 summarizes the liver effects of the azole fungicides 
cyproconazole (C), epoxiconazole (E) and prochloraz (P) as 
observed in animal studies performed for regulatory toxicity 
testing. Cyproconazole (EFSA 2010), epoxiconazole (EFSA 
2008), prochloraz (EFSA 2011) and their mixtures (Heise 
et al. 2018; Schmidt et al. 2016) are known to increase liver 
weight and lead to enzyme induction in rats and mice. In 
previous in vivo studies in rats, it was confirmed that the 
liver is a main target organ of azoles and that hepatotoxicity 
is induced by interference with the nuclear receptors con-
stitutive androstane receptor (CAR), pregnane X receptor 
(PXR) and aryl hydrocarbon receptor (AhR) (Heise et al. 
2015, 2018; Goetz and Dix 2009a, b). Therefore, a main aim 
of the present study was to determine if these events could 
be confirmed in cell lines of hepatic origin and if omics 
techniques would be able to identify corresponding toxicity 
pathways.

Further objectives of the present study were to identify 
appropriate markers or MIEs to model combination effects 
and to analyze if the assumption of EFSA (2009), assuming 
DA/CA, was correct or if synergistic or subadditive effects 
could be observed.

The above-mentioned azoles were tested in the human 
liver cell line HepaRG as well as in the rat liver cell line 
H4IIE to compare the in vitro data with data obtained in 
in vivo studies in rats (Heise et al. 2015, 2018; Schmidt 
et al. 2016) and to facilitate the extrapolation of results from 
rat to human. Effects of binary and ternary mixtures of the 
widely used triazoles cyproconazole, epoxiconazole and the 
imidazole prochloraz were investigated in vitro based on a 
multi-level-omics approach, thereby obtaining transcriptome 
and metabolome data.

Materials and methods

Test substances

Cyproconazole (CAS no. 94361-06-5, Batch no. 
CHF1E00042, purity 96.8%) was obtained from Syngenta 
(Basel, Switzerland). Epoxiconazole (CAS no.133855-98-
8, Batch no. 8563, purity 97.0%) and prochloraz (CAS no. 
67747-09-5, Batch no. COD-000718, purity 98.0%) were 
supplied by BASF (Ludwigshafen, Germany). All test 
substances were dissolved in DMSO (CAS no.67-68-5, 
purity ≥ 99.5%, Carl Roth, Karlsruhe, Germany) and stored 
at minus 20 °C. The compound concentrations in the cell 
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culture medium tested to perform metabolome analyses are 
listed in Supplementary Table 2. The highest compound 
concentration was selected when wanting to perform tran-
scriptome analyses. The maximal concentration of the sol-
vent in the cell culture medium was 1%. Cells were treated 
for 24 h with the single test substances [cyproconazole (C)/
epoxiconazole (E)/prochloraz (P)], the binary (CE) and the 
ternary mixtures (CEP) as well as with a solvent control in 
triplicates for metabolome analyses and six replicates for the 
transcriptome analyses. In a first step, different incubation 
times (8 h, 24 h, 72 h) were tested, with the 24 h treatment 
being the most effective (data not shown).

Cell culture

All cell lines were cultured under standard cell culture con-
ditions (37 °C, 5% CO2, 95% rel. humidity). Information on 
the seeded cell densities and the used cell culture formats 
is summarized in the Supplementary Table 3. Cells were 
regularly checked for mycoplasma contamination.

H4IIE cells were incubated in MEM medium (Pan-
Biotech GmbH, Aidenbach, Germany) supplemented with 
10% v/v fetal calf serum (Pan-Biotech GmbH) and passaged 
every 2–3 days after reaching an about 80% confluence. The 
treatment of the cells with the substances was performed in 
phenol-red-free MEM medium (Pan-Biotech GmbH) supple-
mented with 10% v/v fetal calf serum (Pan-Biotech GmbH).

HepG2 cells (ECACC, Porton Down, UK) were incubated 
in RPMI-1640 medium (Pan-Biotech GmbH) supplemented 
with 10% v/v fetal calf serum (Pan-Biotech GmbH). Cell 
passaging was conducted every 3–4 days after the cells 
reached a confluence of about 80%. Treatment of the cells 
with the test substances was performed in phenol-red-free 
RPMI-1640 medium (Pan-Biotech GmbH) supplemented 
with 10% v/v fetal calf serum (Pan-Biotech GmbH).

HepaRG cells were purchased from Biopredic Inter-
national (Saint Grégoire, France) and were cultured as 
described by Lereau et al. (2012) with slight modifications. 
Briefly, the cells were expanded for 2 weeks in growth 
medium composed of William’s E medium (Biochrom, Ber-
lin, Germany) supplemented with 10% v/v fetal calf serum 
(Biochrom), 50  IU/ml penicillin/50 μg/ml streptomycin 
(Biochrom), 2 mM l-glutamine (Biochrom), 20 µg/ml gen-
tamycin (Biochrom), 5 µg/ml human recombinant insulin 
(Biochrom) and 0.5 µg/ml dexamethasone (Sigma-Aldrich, 
Schnelldorf, Germany). For the subsequent differentiation 
period of 2 weeks and the further cultivation, the growth 
medium was additionally supplemented with 1.8% DMSO 
(Carl Roth) and 5 ng/mL human recombinant EGF (Sigma-
Aldrich). Medium was changed every second day. Substance 
treatment followed 6 days after the end of the cell differen-
tiation period.

Test concentrations were optimized for the different cell 
lines beforehand by evaluating the cytotoxicity (data not 
shown, the used nominal test concentrations are listed in 
the Supplementary Table 2). Only non-cytotoxic concentra-
tions were used for the analyses. Cytotoxicity was monitored 
using the CytoTox-ONE™ Homogeneous Membrane Integ-
rity Assay (Promega, Madison, WI, USA), which checks 
for LDH leakage, and the WST-1 Cell Proliferation assay 
(Roche, Rotkreuz, Switzerland), which checks for mito-
chondrial metabolic activity of the cells. Both assays were 
performed according to the manufacturer’s manual. In the 
modeling experiment, concentrations were adapted for mod-
eling reasons.

Molecular analysis

RNA was isolated using peqGOLD TriFastTM (Peqlab, 
Erlangen, Germany) as recommended by the manufacturer. 
Subsequently, RNA was analyzed for quality and quantity 
with the Agilent Bioanalyzer (Agilent, Santa Clara, CA, 
USA).

Whole genome microarray analysis

The qualitatively best four out of six isolated RNA samples 
were used for the microarrays analyses. In detail, 200 ng total 
RNA of all samples and the solvent-treated RNA control 
pool were prepared using the Low Input Quick Amp Labe-
ling Kit (Agilent, Santa Clara, USA) for two-color microar-
ray experiments. The following hybridization was conducted 
using the SurePrint platform (Agilent, Santa Clara, USA) 
and organism-specific designs of 8 × 60 K microarray layouts 
from R. norvegicus (G3 Rat GE 8 × 60 K, 30,003 genes) and 
H. sapiens (G3 Human Gene Expression 8 × 60 K v2, 50,599 
genes). To monitor the experiments’ accuracies, an external 
RNA was applied as control kit (RNA Spike-In Kit, Agilent, 
Santa Clara, USA). Washing of the slides was carried out 
using the Gene Expression Wash Buffer Kit (Agilent, Santa 
Clara, USA), and all signals were extracted and analyzed 
by the Agilent Feature Extraction software subsequent to 
the scanning process. Data were normalized using the Low-
ess method with EMMA2 software (Dondrup et al. 2009), 
and final signals were identified by performing a t test with 
correction for multiple comparisons by adjusting the false 
discovery rate (p < 0.05; Benjamini and Hochberg 1995). 
Based on a ‘yellow’ experiment, genes with M values > 0.6 
and < − 0.6 were defined as differentially expressed genes 
(DEGs). All M/A plots were generated by means of Micro-
soft Excel (2016), while Venn diagrams were generated 
by means of InteractiVenn (Heberle et al. 2015). Principal 
component analysis (PCA) was conducted by the usage of 
Omics Fusion (Brink et al. 2016). All results obtained from 
the human cell lines were analyzed for KEGG pathways by 
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over-representation analysis (FDR p < 0.05; Benjamini and 
Yekutieli 2001) with GeneTrail2 (Stoeckel et al. 2016).

Quantitative real‑time‑PCR (qRT‑PCR)

The reverse transcription of 2 µg RNA of the treated cells 
into cDNA was performed using the High Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems, Darmstadt, 
Germany) according to the protocol of the manufacturer. 
Forty nanograms of cDNA was used for qRT-PCR analy-
sis on an ABI 7900HT instrument (Applied Biosystems, 
Darmstadt, Germany) with Maxima SYBR Green/Rox qPCR 
Mastermix (Life Technologies, Carlsbad, USA) and 0.25 µM 
primers (Eurofins, Luxemburg).

Low‑density qRT‑PCR arrays

For the low-density array analyses, 2 µg RNA obtained from 
H4IIE cells after test substance incubation was reversely 
transcribed to cDNA using the RT2 First Strand cDNA Kit 
(Qiagen, Hilden, Germany) according to the protocol of the 
manufacturer. cDNA was analyzed by making use of the 
Molecular Toxicology PathwayFinder RT2 Profiler™ PCR 
Arrays (rat, # PARN-3401ZE, SA Bioscience, Qiagen) on 
an ABI 7900HT real-time system (Applied Biosystems) as 
described by the manufacturer.

Reporter gene assay

HepG2 cells were used to establish a dual luciferase trans-
activation assay for the human CAR. In this assay, the first 
plasmid contains the sequence of a fusion protein of GAL4 
with the ligand-binding domain of the human CAR and 
the second plasmid contains the firefly luciferase reporter 
gene under the control of five copies of the GAL4 upstream 
activation sequence (UAS) and a minimal thymidine kinase 
promoter. Cells were co-transfected with an expression vec-
tor for the human nuclear receptor hCAR. The third plasmid 
constitutively expresses the renilla luciferase sequence and 
serves as an internal control in all assays. HepG2 cells were 
transiently transfected using TransIT-LT1 (Mirus Bio LLC, 
Madison; WI, USA). After treatment and lysis of the cells 
(with 100 mM potassium phosphate and 0.2% [v/v] Triton 
X-100, pH 7.8), luminescence was measured using a plate 
reader (Infinite M200PRO, Tecan, Männedorf, Switzerland) 
according to the Dual Luciferase Assay protocol provided 
by the supplier (Promega).

Analysis of the metabolome

Treated cells and cell culture supernatants were harvested for 
metabolome analysis. About 7 ± 1 mg of the dried samples 
were homogenized using a Precellys 24 homogeniser (Bertin 

Instruments, Frankfurt Main, Germany) at 3 × 45 s, 6.5 m/s 
with 0.2 g of silica beads and 1 ml 80% methanol containing 
10 µM ribitol as internal standard. The exact dry weights 
of all samples were determined and used for later normali-
zation. After centrifugation, 750 µl of the supernatant was 
dried in a stream of nitrogen gas and transferred to the Multi-
Porpose Sampler (MPS2, Gerstel, Germany). The samples 
were subsequently derivatized with 100 µl methoxyamine 
hydrochloride (20 mg/ml in pyridine, Sigma-Aldrich) and 
100 µl MSTFA (Macherey–Nagel). Thereafter, they were 
injected for the analysis in a Leco Pegasus IV gas chroma-
tograph (GC) coupled to time-of-flight mass spectrometer 
(MS; Leco, Saint Joseph, Michigan, USA). The GC instru-
ment was equipped with an Rtx®-5MS column (30 m, iD 
0.25, df 0.25 µm; Restek). A 1-µl sample was injected (split-
less) for GC–MS analysis. The oven program was: 3 min 
80 °C, ramp with 5 °C per minute up to 325 °C, isothermic 
conditions for 2 min at 325 °C. The transfer line temperature 
was set at 250 °C and the ion source at 220 °C. Mass spectra 
were recorded from m/z 50 to 750. The resulting chromato-
gram and mass spectra were converted to the Computable 
Data Format (CDF) and imported to the web-based software 
platform MeltDB 2.0 (Kessler et al. 2013) for further data 
analysis, statistical evaluation and visualization.

Statistics and modeling

SigmaPlot for Windows software (Version 14.0) and Graph-
Pad Prism (Version 8.0) were used for statistical analysis and 
dose response modeling, respectively. The Shapiro–Wilks 
and Brown–Forsythe tests were applied to test for normal 
distribution and homogeneity of variances, respectively. 
Because most of the data did not meet the prerequisites for 
parametric testing, the non-parametric Mann–Whitney rank 
sum test was performed. Asterisks (*) indicate statistical 
significance at p < 0.05, and error bars depict the standard 
deviation.

To obtain information on additivity of effects, a curve 
was modeled based on the data obtained for the individual 
substances by assuming concentration addition. The meas-
ured combination effect was then compared to the model, 
and a model deviation ratio (MDR) of two was accepted as 
a maximum deviation to accept additivity as suggested by 
Belden et al. (2007) and differentiate CA/DA from interac-
tion (e.g., synergism or antagonism).

Results

Cells were treated with nominal concentrations of sub-
stances based on known in vivo effect concentrations and 
cytotoxicity testing (Table 1, Supplementary Table 2). Sub-
sequent transcriptomics analysis revealed the number of 
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differentially expressed genes (DEGs), which was followed 
by a pathway-focused KEGG (Kyoto Encyclopedia of Genes 
and Genomes) analysis of transcriptomics data, a compari-
son of rat in vivo and rat in vitro data, and a comparison of 
rat in vitro data as well as human in vitro data. Based on 
the transcriptomics analysis, a common toxicity pathway 
and a corresponding biomarker were identified and applied 
for mixture toxicity modeling. Additionally, metabolomics 
analysis was used to support some of the findings on the 
affected toxicity pathways.

The number of DEGs after a treatment 
with the single pesticides and their mixtures varies 
between the different cell lines

The total number of DEGs in the case of the rat in vivo, rat 
in vitro (H4IIE) and human in vitro (HepaRG) is shown in 
Fig. 1a. Most genes were found to be deregulated in HepaRG 
cells (2058 genes just for the P treatment). In rat in vivo, the 
highest number of DEGs was observed in the CE-treated 
group (807 genes), and a maximal number of 381 genes was 
significantly deregulated in the H4IIE cell line by the CE 
mixture. However, when comparing both species, one has 
to take into account that the total number of genes analyzed 
in R. norvegicus is smaller than that in the human cell lines 
(30,003 vs 50,999 Entrez gene RNAs).

In a next step, we analyzed the overlap of individual 
DEGs by the different treatments, which was surpris-
ingly small for C in HepaRG cells (Fig. 1a). Up to 79% 
(219 out of 278) of the DEGs in the HepaRG cells were 
altered by C only. However, depending on the substance 
or mixture, the overlap of individual DEGs became larger 
for E or P.

Accordingly, only 13 genes were deregulated by all sub-
stance treatments in H4IIE cells (thereunder Gsta2, Ugt1a6, 
Ugt2b15 and Nqo1). This indicates that, despite the struc-
tural similarities of the substances, common biomarkers are 

difficult to identify when looking at the level of individual 
genes, with Cyp1a1 being one of the very few exceptions.

Additionally, the binary and ternary mixtures do not only 
deregulate the same genes stronger than the two triazole sub-
stances alone, but in addition they also deregulate some dif-
ferent genes (Fig. 1a). 37% (142 out of 381) of the DEGs in 
H4IIE cells are additionally influenced by the CE mixture 
and again 37% (60 out of 164) by the CEP mixture when 
compared to the treatments with the single substances. In 
contrast, the structurally related but less similar azole fun-
gicide P exclusively leads to 70% DEGs (236 out of 338).

In HepaRG cells, 62% (538 out of 862) of the DEG are 
influenced by CEP alone and not by the individual compo-
nents of the mixture, while in the case of the CE mixture 
this level is much lower (10%, 72 of 784). Here again, the 
azole fungicide P exclusively leads to 56% DEGs (1148 out 
of 2058).

The diagram also shows that the influence of epoxi-
conazole in H4IIE cells is higher than that of C in the CE 
mixture. The same also applies to the human cell line: The 
CE mixture effects on the transcriptome seem to be mainly 
driven by E.

P seems to have the most distinct effect in all three cell 
lines, as a high number of genes are exclusively deregulated 
by P (70%, 236 out of 338 in the H4IIE cells; 56%, 1148 out 
of 2058 in the HepaRG cells), but not by any other treatment. 
This means that P with its distinct effects on the transcrip-
tome mainly drives the effects in the mixtures containing P, 
but shows a stronger impact when applied alone. The gene 
expression changes in the mixtures containing P seem to 
be antagonized by C and E in the H4IIE and HepaRG cells 
(Fig. 1a).

Overlap of DEGs is low in the case of the three 
fungicides and the three different models used

Figure 1b compares the overlap of DEGs by treatment 
with the single substances P, C and E in the three models 

Table 1   Measured concentrations in vivo

Substances In vivo

Nominal Concentration in  
Diet [mg/kg]

Measured concentration in liver 
(± SD) [mg/kg]

Measured concentration 
in liver [μM]

Cyproconazole 1000 15.6 (± 1.52) 53.5
Epoxiconazole 900 8.2 (± 3.26) 24.9
Prochloraz 1000 3.5 (± 1.09) 9.2
Cyproconazole + Epoxiconazole  

(Mixture I)
1000

900
5.2 (± 2.13)

9.6 (± 3.88)
17.8
29.1

Cyproconazole + Epoxiconazole +  
Prochloraz (Mixture II)

1000
900
1000

8.4 (± 5.55)
16.4 (± 6.99)
1.6 (± 1.59)

29.0
49.6
4.2
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(rat in vivo, rat in vitro H4IIE and human in vitro Hep-
aRG). The overlap is low taking into account that only 
one gene is commonly affected in all three models by P 
(Ephx1). In the case of P, the overlap between the two cell 
lines is higher than the overlap between rat in vivo and 
in vitro, which potentially points out to different toxicoki-
netics or metabolism in vivo and may in turn result in a 
different set of DEGs.

The overlap of all three models is even lower for C 
(no DEG). However, here the overlap between rat in vivo 
and in vitro is higher than the overlap between H4IIE and 
HepaRG cells, thereby pointing out to species differences 
in reaction to this substance.

Transcriptomic data from H4IIE cells treated 
with the mixtures and confirmed by qRT‑PCR show 
a good correlation with data from an in vivo study 
in rats

Table 2 shows the gene expression data for selected target 
genes from the microarray and RT-qPCR analyses in the 
H4IIE cells in comparison to data from the low-density 
arrays in rat livers obtained from a previously performed 
28-day feeding study (Heise et al. 2018) for C, E and CE. 
The data from the microarray, the low-density array and 
the RT-qPCR analyses obtained in the in vitro experiments 
and the in vivo study show a good correlation. Cumulative 

(a)

(b)

Fig. 1   Venn diagrams of DEGs in comparison to the solvent control 
(M > = 0.6, M <=− 0.6, p < 0.01) and comparison of in vivo rat with 
the rat cell line H4IIE and the human cell line HepaRG under differ-
ent treatments: cyproconazole (C), epoxiconazole (E), prochloraz (P), 
cyproconazole + epoxiconazole (CE) and cyproconazole + epoxicona-

zole + prochloraz (CEP). a Sorted by test system, comparing the treat-
ments; b sorted by treatment, comparing the test systems. Binary and 
ternary mixtures of test substances were applied in equimolar mix-
tures (e.g., 2.5 µM cyproconazole + 2.5 µM epoxiconazole). Nominal 
test substance concentrations are listed in Supplementary Table 2
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effects were obvious for Cyp1a1 induction in vitro and 
in vivo.

To further confirm the microarray data, qRT-PCR analy-
ses were conducted for selected deregulated top scorer genes 
from microarray analyses to demonstrate concentration-
dependent effects. The Cyp1a1 expression in the human 
HepG2 and the rat H4IIE cells after an incubation with 
increasing concentrations of cyproconazole, epoxiconazole 
and its mixture is exemplarily shown in the Supplementary 
Fig. 1. Data from the microarray analyses were additionally 
confirmed using a low-density array for a broad range of 
genes in the H4IIE cell line treated with C, E, P, CE and 
CEP (Supplementary Table 4). A high number of genes were 
deregulated by the (tri)azole treatment, and the substance 
combinations seem to have cumulative effects affecting a 
number of genes (e.g., Aass, Abcc2, Ahr, Cyp1a1, Gadd45a 
and Mgmt). The most pronounced effects were caused by 
the treatment with the ternary mixture CEP and the single 
substance prochloraz.

Pathway analysis reveals a high level of similarity 
between rat in vivo, rat in vitro and human cell lines, 
but not for all substances

A KEGG pathway analysis of the DEGs in rat in vivo as well 
as in the treated H4IIE and HepaRG cells was performed, 
and the most strongly affected KEGG pathways are shown 
in Fig. 2 and Table 3. In contrast to the observation made in 
the case of individual DEGs, where the overlap was quite 
low, the level of similarity became higher, when genes were 
assigned to toxicity pathways.

In rat liver in vivo, the five most affected KEGG pathways 
were essentially similar: chemical carcinogenesis, xenobiotic 
metabolism, drug metabolism, steroid hormone metabolism 
and retinol metabolism (see Fig. 2) were most affected by all 
three substances as well as by the combinations.

In the rat liver cell line H4IIE, the five most affected 
KEGG pathways were chemical carcinogenesis, xenobiotic 
metabolism, drug metabolism, steroid hormone metabolism 
and retinol metabolism in the case of C, chemical carcino-
genesis, xenobiotic metabolism, drug metabolism and retinol 
metabolism followed by pentose and glucuronate metabo-
lism instead of steroid metabolism in the case of epoxicona-
zole and chemical carcinogenesis, xenobiotic metabolism, 
drug metabolism, pentose and glucuronate metabolism and 
bile secretion in the case of prochloraz. In the case of the 
mixtures, xenobiotic metabolism, drug metabolism, chemi-
cal carcinogenesis, pentose and glucuronate metabolism and 
retinol metabolism were most affected. Overall, these effects 
show a good correlation with the situation in vivo, with the 
three most affected pathways being similar, while some dif-
ferences regarding certain pathways are evident (Fig. 2).Ta
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In the human liver cell line HepaRG, the only affected 
pathways observed after treatment with cyproconazole were 
the PPAR signaling pathway and amino acid metabolism. 
This differed strongly from E, P and the binary combination, 
in which case the five most affected pathways were chemical 
carcinogenesis, xenobiotic metabolism, drug metabolism, 
steroid hormone metabolism and retinol metabolism. This 
may partially be explained by species differences observed 
for cyproconazole in terms of the substances’ ability to acti-
vate the human forms of the nuclear receptors CAR and 
PXR (e.g., Marx-Stoelting et al. 2017), both considered to 
play a central role in the induction of hepatotoxicity by this 
fungicide in rats.

While in the case of the rat liver in vivo and in vitro the 
level of similarity for all three substances and the mixtures 
can be regarded as high, there are clear differences regarding 
the pathways affected in the H4IIE cells (rat hepatic origin) 
and the HepaRG cells (human hepatic origin).

Again, it is evident, as already seen when comparing 
DEGs in the different cell lines (Fig. 1a), that the treatment 
with C, E and CE shows a higher concordance regarding the 
DEGs and affected KEGG pathways if compared to P and 
mixtures containing P. This may again point at a different 
mode of action of this compound.

Information on the affected toxicity pathways can 
be used to select potential biomarkers for mixture 
toxicity assessment

Pathway-focused analysis revealed that toxicity pathways 
affecting drug and xenobiotic metabolism are the most 
commonly affected pathways by all substances. Potential 
molecular initiating events of these pathways consist of 
activation of nuclear receptors such as AhR and/or CAR. 
Since the ability of the substances used in this study to acti-
vate AhR has already been analyzed elsewhere (e.g., Rieke 

et al. 2014), we focused on CAR transactivation. Figure 3a 
shows that CAR is indeed activated by cyproconazole and 
epoxiconazole. The reporter gene assay was also used to test 
if mixture effects observed are in line with DA/CA model. 
As demonstrated in Fig. 3a, the effects observed for C, E and 
the binary mixture are in line with the dose/concentration 
addition model.

The only marker gene that was altered throughout treat-
ments and models was CYP1A1. Hence, we used CYP1A1 
for a similar modeling approach (Fig. 3b). In the case of 
CYP1A1 expression, concentration addition was also 
observed.

The treatment with different pesticides and their 
mixtures leads to distinct metabolome profiles

In addition to the transcriptome analysis, the metabolome 
of H4IIE cells and their supernatants were analyzed. The 
metabolome profile after treatment with cyproconazole, 
epoxiconazole and their binary mixture in a PCA is shown 
in Supplementary Fig. 2. The samples can be clearly seg-
regated and the treated cells can be distinguished from 
the solvent control when analyzing the cells as well as the 
cell culture supernatants. The PCA, besides the cluster 
analysis, demonstrates that the combination of the two 
pesticides (CE) induces the most significant differences, 
followed by the treatment with E alone, which is compa-
rable to the transcriptomic profile. The mixture effects 
of the CE treatment seem to be primarily determined by 
the influence of E, which is in line with the transcriptom-
ics analyses. A particular difficulty of the metabolome 
analysis is the definitive identification of the metabolites. 
Sixty identified metabolites are demonstrated in Supple-
mentary Table 5. As most of the identified metabolites 
are components of the central metabolism and particu-
larly sugars, intermediate products of glycolysis or amino 

Table 3   Amount of 
differentially expressed genes 
(DEG) sorted by KEGG 
pathway. The sum of DEG 
affected in vivo in a rat 28-day 
study and in vitro in H4IIE cells 
and HepaRG cells is shown

KEGG pathway
∑

in vivo
∑

H4IIE
∑

HepaRG

Bile secretion 19.1 15.4 13.6
Biosynthesis of amino acids 0.0 7.9 4.5
Carbon metabolism 3.2 6.0 4.7
Chemical carcinogenesis 63.9 42.1 20.8
Drug metabolism—cytochrome P450 23.8 31.6 14.5
Drug metabolism—other enzymes 34.8 18.0 5.4
Glutathione metabolism 8.7 5.5 6.1
Metabolism of xenobiotics by cytochrome P450 40.8 53.0 20.2
Pentose and glucuronate interconversions 19.4 21.7 6.4
Porphyrin and chlorophyll metabolism 13.5 8.9 9.3
PPAR signaling pathway 0.0 5.4 5.5
Retinol metabolism 51.6 24.7 26.9
Steroid hormone biosynthesis 58.1 13.9 20.2
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acids, it was difficult to correlate the data of particu-
lar metabolic pathways to the transcriptomics findings. 
However, approximately half of the metabolites identi-
fied could be assigned to either ‘Pentose and gluconate’, 
‘steroid hormone biosynthesis’ or ‘biosynthesis of amino 
acids’; three pathways were found to be strongly altered 
according to the KEGG analysis of the transcriptomics 
data.

Discussion

The aim of the present study was to analyze combina-
tion effects of three azole fungicides in vitro by use of 
omics techniques and, by doing so, to identify potential 
biomarkers of mixture toxicity and mode of action for 

further testing and modeling. Moreover, the study should 
shed light on the added value of omics techniques in the 
risk assessment of fungicide mixtures and the development 
of strategies for mixture toxicity testing.

Omics data help to identify similarities in modes 
of action

At a first glance, the congruence regarding the genes 
affected by each of the three fungicides in rats and rat 
liver cells on the one hand and hepatic cells of human 
origin on the other hand seems to be rather disappoint-
ing. When looking at the number of genes affected, only 
a very few genes remain, among them Cyp1a1, which has 
previously been described as a potential marker in other 
test systems (Rieke et al. 2014). Considering the low level 
of concordance when looking at the level of individual 
genes, the results seem to be less surprising. For exam-
ple, Ochsner et al. (2009) showed that omics analysis of 
the same experiment (treatment of MCF-7 cells with E2) 
under exactly the same conditions and performing the 
same microarray experiment multiple times results in a 
very limited overlap of common genes identified. This 
changes, when a pathway-focused analysis is performed 
instead of looking at similarity at the level of individual 
genes. In our analysis, five pathways were identified as 
being affected in rats and humans in vitro and in vivo by 
the two triazoles C and E and their mixture: chemical car-
cinogenesis, xenobiotic metabolism, drug metabolism, 
retinol metabolism and steroid metabolism. This analysis 
is considerably well in line with results by others for the 
triazole fungicides myclobutanil, propiconazole and tri-
adimefon in rats (Goetz and Dix 2009a, b). A key receptor 
in activating these pathways is CAR, which is considered 
to be an MIE in adverse outcome pathways for chemical 
hepatocarcinogenesis and a key mediator of triazole tox-
icity (Goetz and Dix 2009a; Marx-Stoelting et al. 2017).

The involvement of retinoic acid signaling in triazole-
mediated developmental toxicity has previously been 
described based on transcriptomics results from rat whole 
embryo cultures treated with cyproconazole, flusilazole or 
triadimefon (Robinson et al. 2012) and our results are in 
line with these findings.

Only prochloraz seems to trigger additional toxicity 
pathways. This is also in line with previous observations 
by our research group and others, showing that P is an acti-
vator of AhR (e.g., Rieke et al. 2014). Since AhR-mediated 
signals are considered to counteract to some extent CAR-
mediated signals (Braeuning et al. 2009), it is not surpris-
ing that the number of affected genes declines when the 
AhR activator prochloraz is applied in combination with 
the CAR activators C and E.
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Fig. 3   Biomarkers obtained by the omics analysis were used for a 
more comprehensive mixture toxicity analysis and modeling of con-
centration–response curves to compare the measured curves with 
those obtained by modeling by use of the concentration addition 
model. a As found out by omics-based mode of action analysis, CAR 
is important for the MOA of C and E. Results of a reporter gene assay 
in HepG2 cells are presented. b Results for Cyp1a1, the only compre-
hensive biomarker gene found: Results are in line with the concentra-
tion addition model. Please note that for modeling reasons, the total 
azole concentration is presented on the x-axis (e.g., at 5  µM, indi-
vidual substances have a concentration of 5 µM, while the total azole 
concentration in the mixture is also 5 µM, consisting of 2.5 µM C and 
2.5 µM E in the binary mixture)
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Species specificity of triazole‑mediated 
hepatotoxicity

At a first glance, the overlap of genes affected by each of 
the three fungicides in rats and rat liver cells on the one 
hand and hepatic cells of human origin on the other hand is 
very limited. While some similarities are evident, there is no 
overlap at all for C when rat and human gene sets are com-
pared. However, species differences have previously been 
observed for C, e.g., in mice bearing the human form of the 
receptors CAR and PXR, in which case a weak activation 
(if at all) was observed (Marx-Stoelting et al. 2017). This 
observation is in line with our findings and in support of the 
models compared in the present study. In fact, it illustrates 
the need to take into account species differences in addi-
tion to mode of action, when combination effects are to be 
addressed. In contrast, at the pathway level, a conservation 
has previously been observed for triadimefon, propiconazole 
and myclobutanil (Goetz and Dix 2009b).

Relevance of omics data for risk assessment 
of pesticide mixtures

The usage of receptor-based reporter assays has been estab-
lished for the quantitative assessment of chemical mixture 
effects, especially for substances binding to hormone recep-
tors, by means of concentration addition for substances 
sharing a mode of action (MoA) or independent action for 
substances with dissimilar MoA (Orton et al. 2014; Seeger 
et al. 2016). This system has also been used in the present 
study and was again capable of showing that the substances 
used follow the DA/CA model. However, the applicability 
of complex omics data in risk assessment is currently quite 
limited (Marx-Stoelting et al. 2015). Thus, omics technolo-
gies are primarily used as additional information for the 
identification of important MoA and they seem to be most 
promising in the framework of an integrated test strategy for 
the identification of biomarkers for adverse effects (Buesen 
et al. 2017). On the one hand, omics data are considered to 
be useful for mode of action analysis or prioritization of 

Fig. 4   The Combiomics testing strategy. Stepwise procedure for mix-
ture toxicity testing and assessment based on target organ identifica-
tion, omics-based mode of action/adverse outcome pathway analysis 

and detailed mixture analysis and modeling based on key pathways 
affected. The central step of the Combiomics project (this study) is 
marked in orange
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substances for further testing; on the other hand, the use 
of such data for purposes such as deriving reference val-
ues is not generally supported (e.g., Marx-Stoelting et al. 
2015; Brockmeier et al. 2017). The identification of common 
modes of action of pesticides helps to group substances into 
cumulative assessment groups (CAGs), which is also pos-
sible with the help of in vitro assays. Thus, as a result of this 
study, we can conclude that a testing strategy for mixture 
toxicity requires the inclusion of omics techniques for MOA 
analysis rather than being based on them.

Toward a strategy for mixture toxicity testing

A central aim of the project was to contribute to the develop-
ment of a strategy for mixture toxicity testing. Key steps of 
such a strategy for data-rich substances like pesticide actives 
are presented in Fig. 4. The major regulatory question is 
whether substances in a mixture perform according to the 
regulatory default assumption, which is dose or concentra-
tion addition, or if they perform less well (Solecki et al. 
2014). Thus, a testing strategy would not necessarily have 
to ultimately clarify but would have to prioritize mixtures 
of concern for further testing based on mechanistic informa-
tion. Hence, a mechanistic analysis is important to identify 
MOA and/or AOP affected by the substances, followed then 
by modeling of mixture toxicity by the use of common bio-
markers to clarify if the DA/CA model is met or not. This 
objective can clearly be reached with the approach presented 
in this study.
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