
Vol.:(0123456789)1 3

Archives of Toxicology (2019) 93:2397–2408 
https://doi.org/10.1007/s00204-019-02496-5

PROTOCOLS

Comparisons of statistical models for growth curves from 90‑day rat 
feeding studies

Keguo Huang1,3 · Carl A. Walker2 

Received: 4 March 2019 / Accepted: 17 June 2019 / Published online: 2 July 2019 
© The Author(s) 2019

Abstract
The objective of this work was to compare several models of body weight data from 90-day rodent feeding trials. Polynomial 
and nonlinear functions relating time and weight were examined as were the use of Toeplitz error covariance structures and 
random coefficients. The models were evaluated by fitting them to five publicly available datasets from rat feeding studies. 
Model performance was assessed in terms of their ability to capture the complexity of the growth patterns, validity of nec-
essary assumptions, and information criteria scores. The results demonstrated the importance of selecting a curve function 
that effectively reflects the mean response. Toeplitz error covariance structures resulted in superior model fit, while failing 
to address deviations from model assumptions. Models using the Richards function and random coefficients were generally 
superior to the other models evaluated and dramatically improved upon linear models with complex error structures.

Keywords  Error covariance structures · Gompertz function · Linear mixed models · Nonlinear mixed models · Random 
coefficients · Richards function

Introduction

Animal feeding studies are used to evaluate the safety of 
agricultural, pharmaceutical, industrial, and food chemi-
cals. Additionally, if a compositional analysis of food or 
feed derived from a genetically modified (GM) crop sug-
gests compositional differences from conventional crop 
varieties that could be potential health hazards, a 90-day 
feeding study in rodents has been recommended to provide 
additional information used in the comparative risk assess-
ment (EFSA 2011a; ILSI Task Force 2004).

Internationally harmonized guidance on the design and 
conduct of 90-day toxicity studies has been developed by 
the Organisation for Economic Co-operation and Develop-
ment ((OECD) 408 chemical testing guideline (2003)). The 

European Food Safety Authority (EFSA) requires certain 
adaptations of these methods for testing whole foods from 
GM crops (EFSA 2011b). This paper focuses on the statis-
tical evaluation of data from studies following the EFSA 
guidance.

Traditionally, fixed effect linear models have been applied 
to compare treatment groups separately week-by-week, as 
described by Schmidt et al. (2016). As this approach consid-
ers each week separately, the chance of at least one false-
positive result is inflated relative to comparing final weights 
among treatments. This approach also has reduced power to 
detect treatment effects that are small but consistent across 
time. Schmidt et al. (2016) proposed the use of linear mixed 
models with weight increasing linearly with time and a 
complex error correlation structure. This method improved 
interpretability by providing a single parameter to describe 
the response of weight over time. However, the linear rela-
tionship between weight and time prevents this model from 
estimating the curvature apparent in visual inspections of 
raw data curves from feeding trials. Polynomial or nonlin-
ear curves of moderate complexity might be sufficient to 
fully capture the relationships. Kuhi et al. (2010) provide an 
extensive review of mathematical functions for modeling 
growth in poultry. Similar considerations should be made 
when evaluating options for rodent data.
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The use of parametric structures to model patterns of cor-
relation/covariance among error terms within an individual 
is well-established for models of repeated measurements 
(Littell et al. 2006, ch. 5). Such structures can capture the 
correlations between multiple measurements on the same 
rodent or cage, reflecting consistent effects of each indi-
vidual rodent or cage. Additionally, error covariance struc-
tures can capture the tendency of measurements made close 
together in time to be more similar than those with greater 
separation.

An alternative to modeling covariance among repeated 
measures is the modeling of random coefficients in linear 
mixed models. Polynomial models with randomly distrib-
uted coefficients that follow parametric covariance structures 
are described by Vonesh and Chinchilli (1997) and Sjoblad 
et al. (1992). These models can also be adapted to non-pol-
ynomial relationships between the response and explanatory 
variables.

The objective of this work was to compare models for 
body weight data from 90-day rodent feeding trials. Polyno-
mial and nonlinear functions were examined as were types 
of covariance structures. Performance of the models was 
compared in terms of empirical assessments of suitability 
for multiple trials.

Materials and methods

Motivating data

The motivating data we considered are from five rat feeding 
trials conducted as part of the European Commission funded 
GMO Risk Assessment and Communication of Evidence 
(GRACE) project. Detailed methods for the trials have been 
published previously (Schmidt et al. 2017; Zeljenková et al. 
2014, 2016). Raw data and initial statistical analysis reports 
of all five trials can be found at the CADIMA website (https​
://www.cadim​a.info/index​.php/area/publi​cAnim​alFee​dingT​
rials​; search Project column for GRACE).

All five trials (denoted A, B, C, D, and E) included diets 
incorporating material from GM maize containing the same 
event at two different incorporation rates: 11% and 33%. 
We abbreviate these diets as GMO11 and GMO33. Diets 
made with material from a near-isogenic control of the GM 
maize were also included at the same incorporation rates in 
all five trials. Trials A, B, and C also included diets made 
with different varieties of conventional maize at the same 
incorporation rates.

In all trials, two rats of the same sex were housed in each 
cage and fed together, making cages the experimental units. 
Equal numbers of male and female rats were assigned to 
each diet treatment group. Each diet was fed to 8, 8, 10, 5, 
and 5 cages of male and female rats in trials A, B, C, D, 

and E, respectively. Rats used in the trials were selected 
to be relatively uniform in initial body weight, and were 
allocated to treatment groups such that the average weight 
among treatment groups was similar. Initiation of feeding 
on diet treatments and measurement of body weights was 
considered week 0 in modeling and graphing. Each rat was 
weighed weekly for 13 weeks (approximating 90 days) 
after feeding was begun. The duration of the 13th week was 
5 days for trials A and B, and 6 days for trials D and E. All 
rats survived until the end of the studies, and there were no 
missing data. Although trial C was conducted for a full year, 
we only considered the first 90 days of weight data to match 
the other trials.

The weight observation data from the five trials are plot-
ted in Fig. 1, with a separate line for each cage. Rats in 
the five trials appeared to have similar and expected growth 
patterns: male rats gained weight faster than the females; 
the variance among cage weights of the same treatment 
increased with increasing weight; the rate of weight gain 
decreased over time. It is also apparent that several cages 
had below-trend line weights at certain weeks that returned 
to the trend lines in later weeks. These observations could be 
considered outliers. We did not remove these outliers, since 
the original publication of these data sets did not describe 
any scientific rationale that would justify removing them. 
Differences in results between otherwise comparable data 
sets (A vs B or D vs E) may be attributable to these outliers.

Linear mixed models (LMMs)

Before introducing specific models in this paper, we will 
review the general theory of LMMs and the nomenclature 
we will use. A LMM can be expressed in the following 
matrix equation:

where y is the response vector, � and u are the coefficient 
vectors for fixed effects and random effects, respectively, X 
and Z are the design matrices for fixed effects and random 
effects, and e is the error vector. We assume u and e are inde-
pendent and u ∼ N(0,G), e ∼ N(0,R) . Following the com-
mon convention, we refer to these as “G-side” and “R-side” 
random effects and the associated covariance matrices G 
and R as “G-side” and “R-side” covariance structures. For 
additional theoretical discussion of LMMs, interested read-
ers can refer to Vonesh and Chinchilli (1997), Sjoblad et al. 
(1992), and Littell et al. (2006, pp. 734–756).

Polynomial models with R‑side covariance structures

We initially compared polynomial LMMs with linear, 
quadratic, and cubic responses to time with complex 
R-side structures. Similar LMMs have often been used 

y = X� + Zu + e,

https://www.cadima.info/index.php/area/publicAnimalFeedingTrials
https://www.cadima.info/index.php/area/publicAnimalFeedingTrials
https://www.cadima.info/index.php/area/publicAnimalFeedingTrials
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to model animal weight growth (Schmidt et  al. 2016, 
2017; Wang and Goonewardene 2004; Zeljenková et al. 
2016). The mathematical formulations of the models 
we considered are given as follows. Let Yijt be the mean 
body weight of rats in cage j of treatment i at week t  , for 
i = 1,… , I, j = 1,… , J, t = 0,… , T  , where T  was a value 
less than 13 for trials A, B, D, and E, to match the actual 
durations described above. The three models are given as:

Model 1L (linear) ∶ Yijt = � + �it + �ijt,

Model 1Q (quadratic) ∶ Yijt = � + �it + �it
2 + �ijt,

where �ij =
(
�ij0, �ij1,… , �ijT

)�
∼iid N(0,�) ; thus, the error 

covariance matrix R is a block diagonal with � , the repeated 
measure error covariance matrix at the subject (cage) level, 
along the diagonal. In the models, � represents the effect 
mean at time 0 (fixed intercept) for all treatment groups; 
�i , �i , and �i , respectively, represent the slope of the linear, 
quadratic, and cubic terms (fixed coefficients) of the polyno-
mial response of weight to the time variable for treatment i . 
Note that though polynomial coefficients were varied among 

Model 1C (cubic) ∶ Yijt = � + �it + �it
2 + �it

3 + �ijt,

Fig. 1   Observed weight data for the five feeding studies conducted as 
part of the European Commission funded GMO Risk Assessment and 
Communication of Evidence (GRACE) project, where GMO11 and 
GMO33 represent diets with 11% and 33% GM maize incorporation, 

Control represents diets including near-isogenic control maize, and 
Conv, Conv1, and Conv2 represent diets including different varieties 
of conventional maize
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treatment groups, the same intercept value was fit for all treat-
ments, since the intercept defines the initial weight and the 
diet treatments could not cause effects before the rats were 
fed. All three models were fitted using Toeplitz structures for 
� . The general form of an n × n Toeplitz matrix is provided 
as follows:

In a Toeplitz covariance structure, all observations have 
the same variance, and covariance parameters depend on the 
time lag between observations. Alternative structures for � 
could also be fit as discussed later.

Polynomial models with G‑side random effects

As an alternative to R-side covariance structures such as 
the Toeplitz structure or heteroscedastic structures, we con-
sidered a class of LMMs with G-side random effects, also 
known as random coefficient models. Random effects repre-
sent individual subject (cage) effects as random deviations 
from the fixed treatment effects, and they allow each cage 
to have its own trajectory or inherent trend with its own 
particular features. Random coefficient models were consid-
ered for linear, quadratic, and cubic mean response functions 
labeled as models 2L, 2Q, and 2C. The quadratic function is 
presented below as an example to illustrate the mathemati-
cal set-up of the random coefficient models. We considered 
the following model, for i = 1,… , I, j = 1,… , J, t = 0,…T:

where � , �i , �i denote fixed effects with the same interpreta-
tion as described in the prior section titled “Polynomial 
models with R-side covariance structures” and aij , bij , gij 
denote random effects associated with polynomial coeffi-
cients under the following assumptions: aij ∼iid N

(
0, �2

a

)
 , 

bij ∼
iid N

(
0, �2

b

)
 , gij ∼iid N

(
0, �2

g

)
.

All aij , bij , and gij were modeled as independent from each 
other, and from �ijt . Models 2L and 2C were constructed in a 
similar manner.

Nonlinear mixed models

Nonlinear functions have been used extensively in growth curve 
modeling (Hammill et al. 1995; Kuhi et al. 2010; Richards 1959) 
and might be expected to provide better model fit than polyno-
mial models. Here we describe our application of the Gompertz 
and Richards nonlinear functions evaluated with Toeplitz R-side 

⎡⎢⎢⎢⎢⎢⎢⎣

�1 �2
�2 �1

�3 ⋯

�2 ⋱

⋯ �n
⋱ ⋮

�3 �2
⋮ ⋱

⋱ ⋱

⋱ ⋱

⋱ ⋮

�2 �3
⋮ ⋱

�n ⋯

⋱ �2
⋯ �3

�1 �2
�2 �1

⎤⎥⎥⎥⎥⎥⎥⎦

Model 2Q: Yijt =
(
� + aij

)
+
(
�i + bij

)
t +

(
�i + gij

)
t2 + �ijt,

structures and separately with G-side random coefficients using 
the same approaches as the polynomial models.

There are many parameterizations of the Gompertz function 
in the literature, often including a parameter representing the 
maximum relative growth rate at the inflection point (Lewis 
et al. 2002; Sugden et al. 1981). In the GRACE studies, the 
rats were partially grown at the initiation of each study, and 
as seen in Fig. 1, the rats appear to have already passed their 
period of fastest growth. When a Gompertz function is fitted 
to such data, the inflection point is located at a time point prior 
to the start of the experiment. Thus, estimates of an inflection 
point parameter for a given treatment group would be difficult 
to interpret biologically. In order to improve the interpretation 
of growth curve parameters, we chose the parameterization 
introduced by Hammill et al. (1995), which is given by:

where G(t;�,�, �) is the expected weight at week t , � is the 
initial weight at week 0 , � is the asymptotic final weight, 
and � is the growth rate factor, which equals the growth 
rate at week 0 , i.e., G�(0) = � . Note that although � can be 
intuitively interpreted as the initial growth rate, � influences 
the growth rate at all time points since the expression G�(t) 
contains � at all times t.

The Richards function (Richards 1959), also known as the 
generalized logistic function, is a four-parameter generaliza-
tion of the Gompertz function. We used the parameterization:

where R(t;�,�,�, �) is the expected weight at week t  , � is 
the initial weight at week 0 , � is the asymptotic final weight, 
� is the growth rate factor ( week−1 ), and � determines the 
shape of the curve. Note that � cannot be interpreted as 
simply as � in the Gompertz function. For different val-
ues of the parameter � , the Richards function simplifies to 
the Gompertz ( � → 0) , logistic ( � = 1 ), or monomolecular 
( � = −1) functions (France and Thornley 1984, p. 155).

Gompertz and Richards function models were fitted 
in PROC NLMIXED in SAS (Version 9.4). We evalu-
ated two models based on the Gompertz function. Let Yijt 
be the mean weight in cage j of treatment i at week t , for 
i = 1,… , I, j = 1,… , J, t = 0,… , T  , then the models are 
given by:

G(t;�,�, �) ∶= �

(
�

�

)exp

[
�t

�ln( �
� )

]

,

R(t;�,�,�, �) ∶=
��

[�� + (�� − ��)e−�t]1∕�
,

Model 1G Yijt = G
�
t;�,�i, �i

�
+ �ijt = �i

�
�

�i

�exp

⎡⎢⎢⎣
�i t

�ln

�
�
�i

�
⎤⎥⎥⎦ + �ijt

Model 2G Yijt = G
�
t;� + aij,�i + oij, �i + kij

�
+ �ijt

=
�
�i + oij

�� � + aij

�i + oij

�exp

⎡
⎢⎢⎣

(�i+kij)t

(�+aij)ln
�

�+aij
�i+oij

�
⎤
⎥⎥⎦ + �ijt,
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where � , �i , and �i denote fixed effects with the interpreta-
tion given above, aij , oij , and kij denote random effects, and 
�ij =

(
�ij0, �ij1,… , �ijt

)�
∼iid N(�,�) , under the following  

a s s u m p t i o n s :  aij ∼
iid N

(
0, �2

a

)
, oij ∼

iid N
(
0, �2

o

)
,

kij ∼
iid N

(
0, �2

k

)
.

aij , oij , and kij were modeled as independent from each 
other and from �ijt . Model 1G was fit using the Toeplitz 
R-side covariance structure for � , and a constant variance 
structure for � was fit for model 2G. Note that � , the initial 
weight, was assumed to be constant for all treatment groups 
since the diets could not cause effects before the rats were 
fed.

We evaluated two models based on Richards function:

where � , �i , �i , and � denote fixed effects with the inter-
pretation given above, aij , oij , and mij denote random 
effects, and �ij =

(
�ij0, �ij1,… , �ijT

)�
∼iid N(0,�) , under  

the following assumptions: aij ∼iid N
(
0, �2

a

)
, oij ∼

iid

N
(
0, �2

o

)
, mij ∼

iid N
(
0, �2

m

)
.

aij , oij , and mij were modeled as independent from each 
other and from �ijt . Model 1R was fit using the Toeplitz 
R-side covariance structure for � and a constant variance 
structure for � was fit for model 2R. Again, � was assumed 
to be constant for all treatment groups. In order to simplify 
the models, we treated � as a study-sex-specific parameter 
with a constant value for all cages in all treatment groups.

Model comparisons

The models were evaluated for each study by visual inspec-
tion of simulation and residual plots and by comparison of 
information criteria. The MIXED and NLMIXED procedures 
in SAS (Version 9.4) were used to fit models to the data and 
generate studentized residual plots. Once a model was fit, we 
assumed the fitted model with the estimated parameters was 
the data generating mechanism for the raw data and simulated 
a data set based on this mechanism. Observations at each time 
point were simulated and plotted for a number of cages for 
each treatment equal to the quantities tested in the study. Fea-
tures of the simulated dataset that substantially differed from 
the raw data could indicate flaws in the model’s approxima-
tion of the true data generating mechanism. Note that each 
simulation plot is just one possible realization of the fitted 
model, and may include random effects or error values from 

Model 1R Yijt = R
(
t;�,�i,�i, �

)
+ �ijt

=
��i[

�� +
(
�
�

i
− ��

)
e−�i t

]1∕� + �ijt,

Model 2R Yijt = R
(
t;� + aij,�i + oij,�i + mij, �

)
+ �ijt

=
(� + aij)(�i + oij)[

(� + aij)
� +

(
[�i + oij]

� − [� + aij]
�
)
e−(�i+mij)t

]1∕� + �ijt,

the extremes of the distributions simulated. The same can be 
said of the raw data. Thus, limited emphasis should be placed 
on interpretation of a single curve or observation that does 
not match between the raw and simulated data. Despite these 
limitations, the plotted simulation is a useful diagnostic tool 
that allows for intuitive assessment and comparisons among 
models. We used the maximum likelihood method to estimate 
model parameters, since use of the restricted maximum likeli-
hood (REML) method would have made the information cri-
teria non-comparable among the methods (Littell et al. 2006, 
pp. 752-754).

Comparisons among the models were made after being fit 
separately to the ten data sets consisting of male and female 
data from the five trials. Results from all five trials can be 
found in the supplemental material. Since results were gen-
erally similar among the ten data sets, the results from the 
female trial A data set are presented and discussed, as this 
trial was of intermediate size among the five and the data do 
not include any obvious outliers. Any differences in results 
among the sexes or trials are discussed.

Results and discussion

Polynomial models with R‑side covariance 
structures

A comparison between the graphs of raw data and simu-
lated data for model 1L suggests that a strictly linear relation 
failed to capture the nonlinear relationship between weight 
and week variables (Fig. 2). The data variance not captured 
by the model resulted in larger estimates of error variance, 
resulting in wide separation among the lines in the simula-
tion based on model 1L. The graphs of models 1Q and 1C 
show an improvement over the linear model in their approxi-
mation of the observed data. In all three models, the Toeplitz 
structure assumed homogeneous variance across weeks and 
thus did not capture the heteroscedasticity apparent in the 
raw data. The simulated data graphs for the other data sets 
suggest the same conclusions (Supplemental Fig. 4, 7, 10, 
13, 16, 19, 22, 25, and 28).

In addition to the simulation plots, plots of studentized 
residuals against predicted values were produced for models 
1L, 1Q and 1C; the residuals for the female data from trial A 
are shown in Fig. 3. The residual plots helped to determine 
if the assumptions necessary for each model were met. Ide-
ally, the residual values should be evenly spread vertically 
across the horizontal zero line with no pattern, indicating 
independence, and the amount of spread should be constant 
for all predicted values, indicating homoscedasticity. These 
residual plots reflect similar model behavior as the simula-
tion plots. The curvature of the pattern of residuals from 
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the linear model indicates that it did not adequately model 
the nonlinear relationship. The quadratic and cubic models 
showed more symmetric patterns about the zero line. The 
triangular shapes in the residual plots for models 1Q and 
1C indicate that the Toeplitz structure failed to capture the 
heteroscedasticity across weeks. This heteroscedasticity was 
also present for most of the other datasets (Supplemental 
Fig. 6, 9, 12, 15, 18, 21, 24, 27, and 30).

Information criteria were also used to compare the three 
models, as shown in Table 1. The relative differences in val-
ues among the models agreed with the simulation and resid-
ual plots. That is, the quadratic model substantially improved 
model fit, and the cubic resulted in a slight improvement 
over the quadratic. Information criteria from the other data 
sets resulted in the same rank ordering of the models, but 
the magnitude of difference varied (Supplemental Tables 1 
to 10).

The failure of these models to capture heteroscedasticity 
in the data might hamper their use to accurately estimate 
the relationship between time and weight for a particular 
treatment or to identify differences among diets (Littell 
et al. 2006, p. 794; Scheffé 1959). Simulations by Ferron 
et al. (2002) demonstrated that misspecification of the error 
covariance structure in growth curves led to biased esti-
mates of variance parameters. One may consider fitting a 

Fig. 2   Female trial A raw data (leftmost) and data simulated assum-
ing the generating mechanism matched the respective model and 
estimated parameters, where GMO11 and GMO33 represent diets 

with 11% and 33% GM maize incorporation, Control represents diets 
including near-isogenic control maize, and Conv, Conv1, and Conv2 
represent diets including different varieties of conventional maize
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Fig. 3   Studentized residuals plotted against predicted values for R-side models 1L, 1Q, and 1C fit to female trial A data

Table 1   Information criteria from three R-side models for female trial 
A data

Model 1L Model 1Q Model 1C

AIC 3356.8 3127.2 3066.6
AICC 3358.4 3129.7 3070.1
BIC 3390.6 3169.4 3117.2
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heteroscedastic covariance structure, by allowing variance 
heterogeneity in the Toeplitz structure or another structure. 
Cubic models with compound symmetric and AR(1) hetero-
geneous variance structures were applied to all ten data sets 
and residuals were plotted against predicted values (Sup-
plemental Fig. 31 to 40). Unresolvable convergence issues 
occurred for most of the data sets when a heteroscedastic 
Toeplitz structure was attempted. In our evaluations of these 
heterogeneous variance structures, we observed moderate 
to extreme biases in the fixed effect estimates appearing as 
uneven spread of residuals about the zero line.

Polynomial models with G‑side random effects

Simulation plots, residual plots, and information criteria 
were compared for models 2L (linear), 2Q (quadratic), and 

2C (cubic). Results for the female trial A data set are shown 
in Figs. 4, 5, and Table 2.

As shown in Fig.  4, the random coefficient models 
resulted in increasing separation among simulated growth 
curves of each cage over time. This better reflects the raw 
data pattern as compared to the models with Toeplitz error 
covariance structures. As observed with the models includ-
ing R-side structures, model 2L was overly simplistic, 
whereas the quadratic and cubic models better captured the 
curvature observed in the raw data. Results for the other 
data sets were similar (Supplemental Fig. 5, 8, 11, 14, 17, 
20, 23, 26, and 29).

The studentized residuals from the linear and quadratic 
models applied to female trial A data showed asymmetric 
patterns (Fig. 5). These patterns indicate that these mod-
els did not adequately fit the data, whereas the cubic model 
performed better. When applied to the other data sets, the 

Fig. 4   Female trial A raw data (leftmost) and data simulated assuming the generating mechanism matched the respective model and estimated 
parameters. The three plots show data simulated using G-side models 2L (linear), 2Q (quadratic), and 2C (cubic)

Fig. 5   Studentized residuals plotted against predicted values for G-side models 2L, 2Q, and 2C fit to female trial A data
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cubic model resulted in modest to substantial improvements 
in model fit (Supplemental Fig. 6, 9, 12, 15, 18, 21, 24, 27, 
and 30). However, the residuals based on the cubic model 
still showed asymmetry for the female data from trial C and 
the male data from trials A, C, D, and E.

The information criteria (Table 2) indicate that the higher 
order polynomials led to better performance for the female 
trial A data. Comparing Tables 1 and 2, the information cri-
teria for the three random coefficient models were uniformly 
greater (indicating worse fit) than those of the corresponding 
Toeplitz structure models with smaller differences for higher 
order polynomials. The same pattern of results was observed 
for both sexes in trials A, B, and C, and male data in trial D 
(Supplemental Tables 1 to 6 and 8). For the remaining three 
data sets from trials D and E, the information criteria for 
random coefficient cubic models were slightly better than 
those for model 1C. Trials D and E included fewer treat-
ments and cages per diet, suggesting that the Toeplitz R-side 
structure may require more data to provide better model fit 
than G-side random coefficients when used with fairly com-
plex (cubic) polynomial models.

The model comparisons above demonstrated that while 
easily interpreted, LMMs with only a single slope parameter 
per treatment were insufficient to capture the growth curve 
pattern in the raw data, regardless of whether an R-side or 
G-side covariance structure was used. When random coef-
ficients were used in the model, substantial improvements 
were observed with the higher order polynomials. However, 
the asymmetric spread of residuals for model 2C suggested 
that the mean response function could be improved beyond 
the cubic. This was not apparent for model 1C, because the 
R-side covariance structure captured the deviations from the 
cubic curve as correlated random error.

Neither random coefficient models nor Toeplitz R-side 
structure models were indisputably superior with any of 
the polynomial parameterizations evaluated. Likely due to 
the limited number of observations in these experiments, 
convergence could not be achieved for models attempted 
with both Toeplitz error covariance structures and random 
coefficients. Models combining random coefficients and sim-
pler error covariance structures are a potential option for 
further optimization which we did not pursue. Besides the 
graphs and information criteria, some additional considera-
tions favor the random coefficient models. First, the random 

coefficient models required fewer parameters than the LMM 
with Toeplitz structures. This difference would increase with 
more time points, since the Toeplitz structure requires the 
same number of parameters as time points modeled. Addi-
tionally, random coefficients allow each cage to be modeled 
with its own growth curve. Such models may better reflect 
biological reality than using the Toeplitz structure which 
models curvature differences among experimental units as 
correlated errors.

Nonlinear mixed models

As described for the polynomial models, the nonlinear mod-
els were compared using simulation plots (Fig. 6), residual 
plots (Fig. 7), and information criteria (Table 3). For data of 
both sexes from trials C, D, and E and male data from trial 
B, models 1G and 1R encountered numerical or convergence 
issues that could not be resolved. Viewing the simulation 
plots for the female trial A data, it can be observed that 
models 1G and 1R failed to capture the heteroscedasticity 
over time, and the same results occurred with the other data 
sets for which these models converged (Supplemental Fig. 4 
and 7).

As with the simulation plots, the residual plots show 
evidence that the Toeplitz models failed to account for 
heteroscedasticity. The residuals of model 2G form an 
obvious curved pattern in the plot, indicating that the 
Gompertz function failed to capture the full complexity 
of the growth curve (Fig. 7). The residuals show little to 
no curvature in models 2R, 1G, and 1R, with decreasing 
curvature in that order, indicating that these models are 
capturing most or all of the relationships between time and 
weight. Both random effects models fit to male data from 
trials D and E resulted in curvatures in residual plots due 
to relatively small growth rates in the beginning weeks 
for these two data sets (Supplemental Fig. 24 and 30). 
Furthermore, for the other eight data sets, models 2R, 1G, 
and 1R displayed little to no curvature for each data set 
successfully fit, whereas model 2G had curvature for all 
but the female data of trials D and E.

The Richards function resulted in similar or better infor-
mation criteria values as compared to the other functions 
evaluated. For the successfully fit Toeplitz models, the 
Gompertz and Richards functions resulted in similar or 
slightly better model fit scores compared to the cubic func-
tion. When random coefficients were used, the Richards 
function resulted in substantially lower information criteria 
values than the Gompertz and cubic models. The Toeplitz 
models resulted in better model fit based on information cri-
teria values as compared to the corresponding random coeffi-
cient models for most data sets. The exception was Richards 
function which resulted in lower information criteria with 
random coefficients for two of the three data sets where the 

Table 2   Information criteria from three G-side models for female 
trial A data

Model 2L Model 2Q Model 2C

AIC 4410.9 3475.2 3142.2
AICC 4411.2 3476.1 3143.8
BIC 4426.1 3500.5 3176.0
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Fig. 6   Female trial A raw data (leftmost) and data simulated assum-
ing the generating mechanism matched the respective model and 
estimated parameters. The plots show data simulated using R-side 

models 1G (Gompertz) and 1R (Richards) and G-side models 2G 
(Gompertz) and 2R (Richards)
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Fig. 7   Studentized residuals plotted against predicted values for R-side models 1G (Gompertz) and 1R (Richards) and G-side models 2G 
(Gompertz) and 2R (Richards) fit to female trial A data
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Toeplitz version was successfully fit. It is important to recall 
that Toeplitz models failed to account for heteroscedastic-
ity as demonstrated in the residual diagnostic plots. This 
suggests that when the underlying mean response function 
poorly captures the overall growth pattern, the correlations 
in the Toeplitz error structure can capture the deviations 
from the mean growth pattern at each time point. However, 
when an adequate function (Richards) is chosen to model 
the mean growth pattern, random coefficients can efficiently 
model variability among individual cages and effectively 
account for heteroscedasticity over time.

From a practical standpoint, we note that the Toeplitz 
structure was difficult to implement with the nonlinear func-
tions. For the majority of the data sets, no starting values 
could be found to allow model convergence and properly 
conditioned final Hessian matrices for models 1G and 1R, 
even with repeated attempts. Additionally, it took much 
longer to fit the Toeplitz models compared to the corre-
sponding random coefficients models using the NLMIXED 
procedure. The complexity of the Toeplitz structure could be 
even more problematic for data sets with more time points, 
since the number of parameters in the Toeplitz structure 
equals the number of time points.

The preceding discussion evaluated various aspects 
of modeling 90-day rat studies including mean response 
function (polynomials and nonlinear growth curves), cage 
to cage variability structure (G-side random effects), and 
within cage error (R-side random effects). The options eval-
uated are not exhaustive. Some additional options include 
G-side structures that do not assume independence of the 
random factors and simpler R-side structures combined with 
G-side structures. Although Model 2R appeared to be the 
best model choice for most of the data sets we evaluated, it 
would not be appropriate to conclude that it should always 
be chosen for the analysis of 90-day rat studies. Instead, it 
would be advisable for researchers to attempt multiple mod-
els of greater and lesser complexity, choosing the one with 
superior information criteria scores and residual plots that 
do not show major flaws.

Treatment comparisons

When modeling body weight data from 90-day rodent feed-
ing studies, the goal is to estimate and compare the effects 
of diet treatments on rodent growth. Once a model is cho-
sen and fit to the data, the parameters for that model can 
be estimated specifically for each diet. Confidence intervals 
for the parameter estimates can be provided to establish the 
accuracy of those estimates. Approximate F-tests or t-tests 
can be used to evaluate the statistical significance of hypoth-
eses of interest. Conducting hypothesis tests on parameters 
that apply to the whole growth curve reduces the risk of 
multiplicity as compared to separately comparing treatment 
effects at each time point.

The datasets from the GRACE project would not be 
expected to show any true effects of the GM diets on 
rat growth, since extensive evaluations beyond weight 
measurements were previously conducted and showed 
no biologically relevant effects of the GM diets (Schmidt 
et al. 2017; Zeljenková et al. 2016, 2014). Therefore, any 
observed treatment effects for these datasets would be 
false positives. In analyses of other datasets, interpreta-
tion of statistically significant treatment comparisons 
would require expert evaluation within the context of all 
the results of the study, as statistical significance does not 
necessarily or automatically imply biological relevance 
(EFSA 2011c).

The scope of this investigation prevents us from evaluat-
ing the ability of these models to detect true adverse effects 
in terms of growth rates or final 13th week weights. Such an 
evaluation would require analysis of feeding trials with posi-
tive controls that have known biologically relevant effects on 
growth rate and/or final weight. Once biologically relevant 
effect sizes are determined, simulations could be conducted 
to compare these models in terms of statistical power and 
false-positive error rates. Since deviations from assump-
tions generally lead to loss of statistical power or increased 
false-positive rates, it is likely that similar models would be 
preferred.

Table 3   Information criteria from models for female trial A data

Toeplitz models Model 1L Model 1Q Model 1C Model 1G Model 1R

AIC 3356.8 3127.2 3066.6 3067.1 3055.0
AICC 3358.4 3129.7 3070.1 3069.5 3060.1
BIC 3390.6 3169.4 3117.2 3109.3 3115.8

Random coefficients models Model 2L Model 2Q Model 2C Model 2G Model 2R

AIC 4410.9 3475.2 3142.2 3209.3 3057.7
AICC 4411.2 3476.1 3143.8 3210.2 3058.7
BIC 4426.1 3500.5 3176.0 3234.6 3084.7
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Conclusions

For body weight data from the five 90-day rat feeding tri-
als conducted as part of the GRACE project, models using 
the Richards function and random coefficients were gener-
ally superior to the other models evaluated and dramatically 
improved upon one-parameter linear models with complex 
error structures. In terms of model fit, the complex Toe-
plitz error variance structure compensated for overly sim-
ple models of the relationship between time and weight. 
However, these models may be incorrectly modeling true 
complexity in the relationship between time and weight as 
error correlation. Additionally, the Toeplitz models did not 
effectively model the observed heteroscedasticity over time. 
Random coefficient models captured heteroscedasticity over 
time while partitioning out variation among individual cages 
with modest increases in parameter numbers. Inferior model 
fit was observed when random coefficients were used with 
simple functions. Only when a sufficiently complex function 
was used could superior model fit be achieved along with 
the benefits of random coefficients. The Richards function 
with random coefficients was well suited for most of the data 
sets analyzed, but may not be optimal for other growth curve 
data sets. Other investigators should take care to observe 
the residual plots from applying this model to ensure that it 
adequately captures the growth pattern. Application of these 
models to make comparisons among diet treatments will also 
require expert evaluation of biological relevance within the 
context of all study results.

This paper focused on evaluations of methods for statisti-
cal analysis of body weight data from studies that follow the 
EFSA guidance. However, similar model evaluations could 
be made for other animal feeding studies, and some of the 
same approaches or conclusions may apply.
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