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Introduction

Historically, arsenic has played an eminent role in human 
poisoning (Bolt 2012; Nepovimova and Kuca 2018). Nowa-
days, a major environmental focus is on nutritional arsenic 
exposure by drinking water and food, world-wide (Gundert-
Remy et al. 2015; Hettick et al. 2015; Medina-Pizzali et al. 
2018). Against this background, the number of research arti-
cles on arsenic toxicity has increased steadily, which has led 
to several editorials in Archives of Toxicology (Golka et al. 
2010; Bolt and Stewart 2010; Bolt 2012, 2013, 2015). The 
continuous peer review process of manuscripts published 
within the last 2–3 years in our journal has provided insights 
into current research trends, which are highlighted below.

Effects of pre‑ and post‑natal exposure 
to arsenic

A field of high research interest are effects of human pre- 
and postnatal exposure to arsenic. For instance, Gliga et al. 
(2018) studied 9-year-old children from a longitudinal 
mother–child cohort in rural Bangladesh (n = 551). Prenatal 
and concurrent exposures to As were assessed via concen-
trations in maternal urine at gestational week 8 and in the 
urine of children at 9 years. In multivariable-adjusted linear 
regression models, prenatal As (natural log-transformed), 
but not children’s concurrent urinary As, was positively 
associated with IGFBP3 concentrations (β = 76, 95% CI 19, 
133). DNA methylation analysis revealed CpGs associated 
with both prenatal As and IGFBP3. Prenatal exposure to As 
was positively associated with IGFBP3 concentrations in 
children at 9 years, independent of IGF1. It was suggested 

that this association may be, at least in part, epigenetically 
mediated.

Experimentally, attention has been given to alterations 
in learning and behavioural alterations. For instance, gesta-
tional exposure of mice to inorganic As3+ may alter gluta-
mate disposition in the mouse hippocampus and ionotropic 
glutamate receptor expression, which has been linked to 
memory impairment in the offspring (Nelson-Mora et al. 
2018).

Another focal point is an association between prenatal 
arsenic exposure and development of diabetes mellitus (v.i.). 
Recent experimental evidence in mice shows that prenatal 
arsenic exposure may impair glucose metabolism in the off-
spring in a sex-specific manner, which may be counteracted 
by folate/B12 supplementation (Huang et al. 2018).

Rahman et al. (2017) published a systematic review on 
early-life arsenic exposure in children. Studies on arsenic 
exposure and morbidity showed an increased risk of res-
piratory tract infections and diarrhoea. Findings of differ-
ent studies on arsenic exposure and foetal, infant, and child 
growth were heterogeneous. Arsenic exposure was not asso-
ciated with foetal growth, but there was limited evidence of 
negative associations between arsenic exposures and birth 
weight and growth during early childhood.

Diabetes mellitus

Environmental exposure to inorganic arsenic has a negative 
effect on glucose homeostasis, leading to diabetes mellitus. 
Experimental studies have pointed to some mechanisms 
underlying the diabetogenic effects, including (1) inhibi-
tion of insulin signalling (leading to insulin resistance) in 
glucose metabolising peripheral tissues; (2) inhibition of 
insulin secretion by pancreatic β cells; (3) dysregulation of 
the methylation or expression of genes involved in mainte-
nance of glucose or insulin metabolism and function and 
(4) impaired glucose homeostasis by hepatic metabolism of 
glycogen (Zhang et al. 2017; Dover et al. 2018).
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Inorganic As3+ is methylated in the brain by arsenic(III)-
methyltransferase (As3mt) in a process that requires glu-
tathione. Susceptibility to toxic effects of inorganic arsenic 
depends, in part, on this methylation. As3mt-knockout (KO) 
mice cannot efficiently methylate As3+, and this is associated 
with an adverse metabolic phenotype that is characterised 
by obesity and insulin resistance. The extent of this impair-
ment depends on sex and As exposure (Douillet et al. 2017).

Other targets of arsenic toxicity

Knockout of Asw3mt in mice also leads to consequences in 
phospholipid metabolism with a likely impact on the central 
nervous system (Huang et al. 2016).

A classical matter of research is the role of oxidative 
stress in As-induced toxicity (e.g. renal toxicity; Gong et al. 
2016) and carcinogenicity (Bach et al. 2016). This is fur-
ther investigated with regard to associated gene expression 
changes.

A field study was conducted by Fujihara et al. (2016) in 
a Vietnamese population exposed to elevated As levels in 
the drinking water. Associations of four single-nucleotide 
polymorphisms (p.Arg194Trp, p.Arg280His, p.Pro206Pro, 
and p.Arg399Gln) in X-ray repair with urinary arsenic 
metabolites and 8-hydroxy-2′-deoxyguanosine (8-OHdG) 
were studied. Individuals with genotype AA in p.Pro206Pro 
showed significantly higher urinary monomethylarsonic acid 
(MMAV) and lower dimethylarsinic acid (DMAV)/MMAV 
ratio than genotype AG. As for p.Arg399Gln, both Arg/Arg 
homozygous subjects and Arg/Gln heterozygous individu-
als showed a significantly higher urinary inorganic As con-
centration and lower 8-OHdG concentrations than Gln/Gln 
homozygous individuals. The results suggested Arg399Gln 
to be a functional SNP that may be related to DNA repair 
activity.

The skin is a primary target of As carcinogenesis and 
toxicity, which calls for development of refined experimental 
models (Weinmueller et al. 2018). Skin hyperpigmentation 
is the most sensitive objective symptom in patients with 
arsenicosis. However, there is only limited information on 
the mechanism of arsenic-mediated skin hyperpigmentation. 
Now, results of Yajima et al. (2017) suggest that interaction 
between keratinocytes and melanocytes in the skin through 
ET-1 and its receptor contributes to the characteristic arse-
nic-mediated skin pigmentation.

With regard to immunotoxicity, chronic arsenic exposure 
of women from drinking water has been related to changes 
in the transcriptome and methylome of CD4-positive T cells, 
both genome-wide and in specific genes, supporting the 
hypothesis that arsenic causes immunotoxicity by interfering 
with gene expression and regulation (Engström et al. 2017).

Organoarsenic compounds/arsenolipids

A rapidly developing field is research on organic arseni-
cals. Exposure of humans may occur, as compounds of 
this group can be applied in polymers and biomaterials 
(Tanaka et al. 2018). Aromatic organoarsenic compounds 
are even used in some countries as feed additives for live-
stock and in the poultry industry (Fei et al. 2018), and 
arsenic-containing hydrocarbons may be present in fish 
and edible algae (Müller et al. 2018a, b). As organic arse-
nic compounds tend to accumulate in the brain, current 
interest is focussed on potential neurotoxicity and its 
mechanisms (Masuda et al. 2017; Witt et al. 2017). Arse-
nobetaine, which is the major water-soluble organoarsenic 
compound in fish, exerts no toxicity to humans (Borak and 
Hosgood 2007).

Arsenolipids can be classified into four groups (Witt 
et  al. 2017): arsenic-containing fatty acids (AsFAs), 
arsenic-containing hydrocarbons (AsHCs), arseno-
sugar-phospholipids (AsPLs) and trimethylarsenic fatty 
alcohols (TMAsFOHs). AsFAs may occur esterified in 
triglycerides.

A substantial neurotoxic potential is ascribed to AsHCs. 
Members of this group easily cross the blood–brain bar-
rier, and even at sub-toxic concentrations these may lead to 
barrier disruption. Thus, the hypothesis has been advanced 
that these could facilitate the transfer of accompanying 
foodborne toxicants into the brain (Müller et al. 2018a). 
AsHCs are biotransformed to a considerable extent. Identi-
fied metabolites formed in vitro include respective thioxo-
analogues and As-containing fatty acids and fatty alcohols 
(Müller et al. 2018b).

Final remark

Progress reached within the last few years demonstrates 
that arsenic research is a vital contemporary focus in both 
epidemiological and experimental toxicology, encompass-
ing a wide methodological horizon. Relevant submissions 
to Archives of Toxicology covering this field are therefore 
further invited.
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