
Vol.:(0123456789)1 3

Archives of Toxicology (2018) 92:1797–1814 
https://doi.org/10.1007/s00204-018-2178-z

IN VITRO SYSTEMS

Dynamic imaging of adaptive stress response pathway activation 
for prediction of drug induced liver injury

Steven Wink1 · Steven W. Hiemstra1 · Suzanne Huppelschoten1 · Janna E. Klip1 · Bob van de Water1

Received: 21 November 2017 / Accepted: 26 February 2018 / Published online: 3 March 2018 
© The Author(s) 2018. This article is an open access publication

Abstract
Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved 
mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and character-
ized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively 
assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. 
We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI 
liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related 
response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant 
concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed 
activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering 
of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration 
response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters 
and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular 
adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs 
of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and 
concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding 
and prediction of drug-induced liver liabilities.
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Introduction

Despite major efforts to understand and predict drug-induced 
liver injury (DILI), unpredicted liver failure upon drug use 
remains an important adverse drug reaction both in the clinic 
and during drug development (Raschi and de Ponti 2015). 

To be able to improve prediction of DILI liabilities from new 
molecular entities integration of mechanistic information is 
essential. Gene expression analysis has contributed signifi-
cantly to our understanding of DILI (Laifenfeld et al. 2014; 
Raschi and De Ponti 2017). This has led to the identification 
of specific signaling pathways that are activated during DILI 
and are possibly predictive for chemical-induced liver injury. 
Key among these are classic stress responses activated to 
maintain cellular homeostasis, including the oxidative stress 
response, the endoplasmic reticulum (ER) stress response, 
the DNA damage response (Laifenfeld et al. 2014) and the 
TNF signaling pathway (Chen et al. 2015). We have estab-
lished a panel of fluorescent protein reporter liver cell lines 
based on transgenomics GFP tagging, that capture each of 
these four pathways using Srxn1, CHOP, p21 and ICAM1 
as quantitative biomarkers (Wink et al. 2017).

For the oxidative stress response pathway we have 
established a Srxn1-GFP reporter (Wink et al. 2017). The 
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activation of transcription factor Nrf2 is dependent on the 
redox sensor Kelch-like ECH-associated protein 1 (Keap1), 
and induces expression of a large panel of proteins involved 
in the antioxidant responses including the small redox pro-
tein (Srxn1) (Jeong et al. 2012; Espinosa-Diez et al. 2015). 
Srxn1 is best-characterized for its ATP-dependent reduc-
tion of the hyperoxidized form of peroxiredoxin (Jeong et al. 
2012). Srxn1 activity seems essential for peroxiredoxin 
function and protection against oxidative damage (Jeong 
et al. 2012). Furthermore, de-glutathionylation of s-glutath-
ionylated cysteins by Srxn1 is essential to maintain proper 
phosphatase function (Findlay et al. 2006). In vivo studies 
show that toxicant-induced upregulation of Srxn1 via Nrf2 
activation in the liver is vital for protection against fulmi-
nant oxidative stress and subsequent organ failure (Bae et al. 
2011, 2012; Wu et al. 2012).

To monitor unfolded protein response (UPR) or ER stress 
we have established a CHOP-GFP reporter (Wink et al. 
2017). The UPR is a protective response upon the accu-
mulation of untranslated proteins in the ER. UPR activates 
three classical signaling pathways through PKR-like ER 
kinase (PERK), activating transcription factor 6 (ATF6), 
and inositol-requiring enzyme 1 (Ire1). Activation of PERK 
leads to arrest of protein translation but permits translation 
of activating transcription factor 4 (ATF4) which on its turn 
targets expression of ER function-related proteins includ-
ing transcription factor C/EBP homologous protein (CHOP). 
Also activation of the Ire1 and ATF6 ER stress pathways can 
induce CHOP expression (Li et al. 2014). CHOP modulates 
the expression of many genes, including apoptotic machin-
ery components. CHOP expression seems linked to the pro-
gression of liver injury and CHOP expression is induced 
by various cytotoxic drugs (Foufelle and Fromenty 2016).

To monitor DNA damage we established a fluorescent 
protein reporter for the p53 downstream target gene p21 
(Wink et al. 2017). The cellular protective response upon 
DNA damage induces cell cycle arrest and subsequent 
senescence (Wink et al. 2014). p53 can be activated upon 
DNA damage as well as other cellular stresses, and induces 
expression of many target genes, including p21 (El-Deiry 
2016). The best-characterized function of p21 is its effective 
inhibition of cyclin-dependent kinases (CDK), which halts 
the progression of the cell cycle. Localization of p21 has 
been found both in the nucleus and the cytoplasm (Ćmielová 
and Ŕezáčová 2011). In the liver, in vivo studies show upreg-
ulated p21 nuclear expression upon drug exposure, mostly 
via p53 activation (Bandi et al. 2011; Yafune et al. 2013).

Finally, a fluorescent reporter for ICAM1 allows moni-
toring the cytokine-mediated activation of NF-κB signaling 
(Tian et al. 2005). Inflammation is involved in drug-induced 
liver injury and repair (Chen et al. 2015). The pro-inflamma-
tory cytokine TNFα has a central role in drug-induced liver 
injury (Shaw et al. 2009). Activation of the TNF receptor 

causes nuclear translocation of the transcription factor 
nuclear factor κB (NF-κB) driving the expression of various 
pro-inflammatory molecules, including intercellular adhe-
sion molecule 1 (ICAM1) (Brenner et al. 2015). ICAM1 is 
expressed at the membrane of TNFα-activated hepatocytes, 
facilitating the adherence of leukocytes (Rahman and Fazal 
2009). ICAM1 is widely used as a marker for inflammation 
and ICAM1 expression is also increased upon inflammation 
in the liver (Hoque et al. 2013).

Given the central role of the above stress response path-
ways in liver injury, our objective was to evaluate the appli-
cation of our panel of target gene GFP reporter cell lines that 
represent these four major adaptive stress response pathways 
to predict DILI liability. Previously, we demonstrated that 
the GFP reporters allow the quantification of the chemical-
induced stress responses similar to primary human hepato-
cytes (Wink et al. 2017). Here, we systematically determined 
the application of our Srxn1-GFP, CHOP-GFP, p21-GFP 
and ICAM1-GFP reporters for the assessment of DILI using 
a set of 118 FDA-labeled drugs with defined DILI drug label 
classification. The concentration- and time-dependent GFP 
responses were determined in association with general mark-
ers of cytotoxicity. In this study, we established quantitative 
information of the dynamic adaptive stress response acti-
vation by all 118 drugs allowing detailed mode-of-action 
assessment. We used the temporal dynamic stress response 
activation data together with concentration response mod-
eling for the prediction of DILI outcome.

Materials and methods

Raw data

All image-derived data has been made publicly available 
at the EMBL-EBI BioStudies repository, under accession 
number S-BSST117.

Cell culture

Human hepatoma HepG2 cells were acquired from ATCC 
(clone HB8065). HepG2 Srxn1, DDIT3 (CHOP), CDKN1A 
(p21) and ICAM1 BAC GFP reporter cell lines were pre-
viously established and characterized (Wink et al. 2017). 
HepG2 BAC GFP reporters were maintained and exposed to 
drugs in DMEM high glucose supplemented with 10% (v/v) 
FBS, 25 U/mL penicillin and 25 µg/mL streptomycin. The 
cell lines were used between passage 5 and 25. For live cell 
imaging, the cells were seeded in Greiner black µ-clear 384 
wells plates, at 8000 cells per well.
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Reagents

All reference compound chemicals were acquired from 
Sigma–Aldrich and freshly dissolved in DMSO; except for 
metformin (PBS), acetaminophen and phenobarbital (all 
DMEM). TNFα was acquired from R&D Systems (Abing-
don, UK). All 118 DILI compounds were a kind gift from 
the Dr. Weida Tong, NCTR-FDA (Chen et al. 2011). All 
compounds were maintained as 500-fold stock such that final 
treatments did not exceed 0.2% v/v DMSO.

Microscopy

Accumulation of GFP levels, propodium iodide (PI) and 
Hoechst staining was monitored using a Nikon TiE2000 
confocal laser microscope (lasers 540, 488 and 408 nm), 
equipped with an automated stage and perfect focus system 
at 37 °C with humidified atmosphere and 5%  CO2/air mix-
ture. All imaging was similar as previously  described5. Each 
384-well plate contained one reporter cell line, which was 
exposed to all the compounds used in the screen at one cer-
tain concentration (1, 5, 10, 50 or 100  Cmax); for each con-
centration at least two replicates were imaged per reporter 
cell line. For the ICAM1-GFP reporter experiments, cells 
were first exposed for 8 h to compound only; next, TNFα 
was added to all wells, up to a final concentration of 10 ng/
mL. Directly after TNFα treatment the live cell imaging was 
started.

Image analysis of fluorescent protein reporter 
activity

Quantitative image analysis was performed with CellPro-
filer version 2.1.1 (Kamentsky et al. 2011) with an in house 
developed CellProfiler module implementing the water-
shed masked algorithm for segmentation (Yan and Verbeek 
2012; Wink et al. 2017). Image analysis results were stored 
as HDF5 files. Data analysis, quality control and graphics 
were performed using the in house developed R package 
h5CellProfiler (manuscript in preparation). For each reporter 
hourly intensity levels of the GFP signal, the nuclear Hoe-
chst33342 intensity levels and at 24 h the PI staining were 
measured at the single cell level. In addition, cell numbers, 
nuclei size and cell motility were measured.

Data analysis

GFP intensity cell population means were calculated. In 
addition, for each plate the cell population mean GFP inten-
sity of the DMSO treated cells was calculated to determine 
background control values. Per plate, the single cells that 
had values above the 2X mean, 3X mean were counted 

resulting in GFP positive fraction measures. For ICAM1, the 
background control values consisted of DMSO conditions 
treated with TNFα, and the single cells with values above, as 
well as below background values were counted. Due to the 
non-symmetric distribution of ICAM1 cell population GFP 
intensities, the interquartile range (IQR) was used to count 
the number of cells 1.5, 2 and 3 times above and below the 
TNFα IQR control values (Supplemental Fig. 1).

To account for PI background staining noise the PI seg-
mentations were masked by a 2 pixel dilated nuclei. The area 
of these nuclei and the PI objects were divided to obtain a 
PI/nuclei ratio. These ratios were filtered to be at least 10% 
of the cell size and following this procedure each cell was 
either flagged as alive or dead in the final time point of the 
24 live imaging session. PI positive fraction was normalized 
to DMSO (or TNFα for ICAM1) by subtracting the control 
PI positive fractions.

Linear regression was applied with respect to time to 
quantify treatment effects on a plate-to-plate basis to quan-
tify cell speed, nuclear size, Hoechst nuclear intensity and 
cell numbers. The slope coefficient mean over all plates was 
used to obtain a compound-concentration specific summary 
statistic. All summary features were scaled between 0 and 1 
with the formula (x − xmin_replicate)/(xmax_replicate − xmin_replicate), 
with the exception of (1) the cell count features which were 
scaled between 0 and 1 by calculating cell fractions and (2) 
the ICAM1 intensity features which were scaled between 
− 1 and 1 to account for up or down regulation of the TNFα-
induced ICAM1-pathway (Supplemental Fig. 1).

Concentration response data transformation 
and benchmark concentration (BMC) modeling

The maximum values over time of the scaled intensity levels 
and positive GFP fractions were selected for the concentra-
tion response curves. These values were fit to a four param-
eter log-logistic model using the drc package (Ritz et al. 
2015). BMC values were calculated as the concentration at 
which + 0.25 (and − 0.25 for ICAM1) absolute increase from 
the initial response values occurred (Fig. 5a).

The replicate means of the maximum over time features 
were calculated for each compound-concentration preceding 
unsupervised hierarchical clustering.

For the time course analysis natural cubic splines with 
8° of freedom were fit after which 24 discrete equidistant 
time points were selected to calculate per-time point rep-
licate means. The time course hierarchical clustering was 
performed by first calculating Manhattan based distances 
between all time-course vectors. The mean Manhattan based 
distances over all reporters was used as inputs for the Ward 
based clustering. This ensured appropriate clustering of also 
the temporal dynamics.
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Data representation

All HCI data representations were generated or modified 
with Illustrator CS6, Fiji, ggplot2 (Wickham 2009), the 
‘aheatmap’ function of the NMF package (Gaujoux and 
Seoighe 2010).

Severe vs non‑severe DILI prediction with support 
vector machine

FDA DILI-annotation was used as ‘ground truth’ with non-
DILI (n = 16), less-severe DILI (n = 36) and ambiguous 
DILI (n = 12) grouped as ‘non-severe DILI’ and severe-DILI 
(n = 54) as ‘severe DILI’ resulting in a two-classification 
problem. Features were obtained by time dynamic feature 
extraction of time courses with functional data analysis 
using the in house developed R-package ‘celloscillate’ and 
the BMC and C-max normalized BMC values. Feature 
selection and SVM model tuning was performed in a 200 
times iterative process with randomly selected 80/20—equal 
class distributed training/test set procedure. The training 
phase included a first feature selection step using a Kol-
mogorov–Smirnov test for equal distributions between the 
two classes followed by pair-wise correlation filter step 
(> 0.8 or < − 08). The second step in the training phase con-
sisted of the SVM model tuning with ten repeats of 10-fold 
cross-validation. The test phase on 20% of the compounds 
was performed using the selected features and tuned SVM 

model. Reported prediction results are the average of the 
200 test-set runs; the ROC distribution of the test-runs were 
defined. Hierarchical clustering of the 20 selected features 
corresponded to the features selected > 150 times through 
the 200 iterations.

Gene expression analysis

CEL files were downloaded from the Open TG-GATEs 
database: “Toxicogenomics Project and Toxicogenomics 
Informatics Project under CC Attribution-Share Alike 2.1 
Japan” https ://dbarc hive.biosc ience dbc.jp/en/open-tggat es/
desc.html and analyzed as described previously (Wink et al. 
2017).

Statistics

For all reporters and concentrations three independent bio-
logical replicate imaging experiments were performed, of 
which upon selection of cell viability of untreated control 
conditions, at least two replicates were used for the quantifi-
cation of reporter activity and further statistical analysis. For 
statistical significance of all time courses first linear inter-
polation was applied for each separate time course using the 
‘approx’ function from the R-stats package to obtain 100 
equal discretized time points for each replicate. The high 
number of linear interpolations was required to retain the 
original noise in the time course data. Following this step, 

Fig. 1  BAC cloning, BAC 
reporter DILI screen and 
analysis pipeline. Left panel 
BAC cloning technology is 
used to maintain endogenously 
regulated reporter protein levels 
and regulation. Monoclonal 
reporter selection from a high 
number of clones to ensure 
endogenous response to positive 
control stimuli and suitability 
of reporter for imaging. Middle 
panel high content live cell 
screen of 123 compounds at 1, 
5, 10, 50 and 100 C-max at 2 or 
3 replicates. Right panel image 
and data analysis is performed 
with CellProfiler/Fiji and R, 
respectively. In-house tools 
were developed in CellProfiler 
and R to assist in the quality and 
analysis of the large data output

https://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html
https://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html


1801Archives of Toxicology (2018) 92:1797–1814 

1 3

Table 1  Test compound set Compound Cmax (μ) Abb. DILI con. Seventy Hepa. Cmax ref. Metab

Acarbose 0.15 ACA Most-DC Sev. 8 FDA NM
Acetaminophen 139 APAP Most-DC Sev. 5 Xu/O’Brien YES
Adefovir 0.085 ADV Less-DC Non-sev. 2 Dailymed NM
Allopunnol 13.81 ALLO Most-DC Sev. 8 FDA NM
Altretamine 3.76 ALM Amb.-DC Non-sev. 2 FDA YES
Amiodarone 0.807 AMIO Most-DC Sev. 8 Xu/O’Brien/Khet. NM
Amoxicillin 22.3 AX Less-DC Non-sev. 5 FDA NM
Azathioprme 0.34 AZA Most-DC Sev. 5 FDA YES
Benzbromarone 4.339 BB Most-DC Sev. 8 FDA YES
Betaine 940 BET No-DC Non-sev. 1 O’Brien NM
Bicalutamide 1.97 BAT Most-DC Sev. 8 FDA YES
Bosentan 7.4 BOS Most-DC Sev. 7 Dawson/Gustaf. YES
Bromfenac 17.96 BFC Most-DC Sev. 8 FDA NA
Buspirone 0.016 BUS Amb.-DC Non-sev. 3 FDA YES
Busulfan 0.277 BU Most-DC Sev. 8 FDA VES
Captopril 8.882 CPL Less-DC Non-sev. 7 FDA VES
Carbamazepine 50.79 CBZ Most-DC Sev. 7 Dailymed NM
Chloramphenicol 46.36 CAMP No-DC Non-sev. 1 Ogutu NM
Chlormezanone 10.59 CMZ Most-DC Sev. 8 FDA NA
Chlorpromazine 0.94 CPZ Less-DC Non-sev. 2 Xu YES
Chlorpropamide 130.1 CHL Less-DC Non-sev. 2 FDA NM
Cimetidine 11.89 CMT Less-DC Non-sev. 2 Regenthal YES
Ciprofloxacin 6.58 CIPX Most-DC Sev. 7 FDA NM
Clofibrate 470 CLO Less-DC Non-sev. 3 O’Brien YES
Clotrimazole 0.087 CTZ Less-DC Non-sev. 3 FDA NM
Clozapine 2.44 CLZ Most-DC Sev. 5 Regenthal YES
Colchicine 0.016 CLC Amb.-DC Non-sev. 6 FDA YES
Cyclosporin A 0.2 CSA Most-DC Sev. NA Dailymed YES
Dacarbazine 20.64 DTIC Most-DC Sev. 6 FDA NM
Danazol 0.109 DNZ Most-DC Sev. 8 FDA NM
Dantrolene 7.9 DAN Most-DC Sev. 8 FDA YES
Dexamethasone 0.224 DXS Amb.-DC Non-sev. 3 FDA NM
Dextromethorphan hbr 0.022 DXM No-DC Non-sev. NA Xu NA
Diclofenac 10.1 DCF Most-DC Sev. 8 Gustaf./Regen. YES
Didanosine 9.83 DDL Most-DC Sev. 8 FDA NM
Diethylmaleate DEM Control Na NA NA NA
Digoxin 0.003 DIG No-DC Non-sev. 1 FDA YES
Diltiazem 0.356 DTZ Most-DC Sev. 4 Pat el YES
Disulfiram 5.4 DIS Most-DC Sev. 8 FDA YES
Dmso 0.2 DM SO Control Na NA NA NA
Edrophonium 60.2 EDR No-DC Non-sev. 1 FDA NA
Enalapril 0.4 ENP Less-DC Non-sev. 7 FDA YES
Entacapone 3.93 ECP Less-DC Non-sev. 1 Dailymed YES
Epinephrine 0.002 EPI No-DC Non-sev. 1 FDA NA
Erythromycin 11 ERVC Most-DC Sev. 5 FDA NM
Ethambutol 24.47 EMB Most-DC Sev. 8 FDA NM
Etodolac 68.49 ELAC Most-DC Sev. 8 FDA YES
Etoposide ETO Control Na NA NA YES
Famotidine 0.308 FAM Less-DC Non-sev. 3 FDA YES
Fenofibrate 4.1 FF Less-DC Non-sev. 3 FDA NM
Fenoprofen 58.2 FPF Most-DC Sev. 8 FDA YES
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Table 1  (continued) Compound Cmax (μ) Abb. DILI con. Seventy Hepa. Cmax ref. Metab

Fialuridine 1 FIAU Most-DC Sev. 8 O’Brien NA
Fluoxetine 0.05 FLX Less-DC Non-sev. 3 Regenthal YES
Flurbiprofen 57.32 FBP Amb.-DC Non-sev. 3 FDA YES
Folic acid 0.043 FAM No-DC Non-sev. 1 FDA YES
Furosemide 3.29 FUR Amb.-DC Non-sev. 2 FDA YES
Ganciclovir 4.62 GOV Amb.-DC Non-sev. 7 FDA YES
Glimepiride 1.12 GLP Less-DC Non-sev. 7 FDA NM
Griseofulvin 4.54 GF Most-DC Sev. 8 FDA YES
Haloperidol 0.005 HDL Less-DC Non-sev. 5 FDA YES
Hydroxyzine 0.27 HVZ No-DC Non-sev. 1 FDA NM
Imipramine 0.29 IM Less-DC Non-sev. 3 FDA YES
Indomethacin 5.59 IMN Most-DC Sev. 8 FDA YES
Iboniazid 76.56 INH Most-DC Sev. 8 Xu/Regen./Daw. YES
Isoproterenol 2.02 IPR No-DC Non-sev. 1 Gustafsson NA
Kanamycin 60.1 KM No-DC Non-sev. 1 Xu NA
Ketoconazole 6.59 KTZ Most-DC Sev. 8 Khetani NM
Ketorolac 3.53 KTL Less-DC Non-sev. 3 FDA NM
Labetalol 2.68 LABE Most-DC Sev. 8 FDA VES
Maprotiline 0.18 MPT Amb.-DC Non-sev. 5 FDA NA
Mebendazole 0.13 MBZ Less-DC Non-sev. 3 FDA NM
Meclizine 0 026 MCZ No-DC Non-sev. 1 FDA NM
Mercaptopurine 0.48 6MP Most-DC Sev. 8 FDA YES
Metformin 7.78 MF Less-DC Non-sev. 1 Regenthal YES
Methimazole 2.62 MTZ Most-DC Sev. 8 FDA VES
Methotrexate 0.77 MXT Most-DC Sev. 3 Regenthal NM
Methyldopa 18.94 MD Most-DC Sev. 8 FDA YES
Metoprolol 0.56 MTPL Less-DC Non-sev. 5 FDA YES
Mexiletine 3.83 MXT Most-DC Sev. 3 FDA YES
Moxisylyte 0.16 MOX Most-DC Sev. 8 FDA NA
Naproxen 0.2 NPX Less-DC Non-sev. 3 Regenthal VES
Nefazodone 3.95 NFZ Most-DC Sev. 8 Gustaf./Regen ./Daw. YES
Neomycin 0.44 NEO No-DC Non-sev. 1 Hu: in vitro dose NM
Nifedipine 0.43 NFP Less-DC Non-sev. 3 Wagner YES
Nimesulide 21.082 NMS Most-DC Sev. 8 FDA YES
Nitrofurantoin 6 NTF Most-DC Sev. 8 FDA YES
Nizatidine 4 NIZ Less-DC Non-sev. 5 FDA YES
Ofloxacin 9.96 OFX Less-DC Non-sev. 3 Dailymed NM
Omeprazole 4.7 OMZ Less-DC Non-sev. 4 Dailymed YES
Oxytetracycline 3.26 OTC Amb.-DC Non-sev. 2 FDA NA
Paroxetine 0 061 PXT Less-DC Non-sev. 8 FDA YES
Perhexiline 2.16 PHX Most-DC Sev. 8 Xu NA
Phenobarbital 145.5 PBT Less-DC Non-sev. 3 Schmidt NM
Phenytoin 21.72 PT Most-DC Sev. 8 Xu et al YES
Pioghtazone 2.946 PGZ Less-DC Non-sev. 3 Xu/O’Brien NM
Prednisolone 0.68 PRD Less-DC Non-sev. 3 FDA NM
Primaquine 0 615 PQ No-DC Non-sev. 1 Xu NM
Primidone 4.67 PRI No-DC Non-sev. 1 FDA YES
Procychdine 0 404 PCD No-DC Non-sev. 1 FDA NA
Propranolol 0 201 PPL Amb.-DC Non-sev. 3 FDA YES
Propylthiouracil 9.1 PTU Most-DC Sev. 8 FDA YES
Ranitidine 1.79 RNT Less-DC Non-sev. 5 FDA YES
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a one-way ANOVA for functional data method was applied 
using the ‘anova.onefactor’ function of the R-package fda.
usc to determine significant difference in time-curves com-
pared to DMSO for Srxn1/CHOP/p21 or TNFα for ICAM1. 
Multiple testing correction was applied using the fdr-method 
(Benjamini and Hochberg). Srxn1/CHOP/p21 were assessed 
for significant upregulation and ICAM1 for significant 
down- or up-regulation.

For the log-BMC values a linear model with the BMC 
and C-max as explanatory variables was fit as null-model. 
The null-model was compared in an anova to a model con-
taining DILI-class as additional additive explanatory vari-
able. The models were compared in an anova for significant 
effect of DILI-class.

For the C-max normalized BMC a Welch two-sample t 
test was performed between the severe and non-severe DILI 
groups.

Results

High content adaptive stress response screen 
with DILI compounds

To assess the application of adaptive stress response path-
way activation for assessment of adverse drug reactions, we 
focused on DILI. For the assessment of DILI liabilities we 
screened 123 compounds, of which 118 with known DILI 
liabilities (Fig. 1; Table 1). As an adaptive stress response 
read-out, HepG2 BAC-GFP reporter cell lines for oxida-
tive stress (Srxn1-GFP), ER-stress (CHOP-GFP), DNA 
damage (p21-GFP) and inflammatory cytokine signaling 
stress (ICAM1-GFP) were used [(Wink et al. 2017) and 
see Suppl. Figure 2]. Stress response activation following 
DILI drug exposure was monitored with live cell confocal 
microscopy for a period of 24 h. The time-resolved single 
cell data was quantified using an established image analysis 
pipeline (Wink et al. 2017). For labeling DILI compounds 
we used the FDA DILI labeling, which labels drugs either 
as no-DILI-concern, ambiguous DILI-concern, less-severe 

Table 1  (continued) Compound Cmax (μ) Abb. DILI con. Seventy Hepa. Cmax ref. Metab

Ribavirin 2.61 RBV Amb.-DC Non-sev. 7 FDA YES
Rifampicin 15 RFP Most-DC Sev. NA Dailymed YES
Simvastatin 0 082 SVN Less-DC Non-sev. 3 FDA YES
Succinylcholine 137.74 SUCCS No-DC Non-sev. 1 FDA NA
Sulindac 31.985 SUL Most-DC Sev. 8 FDA YES
Tacrolimus 0 037 TAC Less-DC Non-sev. 5 Dailymed YES
Tamoxifen 0 162 TMX Most-DC Sev. 8 Xu YES
Terbinafine 4 TRB Most-DC Sev. 8 FDA NM
Thapsigargin TG Control Na NA NA NA
Thiondazine 0.55 TDZ Less-DC Non-sev. 5 Ravic YES
Ticlopidine 8 075 TPD Most-DC Sev. 4 FDA YES
Tnfα TNF Control Na NA NA NA
Tolbutamide 233.03 TOLB Amb.-DC Non-sev. 2 FDA NM
Tolcapone 21.99 TC Most-DC Sev. 8 Dailymed YES
Trazodone 5.056 TZ Less-DC Non-sev. 5 FDA YES
Troghtazone 6.39 TRG Most-DC Sev. 8 Xu/Khetani YES
Verapamil 0.5 VRP Less-DC Non-sev. 3 Regenthal NM
Warfarin 4.86 WAR Less-DC Non-sev. 5 FDA NM
Ximelagatran 0.3 XML Most-DC Sev. 8 Keisu NA
Zafirlukast 1.21 ZFL Most-DC Sev. 8 FDA YES
Zimehdine 0 267 ZMI Most-DC Sev. 8 Gustafsson NA

Alphabetically sorted list of screened compounds in this study including their C-max values, abbrevia-
tions, DILI-concern labeling, severity class, hepatotoxicity class (1 = no hepatotoxicity, 2 = cholestasis/
steatohepatitis, 3 = liver aminotransferases increase, 4 = hyperbilirubumenia, 5 = jaundice, 6 = liver necro-
sis, 7 = acute liver failure, 8 = fatal hepatotoxicity), C-max reference (Schmidt et al. 1986; Regenthal et al. 
1999; Ogutu et al. 2002; Ravic et al. 2004; O’Brien et al. 2006; Xu et al. 2008; Andersson and Keisu 2010; 
Nidhi et al. 2011; Patel et al. 2011; Dawson et al. 2012; Hu and Coates 2013; Khetani et al. 2013; Gustafs-
son et al. 2014) and metabolic potential based on the livertox.nih.gov database (YES compound is metabo-
lized, NM compound is not metabolized, NA not available in the database)
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DILI concern or most-severe-DILI-concern (Chen et al. 
2016). Most-severe-DILI-concern drugs are highly asso-
ciated with DILI and represent multiple specialist verified 
cases of DILI. Less-severe-DILI-concern drugs represent 
few verified cases of DILI. If drugs are suspected to cause 
most- or less-severe-DILI-concern, but the presented cases 
cannot be validated by experts, drugs received the ambigu-
ous DILI-concern label. No-DILI-concern drugs are on the 
market for decades and have never been associated with 
DILI. To separate out clear examples of DILI, we made two 
classes: ‘non-severe-DILI’ and ‘severe-DILI’, where the 
most-severe-DILI-concern drugs comprised the ‘severe-
DILI’ group and all others are in the ‘non-severe-DILI’ 
group. In addition, we included FDA labeling in eight sepa-
rate classes of hepatotoxicity ranging from no hepatotoxicity 
to fatal hepatotoxicity (Table 1). The screen also included 
reference compounds including negative controls (DMSO 
and medium) and positive controls (i.e. DNA damage induc-
ers, soft electrophilic alkylating agents and ER stress induc-
ers) (see Table 1; Fig. 2).

Single cell analysis of adaptive stress response 
activation

All reporters were exposed to five concentrations: 1, 5, 10, 
50 and 100 C-max followed by automated live cell imag-
ing and multi-parametric image analysis (Fig. 1); C-max 
values were obtained either from FDA or from literature 
(see Table 1) (Schmidt et al. 1986; Regenthal et al. 1999; 
Ogutu et al. 2002; Ravic et al. 2004; O’Brien et al. 2006; Xu 
et al. 2008; Andersson and Keisu 2010; Nidhi et al. 2011; 
Patel et al. 2011; Dawson et al. 2012; Hu and Coates 2013; 
Khetani et al. 2013; Gustafsson et al. 2014). For all images 
single cell analysis was performed to extract a diverse set of 
quantitative data, including GFP reporter activity, cell num-
ber and markers of cytotoxicity (Suppl. Figure 1). Srxn1-
GFP, p21-GFP and CHOP-GFP reporter single cell data was 
used to derive quantitative data for different determinants 
of reporter activity: intensity and fraction of cells with GFP 
intensity levels above control values. Fraction of cells with 
GFP intensity were divided in three types: two times or three 

times the mean of the control values (i.e. %GFP positive 2 m 
and %GFP positive 3 m, respectively); and the control mean 
plus three times the standard deviation of the mean (%GFP 
positive m3sd). All ICAM1-GFP reporter drug exposures 
were primed with TNFα exposure; likewise, ICAM1-GFP 
shows a gradual increase over 24 h time period in the vehicle 
control. As a consequence, drug treatment can lead to an 
enhancement or inhibition of the TNFα-induced ICAM1-
GFP response. ICAM1-GFP fractions were calculated as the 
difference between up- and downregulated fractions (%GFP 
diff. 2 m). Systemic evaluation of these descriptors for the 
least and strongest responding compound for each individ-
ual reporter allowed fine tuning of the sensitivity versus the 
dynamic range (Fig. 2). For example, based on the Srxn1-
GFP intensity over the single cell population chlorpromazine 
would not have been defined as positive in the Srxn1-GFP 
reporter cell line, because only in a small proportion of cells 
that contain a higher level of Srxn1-GFP the signal was 
detected. Yet, the %GFP positive 2 m and %GFP positive 
3 m were more sensitive descriptors that also allowed evalu-
ation of the time course dynamics for chlorpromazine. Simi-
lar observations were made for nitrofurantoin and clozapine 
for the CHOP-GFP and p21-GFP reporters, respectively. 
However, for strong inducers of oxidative stress (diethyl-
maleate; DEM), ER-stress (thapsigargin) and DNA damage 
(etoposide), GFP mean intensity already allowed detection 
of the reporter responses, while %GFP positive 2 m caused 
an early saturation, thereby lowering the information value 
of the temporal dynamics. Further, diclofenac (DCLF) and 
azathioprine (AZA) showed inhibiting and enhancing modu-
latory effects on TNFα-induced ICAM1-GFP, respectively.

DILI compounds demonstrate specific stress 
response reporter activation dynamics

For the evaluation of the reporter activation for the entire 
compound screen %GFP positive 2 m was selected as the 
most sensitive initial readout. The %GFP positive 2 m time 
courses were used to calculate the mean of the replicates 
for Srxn1-GFP, CHOP-GFP, p21-GFP and ICAM1-GFP 
reporter responses for all compounds (Fig. 3a and Suppl. 
Figure 3). Some compounds showed a response in all 
four reporters. Thus, methyldopa (MD) increased Srxn1-
GFP, CHOP-GFP and p21-GFP activity and inhibited the 
ICAM1-GFP response. Mercaptopurine (6MP) increased 
all four reporters. The data also allowed discrimination 
of specific time dynamics of stress activation. Thus, for 
nimesulide (NMS), rifampicin (RFP) and oxytetracycline 
(OXY) an initial CHOP-GFP response at 100× C-max 
and a delayed Srxn1-GFP response was observed. In 
contrast, for azathioprine (AZA), colchicine (CLC) and 
dacarbazine (DTIC) a Srxn1-GFP response was later fol-
lowed by CHOP-GFP, suggesting ER-stress as the primary 

Fig. 2  Dynamics of Srxn1-GFP, CHOP-GFP, p21-GFP and ICAM1-
GFP reporter activation. Left panel time lapse images of the reporters 
exemplifying the importance of single cell analysis which allows fine 
tuning sensitivity vs dynamic range of BAC-reporter read-out. Right 
panel quantification of GFP signal of the Srxn1-GFP, p21-GFP and 
CHOP-GFP reporters from a control, a weak reporter-activating com-
pound and a strong reporter-activating compound. For ICAM1-GFP 
the TNFα control was accompanied by a compound which induced 
the TNFα induced response and by a compound which reduced the 
TNFα response. Intensity, %GFP positive 2  m, %GFP positive 3  m 
and %GFP positive m3sd are shown for Srxn1-GFP, CHOP-GFP and 
p21-GFP. For ICAM1-GFP, Intensity, %GFP diff. 1  m, %GFP diff. 
2 m and %GFP diff. 3 m are shown

◂
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mode-of-action (Fig. 3a). Hierarchical clustering of the 
time courses from all 118 compounds representing the 
reporter activities from all BAC-GFP reporter cell lines 
demonstrated a large cluster with considerable modulation 
of stress response reporter activity (Fig. 3b and Suppl. 
Figure 4). This cluster showed an overrepresentation of 

severe-DILI compounds as well as more severe classes of 
hepatotoxicity (liver necrosis, acute liver failure and fatal 
hepatotoxicity). Sub-clusters with activation of all four 
reporters were established, with ICAM1-GFP either up- or 
downregulated. p21-GFP did show few responses and did 
not contribute much to the DILI compound clustering, in 
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Fig. 3  Time dynamics of a subset of the screened drugs. a GFP 
responses over time of %GFP positive 2  m of Srxn1-GFP, CHOP-
GFP and p21-GFP and of GFP_dif.2  m of ICAM1-GFP. Statistics 
are performed as described in the material and methods section and 
represent *< 0.01 with the corresponding color to dissect between 

the different reporter lines. b Zoom of hierarchical clustering of time 
dynamic responses. Red is an upregulation and blue is a downregu-
lation. On the left the severe/non-severe (purple) and the hepatotox-
icity class (grey) labeling are indicated as well as the C-max values 
(green). (Color figure online)
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overall agreement with anticipated overall lack of DNA 
damage of marketed drugs, excluding anticancer drugs. 
The time response clearly demonstrated the dynamics of 
the various stress response programs and allowed dis-
crimination between primary stress types and subsequent 
secondary responses. Strikingly, suppression by DILI 
compounds of the cytokine-induced ICAM1-GFP expres-
sion was highly correlated with activation of the CHOP-
GFP reporter, which in a few cases was co-occurring with 
Srxn1-GFP activation.

Concentration response analysis reveals strong 
clustering of severe DILI compounds

Next, we summarized time course data by extracting the 
time point at which the reporter expression reached a peak 
response using the various quantitative GFP reporter activity 
descriptors as well as cytotoxicity measurements. Hierar-
chical clustering revealed a stress response reporter active 
group divided over three sub-groups and one large non acti-
vated group (Fig. 4). For the active group one sub-group was 
marked by an increase in Srxn1-GFP, CHOP-GFP and (for 
some compounds) p21-GFP in combination with a decrease 
in ICAM1-GFP. A second sub-group was characterized by 
a strong increase in CHOP-GFP and cytotoxicity as well as 
a strong decrease in ICAM1-GFP. For the third sub-group 
both Srxn1-GFP and ICAM1-GFP reporters showed a clear 
increase. Most of the severe-DILI compounds were present 
in one of the active sub-groups. The point-of-departure 
(PoD) varied between reporters. For example mercaptopu-
rine showed a relatively strong activation of both SRXN1-
GFP and ICAM-GFP, yet, the PoD for ICAM-GFP response 
was at a lower C-max than for the onset the SRXN1-GFP 
response. In contrast, ketoconazole showed no Srxn1-
response at the intensity feature level but only at the more 
sensitive %GFP positive marker starting earliest at 50 C-max 
as the primary and only stress-type. Thus, the current high 
content data analysis revealed the value of measuring quanti-
tative adaptive stress responses for the different DILI classes 
with a clear distinction in primary stress responses for indi-
vidual DILI compounds.

Benchmark concentrations definition reveals 
low PoD for Srxn1‑GFP and CHOP‑GFP activation 
in the severe DILI group

Based on the concentration response curves extracted from 
the peak response in %GFP positive 2  m (Srxn1-GFP, 
CHOP-GFP and p21-GFP) and %GFP diff. 2 m (ICAM1-
GFP) we defined the benchmark concentration (BMC; 
defined as at least 25% of the cells that reach the two times 
average threshold of the control values: see Fig. 5a). This 

BMC can function as an indicator for the PoD for further 
risk assessment modeling. The C-max values for the 118 
DILI compounds covered a large concentration range from 
1.7 nM to 0.94 mM. Therefore, we plotted the BMC against 
the absolute C-max value (Fig. 5b) and we divided the BMC 
by the absolute C-max (Fig. 5c). We observed a lower BMC 
in Srxn1-GFP, CHOP-GFP and ICAM1-GFP for severe DILI 
compounds compared to non-severe DILI compounds. This 
indicates that severe DILI compounds have a lower PoD 
and are, therefore, more potent to activate adaptive stress 
response pathways.

Stress response reporter activity SVM classification 
and prediction of DILI liability

Next, we extracted the time dynamic features and BMC 
values for all 118 DILI compounds for the different report-
ers culminating in 273 different features. Machine learn-
ing was applied to asses temporal stress pathway activation 
and concentration—response relations for predictive power 
and feature relevance. Feature selection and support vec-
tor machine (SVM) model tuning were performed over 200 
iterations of random training/test dataset sampling (Suppl. 
Figure 1). The features selected more than 150 times in the 
200 iterations were subjected to unsupervised hierarchical 
clustering (Fig. 6b). Interestingly, this set included a diverse 
set of features, encompassing all reporters, BMC, C-max 
and also cytotoxicity features including cell death with 
TNFα at 10 C-max, cell death at 100 C-max and cell speed 
at 50 C-max. Early and late slope features from the report-
ers seem to be preferred over the max magnitude values. 
The resulting clustering with these features showed three 
dominant sub-groups with enriched severe DILI compounds 
(Fig. 6b).

The 200 independent test-set prediction validations with 
the tuned SVM model resulted in an average ROC of 0.73 
(Fig. 6c, left panel) and a sensitivity of 0.60 and specificity 
of 0.75 with ‘positive’ being the severe-DILI group. Over 
the 200 runs the correct prediction rates for each compound 
was calculated (Fig. 6c, right panel). 88 DILI compounds 
were consistently either predicted correctly or predicted 
falsely. A smaller set of 30 compounds have some uncer-
tainty as to being predicted correctly. No enrichment for 
DILI-class can be seen for these prediction rates.

Discussion

Here, we systematically evaluated the application of a 
panel of four key adaptive stress response fluorescent pro-
tein reporters in high content high throughput screening as 
a method for DILI liability assessment. We anticipate that 
adaptive stress pathway activation respond well before the 
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onset of overt toxicity, thus ensuring increased sensitivity as 
well as integration of detailed quantitative mechanistic infor-
mation in chemical safety assessment. We monitored four 
downstream adaptive stress response pathways represented 
by Srnx1 (Nrf2 oxidative stress response), CHOP (ER-stress/

UPR response), p21 (p53 dependent DNA damage-related 
signaling) and ICAM1 (NFκB-mediated pro-inflammatory 
cytokine signaling). Systematic image analysis revealed 
specific activation of Srxn1-GFP and CHOP-GFP by severe 
DILI versus non-severe DILI inducing drugs. A subset of 
dynamic features across all cell reporters allowed the classi-
fication of severe versus non-severe DILI classes with a sen-
sitivity of 60% and a specificity of 75%. We demonstrate the 
application of advanced dynamic high content imaging data 
of stress response signaling can be integrated with infor-
matics approaches for DILI inducing liability assessment 
of candidate drugs. This mechanism-based assessment is a 

Fig. 4  Hierarchical clustering of peak GFP response in time Hier-
archical clustering of responses of intensity and count related GFP 
responses in dose response fashion. Cell death measurements cell 
number and PI staining are in the right bar. On the left side DILI 
labeling is depicted in three bars: severe/non-severe, DILI-concern 
labeling and hepatotoxicity class labeling. Compound names are 
colored based on the unsupervised clustering. (Color figure online)
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Fig. 6  Prediction of severe ver-
sus non-severe DILI groups. a 
Explanation of temporal feature 
extraction. b Feature selection 
by Kolmogorov Smirnov test 
and pairwise correlation filter. 
Followed by unsupervised hier-
archical clustering of the most 
often selected features from the 
200 feature selection iterations. 
c ROC curves from 200 test 
data runs and average prediction 
results (left); Fraction of correct 
prediction for each drug
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fast and transparent approach to integrate mode-of-action 
information in prioritizing lead compounds early in the drug 
development cycle.

Our adaptive stress response reporters provide detailed 
information on the adverse mode-of-action of different 
drugs. We observed three different clusters of DILI induc-
ing drugs with clear reporter activity: (1) a cluster with mild 
Srxn1-GFP and ICAM1-GFP activation (including azathio-
prine, mercaptopurine and colchicine); (2) a cluster with 
strong ICAM1-GFP suppression and CHOP-GFP activation 
(including nefazodone, clozapine and nitrofurantoin); and, 
(3) a cluster with mild ICAM1-GFP suppression and activa-
tion of Srxn1-GFP and/or CHOP-GFP (including diclofenac, 
dantrolene, bromfenac and benzbromarone). Overall, Srxn1-
GFP responses were often observed in cooperation with 
the activation of CHOP-GFP and/or ICAM1-GFP reporter 
activity. This suggests that the Nrf2 activation is a primary 
cause which also disturbs other systems as protein folding 
or inflammation or that it follows a secondary effect after 
cellular stress induction. Since we also captured the time 
dependent adaptive stress activation dynamics, we were able 
to make a distinction between these two possibilities which 
both occurred (see Fig. 3 and Suppl. Figures 3 and 4). Inter-
estingly, a very strong decrease in ICAM1-GFP activation 
coincided with a strong increase in CHOP-GFP activation 
in a similar concentration response, but no or minor activa-
tion of Srxn1-GFP. This is indicative for a specific mode-
of-action of these DILI inducing compounds and suggest a 
relationship between ER-stress induction and suppression of 
TNFα-mediated NFkB activation and ICAM1 expression. 
Previously, we demonstrated such a mutual relationship for 
diclofenac and showed that inhibition of CHOP induction 
prevented the diclofenac/TNFα-mediated cell death (Fre-
driksson et al. 2014). For two other drugs in this cluster, 
nefazodone and clozapine, such a dual modulation of ER-
stress and NFκB signaling was demonstrated before (Cos-
grove et al. 2009; Lauressergues et al. 2012; Abdel-Wahab 
and Metwally 2015; Ren et al. 2016). Finally, we observed 
that a strong enhancement of TNFα-induced ICAM1-GFP 
activation by DILI inducing compounds was often accom-
panied with an increase in Srxn1-GFP as well as a decrease 
in cell number. Since oxidative stress can also lead to NFkB 
activation, there is a likely synergistic effect for the enhance-
ment of TNFα-mediated NFκB activation. In general, no 
major increase of p21-GFP activation was observed for most 
compounds, this is a comforting observation and reflects the 
genuine exclusion of genotoxic effect of drugs during drug 
development.

Our systematic screening approach allowed defining of 
benchmark concentrations for all DILI inducing drugs and 
the respective reporters. For Srxn1-GFP, CHOP-GFP and 
ICAM1-GFP we observed a lower ratio of the BMC/Cmax 
for severe DILI compared to non-severe DILI inducing 

drugs, irrespective of the of  Cmax levels. This was espe-
cially pronounced in the Srxn1-GFP and CHOP-GFP report-
ers, indicating that the safe therapeutic window for severe 
DILI compounds is limited. Therefore, since CHOP is an 
important adaptation-adversity-switch in ER stress signal-
ing, activation of CHOP may then contribute to liver injury 
(Yamaguchi and Wang 2004). Since Srxn1-GFP contributes 
to adaptation, compounds that primarily activate the Nrf2 
pathway to a limited extend may still be considered safe 
(Osburn and  Kensler 2009).

The screen was performed in a time-resolved live single 
cell setting. To date, toxicity screening efforts using high 
content imaging have mostly focused on single time point 
fluorescent dyes or anti-bodies (Garside et al. 2014) with 
several real-time based toxicity screening efforts (Kim et al. 
2012). However, the use of dyes and anti-bodies brings addi-
tional noise to already very noisy systems as fixation and 
anti-body binding are likely additional sources of variability; 
this is not an issue using our reporter models. With the use 
of our reporter cell lines biological signaling can be visual-
ized with a high time resolution to more accurately pinpoint 
the primary mode-of-action in relation to cellular stress. 
Time course signaling data also greatly benefits computa-
tional modeling efforts as these require detailed time and 
dose response dynamics, this is only feasible using live cell 
imaging data. Furthermore, we were able to extract features 
based on these time and dose response dynamics. These fea-
tures were used in support vector machine approach to assess 
possible differences in cellular adaptive signaling between 
less- severe and severe DILI. Due to the limited number 
of no-DILI compounds (n = 16) and the total of 118 com-
pounds tested we had obtained a limited set of observations 
for building highly accurate predictive models. However, by 
combining the less-Severe DILI and ambiguous DILI cases 
together with the no-DILI compounds we were still able to 
show significant predictivity with an independent subset of 
our data not used in the SVM tuning process. A ‘predictive 
toxicogenomics space (PTGS)’ method has recently been 
defined to determine sensitivity and specificity in classifica-
tion of known DILI drugs (Kohonen et al. 2017). Although 
in this study, a different DILI labeling strategy was used, we 
observed a comparable sensitivity using our limited set of 
stress response reporters. Interestingly, some of our report-
ers are reflected by the transcription factors that determine 
the toxicogenomics-based classifier in the PTGS approach. 
We anticipate that the discrepancy in the specificity is likely 
due to the difference in DILI negative labeling approach. We 
anticipate that the further development of an ever increas-
ing reporter imaging database containing detailed signaling 
based features linked to chemical exposure, i.e. compound 
specific biological fingerprints, will ultimately aid in the 
safety evaluation and early (DILI) prediction of new drugs 
and chemicals.
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We performed the screen using the HepG2 cell line. 
Although HepG2 has several advantages for in vitro screen-
ing (unlimited lifespan, cheap, easy to culture), the major 
limitation is their lack of metabolic capacity. Interestingly, 
several compounds that involve biotransformation-dependent 
toxicity demonstrated activation of an Srxn1-GFP oxidative 
stress response (e.g. acetaminophen and sulindac). To test 
whether there is a concordance between the HepG2 BAC-
GFP reporters and the transcript levels in primary human 
hepatocytes we used the TG-GATES dataset to calculate 
the correlation of the activity of the reporters genes between 
TG-GATES and the current BAC-GFP HepG2 DILI screen 
(see Suppl. Figure 5). This indicates a significant correlation 
of Srxn1 responses at the transcript levels in primary human 
hepatocyte and protein expression of BAC-GFP reporters 
in HepG2 cells, also suggestive for a minor role for drug 
metabolism in the onset of DILI compound-induced stress 
response activation. Interestingly, for various compounds we 
did observe induction of stress response pathways that could 
not be observed in primary human hepatocytes (boxed area, 
Suppl. Figure 5), thus indicating increased sensitivity of the 
BAC-GFP reporters for some compounds. Previously, we 
optimized a HepG2 3D spheroid protocol to enhance liver 
like properties and to enable chronic exposures (Ramaiah-
gari et al. 2014). In future research, we can test whether this 
would increase prediction of DILI drugs.

In conclusion, we have shown that BAC-GFP reporter 
cell lines are a sensitive tool to provide detailed mechanistic 
information regarding the adaptive stress response activation 
in a broad compound screening setting using high-content 
live single cell imaging. Such detailed insights into the per-
turbations of signaling pathways after chemical exposure 
provides key information for safety assessment and predic-
tive purposes. We anticipate that our BAC-GFP reporter 
platform will contribute to the early pre-clinical screening 
for DILI liabilities and possibly also other chemical safety 
assessment paradigms.
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