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Abstract
The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics 
is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement 
in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the 
need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; 
therefore, toxicological properties need to be assessed. Accepted methods for gathering the information required by law 
for approval of substances are often animal methods. To reduce, refine, and replace animal testing, innovative organotypic 
in vitro models have emerged. Such models appear at different levels of complexity ranging from simpler, self-organized 
three-dimensional (3D) cell cultures up to more advanced scaffold-based co-cultures consisting of multiple cell types. This 
review provides an overview of recent developments in the field of toxicity testing with in vitro models for three major organ 
types: heart, skin, and liver. This review also examines regulatory aspects of such models in Europe and the UK, and sum-
marizes best practices to facilitate the acceptance and appropriate use of advanced in vitro models.
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Introduction

When developing novel drugs, chemicals, or personal care 
products, industry must evaluate the risks to human health 
arising from their use. Therefore, knowledge of the proper-
ties of these substances, results of safety tests, risk assess-
ments, and appropriate measures to adequately control the 
risks must be provided to regulatory authorities (Eichler 
et al. 2008; Pignatti et al. 2011; Senderowicz 2010; Sil-
bergeld et al. 2015). This information is mandatory for reg-
istration and marketing approval as well as for approval of 
clinical trials for drugs or personal care products.

Traditionally, such risk assessments are based on safety 
tests performed in animals and assume that animals will 
respond to these tests in a similar manner to humans. 
Although animals represent systemic organisms with obvi-
ous similarities in physiology and function to humans, there 
are also several limitations. Animal testing is labour-inten-
sive, time-consuming, expensive, ethically challenging and 
not suited to address the high number of substances pro-
duced by the chemical industry or during drug screening in 
the pharmaceutical industry (Fig. 1) (Hartung 2010; Kes-
sel and Frank 2007). Furthermore, known species variation 
makes reliance on tests in a single species insufficient for 
approval of clinical trials in humans (Zbinden 1993). This 
is why regulatory authorities for pharmaceuticals require 
in vivo testing in two species, commonly a rodent such as 
rat or mouse and a non-rodent such as mini-pig, dog, or 
cynomolgus monkey (Bode et al. 2010; Greaves et al. 2004).

The burden placed upon animal testing has been a conten-
tious subject for many decades, with organized opposition 
since the nineteenth century (Finn and Stark 2015). Similar 
ideals are proposed in the EU, UK, US, and in particular by 
the British National Centre for the Replacement, Refinement 
and Reduction of Animals in Research (NC3Rs) who follow 

the principles of humane experimental technique conceptu-
alized by Russell and Burch (Russell et al. 1959). Validated 
in vitro tests for phototoxicity, cytotoxicity, genotoxicity, 
and cardiac arrhythmias are already well established to test 
for cell and DNA damage as well as for cardiac ion chan-
nel inhibition. These tests are based on simple cell culture 
systems employing mammalian cells for photo- and cytotox-
icity screens, bacteria, and mammalian cells for the Ames 
mutagenicity test and in vitro micronucleus test (MNT), or 
cell lines expressing the human potassium channel hERG in 
cardiac safety assays (Bridgland-Taylor et al. 2006; Colatsky 
et al. 2016; Kirkland et al. 2014; Moeller et al. 2012; Shukla 
et al. 2010; Spielmann et al. 2008).

Testing with in vitro assays and animal tests is relatively 
effective in the detection of acute and severe toxicities and 
to some degree in testing for chronic toxicities. However, 
these tests still exhibit limitations, since ~ 1/3 of candidate 
drugs fail during clinical trials due to unpredicted toxicity 
(Arrowsmith and Miller 2013; Cook et al. 2014). Many of 
these safety failures can be attributed to cardiovascular and 
liver toxicities (Fig. 1c) (Cook et al. 2014; Laverty et al. 
2011). An exemplar case of unexpected toxicity is the clini-
cal trial of the antiviral agent Fialuridine in 1992, in which 
unforeseen toxicity led to the death of a third of the patient 
cohort due to liver failure associated with lactic acidosis. 
Two of the remaining patients required a liver transplant. 
This toxicity is very pertinent as it was not uncommon in 
humans, and demonstrates the predictive limitations of pre-
clinical studies (McKenzie et al. 1995). More recent exam-
ples include the TGN1412 trial, where despite the use of 
animal studies for the novel immunomodulatory antibody 
CD28 ‘superagonist’ and use of a dose 500 times lower than 
found to be safe in animals, all six of the patients suffered 
from cytokine storm and were hospitalised (Suntharalingam 
et al. 2006). In addition, animal studies were not predic-
tive of the toxicity observed in first-in-man trials for the 
fatty acid amide hydrolase inhibitor BIA 10-2474, where 
five patients suffered neurological injuries and a sixth died 
(Moore 2016). These failures may be due to a lack in predic-
tivity due to the phylogenetic distance between laboratory 
animals and humans, as well as the discrepancy between 
simplistic in vitro tests and the in vivo situation. Animals 
are not fully predictive of human toxicity and in vitro tests 
on the traditional two-dimensional (2D) monolayers of cells 
are neither physiological nor systemic.

Three-dimensional (3D) cell culture and organotypic 
in vitro models are another approach to bridge the gap 
between traditional 2D cell culture models and the in vivo 
situation. Three-dimensional culture produces cells with 
more physiologically relevant attributes, such as cell polar-
ization, cell–cell or cell–microenvironment interactions, 
lumen formation, reduced proliferation, increased differenti-
ation, and numerous changes in RNA and protein expression 

Fig. 1  Safety assessments during the development of chemicals 
or drugs and opportunities for the application of innovative in vitro 
models. a Number of newly synthesized organic and inorganic chemi-
cal substances recorded in the CAS Registry (Kemsley 2015) and 
number of substances registered at the European Chemicals Agency 
(ECHA). b Schematics of the development process for chemical 
substances including safety assessments. Violet squares show inter-
actions with regulatory authorities with respect to chemical safety 
reports (CSR) and the provision of safety data sheets (SDS). Oppor-
tunities for the application of 3D or organotypic in vitro models are 
indicated. c Schematics of the drug development pipeline from the 
identification of safety liabilities during discovery, screening, and 
early development to risk/benefit assessments during clinical trials 
and product life cycle management. Violet squares show important 
interactions with regulatory authorities, e.g., Investigational New 
Drug (IND) applications and New Drug or Biologic License Applica-
tions (NDA/BLA). Indicated are the major organ systems involved in 
pre-clinical and clinical safety failures (Cook et al. 2014) as well as 
opportunities for the application of 3D or organotypic in vitro mod-
els. (Color figure online)

◂
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(Edmondson et al. 2014; Kenny et al. 2007; Rimann and 
Graf-Hausner 2012; Yamada and Cukierman 2007). There-
fore, these models hold promise to better represent the his-
tological and physiological complexity of real tissue to study 
toxicological effects during product development and life 
cycle management (Fig. 1). The need for innovative models 
has become particularly urgent for the cosmetics industry 
following a complete ban on cosmetics developed through 
animal testing in the European Union since 2013 (EU Regu-
lation no. 1223/2009). Consequently, human in vitro skin 
equivalents are probably the most developed and understood 
in vitro engineered 3D model for compound testing (Mathes 
et al. 2014).

In this review, we discuss innovative in vitro models cur-
rently being used or recently developed as well as the regula-
tory perspective for toxicological safety assessments in the 
pharmaceutical, chemical, or cosmetics industry, to draw up 
recommendations for the way forward.

Regulation

The limitations of animal testing and 2D in  vitro sys-
tems demonstrate a clear need for better models that can 
be accepted by regulatory agencies. For example, the EU 
ban on animal testing for cosmetics and the ambition of the 
Dutch government to phase out the use of laboratory animals 
for regulatory safety testing by 2025 (Netherlands National 
Committee for the protection of animals used for scientific 
purposes 2016) necessitate regulatory acceptance of alterna-
tive methods. Alternative cell culture methods have already 
emerged in the industry for compound screening prior to 
regulatory testing. A first aspect to consider in regulatory 
acceptance is whether legal frameworks allow alternative 
methods.

Toxicological data requirements for the evaluation and 
admission of chemical substances on the European market 
are given in 11 European regulatory frameworks. Analyses 
of these frameworks has revealed that although most frame-
works name certain animal tests as standard for providing 
certain toxicological information (e.g., for repeated dose tox-
icity), all but one clearly provide for using alternative meth-
ods to obtain this information (Heringa et al. 2014; Vonk 
et al. 2015). The exception is the framework for veterinary 
medicinal products, where the legal status of such a pos-
sibility is unclear, as this is only provided in a non-binding 
guideline. In summary, there are no legal barriers to omit 
animal safety tests during the safety assessment of a novel 
chemical entity.

The possibility to acquire regulatory acceptance for clini-
cal trial applications without animal safety testing was illus-
trated in 2010 by the biotechnology company Immunocore 
Ltd, who received approval for clinical trials in melanoma 

patients with an immunostimulating biological without ani-
mal testing (Megit 2011). In their dialogue with the Brit-
ish Medicines and Healthcare products Regulatory Agency 
(MHRA) and US Food and Drug Administration (FDA), 
immunocore brought the arguments forward that their bio-
logical can only bind and show activity with human cells 
and that a relevant animal model is not available for safety 
evaluation, and that in this case, animal tests have no value. 
Therefore, it was concluded that extensive testing with 
human cells and human tissues was sufficient and that toxic-
ity studies in non-relevant species may be misleading and are 
discouraged, which is in agreement with the International 
Regulatory Guideline ICH Topic S6: Pre-clinical Safety 
Evaluation of Biotechnology-Derived Pharmaceuticals 
(CPMP/ICH/302/95). The MHRA stresses that deviations 
from the standard safety package are possible when well-
justified, which is evaluated on a ‘case-by-case’ basis. The 
agency recommends that companies consult for advice on 
the appropriateness of their development programmes before 
conducting unnecessary and potentially misleading studies. 
The MHRA, therefore, offers a ‘safe harbour’ approach to 
researchers presenting new models who may otherwise be 
concerned about punitive action from regulators. Indeed, 
where new models are being developed, regulators should 
be viewed as an ally rather than a hindrance to progress.

This, and the legal situation, is encouraging for the appli-
cation of alternative models, but raises the question as to 
why animal testing for safety evaluations have not yet been 
replaced. The main reason is the lack of scientifically accept-
able and physiologically relevant alternatives for animal 
safety tests. Before approval, a thorough validation is nec-
essary, ideally followed by acceptance within the OECD to 
achieve mutual recognition of data worldwide.

The validation of alternative tests is the process by which 
the reliability and relevance of a test are established for a 
particular purpose (Balls et al. 1990). Over the last several 
decades, the European centre for validation of alternative 
methods (ECVAM), in co-operation with international 
experts, has set up guidelines for validation. Seven modules 
are proposed for the validity assessment of a test: test defini-
tion (scientific purpose and mechanistic basis), intra-labora-
tory variability, transferability, inter-laboratory variability, 
predictive capacity, applicability domain, and performance 
standard (Hartung et al. 2004).

In Europe, anyone may submit an application for vali-
dation of an alternative method to ECVAM. ECVAM then 
consults its network for the preliminary assessment of regu-
latory relevance (PARERE). PARERE then provides input, 
for example, as to whether the novel method measures a 
safety endpoint for which there is a regulatory need that 
is currently unsatisfied. To prevent that the regulators in 
PARERE discard a proposed method for further validation 
because, e.g., no potential use is foreseen, regular exchange 
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between regulators and method developers on method needs 
and possibilities is desirable (Fig. 2). If regulatory relevance 
is identified, ECVAM validates the method. Approval is 
often quicker if the applicant submits supporting evidence. 
In addition, validation may be expedited when the applicants 
have taken good in vitro method practice (GIVIMP) guide-
lines into consideration, e.g., ensured solubility of tested 
chemicals at the tested concentrations. ECVAM reports posi-
tive validation outcomes to its scientific advisory committee, 
which then performs an independent scientific review. When 
this step is successful, a final recommendation report is sub-
mitted to the OECD, where a test guideline for the method 
is created. When embedded in an OECD test guideline, a 
novel model is then ready for regulatory use worldwide and 
thus ready for use in replacing animal testing. Regulatory 
agencies, such as ECHA and EFSA, can then easily include 
these methods in their guidelines (Fig. 2), as has been done 
very quickly after the acceptance of the Extended One Gen-
eration Reproduction Toxicity (EOGRT) test, for example. 
These guidelines (or guidance documents) describe which 
safety information they require from the industry to decide 
whether a chemical may be allowed on the market (Fig. 2), 

usually detailed to which methods are allowed. They are not 
legally binding, but are usually adhered to by the regulators 
and thus industry.

Validation of new in vitro models can also be challeng-
ing, as they cover only a small part of the body or functional 
system in vivo. This is also the case for the advanced in vitro 
systems discussed in this review, when applied to more com-
plex safety endpoints such as repeated dose toxicity. A one-
on-one comparison with the in vivo gold standard test to 
determine the predictive capacity is then not realistic. As 
a solution, integrated approaches to testing and assessment 
(IATAs) can be used, in which different alternative methods 
are combined to predict one endpoint. These IATAs cur-
rently form a challenge for the OECD, as multiple IATAs 
may be developed, consisting of different testing methods, 
which are not governed by a single test guideline. A new 
form of OECD guideline is, therefore, necessary to enable 
scientific acceptance of the advanced in vitro systems for 
more complex endpoints.

In summary, for worldwide regulatory acceptance of the 
currently emerging advanced in vitro methods:

• An exchange between regulators and developers is neces-
sary, to exchange the regulatory needs (to avoid dismissal 
by PARERE) and technical possibilities.

• Test developers are strongly advised to take GIVIMP 
guidelines into consideration when preparing the vali-
dation package.

• The OECD has a challenge in finding a new way to for-
mulate mutually accepted guidelines for IATAs consist-
ing of these methods.

In the meantime, acceptance by regulators can be 
achieved on a case-by-case basis for special drugs, when 
well-justified.

Models to exemplify progress 
and the current state‑of‑the‑art

Heart

Cardiotoxicity is a major cause of drug attrition and a sub-
stantial safety concern (Cross et al. 2015; Onakpoya et al. 
2016). Certain aspects of cardiotoxicity such as long QT 
syndrome and arrhythmia can be accurately predicted by 
combining hERG channel inhibition data and QTc interval 
measurements in the heart’s electrical cycle (Wallis 2010). 
However, this leaves structural cardiotoxicity (i.e., direct 
damage to tissue) unaddressed. The underlying mechanisms 
of structural cardiotoxicity are poorly understood and cur-
rent in vitro models cannot replicate it to an acceptable 

Regulators
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developers/ 

CROs
Industry

Safety tests

Substances, funds

E.g. 
universi�es, 

start-up 
companies, 
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ingredient 
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E.g. EMA, 
ECHA, EFSA, 
competent 
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Fig. 2  Scheme of the three main actors in the development of safety 
test methods for chemical substances and their mutual relations and 
roles in the EU. The regulators lay down the required safety informa-
tion for allowing a substance on the market; industry provides this 
information to the regulators, which assess it. Industry gains this 
information through safety tests, which are sometimes developed and 
performed in-house, but often obtained from test developers or com-
missioned to contract research organizations (CROs). Industry then 
sends their substances to the CRO. Industry can also fund test devel-
opers, such as universities, to develop or validate certain desired tests. 
Test developers and CROs can also obtain funds from regulators, who 
can also indicate directly (i.e., not through industry) which test meth-
ods are needed. The limitations of current tests and possibilities of 
new technologies need to be communicated to the regulators, so these 
can adjust the safety information requirements accordingly. Such 
information can also be provided by industry, but will then not be free 
of commercial interests
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standard. Therefore, improved in vitro cardiotoxicity models 
are necessary.

A recurring theme between organ models is the lack of 
physiological relevance of 2D cultures using immortalised 
cell lines and dedifferentiated primary cells, which hold 
true for cardiotoxicity models. Furthermore, inter-species 
and inter-individual variation makes extrapolation of in vitro 
data to humans challenging. Stem-cell-derived cardiomyo-
cytes (SC-CMs) are relatively novel models which help to 
overcome inter-individual and inter-species variation and 
are able to capture the phenotype of the donor cell, offer-
ing advantages over immortalised cell lines which represent 
only a single donor phenotype. SC-CMs have recently been 
shown to be accurate in predicting doxorubicin-induced 
cardiotoxicity severity and identifying the underlying phar-
macogenetic mechanisms (Burridge et al. 2016; Mikaelian 
et al. 2010).

3D cardiac models show improved cell viability and 
enhanced structure and function (Edmondson et al. 2014; 
Nam et al. 2015). When developing 3D models, the origin 
and composition of the cells should be considered; in vivo, 
myocardial tissue comprises of 30% cardiomyocytes and 
70% non-myocyte cells (NMCs, predominantly endothelial 
cells and fibroblasts). These NMCs are important in myo-
cardial structure and function, as well as in development of 
drug-induced cardiovascular injury (Brutsaert 2003; Mikae-
lian et al. 2010; Souders et al. 2009). 3D models combining 
cardiomyocytes and NMCs were shown to be functionally 
superior to 2D models and could model calcium dyshomeo-
stasis, mitochondrial disruption and loss of cell viability 
in response to cardiotoxicants (Pointon et al. 2013; Raven-
scroft et al. 2016a, b). Microfluidic models of cardiotoxicity 
are under development, and they hold promise to improve 
physiological relevance by modelling vascularisation and 
structure which is not currently achievable in other mod-
els (Bhatia and Ingber 2014). Recently, the first 3D-printed 
heart-on-a-chip with an integrated sensing system for non-
invasive electronic readouts was produced and successfully 
applied to study drug responses (Lind et al. 2016).

Skin

The skin is a highly immunocompetent barrier and is impor-
tant with regard to the absorption of drugs and chemicals 
and, therefore, dermal toxicity assessment. There are sev-
eral approaches towards modelling the complexity of human 
skin. The most common model as a simple 2D monolay-
ers of human keratinocytes that are routinely utilised for 
pre-clinical screening. 2D monolayer models do not reca-
pitulate aspects of skin structure such as cornification and 
cannot model barrier function or immunological pathways. 
Complex models such as reconstructed human epidermis 
(RHE), a 3D organotypic model formed from primary cells 

are capable of forming a well-stratified epithelium which 
can model metabolism and barrier functions (Alépée et al. 
2015). There are several commercially available RHE mod-
els which have been validated by EVCAM as an alterna-
tive to animal testing for assessing skin corrosion and skin 
irritation in a regulatory context while fulfilling the current 
OECD test guidelines (OECD 2015, 2014). Several studies 
have shown the RHE model to be superior to traditional 
2D culture in terms of identification of allergic sensitisers 
(Gibbs et al. 2013) and modelling of immunological events 
in the epidermal layer (Ezendam et al. 2016). However, 
human skin is comprised of several layers, and this complex-
ity is not addressed by RHE. Therefore, novel models which 
can recapitulate this complexity are required.

In line with other multi-cell models, full thickness models 
(FTMs) are composed of an epidermal and dermal layer. The 
epidermal layer is comparable to RHE and the dermal layer 
contains human dermal fibroblasts distributed throughout 
a collagen matrix. Studies have investigated the inclusion 
of melanocytes and MUTZ-Langerhans cells in an FTM 
showing improved modelling of sensitisation (Kosten et al. 
2015) and also the inclusion of other cell types including 
endothelial cells (Tremblay et al. 2005) and hair follicles 
(Michel et al. 1999). In addition to multiple cell types, the 
extent of cell differentiation and the formation of other skin 
components such as the basement membrane is also impor-
tant. Creating skin models with a continuous competent stra-
tum corneum suitable for long-term culture is challenging, 
but would be useful for testing of subchronic and chronic 
toxicity. Lab-on-chip microsystems exhibit prolonged cul-
ture times as well as stable cell functions within a con-
trolled microenvironment and a linkage with other organs 
(Maschmeyer et al. 2015). However, their predictivity and 
validation is yet to be assessed and should be the focus of 
further investigations.

Liver

Hepatotoxicity is an important safety concern for industry. 
Xenobiotic metabolism enzymes are highly expressed in 
liver to deal with the first-pass dose of drugs or chemicals. 
This may produce chemically reactive metabolites in addi-
tion to the parent compound, both of which may cause tox-
icity, making hepatotoxicity complex to accurately model. 
Therefore, metabolic capacity is a crucial requirement for 
a valid model of hepatotoxicity and this is currently not 
fulfilled. This is exemplified by the fact that liver toxicity 
is among the leading causes of safety failures in clinical 
trials (Cook et al. 2014; Laverty et al. 2011; Onakpoya 
et al. 2016). A reliable in vitro hepatotoxicity model should 
resemble the in vivo phenotype as well as be suitable for 
long-term studies and high-throughput screening applica-
tions (Lauschke et al. 2016).
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Human primary hepatocytes (hPH) are the gold standard 
of in vitro liver models, but are hindered in several respects: 
scarcity, since hPH may only be derived from surgical waste 
tissue or cadaveric liver; inter-individual variability, where 
the limited number of cells available from each donor and 
their finite lifespan can hinder repeat studies; and dediffer-
entiation, the loss of mature hepatic phenotype which occurs 
under standard cell culture conditions. Moreover, hPH can-
not easily be expanded in vitro. Liver-derived cell lines such 
as HepG2 and HepaRG cells are available, but have limited 
metabolic capacity (Sison-Young et al. 2015). Recently, 
proteomic characterisation of hPHs, HepG2, HepaRG, and 
Upcytes revealed that HepaRG cells have the most similar 
protein profile to primary human hepatocytes (Sison-Young 
et al. 2015). However, in an assessment of the predictive 
capacity of hepatotoxicity, HepG2 was the most predic-
tive, after the gold standard hPH (Sison-Young et al. 2016). 
These results indicate that none of the most commonly used 
hepatic models are satisfactory to fully model hepatotoxicity 
in vitro. Stem-cell-derived hepatocyte-like cells (SC-HLCs) 
are another emerging model, but currently show an imma-
ture hepatic phenotype. SC-HLCs retain the phenotype of 
the donor cell when reprogrammed presenting the opportu-
nity to model rare phenotypes reproducibly, which may be 
more susceptible to DILI.

3D culture techniques such as spheroid culture (Fig. 3a) 
often show an enhanced phenotype with superior sensitiv-
ity and specificity in detecting DILI compounds over 2D 
systems (Bell et al. 2016; Berger et al. 2016; Kostadinova 
et al. 2013; Nguyen et al. 2016). However, similar cave-
ats to the use of hPH in 2D models apply to 3D models 
and the use of an expandable cell line (e.g., SC-HLCs or 
immortalised cell lines) may be preferred in some cases. 
Spheroids form spontaneously under appropriate condi-
tions and can be made from most extant hepatic models. It 
is likely that they will form a cornerstone of future hepa-
totoxicity testing.

In addition to 3D culture, the inclusion of non-parenchy-
mal cells (NPCs) is necessary for modelling of DILI; inclu-
sion of NPCs will allow modelling of complex liver toxicol-
ogy such as fibrosis. NPCs can be incorporated into spheroid 
models (Bell et al. 2016). In addition, 3D bioprinting can 
reproduce the highly-organized liver architecture without 
use of a scaffold, with rapidly-forming tight junctions and 
extracellular matrix yielding solid microtissues that can 
model complex liver toxicity including fibrosis (Nguyen 
et al. 2016; Norona et al. 2016). Similar to the other organs 
described herein, microfluidic devices are under develop-
ment and these may prove a fruitful avenue of research in 
the future.

Fig. 3  Approaches to enable 3D 
architecture for a cell culture 
production of spheroids in, e.g., 
hanging drops (a), use of hydro-
gels (b) of synthetic or natural 
materials, such as alginate (last 
picture in B), or use of scaffolds 
produced from natural materials 
or synthetically from polymers 
(c), which are either layered 
(first picture), electrospun 
(second picture) or polymerized 
in a sponge-like structure (third 
picture)
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Mathematical contribution 
to the development of innovative toxicity 
models

Mathematical modelling can provide an alternative and 
complementary safety assessment platform for increasing 
mechanistic understanding, testing hypotheses in silico, 
predicting quantitative outcomes and contributing to the 
optimisation, design, and interpretation of innovative 
in vitro models. Indeed, such quantitative approaches have 
always informed and influenced pharmacology, formulat-
ing models at the interface of human physiology and the 
drug chemistry (Kenakin and Christopoulos 2011). The 
utility of quantitative modelling in drug classification and 
characterisation makes mathematics an important tool in 
drug discovery and is seen as an integral component to 
the advancement of toxicity testing (Krewski et al. 2007; 
Raies and Bajic 2016). The computational implementa-
tion of these quantitative, mathematical models, or in 
silico modelling, is now also used extensively as part of 
the pre-clinical drug development process (Visser et al. 
2014) (Fig. 1). Mathematical models have been used to 
identify critical parameters involved in the metabolism 
of drugs such as acetaminophen using numerical, sensi-
tivity, and timescale analysis as well identifying critical 
dose thresholds (Reddyhoff et al. 2015). This illustrates 
how modelling can be used to optimise in vitro design 
to ensure that relevant dosing regimens are studied and 
that the experimental model being used is physiologically 
relevant in terms of the expression of appropriate metabo-
lising enzymes, for example. More directly, mathematical 
modelling has been used to optimise the design and opera-
tion of in vitro liver models such as hollow fibre membrane 
bioreactors by providing spatial information describing 
fluid and mass transport coupling in the cellular environ-
ment that would otherwise be experimentally expensive 
(Williams et al. 2013).

Common themes between models

There common themes between advanced in vitro models, 
which may help facilitate their scientific acceptance and 
use. An important rule for these models is that they should 
be as complex as is required but as simple as possible. 
For example, a cell model should include the minimum 
number of cell types to recapitulate the in vivo physiology 
accurately. Adding more cell types can decrease reproduc-
ibility, increase costs and test failures, and lead to unneces-
sary interference with the test outcome. However, inclu-
sion of multiple cell types, or features such as peristaltic 

movement of the tissue, can affect the tissue response 
to toxicants (Kim et  al. 2012), presumably improving 
the accuracy of the prediction. The degree of accuracy 
required by a test, and how complex the system should be, 
depends on the question and on the phase within the risk 
assessment or drug development process. In early phases, 
decreased accuracy in favour of reduced costs are accept-
able and simpler models may be suitable.

Phenotyping

Determining which in vitro model to use for a question, 
particularly determining the appropriate complexity can be 
challenging; and proper phenotyping of advanced models 
can help make an informed decision. Such phenotyping of 
advanced models has been performed for advanced in vitro 
models of the liver, skin and heart (Berger et al. 2016; 
Fentem et al. 1998; Kostadinova et al. 2013; Mathur et al. 
2015; Nguyen et al. 2016; Pointon et al. 2013; Reijnders 
et al. 2015; Wiegand et al. 2014).

The IMI-MIP-DILI consortium provides a recent exam-
ple of detailed phenotyping. In this study, the proteomes 
of hPHs cultured in 2D and 3D spheroid culture were ana-
lysed. It was shown that 2D cultures developed a dramati-
cally altered protein expression pattern within 16 h (Bell 
et al. 2016; Lauschke et al. 2016), while 3D spheroid cul-
tures maintained an expression profile similar to hPH for 
7 days (Bell et al. 2016). This finding indicates the greater 
physiological relevance of 3D cultures over 2D and suggests 
an improved ability to correctly identify toxicants early post-
isolation of primary cells.

Scaffolds in 3D culture

Another common theme is the use of scaffolds to support 3D 
tissue structures in advanced in vitro models (Fig. 3). Hydro-
gels are a type of scaffold comprised of water, extracellular 
matrix (ECM) proteins and growth factors that mimic the 
in vivo ECM. There are various hydrogel products available, 
both natural (e.g., collagen hydrogels, Matrigel, alginate) 
and synthetic (e.g., PuraMatrix). The natural hydrogels, 
notably the popular Matrigel, suffer from batch-to-batch var-
iation. Synthetic hydrogels are well defined, have small lot-
to-lot variability and can be adapted to direct functionality.

Scaffolds may also take the form of solid materials that 
provide a mechanical support for tissues, fabricated either 
from biological (e.g., collagen, fibrin, chitosan, agarose) or 
from synthetic (e.g., polystyrene, polycaprolactone, polyu-
rethane) materials. The main advantage of the biological 
materials is their biocompatibility and flexibility, while the 
advantages of the synthetic materials are their consistency 
and controllability. Synthetic scaffolds can be fabricated 
with defined porosity, thickness, and rigidity for the intended 
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tissue and test. Matrix stiffness can be sensed by the cells 
and this can affect the types of cell adhesions, cytoskeletal 
structure, cell proliferation, and other factors (Yamada and 
Cukierman 2007). Disadvantages common to all scaffolds 
include the challenge to visualise and analyse individual 
cells and the fact that they are not yet suitable for all cells.

Decellularised scaffolds are emerging biological scaffolds 
produced by removing cells from ex vivo tissues. Reten-
tion of the microvasculature in the ECM is an important 
advantage of decellularised scaffolds, allowing for easier 
emulation of vascular tissue. The addition of a vacuum to 
conventional decellularisation protocols based on enzymes 
or detergent, significantly reduces production time during 
decellularisation (Lange et al. 2015). Since availability of 
human tissue is limited, pig tissue is often used (Greco et al. 
2015). The required tissue is taken from the pig and repopu-
lated with human cells (e.g., ex vivo skin tissue to make 
3D in vitro skin tissue). In recellularised tissue, cartilage is 
replaced by weaker collagen, which may lead to issues with 
structural integrity; furthermore, compatibility with human 
cells needs to be fully assessed, especially for the effects of 
molecular triggers that may differ in donor animals.

Scaffold‑free 3D models

Spheroids are an example of a scaffold-free model that forms 
spontaneously when adherent cells are denied an attachment 
surface (Fig. 3). They are capable of producing an ECM 
when grown in hanging drops, ultra-low attachment condi-
tions or in micropatterned plates (Bell et al. 2016; Kelm 
et al. 2003; March et al. 2015; Otsuka et al. 2004). Spheroids 
have an optimal size, maximally ~ 200 µm in diameter, to 
prevent necrosis in the centre due to diffusion limitations of 
nutrients and oxygen as these structures are not vascularised 
and are most often not subjected to flow. A scaffold-free 
system does not have the disadvantages of scaffolds, such 
as binding of test substances, batch-to-batch variability, and 
impedance of transport or diffusion from the scaffold. How-
ever, fluid flow and shear stress become difficult to incorpo-
rate in cultures lacking an anchored scaffold.

Good cell culture practice

The general considerations of good cell culture practice 
(GCCP) (Coecke et al. 2007) and GIVIMP are pivotal to 
the advance of in vitro method systems. This includes geno-
typing of cells used in culture, ensuring sufficient solubility 
of test substances in the medium, and correcting for loss of 
test substance due to evaporation, protein binding, binding to 
plastic, etc. In many organ-on-a-chip models, polydimethyl-
siloxane (PDMS) is used as material for the microfluidic 
chip, even though hydrophobic chemicals are known to 
partition into this material quite extensively (Borysiak et al. 

2013; Domansky et al. 2013). This material property not 
only leads to loss of test substance, but also to carry-over to 
the medium in a next test in the same chip.

Other considerations

Finally, it should be stressed that the added value of a new 
advanced in vitro model should be shown, by comparing 
its outcomes to those of simpler extant models. If added 
value is shown, ideally, a comparison with a ‘gold standard’ 
should be made, deriving the sensitivity and specificity of 
the new advanced in vitro model. The 3D culture models 
discussed herein (heart, skin, and liver) have not yet been 
fully investigated in terms of their sensitivity and specific-
ity at predicting adverse drug reactions. Such experiments 
typically use a panel of training compounds such as those 
used by the IMI-MIP-DILI consortium, where there is some 
understanding of the toxicological profiles of the compounds 
(Richert et al. 2016). By testing with a panel of training 
compounds at defined concentrations, novel models can be 
ranked in terms of sensitivity and specificity, where an ideal 
model would be both highly sensitive to adverse drug reac-
tions while maintaining high specificity. Note that for drugs, 
this is easily achieved, as human data are available. For other 
chemicals, there may only be animal data, which may be 
less relevant. As stated before, it should be considered that 
comparing the results of one organ with those of a whole 
organism is not a fair comparison.

Developing a novel and ideal model requires effort, 
creativity, and innovation. Hence, collaboration between 
academia, regulators, and industry is necessary to develop 
such models for the mutual benefit of all. A collaborative 
approach to novel model development could lead to an open 
access database of protocols and methodologies for devel-
oping such models, which could also serve as reference for 
validation and standardisation of the created models (Alépée 
et al. 2014).

Conclusions and recommendations

In conclusion, there is clearly a need for improved in vitro 
methods for toxicity testing for novel compounds such as 
those discussed herein. These first results with 3D models 
for skin, liver, and heart already demonstrate added value 
over traditional 2D toxicity testing methods. Nevertheless, 
it remains to be determined how complex the models and 
methods should be for each (regulatory or industry) question 
retaining simplicity where possible. More and better char-
acterisation of the present models, in different variants, and 
comparisons with less or more complex models are neces-
sary to fully understand, where they may best be deployed. 
This requires cross-talk between regulators, industry, and 
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developers on what the questions are (“needs”), and what 
added value the different variants of models may have 
(“possibilities”). This calls for a large research effort and 
for meetings and workshops to exchange the needs with the 
possibilities.

Finally, new methods for characterisation of novel models 
should be standardised, comparison against a gold standard 
is not always possible or appropriate for novel models, and 
their proper handling can be challenging. Standardisation 
between groups for characterisation of comparable models 
should allow inter-model comparison and aid identification 
of true advances in the field.
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