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including chemical (ToxPrint, PaDEL, and Physchem), bio-
logical (ToxCast), and kinetic descriptors. Using random 
forest modeling with cross-validation and external valida-
tion procedures, study-level covariates alone accounted for 
approximately 15% of the variance reducing the root mean 
squared error (RMSE) from 0.96 log10 to 0.85 log10 mg/kg/
day, providing a baseline performance metric (lower expec-
tation of model performance). A consensus model developed 
using a combination of study-level covariates, chemical, 
biological, and kinetic descriptors explained a total of 43% 
of the variance with an RMSE of 0.69 log10 mg/kg/day. A 
benchmark model (upper expectation of model performance) 
was also developed with an RMSE of 0.5 log10 mg/kg/day 
by incorporating study-level covariates and the mean effect 
level per chemical. To achieve a representative chemical-
level prediction, the minimum study-level predicted and 
observed effect level per chemical were compared reducing 
the RMSE from 1.0 to 0.73 log10 mg/kg/day, equivalent to 
87% of predictions falling within an order-of-magnitude of 
the observed value. Although biological descriptors did not 
improve model performance, the final model was enriched 
for biological descriptors that indicated xenobiotic metabo-
lism gene expression, oxidative stress, and cytotoxicity, 
demonstrating the importance of accounting for kinetics 
and non-specific bioactivity in predicting systemic effect 
levels. Herein, we generated an externally predictive model 
of systemic effect levels for use as a safety assessment tool 
and have generated forward predictions for over 30,000 
chemicals.

Keywords  Predictive toxicity · Systemic effects · Effect 
levels

Abstract  In an effort to address a major challenge in 
chemical safety assessment, alternative approaches for 
characterizing systemic effect levels, a predictive model 
was developed. Systemic effect levels were curated from 
ToxRefDB, HESS-DB and COSMOS-DB from numerous 
study types totaling 4379 in vivo studies for 1247 chemi-
cals. Observed systemic effects in mammalian models are a 
complex function of chemical dynamics, kinetics, and inter- 
and intra-individual variability. To address this complex 
problem, systemic effect levels were modeled at the study-
level by leveraging study covariates (e.g., study type, strain, 
administration route) in addition to multiple descriptor sets, 
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Introduction

The strategy for the safety assessment of cosmetics ingre-
dients significantly changed as a result of the 7th Amend-
ment to the Cosmetics Directive (Commission 2013). This 
Directive, came into full effect in 2013, banned the testing 
of finished products and ingredients used in cosmetics on 
animals; therefore, cosmetics manufacturers must now use 
in silico and in vitro methods to determine potential risk to 
humans (Commission 2013). This poses a challenge to the 
cosmetic industry since the ban prohibited any animal test-
ing regardless of the availability of sufficiently predictive 
alternative test methods. While in vitro methods for a num-
ber of toxicity endpoints, e.g., genotoxicity (Pfuhler et al. 
2014), eye irritation (McNamee et al. 2009), and skin sensi-
tization (Johansson and Lindstedt 2014) have been refined or 
developed for validation as replacements for in vivo assays, 
alternatives to repeat-dose toxicity assays are still a big chal-
lenge due to their complexity.

In addition to the cosmetics legislation, other drivers 
for the development of alternative testing methods are the 
Registration, Evaluation, Authorization and Restriction of 
Chemicals (REACH) legislation in Europe and the Frank 
R. Lautenberg Chemical Safety for the 21st Century Act in 
the United States (US Safe Chemicals Act). REACH was 
developed in 2006 [(EC) No 1907/2006] with two main 
objectives: improve protection of human health and the 
environment from potential issues stemming from the use 
of chemicals and increase the competitiveness of the Euro-
pean chemical sector. It promotes the use of alternative test 
methods to identify human health and environmental haz-
ards posed by chemicals (ECHA 2006) to reduce animal 
testing. REACH requires all companies manufacturing or 
importing chemical substances of quantities more than 1 ton 
per year in the European Union (EU) to be registered and 
with each registration, chemical safety information must be 
provided. The vast number of animals and time needed to 
accomplish this is impractical; therefore, REACH regulation 
challenges the chemical industries to develop rapid, relevant, 
cost-effective alternative methods, such as in vitro assays 
and computational modeling, to address human health and 
environmental hazards. The Frank R. Lautenberg Chemi-
cal Safety for the 21st Century Act also has provisions for 
requiring the EPA to take action to minimize the use of ani-
mal testing and to use computational toxicology, bioinfor-
matics and high-throughput screening approaches where the 
reliability and quality of information is comparable to tra-
ditional approaches (Frank 2016). The goal is to reduce the 
amount of animal testing needed for each safety evaluation 
using these alternative methods and to encourage data shar-
ing amongst companies and stakeholders. This will require 
leveraging new technologies and computational modeling 
approaches to increase the throughput and efficiency of 

safety testing while reducing or eliminating the need for 
animal testing (Krewski et al. 2010).

Among the research programs developing and applying 
in vitro and computational modeling to chemical safety, 
the EPA’s ToxCast project uses high-throughput screening 
(HTS) as a means to efficiently and economically charac-
terize the biological activity of chemicals (Dix et al. 2007; 
Kavlock et al. 2012). The ToxCast project progressed in two 
primary phases of chemical testing, with over a thousand 
in vitro HTS assay endpoints collected for over one thou-
sand unique chemicals in various biochemical or cell-based 
assays from different assay technologies (Kavlock et al. 
2012; Kleinstreuer et al. 2014; Knudsen et al. 2009; Martin 
et al. 2009; Sipes et al. 2013). The EPA has also built a Tox-
icity Reference Database (ToxRefDB), a reference database 
with over 30 years of legacy animal toxicity studies contain-
ing detailed information on over 6000 in vivo animal toxicity 
studies on over 1100 chemicals (Judson et al. 2010; Martin 
et al. 2011; Reif et al. 2010; Shah et al. 2011; Sipes et al. 
2011). In addition to the EPA data resources, two other open 
source databases are available, namely, the Hazard Evalua-
tion Support System (HESS-DB, http://www.nite.go.jp/en/
chem/qsar/hess-e.html), and COSMOS (http://www.cos-
mostox.eu/what/COSMOSdb/) databases. The HESS-DB 
was developed to support repeat-dose toxicity assessment 
and aid in read across and other category approaches. The 
COSMOS database is a legacy of the SEURAT-1 project, 
a European research initiative with the long-term goal of 
achieving “Safety Evaluation Ultimately Replacing Ani-
mal Testing”. It contains regulatory submission and open 
literature data from over 12,000 toxicity studies spanning 
27 endpoints with detailed protocols for ~ 1600 chemicals, 
including cosmetics ingredients, linking chemical structure 
to repeat-dose toxicity data (for a subset of the substances).

The building of a predictive model of in vivo effect levels 
for repeat-dose systemic toxicity is a complex process due, in 
part, to varying experimental design and endpoint inclusion. 
There have been many iterations of quantitative regression 
models attempted and evaluated (Hisaki et al. 2015; Mumtaz 
et al. 1995; Pizzo and Benfenati 2016; Rupp et al. 2010; 
Toropova et al. 2015; Veselinovic et al. 2016), including a 
public and crowd-sourced challenge (USEPA 2013). These 
efforts demonstrated the limited ability to model systemic 
toxicity; a heterogeneous and variable endpoint with only a 
small fraction of the overall variability being explained by 
the model. To expand on previous work, we developed a 
predictive regression model of systemic effect levels using 
study-level covariates (e.g., species, strain, dose-spacing 
and administration method) in addition to chemical-level 
descriptors to improve the handling of study-wise sources of 
variability. The chemical-level descriptors comprised mod-
eled physical–chemical properties (Mansouri et al. 2016), 
calculated properties, chemotypes (Ashby and Tennant 

http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.cosmostox.eu/what/COSMOSdb/
http://www.cosmostox.eu/what/COSMOSdb/
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1988; Kroes et al. 2004), ToxCast bioactivity profiles and 
kinetic parameters. The goal of this study was to provide 
chemical safety decision-makers with practical prediction 
outputs with quantified uncertainty. Additionally, we char-
acterized performance bounds for modeling quantitative 
toxicity endpoints from animal studies, i.e., the amount of 
variability coming from the animal study data, as their com-
parison with alternative approaches will depend on under-
standing the variability and uncertainty.

Materials and methods

Data sources and integration

Publicly available data sources were collected, filtered, and 
integrated for developing a predictive model of study-level 
systemic toxicity effect level. The primary linkage between 
all data sources was the generic substance identification 
(gsid; 1:1 with CAS registry number) from DSSTox (http://
www.epa.gov/ncct/dsstox). All combined data and scripts 
are publicly available at goo.gl/R5XmxQ.

In vivo systemic effect level and study data

Study-level systemic effect levels were collected from three 
resources: ToxRefDB (Martin et al. 2009), HESS-DB (http://
www.nite.go.jp/en/chem/qsar/hess-e.html), and COSMOS 
(http://www.cosmostox.eu/what/COSMOSdb/). For all 
database sources, studies were filtered based on common 
“study inclusion criteria”: (1) oral dose administration (i.e., 
food, water, gavage, and capsule administration methods); 
(2) more than one dose level; (3) basic adherence to test 
guideline with acceptable study quality; and (4) testing 
and observation of systemic effects. Systemic effects, for 
the purposes of this study, were defined as in-life observa-
tion or pathological finding (i.e., clinical, macroscopic, and 
microscopic pathology) in repeat-dose exposed first genera-
tion adult animals. Where possible, neurotoxicity findings 
were excluded including cholinesterase inhibition and neu-
robehavioral findings. Integration of these data sources was 
achieved by retrieving or calculating the study-level systemic 
effect levels along with the corresponding effect level type 
and qualifier. The available effect level types consisted of 
lowest effect level (LEL), lowest observed adverse effect 
level (LOAEL), and no effect level (NEL). LEL were sys-
tematically calculated as the lowest dose at which a systemic 
effect was observed, whereas LOAEL were retrieved from 
reviewed documents whereby adversity and a specific effect 
level were determined for systemic toxicity. NEL were set to 
the lowest dose tested when no treatment-related systemic 
toxicities were observed. All effect levels were in units of 
mg/kg/day or were converted from ppm to mg/kg/day using 

EPA standard conversions based on assumed food and water 
consumption. Effect levels were then log10-transformed for 
all subsequent evaluation and modeling. Additional study-
level covariates were extracted or calculated from the source 
databases, including the number of dose levels, dose spac-
ing, test substance purity, study year, the type of effect level 
(i.e., NEL, LEL, LOAEL), and effect level qualifier. Effect 
level qualifiers were assigned when the NEL was assigned 
to the highest dose tested or when the LOAEL or LEL was 
assigned to the lowest dose tested. The effect level qualifier 
for LOAEL and LEL was either “less than or equal to” the 
lowest tested dose or “equal to” based on the dose level in 
which the effect level was established. Whereas the NEL was 
only used when no effects were observed in the study and 
thus given the effect level qualifier of “greater than or equal 
to” the highest tested dose. In addition to the effect level 
qualifier, the following study covariates were collected for 
each study across all databases: study type, species, strain, 
administration method, dose spacing, and number of dose 
groups. A mean effect level for each chemical (mean effect 
level) was also calculated and used to bound the predictivity 
of the model as described below.

Toxicity reference database (ToxRefDB)

ToxRefDB includes study data for over 1100 chemicals eval-
uated in more than 6000 animal studies (Martin et al. 2009). 
Systemic effect levels were queried from ToxRefDB in the 
form of LEL or LOAEL. LOAEL values were determined 
for a subset of studies, primarily registrant-submitted studies 
of pesticide-active ingredients that were reviewed by EPA. 
Subsequent to applying study inclusion criteria described 
above, 3752 studies across 836 chemicals were included in 
the present study.

Hazard evaluation support system database (HESS‑DB)

HESS-DB was developed to support repeat-dose toxicity 
assessment and was coupled with other knowledge bases 
to aid in read-across and other category approaches (http://
www.nite.go.jp/en/chem/qsar/hess-e.html; Sakuratani et al. 
2013). Portions of HESS-DB have been included in the 
OECD toolbox. HESS-DB houses detailed repeat-dose tox-
icity study data, including hundreds of otherwise unpub-
lished Japanese governmental studies performed as 28-day 
repeat-dose rat studies. Subsequent to applying study inclu-
sion criteria described above, 432 studies across 411 chemi-
cals HESS-DB were included in the present study.

COSmetics to optimize safety database (COSMOS‑DB)

COSMOS was one of seven projects forming the SEURAT-1 
cluster (Gocht et al. 2015). As part of the COSMOS project, 

http://www.epa.gov/ncct/dsstox
http://www.epa.gov/ncct/dsstox
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.cosmostox.eu/what/COSMOSdb/
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.nite.go.jp/en/chem/qsar/hess-e.html
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the COSMOS relational toxicity database was developed to 
store regulatory submission and open literature repeat-dose 
study findings (http://www.cosmostox.eu/what/databases/). 
Version 1 of the database is publicly available at http://
cosmosdb.cosmostox.eu/. COSMOS database stores over 
12,000 toxicity studies spanning 27 endpoints including 
subchronic and chronic toxicity across approximately 1600 
chemicals. Subsequent to applying study inclusion criteria 
described above, 195 studies across 141 chemicals were 
included in the present study.

Chemical‑level data

Physicochemical property (physchem) descriptor set

A set of physicochemical and environmental fate proper-
ties, LogP (logp), fish bioconcentration factor (bcf), water 
solubility (watersol), Henry’s Law constant (Henry), bio-
degradability (bio), fish biotransformation (biotrns), gas-
phase reaction rate (aop), melting point (mp), boiling point 
(bp), carbon-normalized soil sorption (koc), octanol–air 
coefficient (koa), and vapor pressure (vp), were calculated 
using OPERA, a free and open source tool developed at 
NCCT (https://github.com/kmansouri/OPERA.git). The 
calculated properties are predictions of weighted k-nearest 
neighbors (kNN) QSAR models adapted from the publicly 
available PHYSPROP database in EPIsuite. Available at 
http://esc.syrres.com/interkow/EpiSuiteData_ISIS_SDF.
htm, Scientific Databases available at http://www.srcinc.
com/what-we-do/environmental/scientific-databases.html. 
Prior to modeling, the PHYSPROP database has undergone 
extensive curation using an automated KNIME workflow 
designed for the purpose of validating and correcting the 
chemical structures and their identifiers such as CAS, names, 
SMILES and MOLBlocks (Mansouri et  al. 2016). The 
curated PHYSPROP datasets were then processed through a 
standardization workflow to generate the QSAR-ready struc-
tures used for modeling (Mansouri et al. 2016). The same 
standardization workflow was used to process the chemicals 
structures of this study prior to prediction resulting in a total 
of 12 modeled physchem descriptors.

PaDEL descriptor set

The curated molecular structures were used to calculate 
molecular descriptors using the free and open-source soft-
ware PaDEL (Yap 2011). In PaDEL, only 2D descriptors 
were selected since 3D descriptors can affect the repeat-
ability of the predictions due to differences in descriptor 
values, especially with very flexible molecules with a high 
number of 3D conformers. A total number of 1446 molecu-
lar descriptors were calculated including constitutional, 
topological, functional group counts, fragmental, atom-type, 

and E-state indices. Padel descriptors with constant or near 
constant values across the full chemical set were removed 
resulting in 1096 descriptors moving forward in the mod-
eling process.

ToxPrint chemotype descriptor set

The curated molecular structures were imported into the 
ChemoTyper application (https://chemotyper.org/). ToxPrint 
chemotype fingerprints were assigned across three librar-
ies: generic structural fragments, Ashby–Tennant genotoxic 
carcinogen rules (Ashby and Tennant 1988), and cancer 
threshold of toxicological concern (TTC) categories (Kroes 
et al. 2004). A total of 729 fragments were analyzed and for 
each chemical, the presence or absence of the fragment was 
recorded in a binary system as 1 or 0, respectively. ToxPrint 
descriptors with constant or near constant values across the 
full chemical set were removed resulting in 135 descriptors 
moving forward in the modeling process.

ToxCast bioactivity profiles

ToxCast HTS summarized activity calls (positive or nega-
tive) and potency estimates (the modeled 50% activity con-
centrations, or AC50 values) were compiled in a matrix 
format, with one row per chemical and columns containing 
assay endpoint data represented as the negative log10 of the 
modeled activity concentration at 50% (AC50) divided by 
one million. To ensure adequate assay and chemical cover-
age (i.e., a near complete matrix of data), chemicals with 
fewer than 800 assay endpoints tested or any assay end-
points with fewer than 500 chemicals tested were removed 
from the dataset. These assay and chemical coverage cutoffs 
generally equate to the full ToxCast Phase I and II chemi-
cal libraries that were screened in nearly all assays. The 
numeric cutoffs were used to allow for future updates and 
expansions to the model without having to explicitly men-
tion the chemical library. Any spurious missing data was 
replaced with the assay median value, the most straightfor-
ward approach, due to the non-random and blocked nature 
of the missing values. For the remaining 1076 chemicals, 
a cytotoxicity potency estimate was calculated as previ-
ously described (Judson et al. 2016). In contrast to previous 
efforts that removed endpoint activity at or near cytotoxicity 
for a given chemical, we down-weighted such activity by 
subtracting out the cytotoxicity potency (i.e., “burst”). The 
down-weighted activity scores are also on the negative log10 
scale, and such values of 0 indicate inactive, values ranging 
from > 0 to < 4 approximately indicate activity occurring 
at or near cytotoxicity, and values > 4 generally represent 
activity specific to the intended target. To further contextual-
ize the assay results, assays were binned based on intended 
biological target or target family and assay modality (e.g., 

http://www.cosmostox.eu/what/databases/
http://cosmosdb.cosmostox.eu/
http://cosmosdb.cosmostox.eu/
https://github.com/kmansouri/OPERA.git
http://esc.syrres.com/interkow/EpiSuiteData_ISIS_SDF.htm
http://esc.syrres.com/interkow/EpiSuiteData_ISIS_SDF.htm
http://www.srcinc.com/what-we-do/environmental/scientific-databases.html
http://www.srcinc.com/what-we-do/environmental/scientific-databases.html
https://chemotyper.org/
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agonist vs antagonist) to form 62 assay groups and indi-
vidual activity scores were averaged by target and modality. 
A full listing of assay to assay group mappings is provided as 
a supplemental table (supplementary data, Table 1). ToxCast 
descriptors with constant or near constant values across the 
full chemical set were removed resulting in 53 descriptors 
moving forward in the modeling process.

High‑throughput toxicokinetic (httk) data

Estimated toxicokinetic parameters along with two experi-
mentally derived values, plasma protein binding and hepatic 
clearance, were combined in a simple model to produce oral 
equivalent dose values (Rotroff et al. 2010; Wetmore et al. 
2012). Oral equivalent dose values are the amount of daily 
oral intake required to reach specific steady-state concentra-
tions in the blood. These toxicokinetic models have been 
extended to also predict area under the curve (AUC), peak, 
and mean concentrations as well as volume of distribution 
in the blood assuming a specific dose regimen. The values 
for all subsequent modeling were calculated using the ‘httk’ 
R package under the assumptions of a single daily dose of 
1 mg/kg/day for 90 days in humans (Pearce et al. 2017). 
For modeling purposes, 10 kinetic descriptors in total were 
selected, including intrinsic clearance, fraction unbound, 
area under curve (and log10 converted), peak (and log10 

converted), mean (and log10 converted), and volume of dis-
tribution (and log10 converted).

Feature reduction and missing data handling

Following removal of descriptors for constant or near con-
stant values, the initial descriptor set totaled 1306 descrip-
tors. To reduce the number of descriptors prior to model 
development, descriptors that were highly correlated were 
removed using the findCorrelation function in the “caret” R 
package (Kuhn 2008). A correlation cutoff of 0.9 was used 
to identify and subsequently remove descriptors across all 
input descriptor sets, including physical–chemical properties 
(physchem), PaDEL, ToxPrint, ToxCast, and httk. The initial 
set of 1306 descriptors was reduced to 740 descriptors by 
removing 566 highly correlated descriptors. Principal com-
ponent analysis was performed, using “prcomp” in R with 
centered and scale data, on the remaining 740 descriptors 
solely to characterize the remaining descriptor redundancy 
showing that 25% of the variance is explained in the first 
4 components, 50% variance in the first 17 components, 
and 75% in the first 79 components. Of the remaining 740 
descriptors, all missing values were replaced by the descrip-
tor median value, the most straightforward approach, due to 
the non-random and blocked nature of the missing values.

Predictive model development and evaluation

A schematic of the model development process as seen in 
Fig. 1.

Study-level, effect level and associated study design 
parameters were combined by direct linkage to the gsid with 
the chemical-level descriptors to produce the complete data-
set for modeling. All multivariate models were developed 
using the randomForest package in R. Additional machine 
learning methods were applied to the dataset and are not 
presented here as the random forest models were comparable 
or outperformed other methods in terms of reduced mean 
squared error (MSE); required less tuning to prevent overfit-
ting, permitted mixed-type data; did not require data scal-
ing; and, provided clear indications of variable importance 
as indicated by mean decrease in node impurity (Liaw and 
Wiener 2002). Throughout the model development process, 
two statistical methods were used to compare and evaluate 
model performance. Root mean squared error (RMSE) and 
percent variance explained (pseudo R-squared or R2 for ease 
of reporting). Both statistics rely on MSE which is calcu-
lated as the mean of the squared difference of the predicted 
value minus the true value. RMSE is the square root of MSE 
while R2 is one minus MSE divided by the variance of the 
observed values. Models were developed using different 
descriptor and chemical sets (Fig. 1). The three chemical 
sets stratified the study- and chemical-level data based on 

Table 1   Combined study counts across ToxRefDB, HESS-DB and 
COSMOS datasets by study type and species with unique chemical, 
strain group, and route of administration totals

SUB subchronic (90  days), CHR chronic (1–2  years), DEV prenatal 
developmental, MGR multigenerational reproductive, SAC subacute 
(14–28 days)

Study 
type

Species Study 
total

No. 
unique 
chemicals

No. 
unique 
strains

No. unique 
admin-
istration 
methods

SUB Rat 774 599 5 4
CHR Rat 566 492 5 5
DEV Rat 542 467 5 4
CHR Mouse 477 431 4 5
DEV Rabbit 395 350 5 4
SAC Rat 369 347 4 3
MGR Rat 368 333 5 4
CHR Dog 307 281 2 5
SUB Mouse 263 235 4 4
SUB Dog 200 186 2 4
DEV Mouse 36 33 3 4
SAC Mouse 33 30 3 3
SAC Dog 31 31 1 4
MGR Mouse 18 16 2 3
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having only chemical descriptors, chemical and biological 
descriptors, and chemical, biological and kinetic descrip-
tors; equating to sequentially smaller datasets based on data 
availability. Across the three chemicals sets, models were 
also developed using five sequentially added descriptor sets: 
study-level covariates only, chemical descriptors, biological 
descriptors, kinetic descriptors, and finally adding the mean 
effect level per chemical.

Random forest (RF) models

The complete dataset was available for modeling, which 
includes the feature reduced chemical-level descriptors with 
median imputed replacement of missing values mapped to 
each study effect level and their associated study-level covar-
iates. RF, as implemented in randomForest for regression 
in R (Liaw and Wiener 2002), bootstraps the data, creating 
‘in-bag’ and ‘out-of-bag’ sets for each tree. However, the 
multi-level nature of the data (i.e., study-level vs. chemical-
level) presented a challenge as the inherent inter-class cor-
relation can introduce bias and overfitting when evaluating 
the “out-of-bag” performance of each constructed tree, but 
has been shown to be addressable (Karpievitch et al. 2009). 
For example, if bootstrapping is performed, then training 
a model on study1–chemical1 and testing the performance 
of the model on study2–chemical1 would lead to a higher 
and potentially misleading assessment of the performance. 
To overcome this potential bias, all model development 

steps, including cross-validation and external validation, 
was performed with chemical-level splitting. Specifically, 
the complete dataset was split into an internal training set 
and an external validation set with an 80/20 split using an 
adaptation of the Venetian blinds technique (Consonni et al. 
2009) where by the dataset was ordered by the mean effect 
level for each chemical (mean effect level) and every fifth 
chemical was selected for the external dataset. Training 
and testing, using the internal dataset only, was performed 
using randomized fivefold cross-validation and repeated five 
times (i.e., 5× bootstrapping). Additionally, each model set 
was developed against the full dataset as well as subsets 
of chemicals based on data availability. Performance was 
measured by the internal test set RMSE and R2. RF mod-
els were developed with sequentially adding descriptor sets 
in following order: in vivo study covariates only (baseline 
model), chemical descriptors (physchem, PaDEL, ToxPrint), 
biological descriptors (i.e., ToxCast bioactivity), kinetic 
parameters (i.e., httk), and a benchmark model. The bench-
mark model used the mean effect level for each chemical 
across its respective study set (mean effect level) in addition 
to in vivo study covariates in developing the RF models. 
The baseline and benchmark models provide an estimation 
of the lower and upper performance bounds, respectively, to 
aid in assessing the quality of the primary, descriptor-based 
models. Specifically, the benchmark model is assuming that 
one would know the ‘true’ effect level for a chemical prior 
to developing the model and that any remaining error not 

Fig. 1   Schematic of the data preparation, model development, and model application workflow. “S” represents the study number per chemical 
and “C” represents the chemical index (for illustration purposes only)
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explained at the study-level using the study covariates is 
unexplained variability. Three different chemical sets were 
also used in the model development process to account 
for the varying overlap of a specific chemical with a set of 
descriptors and to evaluate the relative impact of smaller 
datasets. The randomForest parameter, mtry, was set to one-
third the number of input variables (rounded down where 
fractional) with the number of trees set to 250. Bias correc-
tion was performed using the linear regression coefficients 
(i.e., slope and intercept) of the training prediction versus 
observed values to adjust the test prediction values.

Final study-level RF regression models were developed 
using the entire internal dataset with the number of trees 
set to a high number (i.e., 2500 trees) to achieve more sta-
ble variable importance estimates. Variable importance 
was measured by the mean decrease in node impurity as 
indicated by the residual sum of squares (Liaw and Wiener 
2002). Bias correction was performed using the mean of lin-
ear regression coefficients (i.e., mean of slope and intercept) 
across the fivefold CV and 5× bootstrap procedures. Final 
models were then applied to the external validation set to 
evaluate model performance of the models and RMSE and 
R2 were reported. Model performance was then conducted at 
the chemical-level by calculating the minimum observed and 
predicted effect level per external test set chemical.

Forward predictions were made for 33,302 chemicals 
where, at minimum, the full set of chemical descriptors 
(i.e., physchem, PaDel and ToxPrint) were generated. Of the 
33,302 chemicals with the full set of chemical descriptors, 
295 chemicals were also tested in ToxCast across enough 
assays to derive the biological descriptors used in the current 
study. Of the 295 chemicals with chemical and biological 
descriptors, kinetic descriptors were available and modeled 
for 90 chemicals. Using a sampling (N = 5) of all observed 
combinations of in vivo covariates where a LOAEL was 
established, multiple study-level predictions were made for 
each chemical and the minimum, mean and standard devia-
tion of the predicted effect levels across the sampled mock 
study covariates was used to represent the chemical-level 
predicted effect level. Uncertainty estimates were globally 
applied as plus or minus the model’s external test set RMSE.

Results

Study and chemical summary statistics

The integration of ToxRefDB, HESS-DB and COSMOS 
resulted in a dataset of 4379 studies across 1247 chemicals. 
ToxRefDB comprised the largest study set following quality 
and applicability filters with 3752 studies (836 chemicals). 
HESS-DB and COSMOS contained 433 and 195 studies 
(411 and 141 chemicals), respectively. Effect level data 

relevant to systemic toxicity were extracted from a diverse 
set of studies spanning multiple study types, species, strains, 
and routes of administration (Table 1).

The effect level distribution for all 4379 studies had a 
mean of 1.7 log10 mg/kg/day (~ 50 mg/kg/day) with a stand-
ard deviation of 0.94 log10 mg/kg/day (Fig. 2). The effect 
levels were truncated between −2 and 4 (0.01–10,000 mg/
kg/day) to prevent disproportionate influence of extreme 
values with 95% of the values falling between −0.3 and 3.2 
log10 mg/kg/day (~ 0.5 and 1500 mg/kg/day). The mean 
of the effect level distribution decreased significantly (p 
value ⋘ 0.01) from COSMOS (2.2 log10 mg/kg/day or 
~ 158 mg/kg/day) as compared to HESS-DB (1.8 log10 mg/
kg/day or ~ 55 mg/kg/day) and ToxRefDB (1.7 log10 mg/
kg/day or 50 mg/kg/day); this observation was likely driven 
by differences in the chemical use types between these data-
bases, with enrichment of cosmetic ingredients in COSMOS 
as compared to industrial chemicals and pesticides in HESS-
DB and ToxRefDB, respectively.

The distribution of effect levels stratified by the various 
study-level covariates illustrate the influence those param-
eters have on the overall effect level distribution (Fig. 3). 
The first and third quartiles (colored segments of boxplots) 
include the overall median effect level, 1.8 log10 mg/kg/day, 
with a few exceptions. Notably, the NEL effect levels have 
substantially higher values with a median of 3, a log10 dose 
equivalent to 1000 mg/kg/day, or the top allowable dose for 
most guideline toxicity studies. The individual covariate 
distributions demonstrate the average impacts of various 
study-level parameters and provide support for not applying 

Fig. 2   Histogram of study-level effect level (log10 mg/kg/day) across 
4379 animal toxicity studies. The overall effect level distribution con-
stituted a mean of 1.7 log10 mg/kg/day (~ 50 mg/kg/day) with a stand-
ard deviation of 0.94 log10 mg/kg/day. ToxRefDB and HESS-DB had 
comparable mean effect level of 1.7 (blue dashed line) and 1.8 (green 
dashed line), respectively, whereas COSMOS had a mean effect level 
of 2.2 log10 mg/kg/day (salmon dashed line)
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standard safety (i.e., conversion) factors based simply on 
study type, duration and species.

The chemical-level dataset (chemical, biological and 
kinetic descriptor sets) was integrated via chemical to 
the study-level dataset. However, biological and kinetic 

descriptor sets were only available for subsets of chemi-
cals and, hence, studies (Table 2). The respective study and 
chemical counts as additional descriptor sets were added to 
illustrate the tradeoff in expanding the diversity of descrip-
tors at the expense of study and chemical coverage.

Fig. 3   Boxplot of study-level effect level (log10 mg/kg/day) strati-
fied by individual covariate values. Continuous values were binned 
for presentation purposes (e.g., dose spacing). The upper and lower 
hinges (i.e., box) correspond to the first and third quartiles, while the 

upper and lower whiskers correspond to the highest and lowest val-
ues, respectively, within 1.5 of the inter-quartile range. Data beyond 
the whiskers are shown as dots. The over effect level median of 1.8 
log10 mg/kg/day is shown with the black vertical line

Table 2   Study and chemical counts based on availability of descriptor sets across the 4379 studies and 1247 chemicals with internal and exter-
nal dataset counts provided

With the addition of each subsequent descriptor set the total number of descriptors increased while study and chemical counts decreased

Study and chemical sets based on descriptor set availability Study count (internal/
external)

Chemical count (inter-
nal/external)

Descriptor count 
including study 
covariates

Chemical descriptors available 4379 (3476/903) 1247 (998/249) 699
Chemical and biological descriptors available 3106 (2427/679) 603 (468/135) 742
Chemical, biological, and kinetic descriptors available 2189 (1688/501) 391 (304/87) 748
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Systemic effect level models

Internal training and testing across all descriptor sets

Cross-validation models were developed containing 
study-level covariates with sequentially added descrip-
tor sets for the three chemical sets (Fig. 4). Performance 
was compared based on the percent variance explained 
(R2) from the fivefold cross-validation test sets for each 
bootstrapped dataset (n = 5) illustrating the relative sta-
bility of the models developed using different chemical 
and descriptor sets. Each model expanded the descriptor 
set beyond the original eight study-level covariates with 
an additional 12 physchem, 554 PaDEL, 119 ToxPrint, 
49 ToxCast, and 6 httk descriptors. The baseline model 
was developed using only the study-level covariates (i.e., 
in vivo covariates only) and resulted in a median R2 of 
18% across all cross-validated and bootstrapped data-
sets and chemical sets. The three primary model sets 
improved over the baseline performance with a median 
R2 of 35% demonstrating model stability. However, the 
addition of biological and kinetic descriptors did not sig-
nificantly improve model performance. Adding biological 
or kinetic descriptors alone without chemical descriptors 
does improve model performance over baseline (data 
not shown). The benchmark model was developed using 
study-level covariates and chemical-level effect level (i.e., 
mean effect level across all studies for each chemical) 
which accounted for 74% of the total variance. Internal 
model training and cross-validation detailed relative 
model performance and provided context for evaluating 
the final models.

Final model development

Final models were developed using the full internal data 
set with the external dataset of 858 studies across 240 
chemicals characterizing the overall model performance 
and uncertainty. The final RF models were also devel-
oped using a large number of trees (ntree = 2500) for a 
robust evaluation of descriptor importance. Model per-
formance (i.e., external test set R2 and RMSE) and the 
top five additional descriptors with their relative rank 
amongst all descriptors are summarized in Table 3. Vari-
able importance plots are also available (Supplementary 
Data, Fig. 1). All models have significantly increased R2, 
32–43%, as compared to the baseline performance met-
ric (R2 = 11–16%) established by developing a model 
only using in vivo covariates. The performance metrics 
were also highly comparable between the cross-validated 
training models and the final models. The collection of 
models did not approach the benchmark performance 
metric of approximately 70% variability explained. The 
roughly 30% gap in explained variability between the 
primary models and the benchmark model was likely 
due, in part, to unquantified and unaccounted variabil-
ity in the observed effect levels (e.g., vehicle control 
substance of each study, animal handling procedures, 
data reporting protocols). Additionally, uncertainty in 
the input descriptors (e.g., noise/error in the predicted 
physical chemical properties and ToxCast results) also 
contributed to the performance gap. Nonetheless, chemi-
cally, biologically and kinetically plausible descriptors 
were demonstrated to be of high relative importance, e.g., 
logP, physico-chemical property and “burst” activity in 

Fig. 4   Dotplot of variance 
explained (R2) of cross-valida-
tion test sets for each bootstrap 
(n = 5) across five model 
sets including baseline and 
benchmark models. The five 
model sets were also run with 
varying chemical sets based on 
availability of biological and 
kinetic descriptors. The gray 
crossbar has been placed at the 
median R2 for each of the five 
model sets
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ToxCast. Study-level covariates consistently remained, 
as expected, highly important in each model with dose-
spacing being among the top five most important descrip-
tors in all models, underscoring the influence of dose-
spacing in effect level determinations. The chemical 
descriptor model highlighted descriptors recognized to 
be important in driving chemical distribution and uptake 
including bioconcentration factor (bcf) and bioavailability 
(bio). Additionally, the PaDEL descriptor set added auto-
correlation metrics (ATSC4m and AATSC1m) and logP 
(ALogP). The ToxPrint descriptor set was generally less 
important but did reflect that organophosphate structures 
(bond.P.S_generic) corresponded to lower effect level, 
reflective of the acute toxicity of these chemicals. Even 
though biological and kinetic descriptors did not improve 
overall model performance, ToxCast descriptors provided 
biologically relevant descriptors; all of which were plau-
sible determinants of systemic effects including PPARα 
activity, zebrafish toxicity, and cytotoxicity (i.e., ‘burst’ 
activity, Judson et al. 2016), and estrogen receptor activ-
ity. Additionally, ToxCast descriptors provided a meta-
bolic context with xenobiotic metabolism induction as a 
highly important descriptor. The preliminary addition of 
kinetic (httk) descriptors for a relatively small number of 
chemicals (322 chemicals in the internal dataset and 74 
in the external dataset) showed marginal variable impor-
tance in combination with all other input descriptors. The 
underlying httk data and models have and continue to be 
expanded, improved and evaluated for chemical-specific 
reliability. For the purpose of this study, only publicly 
available and unfiltered data was used in an attempt to 
allow for immediate public use as well as to maintain 
as much chemical overlap as possible. The relationship 

between modeled kinetic descriptors and effect levels 
requires further exploration.

Model predictions across the full external test set of 903 
studies using the full complement of chemical, biologi-
cal, and kinetic descriptors resulted in an R2 of 43% and an 
RMSE of 0.69 log10 mg/kg/day (Fig. 5a). Of the 903 effect 
level predictions, 788 predicted effect level (87%) were 
within an order of magnitude of the observed effect level. 
Practically, the utility of the model predictions would be 
for decisions made at the chemical-level. Comparing the 
minimum observed effect level and minimum predicted 
effect level for the 249 chemicals in the external test set 
resulted in an R2 of 48% and an RMSE of 0.73 log10 mg/kg/
day demonstrating the practical utility of the model outputs 
for chemical-specific predictions (Fig. 5b). Similar to the 
study-level predictions, approximately 87%, or 216 out of 
the 249, external test set chemicals, were within an order 
of magnitude of the minimum observed effect level. Only 6 
out of 249 chemicals had predictions greater than two orders 
of magnitude from the minimum observed effect level. It 
should be noted that 5 out of those 6 chemicals were under-
predicted demonstrating the challenge of detecting and quan-
tifying extreme values.

Forward predictions

Forward predictions were made across the applicable set 
of descriptors and chemicals (i.e., the subset of chemicals 
that have chemical, biological and/or kinetic descriptors). 
For each chemical, a random sampling of five mock stud-
ies across all observed combinations of in vivo covariates 
with an established LOAEL were generated and combined 
with the chemical-level descriptors to make study-level 

Table 3   Final model performances (ntree = 2500) using the full chemical set with R2 and RMSE of the external test set presented

The standard deviation of the observed effect levels is also shown to provide context to the RMSE values. The top five descriptors of the sequen-
tially added descriptor sets with their variable importance rank illustrated the relative impact of the additional descriptor set. Using the minimum 
of the observed and predicted study effect levels per chemical, model performance was evaluated at the chemical-level
SD standard deviation of observed values (log10 mg/kg/day)

Terminal descriptor set Study-level 
model perfor-
mance

Top 5 descriptors from terminal descriptor set (importance rank) Chemical-level 
model perfor-
mance

RMSE R2 SD RMSE R2 SD

In vivo study covariates only (baseline) 0.85 16 0.93 dose_spacing (1); strain_group (2); pod_qual (3); study_type (4); 
dose_no (5)

0.91 13 0.98

+ chemical descriptors (physchem, 
PaDEL, ToxPrint)

0.7 43 0.92 AATSC0p (6); MDEO-11 (7); ATSC4 m (9); SHsOH (10); 
SHBd (13)

0.73 48 1

+ biological descriptors (ToxCast) 0.7 43 0.92 peroxisome_proliferator_activated_receptor_alpha (25); estro-
gen_receptor (48); xenobiotic_metabolism_induction (87); 
zebrafish_development (269); androgen_receptor (364)

0.73 48 1

+ kinetic descriptors (httk) 0.69 43 0.92 logmean (124); intcl (137); peak (213); logvdist (263); fub (295) 0.73 49 1
+ mean effect level (benchmark) 0.5 72 0.93 podmn (1) 0.4 83 0.98
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predictions. The sampling of observed in vivo covariates 
represented the range of possible study conditions for which 
any future chemical could undergo. Models developed 
using the sample observed in vivo covariates and chemical 
descriptors only generated predictions for 31,302 chemicals. 
Therefore, for each of the 31,302 forward predictions chemi-
cals there were a total of 156,510 total study-level effect 
level predictions to provide a distribution of predicted val-
ues across a diverse set of study conditions. The minimum 
predicted effect level across the sampled study covariates 
was selected to represent the chemical-level effect level 
and is provided as a supplemental file (supplementary data, 
Table 2). Additionally, the mean and standard deviation of 
the study-level predicted effect level is provided to illustrate 
the relative impact of study conditions on the predictions. 
Future predictions were also made using chemical and bio-
logical descriptors on 295 chemicals and on 90 chemicals 
with kinetic descriptors.

Discussion

At face value, this work demonstrated the marginal predic-
tivity of regression-based, random forest models of systemic 
effect levels using a collection of descriptors. However, 
this work also demonstrated the importance of account-
ing for study-level covariates within the modeling process 
and estimating performance expectation bounds to assess 
model utility. The modeled dataset comprised of 4379 stud-
ies 1247 chemicals curated from three different database 

resources: ToxRefDB, HESS-DB, and COSMOS. Effect lev-
els (log10 mg/kg/day) were randomly divided into an internal 
(3476 studies of 998 chemicals) and external dataset (903 
studies of 249 chemicals) with no single chemical in both 
the internal and external set. The databases cover a diverse 
set of chemicals spanning pesticides, industrial chemicals, 
cosmetics, and pharmaceuticals and are generally underrep-
resented by highly toxic compounds (e.g., dioxin) to avoid 
over-weighting of extreme values. Chemical, biological, and 
kinetic descriptors were applied if available. A novel step 
in this analysis was the use of study-level covariates in the 
model development process. The internal dataset was used 
to develop a suite of models with fivefold cross-validation 
and 5X bootstrapping to test overall model performance and 
stability. The full internal dataset was then used for final 
model development. The results were very similar to the 
cross-validation models demonstrating the robustness of the 
modeling approach and that overfitting was unlikely to have 
a significant impact on future performance. The baseline and 
benchmark models provided lower and upper performance 
bounds with RMSE estimates of 0.85 and 0.5 log10 mg/kg/
day, respectively, equating to approximately 15 and 70% var-
iance explained (R2). The final consensus model, including 
chemical, biological, and kinetic descriptors, had an RMSE 
of 0.69 log10 mg/kg/day explaining 43% of the study-level 
effect level variance.

Performance metrics of regression models are often 
reported as RMSE and R2. However, these metrics do not 
provide the full context of model performance, as they do 
not take into account underlying expectations and upper 

Fig. 5   a Predicted vs observed study effect level (log10 mg/kg/day) 
of the full external test set (N = 903 studies) using study-level covari-
ates with chemical, biological and kinetic descriptors resulted in an 
R2 of 43% and an RMSE of 0.7 log10 mg/kg/day. b Using the mini-

mum predicted and observed effect level per chemical in the external 
test set (N = 249 chemicals), chemical effect level predictions were 
made and resulted in an R2 of 48% and an RMSE of 0.73 log10 mg/
kg/day
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performance bounds for how good a model could be given 
the underlying data. Effect levels, in particular, are associ-
ated with a large amount of variability due to study design 
and interpretation of the observations that form the basis for 
assigned NOAEL, LOAEL, NEL, or LEL values (Leisenring 
and Ryan 1992). Effect levels extracted from various data 
sources also carry with them a level of ‘unexplainable’ vari-
ability, as the source of the variability may not be captured 
in the primary reports, study summaries, or a computable 
format in database. For example, animal handling technique 
and expert contributions to LOAEL selection contribute to 
systematic study error or bias not generally captured. There-
fore, the expectation to approach 100% explained variance 
(i.e., RMSE approaching 0 or R2 approaching 100%) is 
unreasonable and would be a clear sign of overfitting. Base-
line and benchmark RF models were developed incorpo-
rating the study-level covariates (e.g., study type, species, 
strain) with and without the chemical-level effect levels 
(i.e., mean effect level across all studies for each chemical). 
Even though regulatory applications would not utilize the 
chemical-level mean effect level, the mean effect level is 
used as an anchoring point to assess the variability across 
study type, species, etc., from chemical-to-chemical. The 
baseline RF model showed that approximately 15% of the 
variance was explained by study-level covariates and add-
ing chemical, biological, and kinetic descriptors resulted 
in increased R2 and decreased RMSE. The benchmark RF 
model explained approximately 70% of the variability, pro-
viding an estimated upper bound within which even a model 
with perfect input parameters (i.e., zero uncertainty in the 
input data fully explaining all dynamic and kinetic factors of 
effect level determinations) would not be expected to exceed. 
Baseline and benchmark performance metrics established 
by these methods serve as guideposts for contextualizing 
the final models. However, the benchmark estimate is likely 
overoptimistic as the mean effect level was calculated using 
the observed, not true, effect level. A more detailed and 
thorough examination of sources of effect level variability 
beyond the baseline and benchmark models presented herein 
is needed and underway.

Initially, we and many other groups modeled effect lev-
els from each study at the chemical-level (i.e., prediction of 
minimum effect level across all studies by chemical) with 
limited success (Novotarskyi et al. 2016; USEPA 2013). 
The effect levels used for the initial modeling effort, derived 
from many different study types and spanning many repeat-
dose systemic effect observations, constituted a heterogene-
ous endpoint for prediction. The current work attempted to 
address the heterogeneity in the source data by modeling 
effect levels at the study-level as opposed to the chemical-
level. Study-level effect levels and associated study-specific 
covariates were combined with chemical-level descriptors 
for the development of a set of predictive random forest 

models. This methodology enabled accounting for variability 
in the study type and other study-level covariates. Although 
not directly comparable, the chemical-level predictions from 
the EPA challenge (Novotarskyi et al. 2016; USEPA 2013) 
resulted in final models that explained roughly 30% of the 
variance, while the chemical-level predictions from the cur-
rent model explain nearly 50% of the variance in the exter-
nal validation dataset. There is a long history of attempting 
to develop QSAR and other predictive models of NOAEL, 
LOAEL, LD50, and other effect levels (Hisaki et al. 2015; 
Mumtaz et al. 1995; Pizzo and Benfenati 2016; Rupp et al. 
2010; Toropov et al. 2015; Veselinovic et al. 2016), and the 
summary performance statistics for these published models 
vary widely. Additionally, external evaluation of these mod-
els has often shown that the models either only apply to a 
very specific chemical domain or were originally reported 
with overoptimistic performance statistics (Pizzo and Ben-
fenati 2016). Although attempted, direct comparisons to 
these previous models were not made due to a number of 
limiting factors, including different endpoints (e.g., NOAEL/
LOAEL vs LD50), lack of cross- and/or external validation, 
availability of underlying chemical or toxicological data, 
and very limited chemical space). Therefore, in addition to 
developing the model using study-level covariate informa-
tion, a focus of the present work was to provide performance 
baseline and benchmark guideposts using the data in-hand.

Similar to the findings and observations of Novotarskyi 
et al. (2016), adding biological descriptors, i.e., ToxCast 
bioactivity data, did not significantly increase model per-
formance. There is limited, peer-reviewed guidance on the 
incorporation of bioactivity data in modeling. The OECD 
has recommended a set of five guidelines for development 
of QSAR models, including data used be associated with 
a mechanistic interpretation of a predicted endpoint (Fjo-
dorova et al. 2008). The results of the modeling process 
herein may provide biological plausibility and mechanistic 
insight into the driving systemic effects at the effect level, 
as nuclear receptor activity, oxidative stress, and cytoxic-
ity were leading predictive descriptors. Additionally, an 
advantage to creating ToxCast assay groups, beyond reduc-
ing descriptor space and highly correlated descriptors, is 
the easy translation of the model for practical applications 
in the future. It is not necessary to run every assay in the 
current ToxCast suite to generate an activity score for the 
model and to gain biological insight. Even with a subset 
of the assay data, this model can be run in conjunction 
with chemical descriptors to predict effect levels. Assay 
grouping serves to outline common biological space, so 
HTS assays that are different from those currently in Tox-
Cast, but that assess the same biological space or function, 
could be used as descriptors for model development and 
prediction.
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A limitation of the current model is the available bio-
activity descriptors from ToxCast/Tox21 represent a finite 
biological space currently covered in the ToxCast/Tox21 
HTS program. ToxCast and Tox21 research programs 
continue to expand biological and technological space, 
including investigation into the feasibility and utility of 
high throughput transcriptomics and assays with increased 
metabolic capacity. Additionally, the current model does 
not take into account kinetics for the full chemical library. 
To ensure the model will have a broad domain of chemi-
cal applicability, future directions will include incorpora-
tion of additional reverse toxicokinetic data (Rotroff et al. 
2010; Wetmore et al. 2012) to enhance the kinetic context; 
transcriptomics (Paules 2014) and additional HTS assays 
to provide broader biological coverage; and, expansion of 
the chemical space included in the internal validation set.

In conclusion, a novel suite of regression models of 
repeat-dose systemic toxicity was developed using study-
level covariates and chemical-level descriptors capable of 
predicting effect levels with quantified uncertainties. For-
ward predictions were made for over 30,000 chemicals, 
many of which have little to no empirical bioactivity or 
toxicity data. This work demonstrates it is possible to pre-
dict effect levels for additional chemicals if the appropriate 
chemical descriptor sets are available. Potential applications 
of this model include use in weight-of-evidence evaluations 
for chemicals that are barred from use in animal testing, such 
as cosmetic ingredients being developed in Europe. Within 
the US, the model could be used to predict effect levels for 
data poor chemicals in the home or environment (e.g., con-
taminated sites), fill in gaps for estimating the hazard index 
for multiple contaminants, or in emergency situations for 
chemicals with limited data. Regardless, the suite of predic-
tive systemic effect level models provides a key indication 
of hazard potential and dose response characterization for 
thousands of chemicals with limited safety-related data.
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