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promising strategies to design novel and effective antidotes. 
Structure–activity relationships and biological activities 
of recently proposed acetylcholinesterase reactivators are 
discussed and summarized. Among further modifications 
of known oximes, the main attention has been paid to dual 
binding site ligands of AChE as the current mainstream 
strategy. We have also discussed new chemical entities as 
potential replacement of oxime functional group.
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Introduction

Chemical warfare agents (CWAs) are one of the big threats 
in the modern civilization. This fact is supported by the 
expanded power of terrorism which endangers any coun-
try worldwide. The most toxic CWAs are nerve agents, 
chemically classified as organophosphorus compounds 
(OPs) (denoted for both organophosphates and organo-
phosphonates) (Watson et  al. 2015). Nerve agents can be 
divided into two major groups. The first group labelled 
as “G-agents” containing tabun (GA), sarin (GB), soman 
(GD) and cyclosarin (GF) contains more volatile sub-
stances, therefore representing a vapour and liquid threat, 
however, with rather lower persistency in open terrain. The 
second group of “V-agents” including VX (originates from 
Great Britain), CVX (Chinese isomer) and R-VX (VR; 
Russian isomer) are relatively non-volatile with high per-
sistency in the environment and increased toxicity (Fig. 1) 
(Kuca and Pohanka 2010; Mercey et al. 2012b).

Misuse of aggresive nerve agents was expressively dem-
onstrated during the Gulf War (MacIlwain 1993; Worek 
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and Thiermann 2013), terrorist attacks in Matsumoto city 
(1994), in the Tokyo subway (1995) with sarin and in 
Osaka (1994) with VX-agent by religious cult Aum Shinri-
kyo (Agarwal et al. 2004). Furthermore, recent sarin attacks 
in the Syria recall the attention to counteracting the CWAs 
misuse and the importance of the further investigation in 
finding effective nerve agent antidotes (Pita and Domingo 
2014; Winter et al. 2015). Besides CWAs, less toxic class 
of organophosphorus compounds may represent serious 
public health issue as well. Organophosphorus-based pesti-
cides are annually implicated in more than 3,000,000 acute 
intoxications which lead in 200,000 fatalities (Eddleston 
et al. 2008; Mercey et al. 2012b).

The toxic effect of OPs (nerve agents and pesticides) 
is based on irreversible inhibition of enzyme acetylcho-
linesterase (AChE, E.C. 3.1.1.7) (Millett 2006). AChE is an 
inextricable component of cholinergic synapses and neuro-
muscular junctions. Its main biological function consists in 
rapid hydrolysis of the positively charged neurotransmit-
ter acetylcholine (ACh) (Tougu 2001). Inhibition of AChE 
with OPs proceeds through the formation of covalent P–O 
bond in the catalytic active site (CAS) of AChE, which 
leads to accumulation of ACh in synapses and subsequent 
overstimulation of cholinergic receptors resulting in cho-
linergic crisis, convulsive seizures, respiratory distress and, 
ultimately, death (Marrs 1993; Wei et  al. 2014). The cur-
rent treatment of OP poisoning consists of administration 
of the combination of causal and symptomatic drugs. The 
symptomatic antidotes include anticonvulsives (e.g. diaz-
epam) and anticholinergic drugs where atropine plays a 
pivotal role. AChE reactivators (oximes) are causal drugs 
which are able to recover AChE function. The mechanism 
of reactivation is believed to include nucleophilic attack of 

phosphorus atom of inhibited AChE, resulting in removal of 
OP bond and recovery of enzyme’s catalytic activity (Kassa 
2002; Ruark et  al. 2013; Soukup et  al. 2013a). However, 
also non-reactivating properties of oximes are often dis-
cussed. Namely, the direct interactions with the cholinergic 
receptors, high affinity choline reuptake or other parts of 
cholinergic system are mentioned in order to explain a life-
saving effect after the ageing (Tattersall 1993; van Helden 
et al. 1996; Soukup et al. 2011, 2012; Sepsova et al. 2014). 
Pralidoxime (2-PAM), methoxime (MMB-4), trimedoxime 
(TMB-4), obidoxime (LüH-6) and asoxime (HI-6) are the 
best studied and commercially available oxime reactivators 
(Fig. 2) (Wilson and Ginsburg 1955; Poziomek et al. 1958; 
Hobbiger et  al. 1958; Luettringhaus and Hagedorn 1964; 
Hagedorn et al. 1969; Bajgar 2012; Jokanović 2012).

AChE action and inhibition

AChE enzyme belongs to the α/β hydrolase family includ-
ing cholinesterases, carboxylesterases and lipases. Its main 
function is to terminate nerve impulses via hydrolysis of 
ACh in the synapses (Tougu 2001; Lushington et al. 2006). 
AChE is considered to be an evolutionary perfect enzyme 
as it is responsible for substrate association, chemical trans-
formation and product dissociation at similar rates with 
high efficiency degradation of 2.5 × 10−4 ACh molecules 
per second (Scheme 1) (Quinn 1987; Ordentlich et al. 1993; 
Shaikh et al. 2014; Rosenberry 2006). Another member of 
the cholinesterase family is presented by butyrylcholinest-
erase (BChE; EC 3.1.1.8) which is also able to hydrolyse 
ACh and bulkier substrates (e.g. butyrylcholine); however, 
its physiological role is of minor importance compared to 
AChE. BChE takes part in detoxification and metabolism 
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processes of ester compounds (e.g. aspirin, physostig-
mine and cocaine) even though the real physiological role 
remains unclear (Lockridge 2015; Maurice et  al. 2016). 
Recently, BChE found its application as a biomarker of 
OP-exposure or as a OP-scavenger (Broomfield et al. 1991; 
Fidder et al. 2002; Horn et al. 2015; Lockridge 2015).

Structure of AChE was firstly detailed in 1991 by J. 
Sussman on Torpedo californica acetylcholinesterase 
(TcAChE). TcAChE is composed of 537 amino acids with 
two main sites connected with narrow gorge: catalytic 
active site (CAS) and peripheral anionic site (PAS) (Fig. 3) 
(Sussman et  al. 1991). Many studies have been subse-
quently focused on proper structure and mechanism of the 

function (Johnson and Moore 2006; Berg et al. 2011; Singh 
et al. 2013; Bajda et al. 2013).

Several ways to inhibit AChE activity have been pro-
posed. Organophosphates and carbamates bind competi-
tively and directly to the active site serine (Johnson and 
Moore 2006). The mechanism of OP action is similar to 
the initial step of ACh hydrolysis. OPs penetrate through 
the gorge of AChE to the catalytic active site. Nucleophilic 
serine attacks the phosphorus atom, forming a bipyramidal 
transition state, which release halide ion and the forma-
tion of phosphylated serine (Scheme 2). In the second step, 
histidine residue cannot fulfil its role of water activation, 
and therefore, spontaneous hydrolysis is extremely slow 
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varying from hours to days (Mercey et al. 2012b). This fail-
ure in the hydrolysis is explained by formation of unsuit-
able conformation (e.g. VX and tabun conjugates) (Millard 
et al. 1999; Carletti et al. 2010) or shielding from the water 
molecule of histidine (e.g. soman conjugate) (Sanson et al. 
2009). Besides spontaneous hydrolysis of OP conjugates, 
time-dependent intramolecular reaction appears. This pro-
cess involves dealkylation of alkoxy substituent from the 
phosphorus atom yielding to the phosphonate adducts 
denoted as “aged” form of conjugate (Masson et al. 2010). 
The “aged” conjugate forms a salt bridge with the proto-
nated catalytic histidine resulting in the strong stabilization 
(Segall et al. 1993; Carletti et al. 2010). Such “aged” AChE 
is resistant to the hydrolysis and reactivation by oxime 
antidotes. The ageing half-time depends on the type of OP, 
differing from approximately 2–4 min for soman, 5 h for 

sarin, 46 h for tabun and 48 h for VX (Worek et al. 2004; 
Mercey et al. 2012b).

Reactivation and drawbacks of common reactivators

More than 50 years ago, Irwin Wilson and his colleagues 
demonstrated that only strong nucleophiles such as oximes 
are able to reactivate OP-AChE conjugates and release free 
enzyme. For successful enzyme reactivation, it is important 
to accomplish three factors including strong nucleophilic-
ity, proper orientation towards phosphate-enzyme adduct 
and to prevent process of “ageing” (Wilson and Ginsburg 
1955; Wilson 1959; Froede and Wilson 1970; Wong et al. 
2000). Dissociation constant (pKa) is another important 
factor for the removal of phosphyl moiety due to the fact 
that reactivation is provided by dissociated oximate anion. 

Fig. 3   Schematic representa-
tion of the active and peripheral 
site of TcAChE including amino 
acids residues of catalytic triad, 
anionic site, narrow aromatic 
gorge and peripheral site
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Moreover, proper pKa is the factor limiting penetration 
through the biological membranes (Pajouhesh and Lenz 
2005; Musil et al. 2016). Therefore, proper acidity (pKa) of 
the oxime group is very important (pKa values for stand-
ard reactivators range from 7.04 for HLö7 to 8.2 for trime-
doxime) (Wilson and Ginsburg 1959; Hagedorn et al. 1972; 
Čakar et al. 1999). De Jong revealed that the attachment of 
oxime moiety to pyridinium ring forms another crucial fea-
ture necessary for successful enzyme reactivation. He also 
suggested that the oxime group in position 2 is important 
for the reactivation of soman-inhibited AChE, while the 
oxime group in position 4 is superior for the reactivation 
of tabun-inhibited AChE (de Jong et  al. 1989). Another 
study demonstrated that the 4-positioned oximes are supe-
rior compared to 2-positioned oximes in the case of pesti-
cides and phosphoramidates with substituted amido groups 
(tabun) (Worek et al. 2004). It was also shown that in the 
case of soman-inhibited AChE, structure–activity relation-
ships (SARs) of oximes cannot be applied for all the OPs 
(Worek et  al. 2004). Furthermore, another investigation 
pointed that substituted amide groups reduce electrophilic-
ity of the phosphorus atom, thus preventing nucleophilic 
attack by oxime function which is supported with addi-
tional steric hindrance of tabun alkyl chain (Worek et  al. 
2004). Therefore, tabun-inhibited AChE is supposed to be 
one of the most resistant OP regarding reactivation by oxi-
mes (Heilbronn 1963). Several other studies with molecular 

modelling, site-directed mutagenesis and X-ray crystallog-
raphy were focused to uncover the detailed mechanism for 
reactivation of AChE (Fig.  4) (Ashani et  al. 1995; Wong 
et al. 2000; Luo et al. 2003; Kovarik et al. 2004; Ekström 
et  al. 2009; Artursson et  al. 2009; Dolezal et  al. 2015). 
Finally, the researchers’ effort indicated that the structure 
of oxime must correspond to the specific structure of OP. 
The main factors like the orientation of phosphyl moiety 
in the active centre, spatial restriction and steric limitation 
affect the oxime entry and its reactivation potency. There-
fore, a wide variety of reactivators can be used for different 
types of OP (Worek et al. 2004).

The reactivation of phosphylated AChE proceeds 
through the two-step reaction. Firstly, the oximate anion 
approaches to the P–O covalent bond between OP and the 
active site serine and forms a fully reversible Michaelis-
type oxime-phosphyl-AChE-conjugate. Subsequently, the 
displacement of the phosphyl residue follows from the 
pentacoordinate transition state, releasing the free enzyme 
and the formation of a phosphylated oxime (Scheme  3) 
(Ekström et  al. 2009; Artursson et  al. 2009; Sanson et  al. 
2009; Worek and Thiermann 2013). Unfortunately, it has 
been demonstrated that the formed phosphyloxime is still 
a highly potent inhibitor capable to sufficiently re-inhibit 
AChE (Lamb et al. 1964; Luo et al. 1999). The latter men-
tioned phenomena can occur especially in the case of 3- or 
4-positioned oxime group on the pyridinium ring. On the 

Fig. 4   Ternary complex of non-aged sarin-inhibited Mus musculus 
AChE with HI-6. Catalytic triad residues are rendered in yellow car-
bon atoms, sarin nerve agent in blue carbon atoms and HI-6 in pur-
ple carbon atoms. Tryptophans (green carbon atoms) delineate PAS 
(Trp286) and CAS (Trp86) of AChE. The rest of the enzyme is dis-
played as grey cartoon. Oximate group of HI-6 is oriented towards 

phosphorus atom of sarin in the distance of 4.2 Å suggesting proper 
conformation for reactivation of the enzyme (Allgardsson et  al. 
2016). Figure was created with PyMol 1.5.0.4 (The PyMOL Molecu-
lar Graphics System, Version 1.5.0.4 Schrödinger, LLC, Mannheim, 
Germany)
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contrary, 2-positioned oxime is less liable to such AChE re-
inhibition (Worek et al. 2000; Ashani et al. 2003; Kiderlen 
et al. 2005; Stenzel et al. 2007).

All commercially available reactivators are charged oxi-
mes with one or two pyridinium rings connected through 
the different linkers (Fig.  2). First efficient oxime, pral-
idoxime (2-PAM), was described in the USA in 1955, and 
its characteristic structural feature consists of mono-pyri-
dinium ring and oxime group in position 2 (Wilson and 
Ginsburg 1955). It is effective in the reactivation of sarin- 
and VX-inhibited AChE, but hardly reactivates soman- or 
tabun-inhibited-AChE (Koplovitz and Stewart 1994). First, 
bis-pyridinium oxime introduced to the market was meth-
oxime, and it showed improved efficacy against diisopro-
pylfluorophosphate- (DFP), tabun-, sarin- and VX-inhibited 
AChE compared to the 2-PAM and 4-PAM (Poziomek 
et al. 1958; Wilson and Ginsburg 1959). However, it is still 
inefficient in soman poisoning (Inns and Leadbeater 1983). 
Trimedoxime together with obidoxime and HLö-7 is con-
sidered as the most efficient in the case of tabun intoxica-
tion (Cabal et al. 2004; Carletti et al. 2009). On the other 
hand, they are less efficient for VX-inhibition (Segall et al. 
1993). Asoxime (HI-6) is one of the most potent agents for 
treatment of soman intoxication; however, it is still inef-
ficient against tabun (Worek et  al. 2007a). Obidoxime is 
considered to be the best reactivator of pesticides (Worek 
et al. 2007b). However, it is important to keep in mind that 
none of these compounds represents universal reactivator 
even that the bis-pyridinium analogues are more efficient 
than mono-pyridinium ones (Segall et al. 1993; Jokanović 
2012).

Therefore, a therapeutic value of oxime reactivators is 
still insufficient due to three main drawbacks. (1) Firstly, 
there is no broad-spectrum reactivator able to efficiently 

restore AChE activity after intoxication by different types 
of OPs (Korabecny et  al. 2014). (2) Secondly, all mar-
keted oxime reactivators are permanently charged and 
their permeation through the blood–brain barrier (BBB) 
is rather poor. Thus, they are readily unable to reactivate 
OP-inhibited AChE in the brain. Specifically, 2-PAM 
crosses BBB in approximately 10  % of the intravenously 
given dose. Bis-pyridinium oximes permeate through BBB 
even at lower level, approximately 1–3 % after intravenous 
administration (Sakurada et  al. 2003; Bajgar et  al. 2007a; 
Karasova et al. 2013). (3) Third drawback concerns about 
the “aged” AChE. Among all known oxime reactivators, 
there is none which could deal with these phenomena and 
be able to reactivate “aged” enzyme (Mercey et al. 2012b; 
Korabecny et al. 2014). However, life-saving efficacy was 
observed after the asoxime treatment of aged AChE prob-
ably due to non-reactivating mechanisms of this compound 
(Hamilton and Lundy 1989).

All these drawbacks still force the researchers to develop 
novel oxime antidotes which could serve as universal anti-
dotes in all cases of OP intoxications. In the current study, 
we are discussing novel trends in reactivators’ discovery 
with particular emphasis on AChE dual binding site reac-
tivator strategy. Moreover, our contribution deals with dif-
ferent CAS and PAS ligands connected through the variety 
of linkers.

Catalytic active site ligands

Nowadays, the most effective AChE reactivators repre-
sent mono- or bis-quaternary pyridinium aldoximes, and 
they are still the leading moieties in the modern design 
and development of new reactivators. Formerly, the biva-
lent metal ions were probably able to potentiate the activity 
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of AChE reactivator pralidoxime by formation of the cor-
responding complex species (Cier et  al. 1969). However, 
one of the most versatile tools which is still frequently 
used as a reactivator in the therapy of organophosphorus 
nerve agents (OPNAs) intoxication is obidoxime (Kuca 
et al. 2009). Therefore, the attention was turned to prepa-
ration of Pd(II) complexes with obidoxime (Nedzhib et al. 
2014). The authors of the study anticipated that the coor-
dination form of obidoxime should be slowly decomposed 
compared to obidoxime itself thus subsequently increas-
ing the amount of active compound in the organism (Cier 
et al. 1969; Nedzhib et al. 2014). At pH 7.4, the complex 
[PdHL]3+ between Pd(II) ions and obidoxime was imme-
diately and readily formed. These results are in agreement 
with the reported data of the previous research (Karljiković-
Rajić et al. 1987; Nedzhib et al. 2014). The study revealed 
that obidoxime acts in a monodentate coordination with 
its oximate moiety. Within 24  h at pH 7.4, second Pd(II) 
ion is coordinated forming final product [Pd2L]4+. The 
final molar ratio metal-to-ligand is 2:1, and thus the for-
mation of [PdHL]3+ (0 h) and [Pd2L]4+ (24 h) depends on 
time and does not significantly change with the excess of 
the metal ion (Fig. 5). The reactivation ability of the new 
obidoxime complexes was established against paraoxon-
inhibited rat brain AChE in in vitro conditions compared to 
the non-coordinated obidoxime indicating that obidoxime 
complexes with Pd(II) possess only very low reactivation 
potency (Nedzhib et al. 2014).

Disclosure of novel bis-pyridinium AChE reactivators 
revealed compounds containing 2-(hydroxyamino)-N-
(pyridin-3-yl)acetamide (Fig. 6) (Karade et al. 2014). The 
presence of the electron-withdrawing functional group such 
as amide in conjugation to the oxime group can improve its 
dissociation into the active oximate anion. The attachment 
of the reactivation moiety in the 3-position of the side chain 
conferred pKa values ranging between 7.95 and 8.25 which 
is similar to that of the 2-PAM and obidoxime (Kuca et al. 
2006; Musil et al. 2016). Bis-quaternary 2-(hydroxyimino)-
N-(pyridine-3-yl)acetamide derivatives (3–11, Fig. 6) were 
assayed in vitro for their reactivation potency against sarin 
and VX using erythrocyte ghost hAChE. Analogues 3–11 
were compared with 2-PAM and obidoxime. From this 
series, oximes 3, 6, 7 and 11 displayed potential for the 
reactivation of OPNAs inhibited hAChE comparable with 
pralidoxime (Karade et al. 2014).

Since the permanently charged oximes can hardly cross 
BBB, studies in the past few years switched more to the 
development of new uncharged reactivators. Several work-
ing groups have turned their efforts to novel centrally active 
reactivators exploiting different catalytic active site ligands 
as reactivation scaffolds.

One of the possibilities of uncharged reactivator 
was presented by Saint-André et  al. (2011). The library 
of α-nucleophiles was screened in order to find a new 
highly efficient scaffold to reactivate VX-inhibited 
recombinant hAChE (Saint-André et al. 2011). The study 

Fig. 5   Pd(II)-obidoxime com-
plexes (Nedzhib et al. 2014)
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on the hydrolysis ability of novel α-nucleophiles was 
performed on less toxic phenylphosphonothioate (PhX), 
derivative of VX with similar hydrolysis profile, due to 
the safety reasons (Vayron et al. 2000; Saint-André et al. 
2011). As the reference compound, pralidoxime was 
selected, which hydrolysed PhX-hAChE inhibited com-
plex quantitatively (100 %) under the studied conditions. 
Initially, subset consisting of aryl and pyridinealdoximes 
was used. Structure–activity relationship disclosed that 
ortho-monosubstituted aryls bearing different electron-
donating and electron-withdrawing groups did not have 
significant effect on the hydrolytic activity. Interestingly, 
hydroxyl or carboxyl group in ortho-position showed 
enhanced hydrolytic activity. This might be explained by 
the intramolecular hydrogen bonding between hydroxyl 
group and nitrogen atom of oxime, decreasing the pKa 
value of the α-nucleophile (e.g. 12 pKa  =  10.9 versus 
13 pKa =  9.3, Fig.  7) (Blatt and Russell 1936; Hayashi 
et al. 1983; Saint-André et al. 2011). Following the initial 
findings, the hydroxyl group-containing α-nucleophiles 
were tested proposing ortho-hydroxybenzaldoxime with 
some electron-donating or electron-withdrawing moie-
ties. Same effect was observed for pyridinealdoxime 
bearing hydroxyl group in ortho-position 14. Moreo-
ver, the pyridine ring contributed to the decrease of pKa 
value (pKa  =  8.2). Consequently, aryl and pyridinami-
doximes (Louise-Leriche et  al. 2010) were evaluated as 
novel promising reactivators with the ortho-hydroxyl 
group. Moreover, it was found that pKa values of 
α-hydroxybenzamidoximes 15 (pKa  =  8.88) and espe-
cially α-hydroxylpyridylamidoxime 16 (pKa  =  7.96) 
lies in the optimal pKa range for improved reactivation 
ability compared to α-hydroxy aldoximes. Finally, the 

reactivation properties of hydroxamic acid were also 
investigated. Ortho-hydroxyl substituted hydroxamic 
acid analogue 17 does not significantly increase hydroly-
sis of PhX-hAChE inhibited complex. On the other hand, 
pyridyl hydroxamic acids containing ortho-hydroxyl 
displayed improved hydrolytic activity. The most active 
α-nucleophiles under the survey were studied for their 
ability to reactivate hAChE inhibited by VX-agent in 
comparison with 2-PAM using spectrophotometric Ell-
man’s protocol. Oximes 14 and 16 have showed high 
reactivation capability, and especially kr was higher than 
for the reference compound 2-PAM. However, these 
nucleophiles exhibited much lower affinity to the inhib-
ited enzyme with high dissociation constants (KD), and 
therefore, much higher concentrations of these com-
pounds were required to reactivate the enzyme (Saint-
André et al. 2011).

Ongoing study by prof. Renard and co-workers followed 
exploitation of favourable properties and structural features 
of CAS ligands, especially fragments 14 and 16, in com-
bination with various linkers and PAS ligands as potential 
reactivators of OP-inhibited AChE. As a result, the first 
uncharged reactivators were reported (Mercey et al. 2011, 
2012a; Renou et al. 2013; Kliachyna et al. 2014) using 14 
or 16 fragment as reactivation moiety in attachment to PAS 
ligands such as phenyl-tetrahydroisoquinoline (PIQ) or tet-
rahydroacridine (THA). THA, originally developed as Alz-
heimer’s disease drug acting as acetylcholinesterase inhibi-
tor, was used as known CAS and PAS binder (Soukup et al. 
2013b; Zemek et al. 2014).

Some fluorine-containing pyridine aldoximes were 
originally prepared in the period 1963–1966 at the Uni-
versity of Manchester, Institute of Science and Technology 
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(UMIST) (I.M. Young 1966; Timperley et al. 2011). Then, 
between the years 2009 and 2010, fluorinated pyridinium 
aldoximes received particular attention again as potential 
antidotes against OP-inhibited AChE (Jeong et al. 2009a, b; 
Kassa et al. 2010). However, the reactivation experimental 
details were firstly discussed in current study (Timperley 
et al. 2011). The main idea of using the fluorinated pyridine 
aldoximes was to lower the pKa to optimal values, and thus, 
the oximes should be able to form oximate anion under the 
physiological conditions (pH 7.4, 37 °C) (Kuca et al. 2006; 
Musil et  al. 2016). Uncharged pyridine aldoximes 18–19 
have pKa > 10. Pyridine aldoximes with one fluorine atom 
(20–21) still remain far from the optimal values, whereas 
(E)-2,3,5,6-tetrafluoroisonicotinaldehyde oxime (22) has 
pKa close to about 9.1 (Fig.  8). The study also suggested 
that introduction of some powerful electron-withdraw-
ing groups (e.g. CF3, CF2H, SF5, NO2, CN, CF3SO2 and 
CF3CH2) might lead to decrease of the pKa into the optimal 
values (Timperley et al. 2011).

Replacement of the pyridine ring by different heteroar-
yls such as imidazole was also explored in order to find 
novel AChE reactivators. Quaternary imidazolium aldoxi-
mes were investigated as potential reactivators in the early 
1990s (Goff et  al. 1991; Koolpe et  al. 1991; Mesic et  al. 
1992). Very recently, non-quaternary imidazolium aldoxi-
mes were reported as reactivators of OP-inhibited AChE by 
Sit, Radic and Kovarik co-workers (Sit et  al. 2011; Radić 
et  al. 2012; Kovarik et  al. 2013; Sit et  al. 2014). Firstly, 
library of 134 novel structurally diverse uncharged oximes 
containing primary imidazole aldoximes and N-substituted 
2-hydroxyiminoacetamides was screened (Sit et al. 2011). 
Their reactivation ability was assayed against the paraoxon, 
and sarin, cyclosarin and VX-inhibited hAChE compared 
to the 2-PAM. 56 acetamide oximes were found to be 
approximately equally efficient as 41 imidazole deriva-
tives, whereas none of the remaining structurally variable 
oximes showed sufficient reactivation potency. Finally, 

N-substituted 2-hydroxyiminoacetamides provided higher 
efficacy, especially with the five or six-methylene tether 
between oxime and PAS ligand, highlighting the structure 
of compound 23 (RS41A; Fig. 9) (Sit et al. 2011).

The library also included 64 novel oximes with tria-
zole moiety acting as PAS ligand. However, reactivation 
potency of these triazole analogues did not reached reac-
tivation ability of other compounds. The investigation also 
included reactivation of OP-inhibited hBChE. In rela-
tion to 2-PAM, reactivation potency of the subset of 100 
uncharged oximes was explored. No correlation was found 
between reactivation of OP-inhibited hBChE and OP-
inhibited hAChE most probably due the structure diversity 
of these enzymes. However, the general structural pattern 
for the most active reactivators for OP-inhibited hBChE 
turned out to be uncharged imidazole oxime with the alkyl 
chain 24 (Fig. 10) (Sit et al. 2011).

This study was further extended dealing with modified 
structures based on 23 (RS41A) (Radić et  al. 2012). As a 
consequence, this study disclosed new lead azepine ana-
logue 25 (RS194B). Compound 25 displayed improved 
in vitro reactivation kinetics with remarkable low toxicity 
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in the mouse model after i.m. administration compared to 
23 and 2-PAM (Fig.  11) (Radić et  al. 2012). Notably, no 
correlation to asoxime nor obidoxime was performed.

The valuable property of these amidoximes (23 and 
25) lies in their ability to form protonation equilibrium 
around two ionizable groups, an oxime group and amine 
group, affording coexistence of charged, zwitterionic and 
uncharged forms around physiological pH values. The 
zwitterionic form has a high chance to reactivate OP-
inhibited AChE, while the uncharged form can easily cross 
the BBB (Sit et al. 2011; Radić et al. 2012). Furthermore, 
reactivator 25 showed very good antidotal profile within 
in  vivo assessment on mice exposed to the subcutaneous 
OPs (VX, sarin, cyclosarin, paraoxon and tabun). Authors 
of the study also concluded that reactivator 25 displayed 
significant improvement in reactivation potency when com-
pared to oxime 23 and 2-PAM, especially in the combina-
tion with prophylactic and post-exposure treatment (Radić 
et al. 2012).

Reactivation ability of compounds 23 and 25 supported 
the suggestion that reactivators geometry is important crite-
rion (Kovarik et al. 2013). While uncharged reactivators 23 
and 25 exerted high reactivation potency for against sarin-, 
cyclosarin- and VX-inhibited hAChE, their potency against 
tabun-inhibited hAChE was rather poor (Kovarik et  al. 
2013). Ongoing study involved 29 novel uncharged oxi-
mes tested for their ability to reactivate tabun phosphylated 
hAChE and comparing them to three standards, diacetyl-
monoxime (DAM), monoisonitrosoacetone (MINA) and 
2-PAM (Shih et al. 2010; Skovira et al. 2010). In addition, 

reactions with phosphylated hBChE and two mutant 
hAChE were also established. Imidazole aldoxime 26 
(RS150D) was highlighted to be the most potent reactivator 
of tabun-inhibited hAChE. Some other oximes containing 
bulkier moieties such as azepane (25 and 27) or tetrahy-
droisoquinoline (28, Fig. 12) also displayed some reactiva-
tion potential for tabun-inhibited hBChE. This finding was 
explained by better fitting of 25, 27 and 28 into the active 
site of hBChE which is more bulkier compared to hAChE 
active site to accommodate these ligands (Fang et al. 2011; 
Kovarik et al. 2013).

Refining the structural features of previously pub-
lished series, novel imidazole aldoximes analogues were 
developed as potent reactivators of hBChE inhibited by 
paraoxon, sarin, cyclosarin and VX-agent. All of the 
compounds were based on imidazolium aldoximes with 
an alkyl/alkenyl chain (29–32) or with aromatic system 
(phenyl; 33 and 34; Fig.  13) (Sit et  al. 2014). Study also 
exploited reactivation capability of TAB2OH (35) in com-
bination with purified hBChE as efficient bioscavenger to 
potentiate OP-intoxication treatment and reduce the amount 
of required hBChE (Radić et  al. 2013). This strategy has 
already been proposed more than two decades ago as a con-
cept of catalytic bioscavenging. Several enzymes have been 
considered to act as OPNA-degrading enzymes (e.g. par-
aoxonase-1, erythrocyte and liver prolidases, human liver 
senescence marker, cholinesterases mutants) (Kovarik et al. 
2010; Nachon et al. 2013).

More recently, Wei and co-workers suggested dual bind-
ing site strategy for imidazole aldoximes. This approach 
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consisted of introducing bulky PAS ligand attached by a 
methylene tether to the reactivation moiety—imidazole 
aldoximes. Accordingly, PAS ligand is able to ensure the 
anchoring of the compound to the active site. Novel eight 
uncharged derivatives 36–43 (Fig. 14) were developed with 
the PIQ or TIQ as the PAS ligands connected to the imi-
dazole aldoxime through flexible alkyl spacer of different 
length. Compounds 36–43 were expected to cross BBB due 
to their high lipophilicity (calculated log P). The biologi-
cal evaluation consisted of only in vitro reactivation of the 
sarin-, tabun- and VX-inhibited hAChE (Wei et al. 2014). 
The most efficient reactivators among imidazole aldoximes 
were 42 and 43, being as efficient as methoxime or asox-
ime against sarin-inhibited hAChE. Compound 43 exerted 
the highest reactivation ability for VX-inhibited hAChE, 
comparable to asoxime or obidoxime. Improved reactiva-
tion ability for tabun-inhibited hAChE was achieved with 
43 when compared to obidoxime and trimedoxime (Wei 
et al. 2014).

Based on the requirements for centrally active AChE 
reactivators and meeting the criteria for drug-like proper-
ties (Lipinski et  al. 2001; Kuca et  al. 2006; Wager et  al. 
2010), study by McHardy aimed to the synthesis and 

characterization of the two new series of reactivators con-
taining either amide-oxime moiety (44 and 45) with the 
variety of n-methylene linkers and PAS ligands or bearing 
the keto-oxime group (46–48). All these compounds were 
assayed in vitro to reactivate cyclosarin-inhibited hAChE. 
Some compounds 44–48 (Fig. 15) possess substantial reac-
tivation activity compared to MINA and favourable physi-
ochemical characteristics for CNS drugs (McHardy et  al. 
2014).

Retro-structural analysis applied to 2-PAM led to novel 
compounds containing amidine core connected with oxime 
functional group (Kalisiak et  al. 2011, 2012). It was pre-
sumed that during the physiological conditions such ami-
dine–oximes exist in protonated form mimicking charged 
pyridinium moiety of 2-PAM. Therefore, this might facili-
tates efficient binding via cation-π interactions in the CAS 
of AChE. In addition, protonated amidine group could 
potentiate electron-withdrawing effect of the oxime group 
and thus allow formation of the oximate anion plus zwit-
terionic form of molecule (Scheme 4) (Kalisiak et al. 2011, 
2012).

Firstly, study describing five novel amidine-oxime reac-
tivators (49–53) was published. The ability of these com-
pounds to reactivate OP-inhibited hAChE/hBChE was 
compared to 2-PAM and monoisonitrosoacetone (MINA) 
(Shih et  al. 2010; Skovira et  al. 2010) in  vitro and also 
in  vivo. The lipophilicity (C  Log  P) and pKa parameters 
were determined as well. pKa value for 51 was found 
around 8.0 which is consistent with the ideas for efficient 
oximes 7.5–8.0 (Gray 1984). Calculated C Log P suggested 
increasing lipophilicity in relation to the bulkiness of the 
attached alkyls, assuming better BBB penetration. In vitro 
reactivation capability was performed on the surrogates 
of nerve agents (Sp-GBC, Sp-GF-SMe, Sp-GAC) plus 
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pesticide echothiophate and in vivo with the model of nerve 
agent (Sp-GB-Am) (Barakat et al. 2009; Gilley et al. 2009). 
All compounds showed superior efficiency compared to 
MINA. Their reactivation potency increased with the alkyl 
chain length (from H to N-butyl). The most efficient com-
pounds were 51–53 yet they did not exceeded reactivation 
potency of 2-PAM in vitro. The study suggested that they 
are able to reach more effective concentrations in the brain 
than 2-PAM due to the higher lipophilicity (Kalisiak et al. 
2011).

Subsequent study combined structural features of ami-
dine–oximes into acyclic (including 52–53 and eight novel 
derivatives 54–61) and cyclic compounds (62–70 and 
71–72) (Fig.  16) (Kalisiak et  al. 2012). These derivatives 
were biologically evaluated exerting greater reactivation 
efficiency than MINA. None of the tested compounds sur-
passed reactivation power of 2-PAM in vitro. On the other 
hand, mice pre-treated with two amidine–oximes (53 and 
66) displayed some positive effect against lethal doses of 
Sp-GB-Am (0.08 mg/kg in 0.25 mL/mouse in saline, i.p.). 
Moreover, animal groups pre-treated with 52–53, 54, 62, 
64, 66 and 67 showed only minor signs of CNS toxicity 
(Kalisiak et al. 2012).

Based on the results of molecular modelling studies, 
non-oxime hydrazone reactivators (Petronilho et  al. 2015) 
were proposed as 2-PAM structural mimics (Delfino and 
Figueroa-Villar 2009). The study disclosed synthesis 

of nine novel compounds (73–81, Fig.  17) which were 
determined for their reactivation potency against par-
aoxon-inhibited EeAChE in vitro (Petronilho et al. 2015). 
Unfortunately, results indicated that hydrazones as well 
as guanylhydrazones are not effective against paraoxon 
intoxication thus suggesting their inappropriate nucleo-
philic character. On the other hand, 73–81 revealed inter-
esting AChE inhibition profile potentially applicable for 
the treatment of Alzheimer’s disease or Myasthenia gravis 
(Komloova et al. 2010; Zemek et al. 2014). The hydrazones 
and guanylhydrazones were found less acidic than oximes 
and thus have only minor capacity to be deprotonated for 
successful reactivation at pH 7.4 in the AChE active site 
(Petronilho et al. 2015).

Hydroxylamine nucleophile as an oxime alternative 
to counteract OPs exploiting ab  initio quantum chemical 
calculations and steered molecular dynamic studies were 
also presented (Lo and Ganguly 2014). The calculations 
showed that the newly designed compound N-(pyridine-
2-yl)hydroxylamine (82, Fig.  18) could be more effective 
in reactivating tabun-inhibited AChE than charged reactiva-
tors or uncharged reactivator 3-hydroxy-2-pyridinealdox-
ime, with activation barrier around 1.7 kcal mol−1, which 
is by 7.2 kcal mol−1 lower than that found for trimedoxime 
(Kassa et al. 2005). However, the docking analysis showed 
that the charged bis-quaternary pyridinium oximes have 
greater binding affinity to the active-site gorge of hAChE 

Scheme 4   First generation of 
amidine-oxime (Kalisiak et al. 
2011)
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when compared to compound 82. These contradictory find-
ings can be counterbalanced by suitable logP values for 
82-derived compounds supporting their ability to penetrate 
through the BBB. Biological studies showed that the toxic-
ity of hydroxylamine 82 is similar to the methoxime, tri-
medoxime and obidoxime. Kinetic analysis and structural 
calculations for hydroxylamine 82 suggested interesting hit 
for further development of OPs antidotes (Lo and Ganguly 
2014).

Other effort in the development of new chemical enti-
ties replacing oxime compounds was presented by Bhat-
tacharjee et al. (Bhattacharjee et al. 2015). These pharma-
cophores were designed by in silico methods using model 
of tabun-inhibited eel AChE (Bhattacharjee et al. 2010). As 
a result, five novel non-oximes reactivators were selected 
from the databases (Maybridge and ChemNavigator) which 
showed efficacy for DFP-inhibited eel AChE comparable 
to 2-PAM (Bhattacharjee et al. 2012). Through the screen-
ing of the in-house WRAIR-CIS database, 67 compounds 
were further selected for in vitro studies on DFP-inhibited 

eel AChE. Four of them (83–86, Fig. 19) with the highest 
efficacy were suggested for in vivo testing on guinea-pigs 
poisoned by DFP. Leading compound 83 demonstrated the 
best overall therapeutic efficacy similar to 2-PAM against 
DFP-inhibited AChE. Certainly, this compound needs 
further investigation to assess its full therapeutic poten-
tial with biological characteristics (e.g. pharmacokinetics, 
pharmacodynamics) (Bhattacharjee et al. 2015).

Recently, Mannich phenols and general bases were 
introduced as new class of non-oxime reactivators (Fig. 20) 
(Katz et al. 2015). From the library screening, the identified 
bioactive compounds were related to the drug amodiaquine 
(ADQ, 87), well-known antimalarial agent (Burckhalter 
and Tendick 1948). ADQ was more active than 2-PAM in 
reactivation of DFP and paraoxon-inhibited AChE; how-
ever, hepatotoxicity and agranulocytosis issues prevented 
this compound from further development. Screening 
of novel ADQ analogues revealed that the most impor-
tant fragment responsible for reactivation is 4-amino-2-
(diethylaminomethyl)phenol (ADOC, 88), basically ADQ 
(87) without hydrophobic anchor. ADOC (88) displayed 
in  vitro reactivation potency towards paraoxon-, DFP-, 
sarin surrogate (NIMP)- and soman analogue (SIMP)-
inhibited hAChE (Li et al. 2001; Gilley et al. 2009; Meek 
et  al. 2012). Since the phenol is a leaving group within 
AChE phosphylation (in the case of paraoxon), the phos-
phonylation could be reverted with excess of suitable 
phenols such as Mannich phenols (Epstein et  al. 1964), 
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nitrophenols (Muthukrishnan et  al. 2012) and coumarins 
(Briseño-Roa et al. 2006; Orhan and Gulcan 2015). Moreo-
ver, chloroquine (CQ, 89), another antimalarial drug and 
less toxic ADQ analogue without phenol moiety, was also 
found to exert reactivating ability (Michaelides et al. 2011). 
9-Chloroquinoline ring showed pivotal role in conferring 
reactivation ability and its derivatization resulted in hybrid 
compounds 90–92 (Katz et al. 2015). The most active com-
pounds and their reactivation profiles were chosen after fur-
ther screening and SAR studies. Leading analogues 88, 91 
and 92 were assayed in vivo on mouse model subcutane-
ously exposed to the lethal dose of DFP (3 mg kg−1; 95 % 
of mortality). Highly soluble hybrid 88 was administered 
i.p. assaying both pre- and post-exposure treatments. Sig-
nificant neuromuscular relaxing side effects of analogue 91 
were observed. On the contrary, conjugate 92 was admin-
istrated only p.o. as a prophylactic agent. Number of sur-
vivors and cholinesterase activity in all tissues were meas-
ured after 24  h and compared to 2-PAM. Cholinesterase 
activity was restored in all tissues including CNS in case of 
administration of compounds 88 and 92. Administration of 
2-PAM resulted in the lower AChE activity compared to the 
levels of AChE after pre- and post-exposure administration 
of reactivator 88. Additionally, relief of neurological symp-
toms were observed in case of 88 and 92 contrary to the 
2-PAM (Katz et al. 2015).

Peripheral active site ligands

Within the effort to develop more potent reactivator, some 
studies were focused on the investigation of new peripheral 
ligands attached through the linker to the reactivation moi-
ety (in the most cases oxime group). The main purpose for 
introducing PAS ligand is improving the binding affinity to 
the PAS of the enzyme. Other rationale is directed to the 
diverse conformation of AChE/BChE enzymes in order to 
find highly selective reactivator.

Trimedoxime analogue K048 (93) with carbamoyl group 
(Fig.  21) was found to be more efficient at reactivating 
tabun-inhibited hAChE in  vitro than trimedoxime itself. 
The plausible explanation for this phenomenon stems from 
the fact that K048 has better affinity towards OP-inhibited 
hAChE which is mediated by carbamoyl moiety through 
the hydrogen bonds to the PAS (Kuca et al. 2003).

The inspiration for the potent reactivators with periph-
eral site ligand (PSL) can be found from the research of 
AChE inhibitors. Indeed, PIQ was the first presented in 
the study dealing with in  situ click chemistry of AChE 
inhibitors (Krasiński et  al. 2005). PIQ showed high bind-
ing affinity with orientation towards PAS. Additionally, 
newly in situ-clicked multivalent inhibitors displayed a sur-
prisingly low preference for PIQ stereoisomers (Krasiński 
et al. 2005). PIQ was exploited as a valuable tool in many 
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ongoing studies studying novel AChE inhibitors or reac-
tivators. Initially, PIQ was used as an attachment for the 
oxime 14 revealing first uncharged AChE reactivator 94–95 
(Fig.  22) (Mercey et  al. 2011; Saint-André et  al. 2011). 
This study further showed that there exists balanced bind-
ing affinity which is high for the phosphylated and low 
for the uninhibited enzyme. Based on the results from the 
molecular docking simulation, authors suggested that the 
best candidates should have linker attached in the position 
6 of 3-hydroxy-pyridine-2-aldoxime 14. The fact that PAS 
is located approximately 15  Å above the active site pre-
dicted ideal length between PSL and oxime moiety corre-
sponding to alkyl chain composed of 4–5 methylene units. 
Further investigation in the optimal linker and its position-
ing was described elsewhere (Mercey et al. 2012a). Oximes 
94 and 95 were tested in vitro against tabun- and VX-inhib-
ited hAChE. Their reactivation parameters were compared 
to the known oximes (obidoxime, asoxime, trimedoxime 
and HLö-7). Oximes 94 and 95 showed superior or simi-
lar in  vitro ability to reactivate the enzyme compared to 
these standards. It was disclosed that there exists trade-off 
between longer connecting linker which allows better bind-
ing within enzyme but less reactivation rate (Mercey et al. 
2011).

Based on the promising results obtained in the pioneer-
ing work leading to 94 and 95, seven uncharged AChE 
reactivators were further reported (Renou et  al. 2013). 
Retaining the fragment 14 connected through the alkyl 
tethers of various length to the different peripheral site 
ligands with the high affinity towards the OP-inhibited 
hAChE (Muñoz-Ruiz et al. 2005; Alonso et al. 2005; Kho-
rana et al. 2012). These reactivators 96–102 (Fig. 23) were 
assayed in  vitro against tabun- and VX-inhibited hAChE, 
and their reactivation abilities were compared to 2-PAM, 
obidoxime and asoxime. Results showed that only 101 pos-
sesses equivalent reactivation potency to 2-PAM. All other 
derivatives were found less efficient in comparison with the 
bis-pyridinium aldoximes (obidoxime, asoxime) (Renou 
et al. 2013).

In the follow-up study, additional uncharged reactiva-
tors were presented for OP-inhibited hAChE and OP-inhib-
ited hBChE which were used as efficient pseudo-catalytic 

bioscavengers (Kovarik et  al. 2010; Radić et  al. 2013; 
Renou et al. 2014). Again, 3-hydroxy-pyridine-2-aldoxime 
was used in combination with tryptoline which is moder-
ate affinity binder of both hAChE and hBChE (Costagli 
and Galli 1998). The tryptoline-based compounds 103–105 
(Fig.  24) were tested in  vitro for the reactivation of the 
VX-inhibited hBChE. The results showed that they were 
potent reactivators for VX-inhibited hBChE, specifically 
oxime 104 was the best reactivator known to date with effi-
ciency comparable to obidoxime. Explanation for the good 
affinity is probably due to a formation of π–π interaction 
between tryptoline moiety and Tyr332 at the entrance to 
hBChE active site (Wandhammer et  al. 2013). In addi-
tion, all these oximes showed reactivation potency of OP-
inhibited hAChE as well. Particularly, compound 105 was 
as efficient as asoxime for VX-inhibited hAChE  in vitro. 
Compound 104 exerted similar activity as trimedoxime for 
tabun-inhibited hAChE (Renou et al. 2014).

Scaffolds composing of 3-hydroxy-pyridine-2-aldox-
imes or 3-hydroxy-pyridine-2-amidoximes conjugated 
to the well-known PAS ligand 1,2,3,4-tetrahydroacridine 
(tacrine) were reported (Colletier et al. 2006; Rydberg et al. 
2006; Kliachyna et al. 2014). Authors studied the influence 
of various linkers on the different positions of pyridine 
ring. Four novel amidoximes (106–109) and five aldoximes 
(110–113) were reported (Fig. 25) (Kliachyna et al. 2014). 
Reactivation potencies of tacrines 106–113 were evaluated 
in  vitro against tabun-, ethyl-paraoxon- and VX-inhibited 
hAChE in comparison with reactivation kinetics to 2-PAM, 
obidoxime, trimedoxime, asoxime and HLö-7. Compounds 
107 and 109 were found inefficient in replenishing AChE 
activity. On the other hand, the rest of series displayed 
in vitro similar or superior reactivation ability to the stand-
ard reactivators highlighting compound 112. This oxime 
showed higher efficiency in reactivation of VX-inhibited 
hAChE compared to 2-PAM, obidoxime, trimedoxime and 
asoxime but less than HLö-7. Moreover, 112 exhibited the 
highest potency for tabun-inhibited hAChE than used bis-
quaternary reactivators in vitro. Oxime 112 might be also 
useful in intoxication with ethyl-paraoxon as it showed 
comparable activity to obidoxime and HLö-7 (Kliachyna 
et al. 2014).

In vivo assessment of these uncharged cholinesterase 
reactivators is currently awaited by the scientific commu-
nity to prove their biological effectiveness. Two of these 
uncharged reactivators 94 (GM113) and 115 (GM508; 
Fig. 26) have already been biologically evaluated towards 
VX-inhibited AChE in mice. Mice were intraperitoneally 
treated with asoxime, 2-PAM, 94 and 115 directly 1 min 
after s.c. intoxication of VX (LD50 =  22 μg/kg). Asox-
ime showed highest reactivation potential 4-fold higher 
than the rest of three reactivators at the same concentra-
tion (100  μmol/kg  bw.). Moreover, poor solubility of 
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Fig. 22   In vitro efficient uncharged reactivators (Mercey et al. 2011)
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reactivators 94 and 115 resulted in lower bioavailability 
and thus lower plasma levels (Kipp 2004; Mercey et  al. 
2011; Calas et al. 2016).

Compounds 116–118 (Fig. 27) were proposed as novel 
class of reactivators combining charged 4-PAM moiety 
attached through the ethylene glycol linkers of differ-
ent length to the non-ionic benzhydryl-piperidine moiety 
(Ohta et al. 2006; Kwon et al. 2007; Shih et al. 2009; de 
Koning et  al. 2011a). Authors suggested that this PAS 
ligand should increase lipophilicity, thus improving per-
meability through BBB and enhance reactivating capacity 
of constructs compared to parent pyridinium-4-aldoximes 
119–121 (Fig. 27) (de Koning et al. 2011a). The reactiva-
tion potencies of these compounds were evaluated against 
sarin-, tabun- and VX-inhibited hAChE in vitro compared 
to the intermediates 119–121, 4-PAM and asoxime. For 
the sarin- and VX-inhibited hAChE, 116–118 showed 
superior reactivation potency than 119–121 or 4-PAM but 
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slightly lower efficacy than asoxime pointing out to 118 
being the most promising candidate in the series. For the 
tabun-inhibited hAChE, it was found out that only oxime 
118 exhibited efficiency equal to the 4-PAM (de Koning 
et al. 2011a).

Taking into account, the results from previous study, 
ketoximes with benzhydryl-piperidine 122–124 (Fig.  28) 
were proposed (de Koning et al. 2011b). These compounds 
were evaluated against sarin-, tabun- and VX-inhibited 
hAChE compared to the parent oxime 125 and fragments 
126–128 (Fig.  28) in  vitro. Results showed significantly 
higher reactivation potency in case of 122–124 compared 
to 125–128. Interestingly, no significant influence in the 
linker length was observed. Conjugate 123 yielded with the 
best reactivation potency against sarin-inhibited hAChE. 
The reactivation ability for all the hybrids 122–128 against 
VX-AChE complex were in similar range. In case of tabun 

inhibition, no reactivation potency was observed. The reac-
tivation activity increase can be observed between 116–118 
and 122–124. Authors suggested positive influence of 
dual binding site strategy applied to ChE reactivators and 
improvement of reactivation potency of molecules with 
poor efficiency (de Koning et al. 2011b).

A set of 35 phenoxyalkyl pyridinium aldoximes of gen-
eral structure 129 (Fig.  29) was designed with improved 
lipophilicity to presumably cross BBB in higher extent 
(Chambers et  al. 2013). Phenoxyalkyl pyridinium-4-al-
doximes 129 combine 4-PAM attached through methylene 
tether (n = 3–6) to the differently substituted phenoxy moi-
eties. These aldoximes were tested in vitro for their reacti-
vation ability on surrogates of sarin- and VX-inhibited rat 
brain AChE in comparison with 2-PAM and trimedoxime 
(Ohta et  al. 2006; Meek et  al. 2012). Compounds prov-
ing efficacy higher than 40 % (11 out of 35) proceeded to 
in vivo evaluation using rats. Regardless of the compounds 
pharmacokinetics, oximes were administrated i.m. 1 h after 
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Fig. 27   Benzhydryl-piperidine 
attached to charged pyridinium-
4-aldoximes 116–118 and 
parent pyridinium-4-aldoximes 
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sarin surrogate i.p. administration (80 % brain AChE inhi-
bition). Three of these novel oximes showed 15–25 % brain 
AChE reactivation within 30 min after their administration 
(Chambers et al. 2013).

Interesting strategy was proposed via combining saccha-
ride structure with reactivation moiety (Garcia et al. 2010). 
The rationale of the study was supported by the GLUT1 
transporter that can be found on the brain membrane. It is 
relatively non-specific and able to transport variety of hex-
oses and glucose-conjugates. Evidence of BBB penetration 
of the sugar-oxime conjugates have already been reported 
(Rachaman et  al. 1979; Heldman et  al. 1986). Based on 
these presumptions, 14 saccharide-oximes including six 
novel compounds and eight previously reported com-
pounds were studied (Rachaman et al. 1979; Heldman et al. 
1986; Garcia et  al. 2010). Abilities of these saccharide-
oximes were evaluated on DFP-, paraoxon-, sarin- and VX-
inhibited hAChE and hBChE in vitro. After 20 min, oxime 
130 (Fig. 30) was nearly as effective as 2-PAM for sarin- 
and VX-inhibited hAChE with 80 and 20  % recovery of 
enzyme activity, respectively. 2-PAM saccharide analogues 
were more effective than 3-PAM or 4-PAM ones. Eight-
methylene tether linker was suggested to be optimal for 
conjugation of 2-PAM and glucose allowing the glucose to 
interact with PAS of hAChE (Garcia et al. 2010).

Mono-quarternary pyridinium aldoximes, namely 12 
analogues of 4-PAM (131–136) or 3-PAM (137–142), 
attached to substituted N-thiazolylacetamide moiety were 
developed (Fig.  31) (Valiveti et  al. 2015a). Thiazole is 
largely utilized chemical scaffold engaged in variety of 
drug candidates with a capability of binding to specific 
enzymes acting as reversible inhibitors, e.g. in some neu-
rological disorders (Gil et al. 2009; Bulic et al. 2010; Lee 
et  al. 2012; Valiveti et  al. 2015a). N-Thiazolylacetamide 
moiety was introduced to provide non-covalent interaction 
with the aromatic residues within the PAS of hAChE. Addi-
tionally, acetamide linker may facilitate proper orientation 
of the reactivating moiety due the electrostatic interac-
tions inside the narrow AChE gorge. All compounds were 
in  vitro evaluated for their reactivation potency against 
sarin-, O-ethylsarin- and VX-inhibited hAChE including 
pharmacokinetic parameters and compared to 2-PAM and 

obidoxime. 4-PAM-derived N-thiazolylacetamides were 
found more active than 3-PAM analogues. This phenom-
enon can be explained by calculated pKa values ranging 
between 8 and 8.5 (for 4-PAM) and 8.5–8.9 (for 3-PAM). 
The leading compounds of the study 135 and 136 did not 
overwhelm capability of obidoxime in the case of all tested 
nerve agents. The highest reactivation potency showed 
N-thiazolylacetamides bearing ester moiety suggesting its 
proper orientation towards phosphylated AChE. Docking 
studies confirmed importance of hydrogen bond interac-
tions between various amino acid residues and the amide 
linker or ethoxycarbonyl substituent (Valiveti et al. 2015a).

Encouraged by the results from previous study, other 
series of novel mono-quaternary pyridinium aldoximes 
with attached arenylacetamides was presented (Valiveti 
et al. 2015b). Prepared oximes were evaluated in vitro for 
sarin-, tabun- and VX-inhibited hAChE compared to the 
2-PAM and obidoxime. Results showed that all oximes 
revealed significant potency in reactivating sarin- and VX-
inhibited hAChE; however, reactivation potency against 
tabun-inhibited hAChE was only marginal. Six compounds 
in the series 143–148 (Fig. 32) were highlighted with excel-
lent ability to reactivate sarin-inhibited hAChE, while ana-
logues 145–147 were the best against VX-inhibited hAChE 
exceeding reactivation potencies of 2-PAM and obidoxime 
(Valiveti et al. 2015b).
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In silico research of the 2-amino-pyridine-3-aldoxime-
dipeptides as potential AChE reactivators was based on 
the previous observations suggesting its improved AChE-
reactivation profile (Tiwari et al. 2012; Chadha et al. 2015). 
Study involved in silico methods such as molecular dock-
ing, molecular dynamics and density functional theory to 
get insight into the binding mode in the AChE active site 
with particular emphasis to the specificity and selectiv-
ity. Results showed that oxime 149 (Fig. 33) interact with 
residues of the active site and PAS region, namely Tyr72, 
Tyr124, Trp286, Tyr341 and His447 and additional Glu285, 
Ser293 and Phe295 contributing to accommodation of the 
oxime moiety within the active site. Therefore, synthesis of 
these molecules and their in vitro/in vivo studies might be 
the matter of further interest (Chadha et al. 2015).

In addition, PAS binders included N-benzylpiperidine 
(150), tacrine (151), phenyl-tetrahydroisoquinoline, tet-
rahydroisoquinoline (152–153) as well as heteroaryl keto-
oximes with substituted N-piperidine or N-pyrrolidine 

(154–156) were proposed (Fig.  34). Most potent com-
pounds of this series were described in the section with 
CAS ligand (Fig. 15) (McHardy et al. 2014).

Computational study which designed new reactivators 
capable to reverse ageing process of OP-inhibited AChE as 
well as reactivate aged AChE was also published (Chandar 
et  al. 2014). Steered molecular dynamics simulation and 
molecular docking methods suggested that newly designed 
dimethyl(pyridin-2-yl)sulfonium (157) is more efficient 
in the alkylation process of the phosphorus atom of the 
“aged” AChE-OP adduct than earlier reported N-methyl-
2-methoxypyridinium 158 (Topczewski and Quinn 2013). 
Combination of these scaffolds with pyridin-2-aldoxime 
resulting in compound 159 that could also serve as reac-
tivator for inhibited AChE. Calculated ClogP of 3.35 also 
presumed BBB penetration for analogue 159 (Fig.  35) 
(Chandar et al. 2014).

Linkers

Whereas several of new CAS and PAS ligands were 
reported in the past few years, studies concerning modifica-
tions of linkers between those two fragments were reported 
only rarely. More likely, linkers between both anionic sites 
used in the recent publications were based on the previ-
ous knowledge (Musilek et  al. 2007b). Ongoing studies 
in AChE reactivators investigate new SAR between link-
ers with the aim to find new and more efficient candidate 
potentially useful for OP poisoning. SAR study focused 
on modifications of linkers between two pyridinium rings 
have already been published reviewing the period between 
1990 and 2004 (Musilek et  al. 2007b). Based on these 
observations, structural modifications in the bis-quater-
nary reactivators connected via double-bond (Kuca et  al. 
2005; Musilek et al. 2007a; Acharya et al. 2009a), xylene 
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(Musilek et al. 2005; Acharya et al. 2009a, b; Musilek et al. 
2010; Acharya et al. 2011; Gupta et al. 2014; Sharma et al. 
2014), and combinations with oxygen analogues have been 
reported (Kim et al. 2005; Chennamaneni et al. 2005; Srini-
vas Rao et  al. 2006; Oh et  al. 2006; Acharya et  al. 2008, 
2009a, 2010). These modifications have already been dis-
cussed in the recent review papers (Mercey et  al. 2012b; 
Sharma et al. 2015).

Interesting strategy has been shown in combination of 
pyridinium aldoximes using their complexes with ZnII 
(160–162, Fig.  36) (Konidaris et  al. 2014). Authors took 
advantage of ZnII being Lewis acid and thus enhancing the 
nucleophilicity of the oxime moiety in combination with 
oximate may lead to decrease the pKa closer to the physio-
logical values. This assumption has already been envisaged 
before (Bolton and Beckett 1964; Breslow and Chipman 
1965; Breslow and Overman 1970). New complexes were 
tested for reactivation potency against paraoxon-inhibited 
EeAChE compared to obidoxime and dinuclear complex 
of the same ligand [Zn2(O2CPh)4(pyridin-4-aldoxime)2].2-
MeCN (Konidaris et al. 2009). The rationale for the design 
stemmed from molecular modelling survey (Konidaris 
et  al. 2014). Results showed that complexes 160–162 are 
moderately active reactivators highlighting the derivative 
160, however, not reaching the activity of obidoxime. Inter-
estingly, [Zn2(O2CPh)4(4-pyridinealdoxime)2].2-MeCN 
(dinuclear complex) displayed no activity. Molecular mod-
elling studies revealed that the mononuclear ZnII com-
plexes possess structural and physical–chemical properties 
to move across the narrow gorge and arrange accommoda-
tion into the active site of the enzyme providing several 
important interactions with both anionic sites. Poor reacti-
vation potency of Zn-dimers might be explained by more 

distant orientation of oximate to P–O bond and formation 
of stronger interaction to the mid-region of the enzyme 
(Konidaris et al. 2014).

The latest trends in development of novel AChE reacti-
vators tend to mono-pyridinium or uncharged reactivators 
bringing also some novelty to the linkers connecting CAS 
reactivation moieties with PAS ligands as well as exploit-
ing the well-known features from the bis-pyridinium 
reactivators.

Suggestion that optimal length for the linker lies 
between 4 and 5 methylenes was proposed (Mercey et al. 
2011, 2012a). Nine novel analogues were described 
(164–172, Fig. 37) (Mercey et al. 2012a), and their activi-
ties were compared to previously reported oximes 94 and 
95 (Fig. 22) (Mercey et al. 2011). Structural modifications 
included variable linker length, attachment of oxime moi-
ety on the pyridine ring and heteroatom insertion into the 
linker. Their potential was evaluated performing in  vitro 
reactivation for tabun-, ethyl-paraoxon- and VX-inhibited 
hAChE. Overall, the highest reactivation ability goes for 
analogues 4- or 5-methylenes tether attached to position 6 
of the pyridine ring. With this regard, 94 and 95 provided 
the highest potential for reactivation VX-inhibited hAChE, 
yet all compounds showed superior reactivation ability 
towards 2-PAM. In case of tabun-inhibited hAChE, three 
novel reactivators 165, 166 and 169 were more efficient 
than trimedoxime. Moreover, compounds 164 and 170 dis-
played similar efficacy to trimedoxime. Three compounds, 
namely 94, 95 and 165, showed reactivation potency to 
paraoxon-inhibited hAChE comparable to obidoxime and 
trimedoxime (Mercey et al. 2012a).

Researchers from University of Rouen studied reactiva-
tion ability of novel tacrine-based reactivators. In this case, 

Fig. 35   Dimethyl(pyridin-2-yl)
sulfonium (157) conjugated 
with pyridine-2-aldoxime 
(159) (Chandar et al. 2014); 
N-methyl-2-methoxypyridinium 
(158) (Topczewski and Quinn 
2013)
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tacrine was used as anchor occupying PAS of the enzyme 
in combination with simple alkyl linkers ranging from 3 
to 5 methylenes connected to reactivation moiety. In that 
case 4 methylene linkers were highlighted (112, Fig.  25) 
(Kliachyna et al. 2014). Another study reported tryptoline 
as PAS ligand, highlighting three methylene-tethered ana-
logue (Fig. 24) (Renou et al. 2014). More details regarding 
these works can be found in the section dealing with CAS 
or PAS ligands.

Similarly, incorporation of ethylene glycol linkers of 
different length was used to improve the solubility issues 
(Figs. 27, 28) (de Koning et al. 2011a, b). In the first series, 
increase in the length of the linkers enhanced reactivating 
potential of such charged reactivators (Fig. 27) (de Koning 
et al. 2011a). In the second subset of non-charged hybrids, 
no significant influence between length of these linkers and 
activity was observed (Fig. 28) (de Koning et al. 2011b).

Thiazolylacetamides or phenylacetamides were used as 
side chain connected to 4-PAM suggesting that acetamide 
moiety may facilitate proper orientation of the oxime moi-
ety due the electrostatic interactions inside the AChE nar-
row gorge. Indeed, docking studies demonstrated forma-
tion of hydrogen bonding between the amino acids residues 
of the enzyme and the amide linker which resulted in the 
favourable orientations of reactivators in the active site of 
hAChE (Fig. 32) (Valiveti et al. 2015a, b).

Discussion

Herein, we have presented various approaches from dif-
ferent research groups in the search and development of 
novel and more potent AChE reactivators. One strategy 

shifted from well-established and largely exploited com-
pounds bearing aldoxime group to novel nucleophiles 
bringing in general interesting results. On the other 
hand, hydrazones and guanylhydrazones analogues did 
not show any valuable reactivation potency, only their 
applicability in different areas (Petronilho et  al. 2015). 
Hydroxylamines by Lo and Ganguly, together with some 
novel structures presented by Bhattacharjee et al, showed 
some promising possibilities; however, their results need 
to be supported by in  vivo biological data (Bhattachar-
jee et al. 2012; Lo and Ganguly 2014). Non-oxime based 
reactivators published by Katz and co-workers have 
already been supported by validating their potential 
in  vivo (Katz et  al. 2015; Bierwisch et  al. 2016). Amo-
diaquine acts as broad-spectrum reactivator of OP; how-
ever, it has a high inhibitory potency towards hAChE 
limiting its potential use. Based on these results, amodi-
aquine has become a valuable template in order to find 
alternatives for oxime based reactivators (Bierwisch et al. 
2016; Cadieux et al. 2016).

Improvement of oxime dissociation to the active oximate 
anion is a very important issue which scientists must bear in 
mind in order to develop highly efficient reactivators. For-
mation of oximate anion is essential to confer the compound 
reactivation properties. Dissociated and undissociated forms 
of reactivator with the pKa 7.40 have equal concentration at 
pH 7.40. With pKa 7.00, relative concentration of oximate 
anion occurs in about 71 % and it is around 10 % at pKa 
8.35 within physiological conditions. These data suggests 
the optimal pKa range laying between 7.00 and 8.35 for 
efficient reactivation where at least 10 % of oximate anion 
occurs (Musil et al. 2016). The pKa value is also important 
indicator for penetration through biological membranes 
especially through BBB. Charged (mono- and bis-quater-
nary) reactivators have only very limited permeability, even 
though this still seems be enough to provide effective con-
centrations to restore activity of brain AChE. Furthermore, 
BBB permeation of the compound is even more limited 
when reactivator is dissociated and oximate anion is formed. 
The pKa values of brain effective drugs were found ranging 
between 7.5 and 10.5 (Pajouhesh and Lenz 2005). In order 
to ensure proper pKa value of the novel reactivators, some 
modifications of the standard aldoxime moiety have been 
made to meet this criterion. However, none of the functional 
groups presented by 2-hydroxyiminoacetamides (Sit et  al. 
2011; Kovarik et  al. 2013; McHardy et  al. 2014; Karade 
et al. 2014), amidoximes (Saint-André et al. 2011; Kliach-
yna et al. 2014), hydroxamic acid (Saint-André et al. 2011), 
keto-oximes (de Koning et al. 2011b; McHardy et al. 2014) 
and amidine-oxime (Kalisiak et al. 2011, 2012) led to satis-
factory results obtaining more efficient reactivators. Mostly, 
all these reactivators have comparable or lower reactivation 
ability to 2-PAM.
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Fig. 37   Conjugates of 3-hydroxypyridinaldoximes and phenyl-tet-
rahydroisoquinoline connected through the different linkers 164–172 
(Mercey et al. 2012a)
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It has been reported that VX-agent is predominantly 
acting on the peripheral AChE, while the more lipophilic 
G compounds are primarily centrally acting nerve agents 
(Bajgar et  al. 2007b). Mostly, the effects of nerve agents 
vary in different brain areas from relatively resistant stria-
tum to very sensitive structures such as ponto-medullar 
area and frontal cortex (Bajgar et  al. 2007a). Reactiva-
tion of peripheral AChE is significant for neuromuscular 
transmission important for proper ventilation. Similarly, 
maintaining the activity of AChE in the central respiratory 
control centre in the ponto-medullar area is considered to 
be vital for survival (Goswamy et  al. 1994; Sungur and 
Güven 2001; Bajgar et al. 2007b). The evidence for pres-
ence of charged reactivators in the brain have already been 
demonstrated (Falb and Erdmann 1969; Cassel et al. 1997; 
Sakurada et al. 2003). However, the penetration to the BBB 
depends on the administered doses and on the targeted 
brain area (Bajgar et al. 2007a, b). In general, concentration 
10−4 to 10−5 M achieved in the brain should be sufficient 
for reactivation of the central AChE, especially in ponto-
medullar area resulting in the minimal level of AChE activ-
ity (about 5–20  %) for the survival (Bajgar et  al. 2007a). 
This fact also reflects the importance of the sufficient dose 
to be administered in order to ensure central AChE activ-
ity. Uncharged reactivators should be the solution when 
they could be administered in a lower dose necessary to 
reach ponto-medullar area. Furthermore, enhanced lipo-
philicity of such compounds help reactivators to reach dif-
ferent brain regions and more efficiently restore the central 
AChE function and by that avoiding belated neurological 
symptoms (dos Santos et  al. 2016). Thus, the developed 
uncharged reactivators are mainly based on dual binding 
site strategy in order to increase CNS bioavailability for 
the OP-inhibited AChE. However, it must be pointed that 
such lipophilic compounds may be also hampered with 
increased toxicity especially in the CNS.

AChE dual binding site strategy received particular 
attention in the mid-nineties. Pang et al. proposed computa-
tional study supported by the synthesis and in vitro evalua-
tion of the FDA approved AChE inhibitor 9-amino-1,2,3,4-
tetrahydroacridine (THA) used for palliative treatment of 
AD. Their outcome significantly approved benefit of dual 
site binding strategy. Specifically, connection of the two 
THA molecules through the alkylene chain yielded in com-
pound which was 1000 times more potent and 10,000 times 
more selective in inhibiting rat brain AChE over the THA 
alone. Optimal length of the alkylene chain to reach each 
of the active site was determined to be 7 methylene groups 
between THA cores (Pang et al. 1996). Such approach pos-
tulated that targeting both anionic sites of AChE resulted 
in more potent AChE inhibitors. Following this idea in 
the research of AChE reactivators, PSLs acting as anchor 
of AChE enhance reactivation potency of CAS ligands (de 

Koning et  al. 2011b). In this context PIQ (Mercey et  al. 
2011), tryptoline (Renou et al. 2014) and tacrine are largely 
exploited scaffolds as PSLs (Kliachyna et al. 2014; Nepo-
vimova et al. 2016). Such dual binding reactivators brought 
interesting in  vitro reactivation ability comparable to the 
bis-quaternary standards. However, in  vivo assessment 
pointed to poor solubility leading to low bioavailability of 
the compounds (Calas et al. 2016). Also the different routes 
of their administration do not provide unambiguous answer 
whether the dual binding strategy for AChE reactivators 
is reasonable to follow (Sit et al. 2011; Radić et al. 2012; 
Kovarik et al. 2013; Wei et al. 2014). Taken together, AChE 
dual binding reactivators are under development and on the 
uncertain way to replace currently approved charged reac-
tivators. Trade-off between increased BBB penetration and 
maintenance of desired solubility for in vivo administration 
might further tentatively favour mono-charged reactivators, 
especially with the combination of suitable PSL. Mono-
quaternary compounds with PSL may establish future 
leading trail in the effort of replacement bis-quartenary 
compounds.

Conclusion

Over the 60  years of extensive research, many efforts 
have been devoted to the development of new reactivators 
which would eliminate three major drawbacks of currently 
available antidotes. Although the most efficient reactiva-
tors clinically used are mono- or bis-pyridinium aldoxi-
mes, recent research slightly digresses from this dogma 
and presents a new variety of structures offering new pos-
sibilities. To date, the dogma of oxime functional group as 
the nucleophile has not been overcome by new chemical 
entities available for potent in  vivo reactivation (Lo and 
Ganguly 2014; Bhattacharjee et al. 2015; Katz et al. 2015). 
The solution of three main drawbacks has become major 
point of interest.

1.	 Dealing with broad-spectrum reactivator would rather 
be attainable with difficulties due the fact that every 
diversity in molecule of inhibitor needs a specific 
structure of the reactivator (Antonijevic and Stojiljko-
vic 2007; Jokanović 2012).

2.	 Increased BBB permeation is often one of the main 
issues discussed in many articles, but the efficient 
CNS reactivation in  vivo has not been supported to 
date by the literature data (Korabecny et  al. 2014). 
Moreover, increased BBB permeation may lead to the 
increased CNS toxicity of reactivators.

3.	 The research dealing with the “aged”-AChE drawback 
has demonstrated the possibility of its elimination 
on the computational level (Topczewski and Quinn 
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2013). However, this hypothesis needs direct proof of 
concept within in vitro/in vivo techniques.

Currently developed compounds exceed in some 
aspects the reactivation profile of known reactivators. The 
obtained results are often insufficient with none or incom-
plete in vivo study and/or with missing pharmacokinetic 
parameters. The results are also hampered by difficulty 
of different experimental conditions which may result 
in huge data variations (Sterner et  al. 2013; Worek and 
Thiermann 2013). On the other hand, the experimental 
data shows that some compounds might be equivalent to 
standard oximes that are currently available. To conclude, 
combinations of CAS and PAS ligands may foster devel-
opment of new and potent reactivators, favouring mono-
charged compounds.
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