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acute liver failure after multiple dosing of azathioprine was 
investigated in a patient case study by use of own clinical 
data. Simulated pharmacokinetic profiles were therefore 
related to in vivo drug response predicted for genes associ-
ated with observed clinical symptoms and to clinical bio-
markers measured in  vivo. PICD provides a generic plat-
form to investigate drug-induced toxicity at a patient level 
and thus may facilitate individualized risk assessment dur-
ing drug development.

Keywords  Quantitative systems pharmacology · 
Pharmacokinetic modeling · PBPK · Transcriptomics · 
Clinical translation · Drug-induced liver injury · Multiscale 
modeling

Introduction

Drug-induced toxicity is a major clinical problem (Schus-
ter et al. 2005) with cardiotoxicity and hepatotoxicity being 
the most frequent clinical cases (Von Hoff et  al. 1977; 
Andrade et  al. 2005; Takikawa et  al. 2009). The predict-
ability of specific toxic events is a major challenge in phar-
maceutical development since the underlying origins are 
almost unforeseeable (Kaplowitz 2004). In drug develop-
ment, whole-body physiologically based pharmacokinetic 
(PBPK) models are nowadays routinely used (Jones et al. 
2006; Maharaj et  al. 2013; Lippert et  al. 2013). Whole-
body PBPK modeling describes biological processes 
underlying drug pharmacokinetics at a large scale of physi-
ological detail and may be used among others to simulate 
interstitial concentration–time profiles in the extracellular 
environment of various organs (Jones et al. 2009; Kuepfer 
2010). PBPK modeling aims for a mechanistic understand-
ing of physiological processes describing drug absorption, 
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distribution, metabolism and elimination (ADME) within 
the body based on prior physiological and anatomical 
knowledge. Different organs are explicitly represented in 
PBPK models and are connected by blood flow (Fig. S1). 
Since PBPK models describe the physiology of an organ-
ism at a high level of detail, they can be used to simulate 
pharmacokinetic (PK) profiles of specific patient subgroups 
with individualized physiology (Maharaj et  al. 2013; Lip-
pert et al. 2013).

In order to detect drug-induced injury at an early stage, 
reliable predictions of toxic events as well as representa-
tive diagnostic biomarkers are of key relevance for patient 
safety (Shi et  al. 2010). This also requires a mechanistic 
understanding of the underlying cellular processes (Bissell 
et al. 2001; Schimmel et al. 2004; Holt and Ju 2006; Russ-
mann et al. 2009). Current advances in systems toxicology 
provide novel insights into central mechanisms involved 
in drug-induced toxicity (Waters and Fostel 2004; Heijne 
et  al. 2005; Chen et  al. 2012). Changes at different bio-
logical levels can nowadays be measured by -omics tech-
nologies to describe cellular alterations in response to toxic 
drug concentrations. Transcriptome profiling was success-
fully applied before to study adverse effects of toxic agents 
(Hockley et al. 2006; Brynildsen and Liao 2009; Michael-
son et  al. 2011; Zhang et  al. 2012; Van Delft et  al. 2012; 
Iskar et al. 2013; Doktorova et al. 2013; Zhang et al. 2014; 
Herpers et al. 2015). Combined application of different pro-
filing techniques allows linking cellular changes at multiple 
levels of biological organization that finally facilitates the 
characterization of molecular mechanisms of toxic events 
(Carreras Puigvert et  al. 2013; Wilmes et  al. 2013; Pillai 
et al. 2014). Furthermore, reverse toxicokinetics were used 
before to identify steady state blood concentrations for cor-
relations of in vivo equivalent doses with in vitro bioactiv-
ity data (Dix et al. 2007; Judson et al. 2011; Wetmore et al. 
2013; Judson et al. 2014). In another study, physiologically 
based kinetic models developed for different glycol ethers 
were used to estimate dose–response curves in rats and 
humans (Louisse et al. 2010). However, a systematic con-
sideration of in vitro toxicity data into an in vivo context, 
thereby reflecting temporal cellular changes induced by 
drugs administered in vivo, remains still challenging.

In this article, PBPK-based in vivo contextualization of 
in vitro toxicity data (PICD) is presented. PICD integrates 
in vitro toxicity data into drug-specific whole-body PBPK 
models to translate drug-induced in  vitro findings to an 
actual in  vivo situation, thereby predicting drug-specific 
response profiles induced by different dose levels admin-
istered in vivo. At the cellular level, in vitro toxicity data 
are coupled with equivalent PBPK-simulated concentra-
tion–time profiles at the organism level to allow a quantita-
tive description of time-resolved in vivo drug response of 
key cellular processes and biological pathways. Applying 

PICD in clinical research allows the quantitative pre-
diction of patient-specific drug response by specifically 
incorporating patient physiology in individualized PBPK 
models. In brief, PICD aims for a translation of preclini-
cal in vitro toxicity data into an in vivo context and hence 
allows risk assessment for individual patients during drug 
development.

PICD is exemplarily applied on the hepatotoxicant aza-
thioprine in humans and rats. As input, human and rat PBPK 
models of azathioprine are developed and in  vitro toxic-
ity data are analyzed (Fig.  1). Explicitly, time series gene 
expression profiles of primary human and rat hepatocytes 
from Open TG-GATEs (Igarashi et al. 2015), a large-scale 
toxicogenomics database, represent the in  vitro toxicity 
data. The predictive quality of PICD is assessed by in vivo 
response data measured in rat livers (Igarashi et al. 2015), 
thus exploring whether predicted in  vivo drug response 
shows in  vivo relevance (Fig.  1). To assess the predictive 
accuracy of PICD, in  vivo data are necessary for valida-
tion purposes. Since in vivo response data from liver biop-
sies were available in rats (Igarashi et al. 2015), PICD was 
applied on rats to assess whether predicted drug response 
shows in vivo relevance (Fig. 1). PICD is then applied for 
humans to predict in vivo drug response over time for doses 
estimated to be the in  vivo equivalents for concentrations 
exposed in vitro (Fig. 1). Note that the application of PICD 
in rats and humans is fully independent since apart from the 
validation step no information from the animal study was 
further used for the human case. To demonstrate the poten-
tial of PICD for clinical applications in humans, acute toxic-
ity is investigated after single and multiple dosing of aza-
thioprine. Patient-specific in  vivo drug response over time 
following documented cases of acute azathioprine overdose 
is predicted specifically considering patient physiology 
(Gregoriano et al. 2014; Fig. 1). The patient, who received 
the highest overdose (Gregoriano et  al. 2014), is further 
considered in a first patient case study (Fig. 1). In a second 
patient case study, PICD is applied on own clinical data to 
get insights into acute toxicity after multiple dosing of aza-
thioprine at the therapeutic dose. Simulated drug concentra-
tion–time profiles, predicted responses of symptoms-related 
genes as well as clinical biomarkers measured in  vivo are 
therefore analyzed (Fig. 1).

Results

PBPK‑based in vivo contextualization of in vitro 
toxicity data (PICD)

Here, the development of PICD—an integrative multiscale 
approach—is shown. The application of PICD allows pre-
dicting in vivo drug response by integrating multiple levels 
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of biological organization, thereby using whole-body PBPK 
models at the organism level to couple interstitial PK profiles 
at the organ level with in vitro toxicity data at the cellular 
level (Fig. 2). The use of PICD thus allows the prediction of 
drug response over time in an in vivo context. Gene expres-
sion data of primary human and rat hepatocytes treated with 
specific drugs at different concentration levels over different 
time ranges from Open TG-GATEs (Igarashi et al. 2015) are 
used exemplarily as in vitro toxicity data to quantify drug-
induced toxicity at the cellular level (Fig. 2). In the in vitro 
assay of TG-GATEs, the highest concentration was selected 

such that cell viability was decreased by 10–20 % (Igarashi 
et  al. 2015). PICD is basically applicable on any drug of 
interest, provided that correspondent in vitro response data 
for the same compound is available. Note that the applica-
tion of PICD is here exemplarily shown for the liver since 
the in vitro toxicity data were obtained in primary hepato-
cytes. To translate in  vitro findings to an in  vivo situation, 
PBPK modeling is used here to contextualize these cellular 
gene expression data at an organism level.

In an initial step, a drug-specific PBPK model is devel-
oped to identify in  vivo doses that are directly related to 

Fig. 1   Overview of the use of 
PICD. Input Human and rat 
PPBK models of azathioprine 
were developed and in vitro 
toxicity data of primary 
human and rat hepatocytes 
were analyzed (Igarashi et al. 
2015). Validation and Applica-
tion To validate PICD, in vivo 
toxicity data obtained in rat 
livers were used to compare 
predicted in vivo drug response 
with measurements observed 
in vivo. PICD was then applied 
in humans, thereby predict-
ing drug response for in vivo 
doses estimated for concentra-
tions used in vitro. Clinical 
application To demonstrate 
clinical applicability, PICD was 
applied on different clinical 
cases. At first, patient physiol-
ogy of eight clinical cases was 
considered in individualized 
PBPK models to predict in vivo 
drug response induced by dif-
ferent azathioprine overdoses 
(Gregoriano et al. 2014). One 
patient was further regarded in 
a patient case study using own 
data, thereby predicting in vivo 
response of genes involved in 
critical processes of an interac-
tion network. Moreover, acute 
toxicity after multiple dosing of 
azathioprine at therapeutic dose 
was investigated in a second 
patient case study. Therefore, 
drug concentrations simulated 
for the entire therapy process 
were related to in vivo response 
predicted for symptoms-related 
genes and to clinical biomarkers 
measured in the specific patient
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Fig. 2   Workflow of PICD. Input At the organism level, PBPK mod-
els are developed at the organism level whereby simulated (sim.) 
blood plasma concentrations are validated with experimental (exp.) 
PK data. At the cellular level, in  vitro toxicity data of compound-
treated primary hepatocytes are analyzed (Igarashi et  al. 2015). The 
hepatocytes were exposed to three different concentrations (low, 
middle and high). Drug-treated hepatocytes were compared to their 
time-matched controls to determine the change in gene expression 
after 2, 8 and 24  h leading to a total of nine different treatments 
(white–gray-colored symbols). Functional enrichment analysis was 
then applied to find regulated cellular processes and biological path-
ways. Coupling In vivo doses d1–d9 are identified for all treatments 
such that the in  vivo exposure simulated in the interstitial space of 

the liver (colored area under the curve) matched the in  vitro expo-
sure (gray rectangular area). Identified in vivo doses d1–d9 together 
with in vitro toxicity data (white–gray-colored symbols) are used to 
generate dose–response curves for all considered time points of the 
in vitro experiment. Contextualization In vivo doses d1–d9 are aver-
aged horizontally along the same in  vitro concentration leading 
to three doses dlow, dmiddle and dhigh (colored lines) representing the 
in  vivo equivalents to exposed in  vitro concentrations (low, middle, 
high). At the cellular level, in  vivo drug response over time reflect-
ing changes in cellular processes and biological pathways are then 
predicted (colored symbols) for the in vivo equivalent doses (colored 
lines) by using time-dependent in  vivo dose–response curves (color 
figure online)
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in  vitro drug exposure (Fig.  2). The in  vitro assay setup 
(Igarashi et al. 2015) is explicitly represented in the PBPK 
models by specifically adjusting in vivo drug plasma pro-
tein binding in the PBPK model correspondent to the 
in vitro concentrations. PK profiles simulated in the inter-
stitial space of the liver are then coupled with in vitro toxic-
ity data to predict in vivo drug response at the cellular level 
following in vivo drug administration at the organism level 
(Fig. 2).

To couple interstitial concentration–time profiles with 
in vitro toxicity data, in vivo doses are identified by PBPK 
simulations for intravenous drug administration such that 
the in vitro drug exposure in the assay equals the interstitial 
area under the curve in the liver at each experimental time 
point (Fig. 2). Note that by using validated PBPK models, 
potential non-linearities in ADME processes affecting the 
interstitial drug concentration are implicitly considered 
such that dose estimations are accurate across different 
dosage regimens. Dose–response curves are then generated 
for all time points by mapping in vitro toxicity data to the 
identified in vivo doses (Fig. 2).

The identified in  vivo doses are averaged horizontally 
to three doses (dlow, dmiddle and dhigh), which thus represent 
the in vivo equivalents to in vitro concentrations (low, mid-
dle and high). Drug response values are next calculated and 
assigned to doses dlow, dmiddle and dhigh by linearly interpo-
lating dose–response curves (Fig. 2) to predict in vivo drug 
response in relevant gene ontology (GO) (Ashburner et al. 
2000) terms, as well as in human pathways from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa 
and Goto 2000) and in toxicity-related pathways (TOX) 
(SABiosciences) (Table S1).

The use of PICD enables a time-resolved description of 
drug-induced in vivo response at the organism level by the 
integration of several levels of biological organization and 
hence allows considering various aspects of translational 
research in drug development.

Use of PICD for patients

PBPK modeling allows among others the consideration of 
patient-specific differences in the anatomy and physiology 
between various individuals by incorporating the anthro-
pometry of patients (e.g., body weight). Moreover, since 
validated PBPK models allow extrapolating PK simula-
tions to different dosage regimens, PICD is applicable to 
predict drug response not only for the in  vivo equivalent 
doses administered intravenously (Fig. 2) but also for other 
dose levels and administration routes. Thus, PICD can be 
applied in a patient-specific manner to allow the simula-
tion and interpretation of clinical observations following 
drug administration over time at the patient level (Fig. 3). 
Anthropometric parameters of patients (e.g., age or weight) 
are therefore used to build individualized PBPK models 
specifically considering patient physiology. Time-depend-
ent dose–response curves (Fig.  2) are generated analo-
gously for each clinical case by simulating PK profiles in 
the interstitial space of the liver taking into account the spe-
cific administration route (Fig. 3). Finally, patient-specific 
in  vivo drug response can be predicted following admin-
istration of the respective dosage regimen in each patient 
(Fig.  3). The application of PICD therefore facilitates the 
consideration of in vitro toxicity data within the context of 
human patients described in turn by patient-specific PBPK 
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models (Maharaj et  al. 2013; Lippert et  al. 2013). PICD 
thus provides a generic platform for translational research 
in clinical drug development.

Organism level: PBPK models of azathioprine 
for humans and rats

At the organism level, PICD initially requires the estab-
lishment of validated PBPK models (Fig. 2). The immuno-
suppressant azathioprine (Elion 1993) was chosen here as 
an exemplary use case for a hepatotoxic compound since 
the drug label gives a severity level of 3 for drug-induced 
liver injury (DILI) (Chen et  al. 2011; Björnsson 2015). 

Compound-specific physicochemical properties and the 
unbound fraction of the drug in plasma (FU) were used to 
parametrize the initial reference PBPK model for humans 
(Fig. 4; Table 1). Furthermore, patient physiology was con-
sidered in the human PBPK model to characterize the spe-
cific patient physiology (Table 2; Odlind et  al. 1986; Van 
Os et  al. 1996; Zins et  al. 1997). The compound-specific 
parameters (Table  1) together with the specific informa-
tion about the clinical studies (Table 2; Odlind et al. 1986; 
Van Os et al. 1996; Zins et al. 1997) are sufficient to repro-
duce the PBPK models of azathioprine since all anatomi-
cal and physiological parameters for both rats and humans 
are already provided in the modeling software. Likewise 

a b c

Fig. 4   PBPK model development and validation. Simulated con-
centration–time curves (lines) for azathioprine (blue) and 6-mercap-
topurine (red) were assessed with experimental PK profiles (circles) 
(Van Os et al. 1996). The reference PBPK model was then validated 
by evaluating simulated PK profiles with experimental PK data from 

different clinical studies (Odlind et al. 1986; Zins et al. 1997) (Table 
S2) not used to establish the reference model. Azathioprine was either 
administered intravenously (IV) or orally (PO). a Reference, 50 mg 
IV. b Validation, 100 mg IV. c Validation, 100 mg PO (color figure 
online)

Table 1   PBPK model parameters

Molecular weight (MW), acid dissociation constant (pKa), octanol/water partition coefficient (logP), fraction unbound (FU) and integrated 
metabolic process consisting of metabolic enzyme and corresponding kinetic parameters (vmax, KM) used for the developed PBPK model. The 
experimental logP value for 6-mercaptopurine was slightly adjusted, while the experimentally measured lipophilicity for azathioprine was used 
unchanged
a  Estimated

Drug MW (g/mol) pKa logP FU Metabolic enzyme KM (µmol/l) vmax (µmol/l/min)

Azathioprine 277.26 (Wishart 
et al. 2006)

7.87 (Wishart 
et al. 2006)

0.10 (Wishart 
et al. 2006)

0.70 (Wishart 
et al. 2006)

Glutathione-s-
transferase A1 
(Eklund et al. 
2006)

7.0a 60.0a

6-Mercaptopurine 152.18 (Wishart 
et al. 2006)

9.50 (Strongest 
acidic)

2.99 (Strongest 
basic) (Wishart 
et al. 2006)

1.85 (Czyrski and 
Kupczyk 2013)

0.81 (Wishart 
et al. 2006)

Xanthine oxidase 
(Aberra and 
Lichtenstein 
2005)

41.5a 410.0a
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compound-specific parameters such as membrane perme-
abilities or partition coefficients are directly calculated by 
the formulas underlying the chosen distribution model.  

First, plasma concentration data were used for initial 
model establishment (Van Os et al. 1996). The PBPK model 
considered both the prodrug azathioprine that is quickly 
converted in the liver by glutathione-s-transferase (Kaplow-
itz and Kuhlenkamp 1978; Watanabe et  al. 1978; Eklund 
et  al. 2006) and its metabolite 6-mercaptopurine, which is 
in turn mostly metabolized by xanthine oxidase to 6-thio-
uric acid (Aberra and Lichtenstein 2005). Since a negligible 
amount of both drugs, azathioprine and 6-mercaptopurine, 
was excreted unchanged in urine (Elion 1972; Bergan et al. 
1994), renal elimination was not considered in the underly-
ing PBPK model. To appropriately validate simulated con-
centration–time profiles of different compounds, experimen-
tal PK data are necessary. The metabolite 6-thiouric acid was 
not included in the PBPK model because no experimental 
measurements were performed in the used clinical studies.

After model establishment, the simulated plasma concen-
trations showed an excellent agreement with clinical PK data 
used for the initial model identification (Fig. S2; Table  2). 
For model validation, additional experimental PK data were 
next used, which were accurately described without further 
model modifications (Table 2; Fig. S2), thereby ensuring an 
adequate quality of the PBPK model for further predictions.

The validated human PBPK model was next used to 
develop a PBPK model for rats that is needed for the initial 
validation of PICD. Recently, it was shown that species-
specific physiology has the highest influence on the pre-
dictive quality of PBPK-based cross-species extrapolation 
(Thiel et  al. 2015). The rat PBPK model of azathioprine 
(Fig. S3) was hence developed by considering species-
specific differences in the physiology and anatomy in the 
human PBPK model of azathioprine (Fig. 4; Table 1).

Cellular level: azathioprine‑induced in vitro toxicity 
data for humans and rats

At the cellular level, in  vitro toxicity data is required for 
PICD to predict in  vivo drug response over time. Human 
and rat gene expression and enrichment analysis was per-
formed in the same way. Time course gene expression 

profiles of primary human and rat hepatocytes from Open 
TG-GATEs were analyzed to obtain quantitative toxicity 
data of azathioprine (Igarashi et al. 2015). Notably, toxicity 
data generated by other profiling techniques (Waters and 
Fostel 2004; Heijne et al. 2005) can analogously be used to 
predict drug-specific response profiles. For each treatment, 
subsets of differentially expressed genes were identified 
(absolute fold change >1.5, Benjamini–Hochberg corrected 
p < 0.01; Fig. S4A, Fig. S4B). Functional enrichment anal-
ysis was then applied to find significantly overrepresented 
terms (GO) and pathways (KEGG, TOX) (Benjamini–
Hochberg corrected p < 0.01; Data S1). Gene response val-
ues defined as absolute log2 fold change were calculated to 
quantify changes in significantly affected terms and path-
ways. Since the drug response values reflect the extent of 
activation or inhibition of functionally related genes in an 
in  vivo situation, they were used to predict drug-induced 
cellular changes over time in both rats and humans.

Initial validation of PICD in rats

To assess the predictive accuracy of PICD, in  vivo toxic-
ity data measured in rat livers (Fig. S4C) were used. The 
developed rat PBPK model (Fig. S3) together with the 
in  vitro toxicity data obtained in rat hepatocytes (Fig. 
S4B) served as input for the application of PICD to pre-
dict in  vivo drug response in rats. When applying PICD 
on rats, a corresponding in  vivo dose was determined for 
each of the nine in vitro treatments (e.g., high—8 h; Table 
S2). In the in vivo rat study, the minimum toxic dose identi-
fied in a 4-week toxicity study was used as highest dose 
while the low and middle dose were selected by diluting 
the high dose with a factor of three and ten, respectively 
(Igarashi et al. 2015). Consequently, PICD was applied to 
predict drug responses induced by the three doses used in 
the in vivo rat study.

In vivo drug response of cellular processes and biological 
pathways significantly regulated in rats (Data S1) were then 
predicted for all three doses orally administered in the in vivo 
rat study and were subsequently correlated with correspond-
ing in vivo observations (Pearson’s r = 0.35–0.85, p ≤ 0.01; 
Fig.  5a–e; Igarashi et  al. 2015). To check whether the 
application of PICD actually improved predictions in  vivo 

Table 2   Experimental 
conditions

Administration route, respective doses, health state and number of subjects. The experimental PK data 
were either used for establishment of the reference PBPK model (references) or for model validation (vali-
dation)

Administration route Dose (mg) Subjects Usage References

Intravenous bolus 50 Healthy (n = 24) Reference (Van Os et al. 1996)

Intravenous bolus 100 Uremic patient (n = 1) Validation (Odlind et al. 1986)

Oral 100 Healthy (n = 10) Validation (Zins et al. 1997)
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compared to the in vitro situation, temporal in vitro patterns 
and predicted in  vivo drug responses were both correlated 
with respective in vivo observations. In vitro drug response 
profiles of perturbed biological pathways (KEGG, TOX) 
and biological processes showed almost no relevance for the 
in vivo situation (Pearson’s r = −0.2 to 0.36, p > 0.05). In 
contrast, applying PICD obviously increased the concord-
ance with in vivo measurements for all biological pathways 
and cellular processes (r =  0.2–0.77, p =  0.02–0.34; Fig. 
S5A–D). The correlation results for the individual pathways 
and cellular processes can be found in Data S2.

In both patient case studies, expression profiles of con-
sidered genes were predicted for clinically relevant doses 
to investigate acute liver toxicity after single and multiple 
dosing of azathioprine. To test whether predictions have 
in vivo relevance in rats, predicted gene expression profiles 
were correlated with respective profiles observed in  vivo 
(Pearson’s r =  0.37, p =  3.7e  –  18; Fig.  5f). In  vitro–in 
vivo extrapolation of gene expression profiles was also 
improved by using PICD (Fig. S5F). The in vivo relevance 
of predictions in rats thus verified the application of PICD 
in humans. Independent of the use of PICD in rats, relia-
ble in vivo profiles of drug response and gene expression 
were predicted following administration of azathioprine in 
humans.

Application of PICD in humans

In order to now predict in vivo drug response in humans, 
in  vitro toxicity data from azathioprine-treated hepato-
cytes (Fig. S4A) were coupled with interstitial PK pro-
files simulated in the liver for the same drug (Fig.  2). 
To this end, three estimates of in  vivo doses were aver-
aged horizontally to obtain doses representing the in vivo 
equivalents (dlow  =  20.7  mg/kg, dmiddle  =  53.3  mg/kg 
and dhigh  =  142.8  mg/kg) to concentrations exposed 
in  vitro (Table S2). Since the highest in  vitro concentra-
tion was defined at the onset of toxicity (Igarashi et  al. 
2015), administration of the identified high dose (dhigh) 
was expected to cause the experimentally observed toxic 
effects at the cellular level. The remaining two concentra-
tions were further selected by diluting the toxic concentra-
tion by a factor of five and twenty-five, respectively (Igar-
ashi et al. 2015). Interestingly, the identified low dose was 
seven times higher compared to the therapeutic dose (3 mg/
kg) used in clinical trials (Shapiro et al. 1993). Still, vari-
ous toxic effects induced by dose levels in the range of the 
identified doses were reported in clinical studies (Table S3; 
Gregoriano et al. 2014).

Drug response values after 2, 8 and 24 h were next calcu-
lated to quantify the in vivo response in enriched GO terms 
and biological pathways (KEGG, TOX) following adminis-
tration of the in vivo equivalent doses (Fig. 6, Fig. S6). By 
considering a dense number of hypothetical intermediate 
doses, correspondent in vivo drug response can be further 
extended to calculate drug response maps as such reflecting 
cellular changes over time for multiple dose levels applied 
in vivo (Fig. S7). In general, in vivo drug response values 
show low response after 2 and 8  h as opposed to larger 
changes after 24 h indicating a delayed regulatory response 
at the cellular level (Fig. 6, Fig. S6). Nonetheless, the initial 
increase in drug response was significant at the early time 
point in any regulated KEGG pathway and in 85 % of any 
perturbed toxicity-related pathway and GO term (p < 0.05, 

a b

c d

e f

Fig. 5   Correlation of predicted drug response profiles with in  vivo 
measurements in rats. Correlation between predicted (pred.) in  vivo 
profiles of drug response and gene expression with observed (obs.) 
profiles measured in  vivo following oral administration of the three 
doses used in the rat study (low dose = yellow, middle dose = blue, 
high dose = red) (Igarashi et al. 2015). All cellular processes or bio-
logical pathways that were significantly regulated in at least one treat-
ment (Data S1) and all genes analyzed in the case studies (Table S4, 
Table S5) were considered for the correlation of drug response and 
gene expression, respectively. Correlation analyses were performed 
by calculating Pearson’s correlation coefficient r and the correspond-
ing p value p. a Correlation of affected KEGG pathways. b Corre-
lation of affected toxicity-related pathways. c Correlation of affected 
biological processes. d Correlation of affected cellular components. 
e Correlation of affected molecular functions. f Correlation of genes 
considered in both case studies (color figure online)
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one-sample t test). High responsive pathways induced by 
all equivalent in vivo doses after 1 day showed significant 
increases in drug response between 8 and 24 h (DNA rep-
lication, cell cycle, mismatch repair, drug metabolism—
cytochrome P450, nucleotide excision repair and retinol 
metabolism, p  <  0.05, one-way ANOVA with post hoc 
Tukey–Kramer; Fig.  6). Furthermore, high cellular activ-
ity was identified in biological processes regulating cell 
replication (Fig. S6A), as well as in processes involved in 

chromosome condensation (Fig. S6B). Analyzing enriched 
toxicity-related pathways revealed high response in mecha-
nisms related to DNA damage and repair (Fig. S6D) as sug-
gested by another study (Karran 2006).

Here, PICD was applied to predict in vivo drug response 
in humans induced by in vivo doses derived from in vitro 
concentrations (Igarashi et al. 2015). In a next step, PICD 
was used for different patients by specifically considering 
individual physiology and various dosage regimens.

Fig. 6   Application of PICD on the hepatotoxicant azathioprine in 
humans. At the organ level, liver interstitial PK profiles were simu-
lated for doses dlow, dmiddle and dhigh (colored lines). At the cellular 
level, correspondent drug response profiles were predicted for signifi-

cant affected human pathways from KEGG following in  vivo drug 
administration of azathioprine. The color scale depicts predicted 
in vivo drug response (color figure online)

a b

Fig. 7   PICD applied on eight clinical cases of acute azathioprine 
overdose. a Simulated drug concentration–time profiles, correspond-
ing predicted in vivo drug response of a critical toxicity-related path-
way (DNA damage and repair), as well as predicted cytotoxicity for 
eight clinical cases following oral administration of different azathio-
prine overdoses (Table S3). In vivo drug responses and cytotoxicity 
were predicted for both replicates to represent the variability (gray 
area) (Igarashi et  al. 2015). The mean drug responses are shown as 

solid lines. Colors of patients indicate the highest Poisoning Severity 
Score (PSS) (Persson et  al. 1998) of the occurred symptoms [none 
(green) = 0, minor (yellow) = 1, moderate (red) = 2]. The overdoses 
(mg/kg) are shown in brackets. b Correlation results of predicted 
in vivo drug response of DNA damage and repair at 24 h with pre-
dicted cytotoxicity values. Correlation analysis was performed by cal-
culating Pearson’s correlation coefficient r and the corresponding p 
value p (color figure online)
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Acute toxicity after single dosing of azathioprine: 
patient cohort study

An overview of previous cases of acute azathioprine over-
doses has recently been reported (Gregoriano et al. 2014). 
Since all cases are clinically documented, PICD could be 
applied to study azathioprine-induced toxicity in a patient-
specific manner. In particular, individualized azathioprine 
PBPK models were developed by explicitly considering 
patient physiology (Fig.  7a; Table S3). PICD was then 
applied on each clinical case (Fig.  3), thereby calculating 
in vivo drug response of processes involved in DNA dam-
age and repair (Fig. 7a) following oral administration of the 
respective overdose. In addition, correspondent cytotoxic-
ity values describing cell viability over time were predicted 
for all clinical cases (Fig.  7a) to allow a correlation with 
patient-specific drug responses.

Analyzing patient-specific drug response profiles indi-
cated an early increase in gene response for every patient 
(p  <  0.001, one-sample t test; Fig.  7a). Further analysis 
revealed a significant change between 8 and 24 h for patient 
16, 21, 28, 17 and 19 (p  <  0.05, one-way ANOVA with 
post hoc Tukey–Kramer). To assess the increase in toxic-
ity, drug response values calculated at different time points 
were correlated with global cytotoxicity values (Fig.  7b). 
Excellent correlation results were found at 24 h (r = 0.99, 
p = 2.73e – 6; Fig. 7b). Comparing clinically applied Poi-
soning Severity Score (PSS) (Persson et  al. 1998) with 
individual drug response after 24 h confirms this observa-
tion (Spearman’s ρ =  0.78, p =  0.057). For this correla-
tion analysis, patient 17, who remained asymptomatic after 
receiving a heavy overdose, was not considered (Table S3).

In the following, patient 19, who was exposed to the 
highest overdose (180.1 mg/kg), was regarded in a patient 
case study to investigate acute toxicity after single dosing 
of azathioprine.

Acute toxicity after single dosing of azathioprine: 
patient case study 1

When regarding the various cases of acute azathioprine 
overdoses (Gregoriano et  al. 2014), the highest overdose 
was observed for patient 19 (Table S3), considered in the 
first patient case study. Drug response in the most respon-
sive toxicity-related pathway (DNA damage and repair; Fig. 
S5D) was therefore analyzed following oral administration 
of the specific overdose in this patient (180.1 mg/kg). Addi-
tionally, drug response was considered for the therapeu-
tic dose (3  mg/kg) (Shapiro et  al. 1993) to study changes 
between the toxic case and the therapeutic situation. Clini-
cal symptoms with minor (e.g., headache) and moderate 
severity (e.g., dyspnoea) were observed for patient 19 (Table 
S3). PK profiles (Fig.  8a) as well as predicted cytotoxic 

response patterns (Fig.  8b) were calculated for both dose 
levels. In vivo drug responses for DNA damage and repair 
processes were separated into responses of different func-
tional groups (Fig. 8c; Table S4). A slight increase in drug 
response was identified after 2  h followed by stable drug 
response to 24 h for nearly any functional category (enzyme, 
other, transcription regulator) except for kinases that were 
strongly affected by azathioprine overdose between 8 and 
24  h (Fig.  8c). In contrast, only a slight response in all 
functional categories was identified when azathioprine was 
administered at the therapeutic dose (Fig. 8c).

Furthermore, an interaction network was generated and 
a subnetwork was extracted by considering all interactions 
between genes that were substantially perturbed (absolute 
log2 fold change >0.5) by azathioprine in at least one time 
point (Fig.  8d; Table S5). Temporal expression patterns 
of genes involved in two critical processes inducing DNA 
repair were then analyzed and compared for both dose lev-
els (Fig. 8e). In both processes, very low changes in gene 
expression were identified when azathioprine was admin-
istered at the therapeutic dose contrarily to substantial 
changes induced by the toxic dose (Fig. 8e).

Fig. 8   Acute liver toxicity after single dosing of azathioprine. a Con-
centration–time profiles simulated for patient 19 (Table S3) following 
oral administration of the toxic dose (solid red line) and the therapeu-
tic dose (dashed blue line). b Cytotoxicity values over time predicted 
for the toxic dose (solid red line) and the therapeutic dose (dashed 
blue line). The Predictions were made for both replicates to represent 
the variability (gray area). The mean cytotoxicity is shown as solid 
line. c Predicted in  vivo drug response induced by oral administra-
tion of the therapeutic dose (dashed colored lines) and the toxic dose 
(solid colored lines). In vivo drug responses were separated into dif-
ferent functional categories (enzyme, other, kinase and transcription 
regulator) (Table S4). The Predictions were made for both replicates 
to represent the variability (gray area). The mean drug responses are 
shown as solid lines. d Interaction network and processed subnetwork 
of genes involved in DNA damage and repair processes (Table S5). 
Since no expression data were available for CHEK2 and ERCC5, 
interactions between these genes and other were excluded. The sub-
network (thick black lines) was identified by considering only inter-
actions between genes that were strongly regulated (absolute log2 
fold change >0.5) in at least one time point. The interaction types (A 
activation, E expression, P phosphorylation, PD protein–DNA inter-
action, PP protein–protein interaction) were highlighted next to the 
specific edges. The interaction network was generated through the use 
of QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood 
City, www.qiagen.com/ingenuity). e Predicted temporal expression 
patterns induced by the therapeutic and toxic dose were simulated for 
patient 19. Two critical processes (P1, P2) extracted from the subnet-
work were considered separately (dashed line indicates separation). 
The first process (involved genes: MLH1, ERCC5, MDM2, PRKDC, 
ATR, ATM, CHEK1) resulted in the inhibition of CHEK1 that is 
required to initiate cell cycle arrest in response to DNA damage. The 
second process (involved genes: MDM2, CDKN1A, PCNA) induced 
the inhibition of PCNA leading to an impairment of DNA repair pro-
cesses. The predictions were made for both replicates to represent the 
variability (gray area). The mean gene expressions are shown as solid 
lines (color figure online)

▸

http://www.qiagen.com/ingenuity
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Considering the first process following acute azathio-
prine overdose, CHEK1 responsible for cell cycle arrest 
and repairing damaged DNA (Goto et  al. 2012; McNeely 
et  al. 2014; Kim et  al. 2015) was activated after 2  h 
(Fig. 8e). Then, CHEK1 was continuously inhibited as con-
sequence of the inhibition of kinases (ATM, ATR, PRKDC) 

activating CHEK1 and enzymes (MLH1, ERCC3) interact-
ing with ATM and ATR (Fig. 8e). The impairment of ade-
quate DNA repair after 24 h was reflected by an increased 
cell death measured in vitro (Fig. 8b; Igarashi et al. 2015).

In the second process (Fig.  8e), MDM2, a tran-
scription regulator for the kinase inhibitor CDKN1A 

a b c
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(Sánchez-Aguilera et  al. 2006), was constantly activated 
leading to an increased activation of CDKN1A, whereas 
the proliferating cell nuclear antigen (PCNA) was strongly 
inhibited over 24 h (Fig. 8e). Since PCNA is required for 
DNA excision repair (Shivji et al. 1992; Essers et al. 2005), 
cell viability was detrimentally affected (Fig. 8b).

Analyzing both processes induced by the therapeutic 
dose showed very low response, which reveals no defi-
ciency in DNA repair or cell cycle arrest (Fig.  8e). This 
observation was confirmed by the cell viability profile pre-
dicted for the therapeutic dose only showing slight varia-
tions compared to the control (Fig. 8b).

For this patient case study, PICD provided important 
insights into changes in gene expression for acute toxicity 
after acute azathioprine overdose at the patient level.

Acute liver failure after multiple dosing 
of azathioprine: patient case study 2

In contrast to acute toxicity after acute overdosing of aza-
thioprine, in this second case study, acute liver injury was 
observed in the context of a chronic treatment with aza-
thioprine at therapeutic dose by using own clinical data. A 
37-year-old man with a history of thrombocytopenic pur-
pura (TTP) was treated orally with 50 mg of azathioprine 
once daily over a period of 7 years (Fig. 9a). During this 
period, liver parameters were always within normal range. 
Blood plasma concentrations of azathioprine and 6-mer-
captopurine were simulated for the entire evolution of the 
patient (Fig.  9b). The patient was seen for urgent consul-
tation in the outpatient hepatology clinic for evaluation of 
new onset of jaundice and elevated liver enzymes, associ-
ated with general malaise, weakness and nausea within 
5  days evolution. When jaundice has started, azathio-
prine treatment was terminated resulting in an instantane-
ous washout of the drug from the body within a few days 
(Fig. 9b). The diagnosis of DILI was carried out based on 
a scale specifically designed for DILI causality assessment, 
the Rousell Uctaf Causality Assessment Model (RUCAM) 
(Danan and Benichou 1993), with a score of 7 (probable), 
by ruling out other possible etiologies (viral hepatitis, 
excessive alcohol use, metabolic diseases, autoimmune dis-
orders and biliary diseases).

To compare changes at the cellular level with observed 
clinical symptoms, temporal expression patterns follow-
ing oral administration of azathioprine were predicted for 
fifteen genes that are associated with jaundice (Fig.  9c; 
Table S6). Notably, no drug accumulation occurred during 
multiple dosing for both azathioprine and 6-mercaptopu-
rine since both compounds were extensively metabolized 
and almost completely cleared from the body within 24 h 
(Fig.  9b). This was also observed for the simulated drug 
concentrations in the intracellular space of the liver. Since 

additionally no in  vitro response data were available for 
repeated dosing, drug-induced adaption due to multiple 
dosing was hence assumed to be negligible and the pre-
dicted gene expression profiles (Fig.  9c) were thus to be 
assumed to reflect the drug response at the cellular level. 
In addition, cell viability values predicted for the therapeu-
tic dose disclosed no relevant elevations (Fig. S8). Investi-
gating the response of genes affecting jaundice (Table S6) 
revealed no remarkable changes (Fig. 9c).

Biochemical markers measured shortly before, during 
and after the occurrence of jaundice indicated significant 
elevations (Fig. 9d). Levels of alanine transaminase (ALT) 
(1373 U/L), aspartate transaminase (AST) (718  U/L) and 
gamma-glutamyl transferase (GGT) (437  U/L) clearly 
exceeded clinically relevant reference levels (Ceriotti et al. 
2010; Fig. 9d). Moreover, laboratory studies yielded a total 
bilirubin of 4.78  mg/dL reflecting a substantial increase 
compared to measurements before and after jaundice 
occurred. While concentrations of glucose and triglycerides 
were increased, total cholesterol (142  mg/dL) was nota-
bly diminished (Fig.  9d). The patient reported substantial 
improvement in his health status and liver biochemical tests 
a few days after the discontinuation of azathioprine, and 
follow-up visits after two months revealed subsequent nor-
mal laboratory tests and lack of symptoms (Fig. 9d).

In this second patient case study, PICD provided the 
contextualization of simulated pharmacokinetics, predicted 
gene expression changes induced by the therapeutic dose 
and in vivo measurements of biochemical markers.

Discussion

In this study, the integrative multiscale approach PICD is 
presented, which allows a time-resolved description of 
drug-specific response profiles at the cellular level induced 
by in vivo drug administration at the organism level. Con-
ceptually, PBPK models validated with blood plasma con-
centration–time data were used to simulate unbound drug 
concentrations in the interstitial space of the liver that in 
turn corresponds directly to the extracellular medium of 
in  vitro experiments. Applied consistently, the systematic 
approach of using PBPK modeling for contextualization of 
in vitro toxicity data, which was exemplarily applied here 
for azathioprine, thus enables a generic workflow for the 
analysis of toxic effects of arbitrary drugs at patient level.

Predicted in  vivo drug response induced by the identi-
fied doses (Fig.  6, Fig. S6) reflects the in  vivo results of 
temporal cellular alterations observed for drug concentra-
tions administered in  vitro (Table S2). Considering oral 
administration (Zins et al. 1997), identified doses are in the 
range of toxic dose levels reported in clinical studies (Gre-
goriano et al. 2014) as such highlighting clinical relevance 
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Fig. 9   Acute liver failure after 
multiple dosing of azathioprine. 
a Therapy process. The 37-year-
old male patient received 50 mg 
of azathioprine orally every 
day over a period of 7 years. 
Measurements of clinical bio-
markers (e.g., ALT level) were 
started 1 week before DILI 
symptoms (jaundice) occurred. 
At that time, no abnormality 
was detected (NAD). Azathio-
prine treatment was terminated 
at the onset of liver toxicity. 
About 9 weeks later, jaundice 
disappeared. b Blood plasma 
concentrations of azathioprine 
(blue line) and 6-mercaptopu-
rine (red line) were simulated 
for the whole therapy process 
following oral administration of 
50 mg every 24 h. When DILI 
occurs, azathioprine treat-
ment was terminated leading 
to a rapid clearance of both 
compounds within the body. 
c Expression levels of fifteen 
genes related to jaundice (Table 
S6) were exemplarily simulated 
over 1 day following single dos-
ing of 50 mg of azathioprine to 
reflect the cellular effects at the 
transcriptional level induced by 
the permanent drug treatment 
(Table S6). The predictions 
were made for both replicates 
to represent the variability 
(gray area). d Eight differ-
ent clinical biomarkers (total 
bilirubin, creatinine, glucose, 
cholesterol, triglycerides, ALT, 
AST and GGT) were measured 
at five different dates over a 
period of about 6 months. The 
first measurement was started 
about 1 week before DILI was 
observed in the specific patient 
(color figure online)
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of the presented approach. Similar findings were observed 
when comparing the high dose (61.5  mg/kg) estimated 
for the rat with the minimum toxic dose determined in the 
in vivo study (Igarashi et al. 2015). The presented concept 
of coupling in vitro toxicity data with simulated interstitial 
concentration–time curves is based on the identification of 
in  vivo doses that best represents the in  vitro drug expo-
sure. For this identification process, various pharmacoki-
netic parameters such as the maximal observed concentra-
tion (Cmax) could alternatively be considered. Here, the 
area under curve was selected since it represents a quantita-
tive measure for drug exposure (Igarashi et al. 2015).

To initially validate PICD, a rat PBPK model was built 
(Fig. S3) by performing a cross-species extrapolation from 
humans to rats using the validated human PBPK model 
(Fig. 4). This mechanistic translation was based on recent 
findings (Thiel et  al. 2015) and helped to compensate the 
unavailability of adequate PK data for the rat in the lit-
erature. Gene expression data of azathioprine-treated rats 
(Fig. S4C) and rat hepatocytes (Fig. S4B) together with the 
developed rat PBPK model were then used to assess the 
predictive quality of PICD by correlating predicted in vivo 
drug response of regulated cellular processes and biologi-
cal pathways (Data S1) with findings observed in  vivo 
(Igarashi et al. 2015). The correlation results showed high 
in  vivo relevance of predicted in  vivo drug responses in 
rats (Fig. 5) considering that in vitro–in vivo extrapolation 
is still a challenging issue (Boess et al. 2003; Heise et al. 
2012; Stegeman et al. 2012; Cebola et al. 2015). Overlook-
ing potential inter-species differences, this validation was 
indispensable to verify the reliability of predicted in  vivo 
drug response for human patients since no in  vivo toxic-
ity data were available for humans. The comparison of 
both in vitro patterns and predicted response profiles with 
in  vivo observations was evaluated. Correlation results 
obviously revealed that the extrapolation of in vitro toxic-
ity data into an in  vivo context was clearly improved by 
use of PICD (Fig. S5). PICD can generally be applied on 
any laboratory animal (e.g., rat, dog or monkey) used in the 
preclinical phase during drug development, since PBPK 
modeling allows the simulation of concentration–time pro-
files for several species by incorporating prior knowledge 
about their specific anatomy and physiology. Notably, the 
application of PICD on any species occurs independently, 
meaning that no species-specific findings were extrapolated 
from one species to another species.

Prediction of drug-induced cellular changes in response 
to interstitial PK profiles is not limited to hepatotoxicants. 
The compartmentalization of PBPK models enables the 
prediction of interstitial drug concentrations in multiple tis-
sues or organs, for example, the heart. In this case, cellular 
changes obtained from compound-treated cardiomyocytes 
could likewise be used to get insights into adverse effects 

of cardiotoxic compounds in an in  vivo context. Time 
series gene expression profiles from a toxicogenomics data-
base (Igarashi et al. 2015) were considered here to quantify 
drug response over time at the cellular level. Transcriptome 
analysis is a powerful technique to determine changes in 
gene expression by measuring mRNA abundances in order 
to predict protein levels and activity. However, correlations 
between the transcriptome and proteome can be low and 
gene expression analysis may have limitations in elucidat-
ing stress response (Feder and Walser 2005; Haider and 
Pal 2013). Since in vitro data obtained by other functional 
-omics techniques such as proteomics or metabolomics can 
be analogously incorporated in the presented approach, 
this integrative analysis would provide a more comprehen-
sive description of complex biological processes induced 
by drug administration in vivo. Likewise, in vitro toxicity 
data from different high-throughput technologies (Dix et al. 
2007) could also be taken into account.

To demonstrate future potential of PICD in clinical 
application, individualized PBPK models considering 
specific patient physiology (Gregoriano et  al. 2014) were 
developed to predict in vivo drug response for clinical cases 
of acute azathioprine overdose (Table S3). Notably, drug 
response of processes involved in DNA damage and repair 
after 1 day was highly correlated with measured cytotoxic-
ity (Fig.  7b) indicating that changes at the transcriptional 
level might be directly related to cytotoxic measurements 
observed in  vitro. High correlation determined between 
PSS values and corresponding drug response pointed out 
the relation between the drug-induced response in a criti-
cal toxicity pathway and the severity of observed clini-
cal symptoms. Availability of additional individualized 
information such as patients’ genotype (Lippert et  al. 
2013) might be useful to further specify the translation 
for potential clinical applications and analysis of idiosyn-
cratic hepatotoxicity. Genetic heterogeneity, like variants 
in cytochrome P450 enzymes (Dandara et  al. 2011), may 
alter the catalytic activity of drug-related enzymes, which 
in turn affect drug distribution and elimination processes. 
For instance, genetic polymorphisms in crucial metabolic 
enzymes involved in the metabolism of isoniazid substan-
tially influenced relevant pharmacokinetic processes, which 
may change drug efficacy at the target site or may increase 
the risk of toxicity (Kinzig-Schippers et  al. 2005; Vuille-
umier et al. 2006; Perwitasari et al. 2015). Coupling indi-
vidualized PBPK models developed for different genotypes 
with in vitro toxicity data obtained by -omics technologies 
that may consider genetic diversity could therefore have a 
beneficial effect for individually tailored drug therapy and 
patient safety.

Two patient case studies have been performed to dem-
onstrate the application of PICD on clinical cases of acute 
toxicity induced by different dosage regimens (Figs. 8, 9). 
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In vivo relevance of all genes considered in both case stud-
ies was verified by assessing predicted gene expression 
profiles in rats. In the first patient case study, in vitro toxic-
ity data could be directly used to simulate drug response of 
DNA damage and repair processes following acute azathio-
prine overdose (Fig. 8; Gregoriano et al. 2014). Analyzing 
the drug response for different functional categories iden-
tified kinases as high responsive when azathioprine was 
administered at the toxic dose (Fig.  8c). Further analysis 
of two critical processes allowed comparing drug response 
between toxic and therapeutic dose levels (Fig. 8d).

In the second patient case study, own data were used to 
study drug-induced liver failure elicited by multiple dosing 
of azathioprine at therapeutic dose over more than 7 years 
(Fig.  9a). Here, genes affecting the development of jaun-
dice (Table S6) were specifically considered and could thus 
be correlated with observed clinical symptoms (Fig.  9c, 
d). Since PK analysis showed no drug accumulation in the 
therapy process, the predicted response profiles (Fig.  9c) 
were assumed to reflect the drug activity at the cellu-
lar level for each day. Over 24 h only low transcriptional 
changes induced by the therapeutic dose were predicted 
for jaundice-related genes. This clearly indicates that more 
data are needed to actually predict the sudden emergence of 
jaundice following long term azathioprine administration. 
Such data could be for instance, additional patient informa-
tion or response data obtained by other functional -omics 
techniques such as proteomics or metabolomics. Moreover, 
further analyses are necessary to elucidate the molecular 
mechanism of the adverse reaction leading to jaundice, in 
particular when the toxicity was induced by chronic drug 
administration over a long period of time. For a mecha-
nistic analysis, gene expression data from liver biopsies 
after repeated dosing would be required here to adequately 
investigate such toxic events. Further patient data involving 
among others medical history or patient lifestyle would also 
be necessary. Still, the application of PICD here allowed a 
description how cellular drug response profiles are induced 
by a clinically relevant dose. Thus, this patient case study 
provided an integrated analysis of patient-specific phar-
macokinetics, drug response following oral administration 
of the therapeutic dose as well as the relation to several 
clinical biomarkers measured before, during and after the 
occurrence of jaundice. Finding crucial changes between 
predicted gene expression profiles for therapeutic and toxic 
dose levels could thus enhance the identification of useful 
biomarkers in patients and subsequently lead to an early 
detection of potential toxicity.

Clearly, the in  vivo predictions in the rat are not fully 
accurate and the application of PICD inhibits some inherent 
level of uncertainty. However, it should be noted that the 
approach presented provides a generic workflow for quan-
titative analyses of in vitro measurements within an in vivo 

context. The PBPK models at the organism level were care-
fully qualified by validating the model with clinical data for 
different doses and different administration routes. Further-
more, the expression data at the cellular scale were taken 
from TG-GATEs (Igarashi et al. 2015), which is one of the 
most systematic and best curated toxicological databases 
in the world. Hence, despite some inherent yet inevitable 
uncertainty in the input, the predictions made by PICD rep-
resent nevertheless a sound extrapolation of in vitro data to 
an in vivo environment. Please note also that PICD allows 
an animal-free assessment of drug-induced toxicity which 
is fully in line with 3R principles. Assuming that appropri-
ate in vitro toxicity tests were concluded, using PICD for 
laboratory animals may improve the predictability of toxic 
events in an in vivo context and may facilitate the identifi-
cation of a safe dose. The demand for animal kill is there-
fore reduced since PICD is an in silico based approach.

PICD allows describing temporal changes at the cellu-
lar level induced by drug administration in vivo and hence 
provides a generic platform to contextualize in vitro meas-
urements of different -omics studies at the organism level. 
Therefore, changes in cellular events induced by clinically 
relevant or toxic dose levels can be predicted for humans 
and thus might facilitate the investigation of in vitro find-
ings within a patient context for clinical applications in the 
future.

Materials and methods

Prediction of in vivo response in humans and rats

PICD was applied on rats and humans to quantify in vivo 
responses for different time points and dose levels. Gene 
expression values (log2 fold change) and cell viability val-
ues both measured in vitro (Igarashi et al. 2015) as well as 
gene response values, defined as absolute log2 fold change, 
were mapped to the nine identified in  vivo doses (Table 
S2) and were linearly interpolated to determine respective 
dose–response profiles for the different time points (2, 8 
and 24 h) (Igarashi et al. 2015). Note that the identification 
of the in vivo doses is dependent on the underlying PBPK 
model and the specific dosage regimen. Time-resolved 
in vivo response profiles were then predicted for arbitrary 
doses by assigning gene expression, cytotoxicity or gene 
response values after 2, 8 and 24 h. In vivo drug responses 
of all terms (GO) and pathways (KEGG, TOX) (Table S1) 
that were significantly overrepresented in at least one treat-
ment (e.g., middle—2 h; Data S1) were predicted by com-
puting the mean gene response level of all genes assigned 
to a specific term or pathway. Significant increase in drug 
response values after the early time point was evaluated by 
one-sample t test, while changes between individual time 
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points were assessed by using one-way ANOVA followed 
by Tukey–Kramer multiple comparison test.

Validation of predicted in vivo profiles in rats

To validate PICD, predicted in  vivo drug responses were 
linearly interpolated to perform a correlation with time-
matched drug response observed in the in vivo study (Iga-
rashi et al. 2015). All cellular processes or biological path-
ways that were significantly affected in rats for at least one 
treatment (Data S1) were considered for this correlation. 
Predicted expression profiles for all genes considered in the 
two case studies were analogously validated with in  vivo 
gene expression profiles observed in rats (Igarashi et  al. 
2015). All correlation analyses were performed by calculat-
ing Pearson’s correlation coefficient r and the correspond-
ing p-value p.

PBPK model development

In the PBPK model structure, compound-specific proper-
ties and physiological parameters of the organism such 
as organ volumes can be considered independently (Fig. 
S9). The latter parameters describing the physiology and 
anatomy of the organism are provided by the PBPK mod-
eling software (Willmann et  al. 2003) (Supplementary 
Materials). Besides physiochemical properties such as the 
lipophilicity or plasma protein binding values influencing 
in particular drug disposition in absorption and distribu-
tion processes, active drug transport or metabolizing reac-
tions were integrated to describe the drug clearance in the 
body. The Michaelis–Menten constant (KM) and the maxi-
mum velocity (vmax) were used to characterize the kinetic 
behavior of such active processes. Abundances of relevant 
enzymes and transporters in multiple compartments were 
quantified by using tissue-specific gene expression data 
(Meyer et al. 2012).

The first step in PBPK model development is model 
identification and parameter optimization by comparing 
simulated concentration–time profiles with measured PK 
data (Fig. S9). Once sufficient model accuracy is reached, 
quantified in general by visual inspection, model valid-
ity can be confirmed by extrapolating the initial reference 
PBPK model to different dosage regimens or different 
patient populations. Note that all model parameters of the 
reference PBPK model were left unchanged for the valida-
tion step, except anthropometric parameters characterizing 
the specific patient subgroup. In this study, the quality of 
the developed PBPK model of azathioprine was assessed 
by comparing simulated PK data with different experimen-
tal concentration–time profiles from the literature (Odlind 
et al. 1986; Van Os et al. 1996; Zins et al. 1997). To indi-
cate the model quality, PBPK models were evaluated by 

calculating a root-mean-square deviation (RMSD) whereby 
the differences of measured and simulated concentrations 
were normalized by respective experimental values (Thiel 
et  al. 2015). Moreover, a linear regression was performed 
for simulated and observed concentrations. Coefficient of 
determination R2 as well as the slope a and the intercept b 
of the linear equation was then additionally used to evalu-
ate the ‘goodness of fit.’

Analysis of in vitro toxicity data

Raw data were downloaded from TG-GATEs (Igarashi 
et  al. 2015) (Supplementary Materials). Gene expression 
profiles measured with Affymetrix Human Genome U133 
Plus 2.0 and Affymetrix Rat Genome 230 2.0 GeneChip 
arrays were normalized by applying the GC-RMA method 
(Wu et  al. 2004). Probe sets on the chip were mapped to 
Entrez Gene IDs using BrainArray custom CDF files (ver-
sion 19.0.0, ENTREZG) (Dai et al. 2005). For each treat-
ment, differential gene expression analysis was performed 
by linear models using limma (Smyth 2004). Compound-
treated hepatocytes exposed to different concentrations 
were therefore compared to their respective time-matched 
controls. p values were adjusted by Benjamini–Hochberg 
correction for multiple testing (Benjamini and Hochberg 
1995). Fold change values were calculated to indicate gene 
expression changes compared to the time-matched controls. 
Gene expression profiles of primary human and rat hepato-
cytes were further analyzed by applying hypergeometric 
testing (Falcon and Gentleman 2007) on each subset of 
differentially expressed genes identified for each treatment 
to determine significantly overrepresented terms (GO) and 
pathways (KEGG, TOX) (Data S1). p values were adjusted 
by Benjamini–Hochberg correction. Terms and pathways 
with a size of assigned genes lower than five were filtered 
out. To investigate only GO terms with a high level of spe-
cialization, an additional filtering step was performed on 
significant results (Supplementary Materials, Data S3).

Clinical cases of acute toxicity after single dosing 
of azathioprine

PICD was used for different clinical cases of acute azathio-
prine overdose reported between 1995 and 2013 (Gregori-
ano et  al. 2014). Patients showing symptoms most likely 
caused by other drugs than azathioprine (Gregoriano et al. 
2014) were not taken into account. Moreover, only patients 
for whom no decontamination measures were undertaken 
after exposure to a single oral overdose were considered 
leading to a total of eight clinical cases (Table S3). Con-
sequently, eight PBPK models were developed incorpo-
rating individual anthropometric parameters (age, sex and 
weight). PICD was then applied on each patient, thereby 
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simulating drug concentration–time profiles in the intersti-
tial space of the liver following oral administration of the 
specific overdose. In a next step, drug response in the most 
responsive toxicity-related pathway (DNA damage and 
repair) (Fig. S5D) and cytotoxicity values were predicted at 
every time point. Finally, in vivo drug responses were cor-
related with global cytotoxic observations by calculating 
Pearson’s correlation coefficient r, while PSS values were 
correlated with drug response values after 1 day by calcu-
lating Spearman’s rank correlation coefficient rho. In the 
latter correlation analysis, patient 17 was not considered, 
since she remained asymptomatic after a heavy overdose of 
azathioprine (Table S3). Furthermore, patient 19 was con-
sidered in a patient case study, thereby investigating acute 
toxicity after single dosing of azathioprine.
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