
1 3

Arch Toxicol (2015) 89:2059–2068
DOI 10.1007/s00204-014-1335-2

ORGAN TOXICITY AND MECHANISMS

Optimal experimental designs for dose–response studies 
with continuous endpoints

Tim Holland‑Letz · Annette Kopp‑Schneider 

Received: 16 April 2014 / Accepted: 12 August 2014 / Published online: 26 August 2014 
© The Author(s) 2014. This article is published with open access at Springerlink.com

Keywords D-optimal design · Dose response modelling · 
Log-logistic function · Log-normal function · Weibull 
function · 3T3/NHK guideline

Introduction

The investigation of a dose–response relationship requires 
measurement of responses at different dose levels. A fre-
quently occurring question in this context is how to opti-
mally allocate measurements to selected dose levels, i.e., the 
choice of the experimental study design. The size and the 
design of a toxicological study largely determine the costs 
of the investigation. Other restrictions may be imposed by 
physical or administrative constraints, such as the total num-
ber of measurements in the study, e.g., using a 96-well plate.

Statistical optimal design theory in general covers the 
choice of experimental settings in order to estimate parameters 
of interest as precisely as possible, thus minimizing the num-
ber of experimental units needed. The theory is well devel-
oped; however, it uses quite sophisticated mathematical meth-
ods not easily accessible without a mathematical background. 
Thus, optimal design theory is very rarely used in practical 
studies, even though there are several areas in preclinical and 
clinical development where the theoretical results fit the practi-
cal situation very well. Furthermore, while the theoretical con-
cepts are sometimes complex, the practical results are often 
quite usable and intuitively plausible. Prime candidates for sta-
tistical optimization are studies assessing dose–response, toxi-
cological and pharmacokinetic properties of chemicals. In this 
paper, the focus will be on toxicological studies.

In their investigation about toxicity study designs, Slob 
et al. (2005) use a computer simulation approach to investigate 
the performance of the typical dose–response study design 
for determination of the no-observed-adverse-effect-level 
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(NOAEL), when the study aim is to estimate a benchmark 
dose (BMD) in continuous endpoints. The typical design for 
a NOAEL study involves one control and three dose groups 
with five animals each. Slob et al. argue that in order to mini-
mize the risk of inadequate dose placement, a larger num-
ber of dose groups should be used, even though the number 
of animals in each dose group will decrease. BMD estima-
tion is based on a model fit to the data, rather than statistical 
tests with pairwise comparison of dose to control, which is 
the strategy for NOAEL estimation. As noted by Rhomberg 
(2005), the optimal study design crucially depends on the pur-
pose of the toxicological study. In order to retain maximum 
flexibility, the present investigation will concentrate on those 
designs, which will allow the most effective model fit and thus 
result in precise estimates of most characteristic toxicological 
values. In design theory, such designs are called D-optimal.

In the present paper, we actually propose optimal 
designs for dose–response studies in toxicology with con-
tinuous endpoints on the basis of commonly used nonlinear 
functions for dose–response modeling as described in Ritz 
(2010), for application, see, e.g., Clothier et al. (2013). The 
aim of our paper is to both explain the general ideas behind 
some important parts of optimal design theory as well as 
actually construct usable optimal designs for several dose–
response functions commonly applied in toxicology. Fur-
thermore, we will compare these designs to the design 
principles recommended by relevant guidelines. It is not 
the aim to actually show or derive the mathematical details 
and theory; other resources are available for this [see, e.g., 
Fedorov (1972), Pazman (1986), Li and Majumdar (2008), 
Yu (2010) for the algorithm, and Fedorov and Leonov 
(2001) for some applications closer to toxicology].

Dose–response relationships in toxicology are usually 
described by nonlinear models. When statistical optimal 
designs are derived for nonlinear models, the design can 
only be derived with assumptions for the model param-
eters. Hence, these designs are referred to as “locally opti-
mal designs.” The dependence on assumptions for model 
parameters has motivated research to suggest pragmatic 
solutions, which are less susceptible to parameter misspeci-
fication. This so-called Bayesian design approach will also 
be addressed in this manuscript.

The present paper is organized as follows: The modeling 
functions are introduced in “Dose–response functions in 
toxicology” section. The required parts of optimal design 
theory are explained in “Optimal experimental design” sec-
tion, and designs for several dose–response functions are 
provided in “Optimal designs for specific situations” sec-
tion. The Bayesian approach is described in “Bayes opti-
mal designs” section, while a comparison of the optimal 
designs to the OECD guideline for cytotoxicity testing is 
presented in “Comparison to the 3T3/NHK cytotoxicity 
testing guideline” section.

Dose–response functions in toxicology

Parameter estimation from dose–response experiments 
is usually based on fitting a nonlinear model to the dose–
response data using the maximum likelihood or (nonlinear) 
least-squares approach. The general nonlinear regression 
model is given by

where random errors are assumed to be independently nor-
mally distributed with mean zero and standard deviation σ. 
The dose is denoted by x and the response by y. Hence, f(x) 
describes the mean response at concentration x (>0). Dif-
ferent functions can be used to model the concentration–
response relationship. In this paper, we will consider three 
common types of dose–response relationships as described 
in Ritz (2010), in particular the log-logistic, the log-normal 
and the Weibull relationship.

Log-logistic:

Log-normal:

Weibull:

Here, exp denotes the exponential function to base Euler’s 
constant ≈2.718, log the natural logarithm and Φ the cumu-
lative distribution function of the standard normal distribu-
tion. The parameters c and d correspond to the lower and 
upper limits for mean response, respectively, and they are 
in the same units as the endpoint itself. For the log-logis-
tic and the log-normal model, the parameter e corresponds 
to the ED50, the dose leading to halfmaximal response, 
whereas for the Weibull model, e corresponds to the inflec-
tion point of the curve. The parameter b determines the 
slope of the dose–response curve at dose e. The model 
parameters are typically unknown, and they are obtained by 
nonlinear least-squares fit to experimental data. Note that 
Ritz (2010) differentiates two variants of the Weibull func-
tion, which have different biological interpretations, but 
are identical in the mathematical sense. Our results apply 
to both variants. Furthermore, for the log-normal model, 
we chose a variant with −b in order to obtain a decreasing 
function for a positive b.

For all functions, we call the parameterization c = 0, 
d = 1, b = 1 and e = 1 the standard parameterization. In this 
situation, the mean response values are contained between 0 
and 1, and the ED50 is at the dose of 1, i.e., log ED50 is 0.

Figure 1 shows the three functions under standard 
parameterization and illustrates that the three functions 

y = f (x)+ random error

(1)f (x; b, c, d, e) = c+
d − c

1+ exp(b(log(x)− log(e)))

(2)f (x; b, c, d, e) = c+ (d − c)Φ(−b(log(x)− log(e)))

(3)f (x; b, c, d, e) = c+ (d − c) exp(− exp(b(log(x)− log(e))))
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are similar but not identical. The depicted functions are 
decreasing. However, increasing functions result from 
either switching the roles of c and d, or by choosing a nega-
tive b, i.e., b = −1.

Optimal experimental design

In a specific study, a specified total number of observations 
can be taken at any or all available dose levels, and the four 
parameters b, c, d and e are to be estimated. The purpose of 
optimal experimental design is to select the dose levels to 
be used for each observation in order to estimate the four 
parameters with optimal precision. A specific selection of 
dose levels for all n observations is called a design.

In the following, we shortly summarize results from 
optimal design theory. Since derivation of some of the 
results used here requires somewhat complex mathemat-
ics, we refer to the books by Fedorov (1972) and Pazman 
(1986) for the mathematical details.

Estimation errors

In order to identify optimal dose levels, one has to consider 
the effect of the dose levels on the precision of the param-
eter estimates, which in the mathematical sense is reflected 
by the variance of the estimators. For nonlinear models, 
this variance is constructed using a matrix F containing the 
derivatives of the dose–response function f in the direction 
of all the parameters of interest, with one column for each 
of the n measurements at doses x1,…, xn:

F =











∂f (x1)
∂b

· · ·
∂f (xn)
∂b

∂f (x1)
∂c

· · ·
∂f (xn)
∂c

∂f (x1)
∂d

· · ·
∂f (xn)
∂d

∂f (x1)
∂e

· · ·
∂f (xn)
∂e











It can then be shown (see, e.g., Searle 1971 chapter 3.3) 
that for both least squares and maximum likelihood estima-
tion, the variance V for a parameter estimate of the column 
vector (b, c, d, e) is approximately given by

where FT indicates the transposed (mirrored) version of F. 
F and FT are multiplied via matrix multiplication and ()−1 
indicates the matrix inverse. As noted in “Dose–response 
functions in toxicology” section, σ denotes the standard 
deviation of the errors of any observation.

As F is constructed from derivatives, its elements will 
get larger the more the response is changed when the 
parameters change. Correspondingly, as V includes a 
matrix inverse, the variance of the parameter estimates will 
decrease in this situation. Therefore, as a general principle, 
dose levels should be selected as those doses where varia-
tions in the parameters result in the largest possible changes 
of the resulting response.

The central part of the variance is FFT, and it is called 
the information matrix M. It is the only part depending 
on the dose levels x1,…, xn and maximizing it will thus 
guarantee minimal variance and allow optimal parameter 
estimation.

D-optimality

The 4 × 4-matrix M = FFT describes the information of a 
given design (set of n dose levels) for the four parameters of 
interest, and it is the aim of optimal design theory to maxi-
mize this matrix. Unfortunately, it is not possible to choose a 
design which simultaneously maximizes the information for 
all parameters; designs that are optimal for one parameter are 
generally suboptimal for other parameters. The most common 
solution to this problem is to select a design which maximizes 
a function of the matrix which yields some kind of average 
information for all parameters. This is achieved by the deter-
minant of the information matrix M = FFT, which roughly 
corresponds to the geometric mean of the variances of the 
four parameter estimates. This approach is called D-optimal-
ity. Other variants like c-optimality (optimize estimation of a 
linear combination of parameters) or a-optimality (optimize 
the sum of individual variances of parameter estimates) exist, 
but these are less common and will not be covered here. Such 
functions which reduce the information matrix to a single 
value are called information functions.

Unfortunately, the resulting maximization problems usu-
ally cannot be solved analytically. However, algorithmic 
approaches exist, and it is possible to formulate a condi-
tion which, for any given design, can confirm whether 
this design is in fact optimal or not. The latter is called an 
equivalence theorem (see Kiefer 1974).

V ≈ σ 2
(

FFT
)−1

,

Fig. 1  Log-logistic (solid line), log-normal (dashed line) and Weibull 
(dotted line) dose–response curve for standard parameter values
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Equivalence theory

To explain the general idea behind equivalence theory, we 
first have to introduce the concept of an elementary design, 
which is a (hypothetical) design with all measurements 
at the same dose level. If m different dose levels are pos-
sible, there are m elementary designs. While an elemen-
tary design does not allow estimation of four parameters, 
it is still possible to calculate an information matrix for 
each elementary design. We can then check whether each 
elementary information matrix contains information not 
included adequately in the given design, and thus, whether 
the corresponding dose level should be given more weight 
in the existing design. Formally, this is done using matrix-
wise derivatives, which is a somewhat complex mathemati-
cal concept measuring by how much a function of a matrix 
will change when the matrix is changed.

In a nutshell, the idea behind the equivalence theorem 
is the following: First, take the information function of 
any given design and calculate the matrix-wise derivative 
of this function in direction of the information matrix of 
every elemental design (separately). This derivative will be 
positive only if the dose level corresponding to the elemen-
tary design would improve the performance of the current 
design. Thus, if none of the derivatives are larger than or 
equal to zero, the proposed design is already optimal.

Actually calculating the derivatives requires advanced 
matrix algebra (see Pazman 1986). Fortunately, it results 
in an easily testable condition. We write A1,…, Am for the 
information matrices of the elementary designs for the m 
possible dose levels x1,…, xm and can then express the con-
dition to be tested (the equivalence theorem) as follows:

A design with information matrix M is D-optimal for the 
estimation of all four parameters, if and only if

The notation tr indicates the trace of a matrix and is 
defined simply as the sum of its diagonal elements. Condi-
tion (4) can be checked for any candidate design to deter-
mine whether it is optimal or not. We will use an algo-
rithmic approach and condition (4) to find and confirm 
optimal designs for the dose–response functions described 
in “Dose–response functions in toxicology” section.

Algorithm for selection of optimal design

We will use a stepwise algorithm first suggested by Titter-
ington (1976). The convergence of this multiplicative algo-
rithm toward the optimal design has been proven quite gen-
erally by Yu (2010).

One property of the equivalence theorem is the following: 
If more observations on a dose level xj would improve the per-
formance of the design under consideration, then the left side 

(4)tr(AjM
−1)/4 ≤ 1 for all j from 1 to m.

of Eq. (4) will actually be larger than one for this dose level. 
Correspondingly, dose levels which should get less considera-
tion will have values less than one. Thus, we can determine for 
any design which dose levels to add and which to remove.

The idea of the algorithm is to start with a simple design, 
usually an equal weights design. The weights of all the dose 
levels in the current design are then multiplied by the value 
obtained for the left side in Eq. (4). More formally, if we 
write the weights for each dose level in our current design 
at step i as (wi

1,…,wm
i), then weights for the next iteration of 

the design will be given by

The new designs will always be better than the previ-
ous ones and will converge toward the optimal one (see Yu 
2010).

The optimal design is therefore a set of dose levels and 
weights. For the design of an actual experiment, the number 
of replicates per dose level is determined from the weights 
of the optimal design, using standard rounding procedures. 
Usually, the loss of precision due to rounding is minor (see 
Pukelsheim and Rieder 1992).

Efficiencies of designs

In the following, we will compare designs regarding their 
performance. The aim of optimal designs is the estimation 
of model parameters with optimal precision, i.e., the mini-
mization of an information function. Thus, the appropriate 
way to measure the efficiency of a specific design is to put 
its information function in relation to the information func-
tion of the optimal design. The efficiency of a D-optimal 
design is defined as

where k denotes the number parameters in the model, 
which is four in our case. Hence, the optimal design itself 
has an efficiency of 100 %. An efficiency of 50 % means 
that twice the number of observations are needed to obtain 
the same precision. In the following, we will always con-
sider the situation of a standard design of 100 observa-
tions and compare the required sample sizes of competing 
designs against this. Of course, results can be rescaled to 
any desired sample size.

Optimal designs for specific situations

We will now apply the algorithm to the three dose–
response functions discussed in “Dose–response functions 

(5)wi+1
j = wi

j ∗ tr(AjM
i−1

)/4, for all dose levels j = 1, . . . ,m.

Efficiency(Design) = k

√

Determinant
(

MDesign

)

Determinant
(

MOptimalDesign

)
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in toxicology” section. In all cases, the derivatives of the 
dose–response function with respect to its four parameters 
are needed to determine the matrices F, Aj and M.

Log-logistic function

In a first step, the vector of derivatives of the log-logistic 
function

is needed. For ease of notation, we will subsequently write 
E for the term exp(b(log(x)− log(e))), i.e., the log-logistic 
function is abbreviated as

The derivatives are then given by:

We can now apply the multiplicative algorithm.
We start with the function in standard parameterization, 

i.e., b = 1, c = 0, d = 1 and e = 1. In this parameteriza-
tion, the dose range of interest is covered by log dose levels 
between −5 and 5 (cf. Fig. 1). We divide the dose range 
into 101 steps of width 0.1 on a logarithmic scale: log val-
ues of −5.0, −4.9,…, −0.1, 0, 0.1,…, 4.9, 5.0. We call this 
dose range the standard set of dose levels. Running the 
algorithm for 1,000 iterations results in weights shown in 
Fig. 2.

All weights are 0 with exception of six dose levels, two 
of which have a very small weight. Neglecting these two 
dose levels has negligible effect on the performance of the 
design, and we thus propose to select the four major dose 
levels only. These are −5, −1, 1 and 5 on the log dose scale 
(see also Table 1), corresponding to original dose levels of 
0.007, 0.37, 2.72 and 148.4 units. Each dose level is given 
the same weight 0.25 and should thus be used in a quar-
ter of the available replicates in the experiment. Compar-
ing the selected dose levels to the dose–response curve in 
Fig. 1, we conclude that measurements should be taken at 
the largest and smallest available dose level, as well as at 
the beginning and the end of the nearly linear descent in 
the center of the curve. The optimality of this design has 
been confirmed with the equivalence theorem. Note that 
the need for the smallest and largest dose level as well as 
the four point nature of the design can actually be proven 

f (x; b, c, d, e) = c+
d − c

1+ exp(b(log(x)− log(e)))

f (x; b, c, d, e) = c+
d − c

1+ E
.

∂f (x)

∂c
= 1−

1

1+ E
;

∂f (x)

∂d
=

1

1+ E
;

∂f (x)

∂b
= −

d − c

(1+ E)2
∗ (log(x)− log(e)) ∗ E;

∂f (x)

∂e
=

d − c

(1+ E)2
∗
b

e
∗ E.

mathematically for the log-logistic function (see Li and 
Majumdar 2008).

As a theoretical consideration, this optimal design 
could be compared to an artificial design with equal 
weights for all 101 dose levels, i.e., a design with equal 
coverage of the complete dose range. Efficiency of such 
a design would be 78.5 %, that is, if the optimal design 
had 100 observations, the equally spaced design would 
require 100/0.785 = 128 observations to get the same 
level of precision.

Recall that the dose levels and weights of the optimal 
design were derived for the standard parameterization. 
However, for the general situation with parameters b, c, d 
and e, this design can be adapted easily by transformation 
of the dose range and the doses to be used by

(6)xnew = e · x
1
b

standard

Fig. 2  Weights for different dose levels in the log-logistic model 
under standard parameterization

Table 1  Optimal designs for standard parameterization

Dose levels for all three models and the standard parameterization 
c = 0, d = 1, b = 1 and e = 1. All dose levels are to be used for 25 % 
of replicates

Dose levels are independent of c and d

Transformation of log doses for general “b” or “e”: 
log (xnew) = log (e)+ 1

b
log (xstandard)

Model Log dose 1 Log dose 2 Log dose 3 Log dose 4

Log-logistic −5 −1 1 5

Log-normal −5 −0.7 0.7 5

Weibull −5 −1 0.5 5
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where xstandard are the nonlogarithmic dose levels, which 
correspond to the standard set of dose levels (101 log 
doses equally spaced between −5 and 5). The reasoning is 
the following: Since the parameters c and d appear in the 
determinant only as a multiplicative factor, they are irrel-
evant for the optimal design. Furthermore, the parameters 
b and e only appear in the determinant either as a multipli-
cative factor or in the term b(log(x)− log(e)) = b · log

(

x
e

)

 
which we call L. However, replacing all dose levels xstand-

ard with new dose levels xnew = e · x
1
b

standard will result in 
L = b · log

(

xnew
e

)

= 1 · log
(

xstandard
1

)

, which are the exact 
same values of the term L as under standard parameteriza-
tion. Hence, the same information matrices will result for 
all dose levels.

Thus, a design using the optimal dose levels from the 
standard parameterization transformed in this way will be 
D-optimal for a design space of similarly transformed dose 
levels. Furthermore, this new design space is a sensible 
one as it will again cover the important part of the dose–
response curve in exactly the same way as the standard set 
of dose levels.

All transformations refer to the original dose lev-
els, not the log doses. For convenience, the trans-
formation for doses on the log scale is given by 
log (xnew) = log(e)+ 1

b
log (xstandard).

Log-normal function

Exactly the same considerations as before can also be 
applied to the log-normal function

In this case, we write g(x) for the density function 
of the standard normal distribution and as before L for 
b(log(x)− log(e)) (note that exp(L) = E). The derivatives 
are then given by

Optimal designs under standard parameterization were 
derived in the same way as for the log-logistic model. 
Again, a four point design was obtained, with a structure 
very similar to the log-logistic model and the four log dose 
levels of −5.0, −0.7, 0.7 and 5.0, each to be used on 25 % 
of the replicates (see Table 1). For comparison, for standard 
parameterization, the efficiency of the equal weights design 
in this model is 83.3 % compared with the optimal design 
(120 required observations).

f (x; b, c, d, e) = c+ (d − c)Φ(−b(log(x)− log(e))).

∂f (x)

∂c
= 1−Φ(−L)

∂f (x)

∂d
= Φ(−L)

∂f (x)

∂b
= −(d − c) ∗

L

b
∗ g(−L)

∂f (x)

∂e
= (d − c) ∗

−b

e
∗ g(−L).

As in “Log-logistic function” section, the four param-
eters only appear either as multiplicative constants or in the 
term L = b(log(x)− log(e)). Deviations in the parameters 
from the standard parameterization can thus be compen-
sated in the exact same way by replacing all dose levels 
through formula (6).

Weibull function

As a third situation, we will consider the Weibull function

Writing as before L = b(log(x)− log(e)) and 
E = exp(b(log(x)− log(e))), the derivatives are then given 
by

The resulting optimal design points are log dose levels 
of −5.0, −1.0, 0.5 and 5.0, similar to the other models, but 
with partly asymmetrical dose levels (see Table 1). Effi-
ciency of the equal weights design under standard parame-
terization is 80.3 % compared with the optimal design (i.e., 
125 observations instead of 100).

As before, deviations in the parameters from standard 
parameterization can be compensated replacing all dose 
levels through formula (6).

Performance with misspecified parameters

All optimal designs given in the previous sections assume 
prior knowledge about the parameters to be expected and 
are optimal only when these parameters are indeed the true 
parameters (so-called locally optimal designs, Chernoff 1953). 
Consequently, they will be less efficient when these prior 
guesses substantially deviate from the truth. However, when 
the deviations are only moderate, this loss of efficiency of the 
designs might be minor and the designs might still allow rea-
sonably precise parameter estimation. As the designs do not 
depend on c and d, we only investigated deviations for b and e. 
In all cases, the standard parameterization was used to derive a 
design, and the efficiency of this design was calculated under 
different true values of the parameters b and e. Recall that an 
efficiency of a given design of x % means that only x % of the 
number of subjects would be needed for the same precision if 
the optimal design was used instead of the given design.

Results for the number of required observations com-
pared to an optimal setup with 100 observations are shown 

f (x; b, c, b, e) = c+ (d − c) exp (− exp (b(log (x)− log (e)))).

∂f (x)

∂c
= 1− exp(−E);

∂f (x)

∂d
= exp(−E);

∂f (x)

∂b
= −(d − c) ∗ exp(−E) ∗ E ∗

L

b
;

∂f (x)

∂e
= (d − c) ∗ exp(−E) ∗ E ∗

b

e
.
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for several variations of the true parameters b and e in 
Table 2. Note that the parameters c and d do not affect the 
design.

We conclude that the proposed designs are still effi-
cient when there are minor misspecifications of the param-
eters. However, in case of large deviations, especially an 
increase in the parameter b, a substantial loss in efficiency 
is observed. Reason for this is that a very steep slope of 
the dose–response curve will cause the relevant part of 
the curve to entirely fall into the dose range between the 
two middle doses. In this case, b can no longer be reliably 
estimated. A design with many equally spaced dose lev-
els might be less affected by this phenomenon. In fact, in 
case of the log-normal model and true b as well as true e 
both equal to 2, a hypothetical design with equal weights 
on all 101 dose levels (see “Log-logistic function” sec-
tion) requires only 148 observations, while using the opti-
mal design for the wrongly assumed standard model 385 
observations would be required. Again, these numbers are 
both in comparison with an optimal design with 100 obser-
vations. Thus, while the optimal design is superior to an 
equally spaced design when parameters are specified more 
or less correctly, the equally spaced design can be more 
robust regarding major parameter misspecifications.

Online script for optimal designs

We created a Web application (based on the software R/
shiny) which allows to obtain the optimal design for any 
of the three functions discussed here and for any values of 
EC50 and hill slope b and also provides the D-efficiency 
of any given design compared with the optimal design. The 
Web application is available under biostatistics.dkfz.de/Dos
eResponseDesigns/.

Bayes optimal designs

As described in “Performance with misspecified param-
eters” section, the designs derived in “Log-logistic func-
tion” section to “Weibull function” section are only opti-
mal for a specific set of parameters, which is unknown in 
practice. While a rough knowledge of the parameters usu-
ally is enough for a reasonably good design (see Table 2), 
larger uncertainty regarding the parameters will invalidate 
the approach. One possible solution is the Bayes optimal 
design approach (sometimes called quasi-Bayes, because 
it does not actually require a Bayesian data analysis). For 
a review of Bayes optimal designs, see, e.g., Chaloner and 
Verdinelli (1995). The idea here is that instead of specify-
ing a single parameter guess to base the design on, a prob-
ability distribution of parameters is given instead (the a 
priori probability distribution).

As a simple example, the dose–response model param-
eter b might not be known exactly, but prior information 
might indicate that it would be found most likely at the 
values of 0.5, 1 or 2. Consequently, the design should do 
reasonably well in any of these three situations. If all three 
were considered equally likely, i.e., the a priori probability 
of each of the values is 33.3 %, the Bayes optimal design 
would be the one which maximizes the average information 
over these three scenarios.

Formally, this approach changes Eq. (1) in the equiva-
lence theorem to

with E[] being the expected value of the term in brack-
ets over all possible parameter values in the a priori dis-
tribution (see Atkinson and Cook 1995). In the example, 
E
[

tr(AjM
−1)

]

 would be the average of tr(AjM
−1) calcu-

lated for the three values of 0.5, 1 or 2 for b.
Similarly, Eq. (2) of the algorithm changes to

Hence, the algorithm can be applied in exactly the same 
way as before using updating rule (7) instead of (5) for the 
weights. Note that only one set of dose levels can be used 
for the algorithm.

We will demonstrate the Bayes approach for the exam-
ple discussed above, that is

1. the log-logistic model
2. an a priori probability for b of 1/3 each for values of 

0.5, 1 and 2
3. all other parameters as in the standard parameterization
4. the set of dose levels corresponding to the standard 

parameterization b = 1.

E
[

tr(AjM
−1)

]

/4 ≤ 1, for all available dose levels j from 1 to m,

(7)wi+1
j = wi

j ∗ E
[

tr(AjM
−1)

]

/4, for all j from 1 to m.

Table 2  Required sample sizes of the optimal design for the stand-
ard parameterization when the true parameters are not standard, 
compared with the optimal design with 100 observations under these 
parameters

True b True e Required n log-
logistic

Required n log-
normal

Required n 
Weibull

1 1 100 (reference) 100 (reference)100 (reference)

0.9 1 101 101 101

1 0.9 100 101 100

0.9 0.9 101 101 101

1.1 1.1 100 101 101

0.5 1 110 116 114

1 0.5 109 127 134

0.5 0.5 112 122 111

1 2 109 127 122

2 1 132 147 138

2 2 164 385 189
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Results for the other dose–response functions are struc-
turally similar and not shown here. The different shapes 
of the log-logistic function under the three selected values 
of b are shown in the lower part of Fig. 3. Note that every 
symbol in the function plot corresponds to one of the 101 
standard dose levels.

Running the algorithm with these settings results in the 
design shown in Table 3.

While the design retains the symmetry of the original 
design, many more dose levels are necessary and the rela-
tive weights are far less intuitive. Collapsing the four center 
pairs of dose levels to just four dose levels is possible but 
leads to a minor loss of efficiency of just 1.1 %. Further 
simplifying the design to a six-point design with dose lev-
els of −5.0, −1.9, −0.6, 0.6, 1.9 and 5.0 with weights 20, 
10, 20, 20 10 and 20 % does not result in a further loss of 
efficiency.

The top of Fig. 3 shows the single parameter variants 
of the designs on the standard dose level set for b = 0.5 
as squares, b = 1 as solid dots and b = 2 as circles. As 

these are based on the standard dose levels (for b = 1), the 
designs are slightly different from the designs calculated 
on the transformed set of dose levels as described in “Log-
logistic function” section [using (6) for transformation]. 
The dose levels indicated as circles show the Bayes optimal 
dose levels. The number of inner dose levels in the Bayes 
optimal design is increased, and the dose levels are more 
spread out than in the variants with fixed b. Furthermore, 
they are not simply combinations of the dose levels used 
in the single parameter designs. Thus, no generally appli-
cable Bayes optimal designs can be proposed. Still, using 
the above approach, a suitable Bayes optimal design can be 
constructed for any specific practical situation.

In practice, the a priori distribution for b can also be a 
continuous distribution and does not have to be restricted 
to a small number of alternatives. In this situation, a Bayes 
optimal design can still be derived as described above.

Comparison to the 3T3/NHK cytotoxicity testing 
guideline

The guidelines contained in the Background Review Docu-
ment published by ICCVAM (Anon 2006) contain sugges-
tions on dose level selections for cytotoxicity experiments. 
In Section 2.3.2.2 and Figs. 2 and 3 of this document, it is 
suggested that eight dose levels should be used at a weight 
of 10 % each and the vehicle control at weight 20 %. The 
dose closest to the calculated IC50 value in the range finder 
test should serve as the midpoint of the eight doses tested in 
the definitive test. The other dose levels should be equally 
distributed on the log scale in both directions. In the 
absence of other information (i.e., knowledge of the slope 
of the toxic response), the recommended dilution factor is 
1.47. On a log dose scale, using a dilution factor of 1.47 
corresponds to steps of log(1.47) = 0.38 each. Note that the 
guideline recommendation is similar to the equally spaced 
design considered before, but restricted to eight dose levels, 
a fixed spread factor and a fixed proportion of vehicle con-
trol measurements.

This basic recommendation is of course not useful in 
every situation, as the performance of a design greatly 
depends on the slope parameter b. For illustration, in our 
situation (standard parameterization, b = 1), the spread 

Fig. 3  Log-logistic function for parameter b = 0.5 (squares), b = 1 
(solid dots) and b = 2 (triangles), standard parameterization other-
wise. Top part shows the dose levels included in the optimal design 
for these three parameter values using the same symbols, as well as 
for the Bayes optimal design shown as circles. Note that the weights 
are equal at 25 % for the fixed parameter designs, but varying for the 
Bayes design

Table 3  Dose levels for a Bayes optimal design for three possible values of the parameter b in the log-logistic model

A priori distribution is b = 0.5 with 33.3 % probability, b = 1 with 33.3 % probability and b = 2 with 33.3 % probability

Log-logistic relationship

Log dose 1 Log dose 2 Log dose 3 Log dose 4 Log dose 5 Log dose 6 Log dose 7 Log dose 8 Log dose 9 Log dose 10

Dose −5.0 −2.0 −1.9 −0.7 −0.6 0.6 0.7 1.9 2.0 5.0

Weight (%) 22.9 2.4 5.7 5.6 13.3 13.3 5.6 5.7 2.4 22.9
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factor of 1.47 results in eight log doses only between about 
−1.5 and 1.5 in addition to the vehicle control, which is 
a highly concentrated design with an efficiency of only 
48.4 % for the log-logistic model (log-normal model: 
64.6 %; Weibull model: 80.5 %; required observations 
compared with 100 for optimum: log-logistic: 207; log-
normal: 155; and Weibull: 125).

In the following, we investigate the potential perfor-
mance of the guideline recommended approach of such a 
log equally spaced design. For this aim, we determine the 
spread factor which maximizes the efficiency while keep-
ing the (log) dose levels within the range of −5.0 to 5.0. 
Under standard parameterization and in the log-logistic 
model, the optimal spread factor has a value of 3.0 and 
results in an efficiency of 76.2 % (132 observations). This 
result is intuitively plausible because a spread factor of 3.0 
leads to dose levels less concentrated around the EC50. 
For the log-normal function, the optimal spread is 2.0 with 
an efficiency of 76.3 % (132 observations), and for the 
Weibull function, it is 1.7 with an efficiency of 86.1 % (117 
observations).

For general b, the optimal spread factor for the guideline 
design can be calculated from (6) to be the standard spread 
factor to the power of 1/b for all dose–response functions 
considered here, i.e., 3.01/b for the log-logistic model, 2.01/b 
for the log-normal function and 1.71/b for the Weibull func-
tion. Consequently, the spread factor of 1.47 recommended 
in the guideline corresponds to a value for the hill slope of 
b = 2.85 for the log-logistic model. For the log-normal and 
Weibull functions, the corresponding b-values are 1.80 and 
1.38, respectively.

Although one might expect that the guideline-based 
equally spaced design is more robust in the presence of 
parameter misspecifications, the comparison between the 
guideline-based design (with spread factor chosen based on 
hill slope) and the optimal design shows that the optimal 
design retains its superiority in all constellations consid-
ered in Table 2. Exemplarily, Table 4 compares the required 
number of observations of the optimal design for the log-
logistic model (cf. Table 2) to number of observations of 
the guideline-based design in the same situations. The 
guideline-based designs stay suboptimal in all cases.

Discussion

In this paper, we applied optimal design theory toward 
common problems regarding estimation of parameters 
in toxicological dose–response studies. Optimal designs 
were derived for three common dose–response functions, 
and a Web application was created which also provides 
the D-efficiency of any given design compared with the 

optimal design (available under biostatistics.dkfz.de/DoseR
esponseDesigns/).

In general, the resulting designs were similar for the 
three functions studied and suggested using control and 
only three dose levels, each on one quarter of the availa-
ble replicates. Compared with the guideline recommended 
design for 3T3/NHK cytotoxicity testing, precision was 
increased by about 20 % in all cases.

Optimal designs require rough a priori estimates of the 
EC50 and the hill slope parameter, which can be obtained 
from a dose range finding study. Even if the a priori 
guesses of the parameters were wrong by a small or mod-
erate amount, efficiency of the designs remained reason-
ably well. For large misspecifications, the optimal design 
loses efficiency. However, the same is true for the guideline 
design.

As the optimal designs are directly applicable to many 
practical situations, e.g., assays performed on 96-well 
plates, there are few reasons not to consider their use in 
practice. Even if the experimenter does not want to derive 
a formal design, the general structure (measurements at 
smallest and largest available dose plus the start and end of 
the approximately linear descent in the center) can serve as 
a useful rule of thumb for practical experiments.

In case that model parameters are associated with uncer-
tainty, a Bayesian approach can be used. Under assump-
tions concerning probable values of the parameters, a new 
design can be derived. In our example, it became apparent 
that the design was similar in structure to the fixed parame-
ter design, but the number of dose levels was increased and 
covered a slightly broader dose range.

Table 4  Required sample sizes of the best 3T3 guideline-based 
design (with spread factor chosen based on hill slope) for the standard 
parameterization of the log-logistic function when the true parameters 
are not standard, compared with the optimal design with 100 observa-
tions in the same situation

Parameters c and d do not affect the design

True b True e Required n equally  
spaced design

Required n 
optimal design

1 1 131 100 (reference)

0.9 1 130 101

1 0.9 131 100

0.9 0.9 129 101

1.1 1.1 134 100

0.5 1 131 110

1 0.5 131 109

0.5 0.5 128 112

1 2 139 109

2 1 195 132

2 2 211 164
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Variants and extensions of optimal design theory exist 
for specific situations in toxicology. For example, to rec-
oncile statistical optimal designs with practicality, Parker 
and Gennings (2008) suggest penalizing locally optimal 
designs with a desirability function. The desirability func-
tion is used to account for experimental features wished 
for by experimentalists. If such a desirability function was 
available, the approach by Gennings and Parker could be 
easily incorporated into the standard design algorithms 
used above.

Slob et al. (2005) proposes to favor designs with more 
than four dose groups to avoid the risk of unfavorable 
dose placements because of incorrect prior guesses of 
model parameters (see also Rhomberg 2005). They base 
their recommendation on simulation studies in which they 
evaluate the precision of an effect estimate under various 
dose response models. We investigated this situation using 
a Bayesian design approach and obtained more than four 
dose levels as well. In our example, using three potential 
values for b, the optimal Bayes design required six dose 
levels including control. With even more parameter uncer-
tainty, even more dose levels might be needed. Thus, we 
can support the recommendation given by Slob et al. 
(2005), if major uncertainty regarding prior estimates is 
present.

In the present paper, we derived D-optimal designs 
that optimize precision of all parameter estimates. As dis-
cussed, for example, by Kuljus et al. (2006), the focus in 
toxicological studies may lie in optimizing the precision of 
a single parameter estimate, e.g., the EC50, or of a func-
tion of model parameters. Designs with this feature are 
called c-optimal designs. However, these designs often 
result in very few dose levels, which limit their practical 
use (see Pronzato 2009). Thus, further research in this area 
is needed.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s) 
and the source are credited.
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