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Abstract Many in the welding industry suffer from

bronchitis, lung function changes, metal fume fever, and

diseases related to respiratory damage. These phenomena

are associated with welding fumes; however, the mecha-

nism behind these findings remains to be elucidated. In this

study, the lungs of cynomolgus monkeys were exposed to

MMA-SS welding fumes for 229 days and allowed to

recover for 153 days. After the exposure and recovery

period, gene expression profiles were investigated using the

Affymetrix GeneChip� Human U133 plus 2.0. In total,

it was confirmed that 1,116 genes were up-or down-

regulated (over 2-fold changes, P \ 0.01) for the T1

(31.4 ± 2.8 mg/m3) and T2 (62.5 ± 2.7 mg/m3) dose

groups. Differentially expressed genes in the exposure and

recovery groups were analyzed, based on hierarchical

clustering, and were imported into Ingenuity Pathways

Analysis to analyze the biological and toxicological func-

tions. Functional analysis identified genes involved in

immunological disease in both groups. Additionally, dif-

ferentially expressed genes in common between monkeys

and rats following welding fume exposure were compared

using microarray data, and the gene expression of selected

genes was verified by real-time PCR. Genes such as

CHI3L1, RARRES1, and CTSB were up-regulated and

genes such as CYP26B1, ID4, and NRGN were down-reg-

ulated in both monkeys and rats following welding fume

exposure. This is the first comprehensive gene expression

profiling conducted for welding fume exposure in mon-

keys, and these expressed genes are expected to be useful

in helping to understand transcriptional changes in monkey

lungs after welding fume exposure.
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Introduction

Welding fume exposure occurs in many industrial fields. It is

estimated that approximately 800,000 full-time welders

were exposed to welding fumes during welding. If welders

working at part-time jobs are included, many more welders

may be exposed worldwide (Sferlazza and Beckett 1991).

Welding fumes are created when metal is united with pres-

sure and heat. During this process, many injurious factors are

generated, including welding fumes, ozone, and gases, such

as nitric oxide and steam vapor, as well as ionizing and
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non-ionizing radiation (Harris 2002; Burgess 1995). In

particular, welding fume components, such as Fe, Cr, and

Ni, can cause pulmonary disease (Antonini et al. 2004).

Many studies have been conducted regarding the inju-

rious factors generated during the welding process. These

studies have focused on the toxicological operation of the

lungs during welding fume exposure. Furthermore, the

correlation between the injurious components of welding

fumes including pulmonary diseases, such as siderosis,

immunosuppression, and lung cancer, has also been studied

(Antonini et al. 2003). Acute exposure to welding fumes

induces metal fume fever (Mueller and Seger 1985) and

reversible respiratory symptoms (El-Zein et al. 2003; Wolf

et al. 1997). Moreover, welding fumes induce asthma in

welders, and there is an increase in the inflammatory

transition of the lungs, such as in chronic bronchitis (El-

Zein et al. 2003). These studies show that exposure to a

high concentration of welding fumes over the long term

induces pulmonary diseases. Yu et al. established that a

stainless steel welding fume generation system produced

pneumotoxic effects, and lung fibrosis was induced by

exposure to chronic and high concentrations of welding

fumes in Sprague–Dawley rats (Yu et al. 2001, 2003a, b,

2004). Although the toxicological effects of welding fumes

on lung injury have been studied using animal models,

information about the molecular and genetic events that

cause lung injury or trigger the inflammatory response to

prevent injury is lacking.

Recently, microarray analysis has been used in toxi-

cology to interpret the toxicological effects at the tran-

scriptional level and to identify genetic biomarkers in

specific target cells or tissues (Young 2002, Chung et al.

2004; Oda et al. 2005; Powell et al. 2006). Moreover,

phenotype-anchored gene expression profiles suggest that

various toxicological endpoints or diseases can be classi-

fied or predicted by gene expression patterns (Alizadeh

et al. 2000; Bittner et al. 2000). Gene expression analysis

has been used to investigate peripheral blood mononuclear

cells in which pneumoconiosis symptoms were caused in a

rat model after a 30-day exposure to welding fumes (Rim

et al. 2004). In a previous study, we also investigated gene

expression profiling in lung injury in Sprague–Dawley rats

after welding fume exposure and recovery (Oh et al. 2007).

Although gene expression profiling has been performed in

animal models, there are differences in transcriptomic

regulation between humans and animals.

Thus, in this study, the cynomolgus monkey model, the

genome of which is highly homologous to the human gen-

ome, was used to investigate gene expression profiling of

lung injury following welding fume exposure. Gene

expression profiling using a monkey model may reduce

interspecies variances between an animal model and

humans and help to address the toxicity of welding fume

exposure in the human lung. We also compared gene

expression profiles between the rat and the monkey to

analyze the genetic level correlation and assess the reli-

ability of expression patterns in the monkey model, because

we used a limited number of monkeys in the study. This is

the first comprehensive report on gene expression in the

lungs of monkeys after welding fume exposure and recov-

ery. This study provided molecular insights in the lung

tissues when welding fumes were repeatedly infiltrated.

Materials and methods

Generation of MMA-SS welding fumes

The welding fumes were generated using an automatic

robotic arm as a holding support for the welding rod (KST

308, 2.6 mm9 300 mm, Korea Welding Electrode Co.

Ltd, Seoul, Korea) as previously described (Sung et al.

2007; Park et al. 2007). When the robotic arm approached

the base stainless steel plate (SUS 304, 2.5 cm thick) in a

zigzag motion, an arc was produced and the rod was con-

sumed, generating welding fumes. The fumes were then

moved into exposure chambers (whole-body type, each

1.5 m3, Dusturbo, Seoul, Korea) that were rectangular in

shape and made of metal with a Plexiglas window. Each

chamber accommodated two monkey cages, and the total

volume occupied by the two monkeys in a chamber was

estimated as 1.3%. The chambers were equipped with

HEPA filters to provide purified air to the exposure

chambers. The welding fumes in the chamber were sam-

pled using a personal sampler (MSA 484107, Pittsburgh,

PA) at a flow rate of 2 l/min. The metal composition of the

welding fume particulates captured on membrane filters

(pore size 0.8 lm, 37 mm diameter, Millipore AAWP

03700, Bedford MA, USA) was analyzed for metal com-

position with an inductively coupled plasma analyzer

(Thermojeralash, IRIS, Houston, TX, USA), using the

NIOSH method 7300 (1999). Nitrous fumes, O3, and NO2

were all measured using Drager tubes (catalog numbers

6733181, CH 31001, and CH 30001, respectively) and

sampled by stroking a gas detector pump (6400000,

Drager, Lubeck, Germany), according to the manufac-

turer’s directions 1 h after the welding fume exposure

began. An Anderson sampler (AN-200, Shibata, Tokyo,

Japan) was used to measure the mass media aerodynamic

diameters of the welding fumes. The flow rate was 28.3 l/

min, and the samples were collected for 5 min.

Exposure to welding fumes

Monkeys were exposed to the welding fumes as described

previously (Sung et al. 2007; Park et al. (2007). Six
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63 ± 5-month-old, male cynomolgus monkeys (3.7 ±

0.7 kg; Macaca fascicularis) were purchased from the Yun-

nan National Laboratory Primate Center (China) and accli-

mated for a 3-month period. The sequestered animal room

was maintained at a temperature of 23 ± 3�C and a relative

humidity of 55 ± 10%, with air ventilation 10–20 times/h, a

light intensity of 150–300 lux, and a 12/12-h light/dark cycle

(8 am to 8 pm). Throughout the study, the monkeys were

individually housed in stainless steel wire cages

(660 W 9 800 l 9 850 H mm) and fed a standard monkey

diet (Oriental Yeast Co., Tokyo, Japan). No dietary supple-

ment, such as fruit, was provided. Ultraviolet-irradiated and

filtered municipal tap water was provided to the animals

ad libitum. All animals were cared for in accordance with the

principles outlined in the ‘‘Guide for the Care and Use of

Laboratory Animals,’’ an NRC publication (ILAR 1996). The

monkeys were randomly assigned to three groups (unex-

posed, n = 2; low dose, n = 2; and high dose, n = 2), using

the Path/Tox System (Version 4.2.2, Xybion Medical Sys-

tems Corporation, Cedar Knolls, NJ, USA), and exposed to

welding fumes for 2 h/day, 5 days/week (1:30 pm to

3:30 pm) in the exposure chambers. Before initiating the

inhalation exposure, the monkeys were taken out of their

normal cages and housed in individual wire cages

(450 W 9 600 l 9 460 H mm) that were specially

designed for the inhalation experiment. In total, four mon-

keys, two in each chamber, were concurrently exposed during

each 2-h exposure period. One monkey was used in each test

group and recovery group. The control animals were not

placed in the inhalation chamber; they remained in the cage

during the 2-h exposure period. Food and water were not

provided during the 2-h exposure, and the monkeys were

taken out of the chambers at the end of the 2-h exposure. The

time-weighted average (TWA) concentrations for the expo-

sure doses were 31.4 ± 2.8 mg/m3 (T1) and 62.5 ± 2.7 mg/

m3 (T2) total suspended particulates per 2 h. The target

concentrations were achieved by varying the flow rates, by

adjusting the dampers. Necropsies were performed after the

229 days of exposure and after the 153-day recovery period.

Histopathology

Lung samples collected from exposed, recovered, and

control monkey were fixed in 10% neutral buffered for-

malin and embedded in paraffin. Sections (4 lm) were cut

using a microtome (RM2165; Leica, Wetzlar, Germany),

stained with hematoxylin and eosin, and examined under a

light microscope (E400; Nikon, Tokyo, Japan).

Isolation of RNA

A portion of the lung samples was homogenized in Trizol

reagent (Invitrogen, Carlsbad, CA, USA), and the isolated

total RNA was repurified using an RNeasy mini kit (Qia-

gen, Valencia, CA, USA), according to the manufacturer’s

protocol. Total RNA was quantified using a NanoDrop

spectrophotometer (NanoDrop Technologies, Montchanin,

DE, USA), and the quality of RNA was evaluated using a

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,

USA) for DNA chip experiments.

Microarray analysis

The Affymetrix GeneChip� Human Genome U133 Plus

2.0 array was used for the microarray analysis. Sample

labeling, microarray hybridization, washing, and scanning

were performed according to the manufacturer’s protocol

(Affymetrix, Santa Clara, CA, USA). Microarray experi-

ments for each exposure and recovery group were dupli-

cated and, in total, twelve arrays were used. The

preprocessing procedure for the cell intensity files (CEL)

and the following microarray analyses were performed

using GenPlex software (Istech Inc., Goyang, Korea). Data

were normalized using global scale normalization. The

differentially expressed genes in the each dose group of

229-day welding fume exposure group and the 153-day

recovery group were selected based on the fold change and

results from the Student’s t-test (over 2-fold and P \ 0.01),

compared with the corresponding controls. Hierarchical

clustering was also performed with the centered Pearson’s

correlation, using these selected genes, based on the com-

plete linkage and distance matrix. Differentially expressed

genes in the 229-day welding fume exposure group and the

153-day recovery group were imported into Ingenuity

Pathways Analysis (IPA; Ingenuity Systems, Redwood,

CA, USA), and the biological functions and toxicology

were analyzed. Genes commonly deregulated during

welding fume exposure between the monkeys and the rats

were analyzed using microarray data for the 229-day

welding fume exposure group of monkeys and those for the

30-day welding fume exposure group of rats, previously

reported by Oh et al. (2007). In rat model for welding fume

exposure, rats for T1 and T2 dose group were exposed to

51.4 ± 2.89 mg/m3 and 84.63 ± 2.87 mg/m3, respec-

tively, for 2 h per day for up to 30 days (Oh et al. 2007).

Lower cutoff threshold (over 1.3-fold and P \ 0.01) for

selecting the differentially expressed genes was performed

to compare deregulated genes between two species

exposed to welding fumes. Based on fold change and sta-

tistical significance, 1,342 and 4,881 differentially

expressed genes were selected in the monkey and rat

exposure groups, respectively. Among the 1,342 differen-

tially expressed genes in monkeys, 534 genes with a gene

symbol were selected to compare with those of the rat

model. The selected genes were annotated based on Ne-

tAffx (http://www.Affymetrix.com).
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Quantitative real-time RT-PCR

Gene transcripts were detected and quantified using SYBR

Green (QuantiTect SYBR Green PCR Master Mix; Qia-

gen), according to the manufacturer’s instructions, on a

Rotor-Gene 6000 real-time rotary analyzer (Corbett

Research, Sydney, Australia). Primers were designed using

the Primer3 software (http://frodo.wi.mit.edu/); the primer

sequences are presented in Supplemental Table 1. A

melting curve analysis was performed on all amplified

products to ensure the specificity and integrity of the PCR

products. The Gapdh level was used as an internal control,

and fold changes were calculated according to the 2-DDCT

method (Livak and Schmittgen 2001).

Results

Exposure to welding fumes and histopathology

To induce lung damage caused by welding fumes, monkeys

were exposed to welding fumes at dose levels of

31.4 ± 2.8 mg/m3 (T1 dose) and 62.5 ± 2.7 mg/m3 (T2

dose) for 229 days and allowed to recover for 153 days.

After the recovery period, serum biochemical and patho-

logical examinations were performed. Serum biochemistry

showed that no significant change was noticed (data not

shown) in lymphocytes or neutrophils during the welding

fume exposure. Histopathology showed that significant

lung damage, such as pulmonary fibrosis, was not observed

in either the 229-day exposure group or the 153-day

recovery group. However, the lung tissues were infiltrated

with welding fumes in both the T1 and T2 dose groups

(Fig. 1). A similar severity of infiltration was interestingly

observed in the 153-day recovery group (data not shown),

even though after long-term recovery period (153-day).

Differentially expressed genes in the monkey lungs

of the welding fume-exposed and recovery groups

For the microarray analysis, differentially expressed genes

were selected from the monkey lung tissues in the welding

fume exposure and recovery groups. In the exposure and

recovery group, 669 (T1 dose, 365; T2 dose, 370) and 489

(T1 dose, 309; T2 dose, 239) genes were up- or down-

regulated, respectively. Hierarchical clustering was per-

formed; the results showed that samples were clustered in

each dose group, many genes were commonly deregulated

in both dose groups, and several genes were clustered

specifically to each dose group (Fig. 2). The top 20 highly

deregulated genes from the exposure group are shown in

Table 1. Genes involved in signaling pathways (DGKB,

PIAS2, AXIN2), metal ion binding (TRIM2), DNA binding

(HIST1, H2BC), and metabolism (CHIT1) were up-

Fig. 1 Light micrographs of monkey lungs after 229 days of welding fume exposure a control (9100), b T2 dose (62.5 ± 2.7 mg/m3, 9100), c
Control (9400), d T2 dose (62.5 ± 2.7 mg/m3, 9400)
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regulated in the exposure group, although most genes were

not functionally annotated. In contrast, genes involved in

transport (ABCA13, STEAP2, KCNH2, KCNV1), tran-

scription (236231_at, ZNF738, HEY2), cell adhesion

(ACTN2), rRNA processing (ADAT2), and protein binding

(SLITRK6) were down-regulated in the exposure group.

In the recovery group, genes involved in tRNA amino-

acylation (IGL@, TARS), antigen presentation or immune

response (HLA-DPB1, IGHM, GAGE12F), cell differenti-

ation or development (THOC5, FNDC3A, DOCK7),

metabolism (CHIT1, CPT1A), and apoptosis (240890_at,

JAK2) were up-regulated, whereas genes involved in heat

shock protein binding (DNAJC6, NTRK2, DNAJC10),

signal transduction (RGS4), proteolysis (DPP10), antigen

presentation (HLA-DPA1), cell cycle arrest (GAS2L3),

transcription (ZNF483), and development (RICTOR) were

down-regulated (Table 2).

Functional classification of differentially expressed

genes in the welding fume exposure and recovery

groups

The molecular mechanisms of these selected 669 and 489

genes from the exposure and recovery groups, respectively,

were analyzed using IPA. As shown in Table 3, the results

confirmed changes in the expression of genes in the

exposure group involved in immunological disease, genetic

disorders, cancer, organism injury and abnormalities, and

inflammatory diseases. In the recovery group, genes

involved in cancer, immunological diseases, and inflam-

matory diseases ranked high. Among these categories,

highly regulated genes related to immunological and

inflammatory disease were represented in Table 4. As

shown in Table 4, PPID, CFLAR, CPT1A, and INSR for

up-regulated genes and KLKB1, ATM, RAG1, UBASH3A,

IGKC, and PTPN22 for down-regulated genes were con-

sistently regulated in both exposure and recovery group.

When the molecular and cellular functions were ana-

lyzed, changes in the expression of genes involved in

cellular growth, proliferation, and development were

observed in the exposure group. Changes in the expression

of genes involved in cellular growth, proliferation, and the

cell cycle were also observed in the recovery group. In the

analysis of toxicological functions, changes in genes

involved in the G1/S transition of the cell cycle, TR/RXR

activation, and hepatic fibrosis were identified in both the

exposure and recovery groups. In particular, changes in

genes involved in gene regulation mechanisms by peroxi-

some proliferation, RAR activation, and oxidative stress

response mediated by Nrf2 were identified in the recovery

group (Fig. 3).

Commonly deregulated genes in the lungs of monkeys

and rats after welding fume exposure

To compare the results from the gene expression pattern in

monkey lung tissues exposed to welding fumes with those

seen in rats, the expression level of 534 genes with

Fig. 2 Hierarchical clustering of differentially expressed genes in monkey lungs from the welding fume exposure a and recovery b groups
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identical gene symbols were compared as described in the

‘‘Materials and methods’’ section. Of 534 monkey genes

that showed changes in lung tissue, 76 matched changes in

rats (15%). Among them, 39 were identified as up-regu-

lated or down-regulated in both monkeys and rats (51%;

Table 5). Most of these genes in common were down-

Table 1 Differentially expressed genes in monkey lungs from welding fume exposure group

Gene_symbol

/probe ID

Gene_title RefSeq ID Fold change (Log 2)

Exp_T1 Exp_T2

Up-regulated genes in the exposure group

XIST X (inactive)-specific transcript NR_001564 3.28 8.43

TMED6 Transmembrane emp24 protein transport domain containing 6 NM_144676 3.65 5.10

SFRS4 Splicing factor, arginine/serine-rich 4 NM_005626 2.28 5.00

1556192_x_at Full-length insert cDNA clone YR55D08 – 4.17 4.58

242830_at Unknown – 2.49 4.58

DGKB Diacylglycerol kinase, beta 90 kDa NM_004080 2.36 4.52

TRIM2 Tripartite motif-containing 2 NM_015271 0.38 4.48

EML5 Echinoderm microtubule-associated protein like 5 NM_183387 3.90 4.35

244388_at Transcribed locus – 3.24 4.06

C5orf28 Chromosome 5 open reading frame 28 NM_022483 4.74 4.05

1564299_at CDNA FLJ33307 fis, clone BNGH42004076 – 2.91 4.01

1566836_at CDNA clone IMAGE:5302735 – 3.53 3.89

HIST1H2BC Histone cluster 1, H2bc NM_003526 4.08 3.80

LOC339260 Hypothetical protein LOC339260 – 1.58 3.65

NHSL1 NHS-like 1 XM_496826 2.75 3.63

C6orf201 Chromosome 6 open reading frame 201 NM_001085401 3.25 3.61

PIAS2 Protein inhibitor of activated STAT, 2 NM_004671 1.17 3.58

AXIN2 Axin 2 (conductin, axil) NM_004655 4.03 3.49

CHIT1 Chitinase 1 (chitotriosidase) NM_003465 2.92 3.32

233010_at CDNA FLJ14313 fis, clone PLACE3000341 – 3.67 3.30

Down-regulated genes in the exposure group

OVOS2 Ovostatin 2 NM_001080502 -6.04 -5.85

ABCA13 ATP-binding cassette, sub-family A (ABC1), member 13 NM_152701 -3.64 -5.77

236945_at Unknown – -1.89 -5.68

GPATCH2 G-patch domain containing 2 NM_018040 -0.20 -5.04

C20orf19 Chromosome 20 open reading frame 19 NM_018474 -0.30 -4.99

242818_x_at Transcribed locus – -0.66 -4.95

TMEFF2 Transmembrane protein with EGF-like and two follistatin-like domains 2 NM_016192 -1.05 -4.91

KLKB1 Kallikrein B, plasma (Fletcher factor) 1 NM_000892 -0.32 -4.30

ACTN2 Actinin, alpha 2 NM_001103 -2.90 -4.03

236231_at Unknown – -2.14 -4.01

1569772_x_at CDNA clone IMAGE:4824424 – -3.11 -3.98

ADAT2 Adenosine deaminase, tRNA-specific 2, TAD2 homolog (S. cerevisiae) NM_182503 -2.37 -3.83

243548_x_at Transcribed locus – -1.72 -3.75

ZNF738 Zinc finger protein 738 XR_015756 -2.76 -3.72

SLITRK6 SLIT and NTRK-like family, member 6 NM_032229 -1.83 -3.69

HEY2 Hairy/enhancer-of-split related with YRPW motif 2 NM_012259 -2.65 -3.66

STEAP2 Six transmembrane epithelial antigen of the prostate 2 NM_001040665 -0.74 -3.64

TEX12 Testis expressed 12 NM_031275 -2.40 -3.57

KCNH2 Potassium voltage-gated channel, subfamily H (eag-related), member 2 NM_000238 -1.92 -3.52

KCNV1 Potassium channel, subfamily V, member 1 NM_014379 -2.57 -3.48

Fold change was calculated with relative average value of 2 arrays in each group comparing to corresponding controls and values were

represented with log 2
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regulated. The common genes included CHI3L1, GM2A,

RARRES1, CTSK, DDHD1, and CTSB. Among these, six

genes that ranked high as either up-regulated or down-

regulated genes were selected for real-time PCR to confirm

gene expression (Fig. 4). Among the up-regulated lung

genes from the monkey exposure group, CHI3L1,

Table 2 Differentially expressed genes in monkey lungs from welding fume recovery group

Gene_symbol/probe ID Gene_title RefSeq ID Fold change (Log 2)

Rec_T1 Rec_T2

Up-regulated genes in the recovery group

IGL@ Immunoglobulin lambda locus – 4.63 4.92

1557452_at Full-length insert cDNA clone ZC19A03 – 5.15 4.64

HLA-DPB1 Major histocompatibility complex, class II, DP beta 1 NM_002121 4.53 4.60

THOC5 THO complex 5 NM_001002877 1.59 4.12

IGHM Immunoglobulin heavy constant mu – 2.66 3.94

C6orf12 Chromosome 6 open reading frame 12 XM_001132906 4.18 3.88

FNDC3A Fibronectin type III domain containing 3A NM_001079673 3.65 3.81

1561906_at Homo sapiens, clone IMAGE:3626122 – 3.93 3.81

MRPL44 Mitochondrial ribosomal protein L44 NM_022915 1.99 3.75

CHIT1 Chitinase 1 (chitotriosidase) NM_003465 2.45 3.73

DOCK7 Dedicator of cytokinesis 7 NM_033407 2.79 3.73

HOXA9 Homeobox A9 NM_152739 1.55 3.70

240890_at CDNA clone IMAGE:5216666 – 2.56 3.65

CPT1A Carnitine palmitoyltransferase 1A (liver) NM_001031847 2.93 3.63

TARS Threonyl-tRNA synthetase NM_152295 4.09 3.56

1569727_at Homo sapiens, similar to hypothetical gene LOC130797 – 3.12 3.51

GAGE12F G antigen 6 NM_001098405 3.57 3.42

LOC731851 Hypothetical protein LOC731851 XM_001131041 3.69 3.37

JAK2 Janus kinase 2 (a protein tyrosine kinase) NM_004972 3.40 3.35

C18orf17 Chromosome 18 open reading frame 17 NM_153211 1.27 3.33

Down-regulated genes in the recovery group

RGS4 Regulator of G-protein signaling 4 NM_001102445 -3.25 -5.20

DPP10 Dipeptidyl-peptidase 10 NM_001004360 -1.42 -4.64

DNAJC6 DnaJ (Hsp40) homolog, subfamily C, member 6 NM_014787 -0.67 -4.61

NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 NM_001007097 -0.85 -4.32

DNAJC10 DnaJ (Hsp40) homolog, subfamily C, member 10 NM_018981 -3.90 -4.03

HLA-DPA1 Major histocompatibility complex, class II, DP alpha 1 NM_033554 -1.64 -3.87

C11orf54 Chromosome 11 open reading frame 54 NM_014039 0.08 -3.85

GAS2L3 Growth arrest-specific 2 like 3 NM_174942 -2.55 -3.84

1560395_at Homo sapiens, clone IMAGE:4293443, mRNA – -2.39 -3.81

FAM55C Family with sequence similarity 55, member C NM_145037 0.27 -3.62

229318_at CDNA clone IMAGE:4814437 – -2.92 -3.44

SPATA22 Spermatogenesis-associated 22 NM_032598 -2.50 -3.35

243302_at Transcribed locus – -3.53 -3.33

1563397_at EST from clone 114659, full insert – -1.86 -3.33

ZNF483 Zinc finger protein 483 NM_001007169 -1.42 -3.31

RICTOR Rapamycin-insensitive companion of mTOR NM_152756 -3.59 -3.29

244282_at Transcribed locus – -1.25 -3.24

234650_at CDNA: FLJ21254 fis, clone COL01317 – -2.57 -3.23

240594_at Transcribed locus – -3.30 -3.21

CYP26B1 Cytochrome P450, family 26, subfamily B, polypeptide 1 NM_019885 -3.06 -3.19

Fold change was calculated with relative average value of two arrays in each group comparing to corresponding controls, and values were

represented with log 2
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RARRES1, DDHD1, and CTSB were all up-regulated, but

GM2A was down-regulated in rat lungs from the welding

fume exposure group. However, selected down-regulated

genes such as GRAP, CYP1B1, PTGFRN ID4, and NRGN

in monkey lungs from the microarray analysis were all

down-regulated in both monkey and rat samples. This

overall result indicated that gene expression patterns

detected from the microarray experiment were almost

consistent with those determined from real-time PCR, and

selected genes were consistently deregulated in rat

samples.

Discussion

In this study, we analyzed the gene expression profiles

from monkey lungs injured by welding fumes for 229 days

and recovered for 153 days. Welding fumes consist of

particulate matter from the heavy metal materials and

gases, such as ozone. The Cr(VI) and nitrous fumes can

include Fe, Mn, Ni, Cr, SiO2, and asbestos (Antonini et al.

2004; Yu et al. 2001). Several studies have investigated the

toxicological effects of welding fume exposure in various

animal models (Hicks et al. 1983; Kalliomäki et al. 1986,

Uemitsu et al. 1984). Gene expression changes should be

triggered in target tissues by welding fume exposure, so

microarray analysis is a useful tool for elucidating the

molecular response to welding fume exposure. Rim et al.

(2004, 2007) previously reported gene expression profiling

of peripheral mononuclear cells from welding fume-

exposed rats and welders. Gene expression profiling using

blood samples could be useful to monitor the toxicological

effects in surrogate tissues, but it is still of limited value in

understanding dynamic phenomena, including lung

inflammation or a response process in a target tissue.

Actually, there were almost no genes consistently expres-

sed in rat lungs (Oh et al. 2007) when compared with those

expressed in rat blood after welding fume exposure (Rim

et al. 2004). Furthermore, the use of a rodent model to

predict toxic effects in humans also has limitations because

of interspecies differences in toxicological responses,

although central physiological functions are assumed to be

almost common among mammals. For this reason, we used

the monkey model to investigate gene expression profiling

following welding fume exposure.

The histopathology showed that welding fumes were

deposited within the lung tissues of monkeys, but there was

no serious immune reaction. In a previous study, inflam-

mation and infiltration of large numbers of immune cells

into the alveoli were observed in a rat model following a

30-day welding fume exposure, and the lung almost

recovered during a 30-day recovery period (Oh et al. 2007,

2009). These histological differences in welding fume

exposure between monkeys and rats may have been caused

by differences in breathing volumes of the animals, the

respiration rate, and the actual exposed concentration of

Table 3 Functional classification of differentially expressed genes in the welding fume exposure or recovery group

Exposure Recovery

Functions P-value No. of

genes

Functions P-value No. of

genes

Disease and disorder

Immunological disease 1.24E-05–1.32E-02 58 Cancer 1.55E-05–2.06E-02 109

Genetic disorder 2.19E-05–1.48E-02 152 Immunological disease 3.40E-05–2.06E-02 41

Cancer 5.55E-05–1.41E-02 148 Inflammatory disease 2.52E-04–2.06E-02 45

Organismal injury and

abnormalities

5.65E-05–1.35E-02 27 Renal and urological disease 2.62E-04–2.06E-02 10

Inflammatory disease 1.06E-04–1.48E-02 59 Reproductive system disease 3.27E-04–2.06E-02 45

Molecular and cellular functions

Cellular growth and proliferation 3.82E-08–1.35E-02 129 Cellular growth and

proliferation

1.84E-06–2.06E-02 93

Cellular development 1.20E-06–1.35E-02 105 Cell cycle 7.30E-06–2.06E-02 38

Post-translational modification 8.86E-06–1.38E-02 43 Cell death 1.55E-05–2.06E-02 74

Cellular function and maintenance 1.16E-05–1.40E-02 22 Cell morphology 2.74E-05–2.06E-02 58

Cell cycle 2.22E-05–1.49E-02 52 Cellular development 1.56E-04–2.06E-02 67

Top functional categories for differentially expressed genes are presented for the exposure and recovery groups. P-values were calculated by

comparing the number of molecules of interest relative to the total number of occurrences of these molecules in all functional annotations stored

in the Ingenuity Pathways knowledge base (Fisher’s exact test with P-value adjusted using the Benjamin–Hochberg multiple testing correction)
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welding fumes. In this study, exposure concentration of

welding fumes was almost similar but the duration of

welding fume exposure was different between monkey and

rat models as follows: monkey model was exposed to

62.5 ± 2.7 mg/m3 (T2 dose) for 229 days, and rats were

exposed to 84.63 ± 2.87 mg/m3 (T2 dose) for 30 days.

Based on the respiratory rate between monkey (appx.

2,088 ml/min) and rat (appx. 264 ml/min) models, actual

exposed concentration was estimated as previously

described by Lawson (1998) and Authier et al. (2009). The

actual exposed concentration was determined with

4.23 mg/kg/day and 9.68 mg/kg/day in monkey and rat

models, respectively. Considering the duration of welding

fume exposure, it was suggested that monkey was exposed

to enough welding fumes, but welding fume accumulation

in lungs has not been severe comparing to rat model.

Moreover, in the monkey model, welding fumes were

hardly removed from the lung after the 153-day recovery

period. It seems that lung recovery or removal of welding

fumes may be differently regulated in monkeys than rats. It

was expected that we could understand and predict the

molecular mechanism underlying welding fume exposure

and the recovery process in humans using gene expression

profiling in monkeys.

In the microarray analysis, the top-ranked differentially

expressed genes involved in the inflammatory response

were not primarily identified in the exposure and recovery

groups of monkey lung, which differed from the many

immune response genes identified in the rats investigated

previously (Oh et al. 2007). However, a biofunctional

analysis of all of the differentially expressed genes showed

that about 50 genes identified in the exposure and recovery

groups, respectively, appeared to be primarily involved in

immunological disease. Table 4 represented that top-reg-

ulated genes related to inflammation in exposure or

recovery group. Through analysis of expression changes

for a total of 50 genes related to inflammation in exposure

group comparing to recovery group, we found that about

50% of genes in T2 group were consistently up- or down-

regulated in both exposure and recovery groups. This result

Table 4 Top-regulated genes related to inflammation in monkey lungs

Gene_symbol Gene_title RefSeq ID Fold change (Log 2)

Exp Rec

T1 T2 T1 T2

Up-regulated genes

PPID Cyclophilin-40 NM_005038 0.59 2.62 -0.39 -1.45

INSR Insulin receptor NM_000208 1.90 2.55 -1.22 -0.94

CPT1A Carnitine palmitoyltransferase 1A (liver) NM_001031847 1.67 2.17 2.93 3.63

ALAS2 Aminolevulinate, delta-, synthase 2 NM_000032 0.53 1.63 -0.84 -0.26

CFLAR I-FLICE isoform 5 NM_001127183 2.79 1.46 1.95 1.18

CDK2 Cyclin-dependent kinase 2 NM_001798 1.05 1.43 -1.17 -0.49

CPT1A Carnitine palmitoyltransferase 1A (liver) NM_001031847 0.83 1.39 0.64 0.74

F2RL1 Coagulation factor II (thrombin) receptor-like 1 NM_005242 0.26 1.18 -0.40 -0.06

PDE4D Phosphodiesterase 4D, cAMP-specific NM_001104631 -0.03 1.00 -0.50 -0.22

INSR Insulin receptor NM_000208 1.14 0.57 1.04 0.97

Down-regulated genes

KLKB1 Kallikrein B, plasma (Fletcher factor) 1 NM_000892 -0.32 -4.30 0.08 -0.57

ATM Ataxia telangiectasia mutated NM_000051 -1.58 -3.24 -0.73 -0.53

RAG1 Recombination activating gene 1 NM_000448 -0.62 -3.20 -2.17 -2.51

UBASH3A Ubiquitin associated and SH3 domain containing, A NM_001001895 -1.05 -3.19 1.04 -0.45

IGKC Immunoglobulin kappa constant XM_001713938 0.22 -3.13 -1.44 -1.48

MAPK13 Mitogen-activated protein kinase 13 NM_002754 -1.62 -2.97 1.09 1.49

PTPN22 Protein tyrosine phosphatase, non-receptor type 22 NM_012411 -0.32 -2.93 -1.37 -0.39

MED7 Mediator complex subunit 7 NM_001100816 -1.52 -2.64 1.26 1.11

IGL@ Immunoglobulin lambda locus – 2.88 -2.37 0.89 0.57

IFIH1 Interferon induced with helicase C domain 1 NM_022168 -1.48 -2.37 -0.58 -0.26

Fold change was calculated with a relative average value of two arrays in each group, compared with the corresponding controls

Values presented are log 2 transformed
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suggests that a significant inflammatory response did not

occur in the lungs of welding fume-exposed monkeys but

that inflammatory response was also progressed during

recovery period.

Interestingly, there was a greater up-regulation of genes

related to immunological disease in the recovery group

than in the exposure group. The histopathology revealed

that welding fumes were not removed during the 153-day

recovery period, and it is thought that an inflammatory

response increasingly progressed during the recovery per-

iod. Gene alterations involved in the immune response

during the welding fume exposure and recovery periods

were consistent with our histopathological observations.

This result illustrates the utility of microarray analysis in

characterizing responses to lung injury in monkeys exposed

to welding fumes.

Here, we analyzed the changes in gene expression in the

lungs of monkeys after welding fume exposure and recov-

ery, but the number of individuals in each group was small.

For this reason, we compared the differentially expressed

genes identified in the present study with those identified in

welding fume-exposed rats, which were previously reported

(Oh et al. 2007). Among the commonly deregulated genes

in the monkey and rat after welding fume exposure,

CHI3L1, CTSK, and CTSB were up-regulated, whereas

GRAP, CYP1B1, CYP26B1, and ID4 were down-regulated,

and the transcriptional alterations were also confirmed by

real-time PCR. Transcriptional expression of CHI3L1 is

regulated by TNF or IL1B and CHI3L1, which are involved

in macrophage differentiation (Recklies et al. 2005; Rehli

et al. 2003). CHI3L1 may play an important role in the early

immune response in both monkeys and rats after exposure

to welding fumes. Cathepsin K (CTSK), which is expressed

in breast cancers, is also involved in the dendritic cell or

macrophage signaling pathway and is also associated with

differentiation in a leukemia cell line (Takeshita and Ishii

2008; Hattori et al. 2007). Additionally, cathepsin B

(CTSB), which was up-regulated during welding fume

exposure, is associated with apoptosis and proliferation in

various cell lines, including lung cancer and fibroblast cell

lines (Moubarak et al. 2007; Bröker et al. 2004). GRAP,

which was down-regulated during welding fume exposure,

plays a role in negatively regulating the proliferation of

lymphocyte interleukin-2 induction (Shen et al. 2002).

CYP1B1 and CYP26B1 were highly down-regulated during

welding fume exposure.

To date, studies about xenobiotic metabolism induced

by welding fume exposure are limited, and the mechanisms

Fig. 3 Toxicological functional analysis of differentially expressed genes in the exposure and recovery groups. Interesting categories of mode of

action were selected and represented. The dark blue and light blue bars in the histogram indicate the exposure and recovery groups, respectively
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Table 5 Commonly deregulated genes in the monkey and rat welding fume exposure groups

Gene_symbol Gene_title RefSeq ID Fold change (Log 2)

Monkey Rat Monkey Rata

T1 T2 T1 T2

Up-regulated genes

CHI3L1 Chitinase 3-like 1 (cartilage glycoprotein-39) NM_001276 NM_053560 4.24 2.67 1.02 1.44

GM2A GM2 ganglioside activator NM_000405 NM_172335 1.12 1.55 0.59 0.58

RARRES1 Retinoic acid receptor responder (tazarotene induced) 1 NM_002888 NM_001014790 1.81 1.53 1.50 2.10

CTSK Cathepsin K NM_000396 NM_031560 1.28 1.41 1.37 1.37

DDHD1 DDHD domain containing 1 NM_030637 NM_001033066 1.61 0.96 0.52 0.68

CTSB Cathepsin B NM_001908 NM_022597 1.03 0.77 0.57 0.86

Down-regulated genes

GRAP GRB2-related adaptor protein NM_006613 NM_001025749 -2.10 -2.69 -0.76 -0.54

CYP1B1 NM_000104 NM_012940 -2.71 -2.60 -0.53 -1.00

CYP26B1 Cytochrome P450, family 26, subfamily B, polypeptide 1 NM_019885 NM_181087 -1.23 -1.95 -0.66 -0.07

PTGFRN Prostaglandin F2 receptor negative regulator NM_020440 NM_019243 -1.63 -1.91 -0.59 -0.55

ID4 Inhibitor of DNA-binding 4, dominant negative helix-loop-helix

protein

NM_001546 NM_175582 -1.35 -1.65 -1.82 -0.97

NRGN Neurogranin (protein kinase C substrate, RC3) NM_006176 NM_024140 -2.51 -1.60 -0.71 -0.43

KIDINS220 Kinase D-interacting substrate of 220 kDa NM_020738 NM_053795 -1.08 -1.55 -0.38 -0.49

ANK2 Ankyrin 2, neuronal NM_001148 XM_001076082 -2.15 -1.40 -1.01 -1.16

TMPO Thymopoietin NM_001032283 NM_012887 -1.31 -1.30 -0.39 -0.27

PTGER4 Prostaglandin E receptor 4 (subtype EP4) NM_000958 NM_032076 -1.42 -1.27 -0.44 -0.47

RHOJ Ras homolog gene family, member J NM_020663 NM_001008320 -1.47 -1.27 -0.68 -0.62

CXCL12 Chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) NM_000609 NM_001033882 -1.96 -1.25 -0.59 -0.18

RBP1 Retinol-binding protein 1, cellular NM_002899 NM_012733 -1.26 -1.21 -0.92 -0.84

MAMDC2 MAM domain containing 2 NM_153267 XM_001078660 -1.59 -1.19 -0.84 -0.48

SPON1 Spondin 1, extracellular matrix protein NM_006108 NM_172067 -1.40 -1.05 -0.50 -0.48

GHR Growth hormone receptor NM_000163 NM_017094 -1.20 -1.02 -0.86 -1.07

FXYD1 FXYD domain containing ion transport regulator 1 (phospholemman) NM_005031 NM_031648 -1.26 -0.96 -0.93 -0.87

HPGD Hydroxyprostaglandin dehydrogenase 15-(NAD) NM_000860 NM_024390 -1.31 -0.92 -1.05 -1.11

NBL1 Neuroblastoma, suppression of tumorigenicity 1 NM_005380 NM_031609 -1.04 -0.91 -0.68 -0.58

WNT5A Wingless-type MMTV integration site family, member 5A NM_003392 NM_022631 -1.14 -0.91 -0.72 -1.02

FHL1 Four and a half LIM domains 1 NM_001449 NM_001033926 -1.11 -0.87 -0.58 -0.56

KCNS3 Potassium voltage-gated channel, delayed-rectifier, subfamily S,

member 3

NM_002252 NM_031778 -1.12 -0.73 -0.84 -0.56

SLC12A2 Solute carrier family 12 (sodium/potassium/chloride transporters),

member 2

NM_001046 NM_031798 -1.19 -0.69 -0.45 -0.35

ITPKB Inositol 1,4,5-trisphosphate 3-kinase B NM_002221 NM_019312 -1.09 -0.63 -0.86 -0.81

SOX9 SRY (sex-determining region Y)-box 9 (campomelic dysplasia,

autosomal sex-reversal)

NM_000346 XM_001081628 -1.07 -0.62 -1.34 -1.18

G0S2 G0/G1switch 2 NM_015714 NM_001009632 -1.03 -0.60 -1.02 -0.77

IGFBP6 Insulin-like growth factor binding protein 6 NM_002178 NM_013104 -1.04 -0.55 -0.33 -1.04

RAB28 RAB28, member RAS oncogene family NM_001017979 NM_053978 -1.12 -0.51 -0.38 -0.36

GBA2 Glucosidase, beta (bile acid) 2 NM_020944 NM_020944 -1.18 -0.51 -0.49 -0.32

HEY1 Hairy/enhancer-of-split related with YRPW motif 1 NM_001040708 XM_001057389 -1.05 -0.46 -0.50 -0.63

PDLIM3 PDZ and LIM domain 3 NM_014476 NM_053650 -1.61 -0.41 -0.76 -0.80

HNRPD Heterogeneous nuclear ribonucleoprotein D) NM_001003810 NM_001082539 -2.76 -0.30 -0.59 -0.39

RHOB Ras homolog gene family, member B NM_004040 NM_022542 -1.39 -0.12 -0.80 -0.61

Fold change was calculated with a relative average value of two (monkey model) or three arrays (rat model) in each group, compared with the

corresponding controls. Values presented are log 2 transformed
a Microarray data in the rat model were used with the permission of Oh et al. (2007). Differentially expressed genes were compared as described in the

‘‘Materials and methods’’. T1 dose means 31.4 ± 2.8 mg/m3 51.4 ± 2.89 mg/m3 and T2 dose means 62.5 ± 2.7 and 84.63 ± 2.87 mg/m3 in monkey and

rat models, respectively
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are poorly understood. However, we found that CYP1B1

and CYP26B1 were deregulated in the lung after welding

fume exposure. In contrast, ID4, a transcriptional regulator

and inhibitor of DNA binding, was down-regulated during

welding fume exposure. ID4 plays an important role in the

differentiation and proliferation of neural cell and epithelial

cell lines (Shan et al. 2003; Yun et al. 2004), but its

involvement in lung injury and lung inflammation has not

been reported.

In a previous study, genes related to the immune

response, such as Mmp12 and Trem2, and many cytokines,

such as Cd5l, Ccl7, and Cxcl5, were highly expressed in

rats after welding fume exposure (Oh et al. 2007). In the

present study, MMP12 was not differentially expressed in

monkey lung, but MMP9 was up-regulated, while its

expression was not altered in rats. TREM2 was consistently

up-regulated in both monkeys and rats, but TREM2 was

excluded from the gene list, because its gene symbol did

not match during the analysis. A previous study showed

that MMP12 was sensitively and significantly up-regulated

by welding fume exposure. This difference in gene

expression might be due to the degree of lung injury

induced by welding fumes or to interspecies variability.

This result also suggests that TREM2 plays an important

role in lung injury induced by welding fume exposure in

both monkeys and rats. In the case of cytokine genes,

CD5L, CCL7, and CXCL5 were up-regulated over 1.3-fold

or 2-fold in the recovery group but not in the exposure

group, although P-value was not over 0.01. Gene expres-

sion changes of these cytokines also indicate that lung

injury was chronically progressed even through recovery

period.

Using microarray analysis, we demonstrated, for the first

time, a comprehensive gene expression profile in monkeys

after welding fume exposure and recovery. We identified

several genes commonly deregulated that are involved in

inflammatory response and proliferation in both monkeys

and rats after welding fume exposure. This information

could aid in understanding the mechanisms in lung tissues

after welding fume exposure.
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Fig. 4 Verification of top-ranked genes deregulated in monkey lung

after welding fume exposure. Expression patterns of selected genes

detected from the microarray experiment for monkey lung were

analyzed in both the T1- and T2-dosed monkey and rat lungs by real-

time PCR. a Six up-regulated genes, b Six down-regulated genes in

the welding fume exposure group of monkeys. Three independent rat

samples were used to confirm the gene expression levels and average

fold change. The standard deviation was calculated as described in the

‘‘Materials and methods’’ section
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