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Abstract
A biofilm is a collection of microorganisms organized in a matrix of extracellular polymeric material. Biofilms consist of 
microbial cells that attach to both surfaces and each other, whether they are living or non-living. These microbial biofilms 
can lead to hospital-acquired infections and are generally detrimental. They possess the ability to resist the human immune 
system and antibiotics. The National Institute of Health (NIH) states that biofilm formation is associated with 65% of all 
microbial illnesses and 80% of chronic illnesses. Additionally, non-device-related microbial biofilm infections include 
conditions like cystic fibrosis, otitis media, infective endocarditis, and chronic inflammatory disorders. This review aims 
to provide an overview of research on chronic infections caused by microbial biofilms, methods used for biofilm detection, 
recent approaches to combat biofilms, and future perspectives, including the development of innovative antimicrobial strate-
gies such as antimicrobial peptides, bacteriophages, and agents that disrupt biofilms.
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Introduction

Biofilms are known to be the prevalent form of microbial 
life, with most of the microbes living as biofilm communities 
in diverse surroundings, within host organisms (Flemming 
et al. 2016). Microbes display two kinds of growth: free-
living planktonic; surface attached within biofilms, which 
are structured communities enclosed in a self-produced 
or extracellular polymeric matrix composed of water and 
extracellular polymeric substances (EPS), primarily polysac-
charides, proteins and DNA (Rumbaugh and Sauer 2020). 
Biofilm formation begins when planktonic microorganisms 
attach to surfaces, marking a crucial stage in the transition 
of individual microorganisms into a structured community. 
This adherence process initiates the development of the 
microorganisms from their free-floating state into a cohe-
sive and organized biofilm structure (Haggag 2010). In the 
early phase of biofilm formation, microorganisms attach 
to surfaces in a loosely bound and reversible manner. This 
stage is characterized by the presence of microorganisms 
attached to surfaces in a polar manner. Subsequently, the 
microorganisms reorient themselves to lie flat on the sur-
faces, establishing irreversible attachment. This irreversible 
attachment leads to the development of resistance against 
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various physical factors that could otherwise impede the 
formation of the biofilm (Banerjee et al. 2015). Following 
the successful attachment of microorganisms to surfaces, 
the adhered microorganisms initiate multiplication and 
aggregation within the extracellular polymeric substance 
(EPS) they produce. This process leads to the formation of 
microcolonies, especially in the presence of a high concen-
tration of c-di-GMP. Interactions between microorganisms 
and surfaces rely on the movements facilitated by flagella 
and type IV pili-mediated motilities. Flagella are crucial for 
the microorganisms' interactions with surfaces, while type 
IV pili play a significant role in cell-to-cell aggregations, 
facilitating the formation of microcolonies (Rabin et al. 
2015). The extracellular polymeric substance (EPS) plays a 
vital role in the maturation of biofilms by fulfilling several 
functions. It aids in the attachment of microbes to surfaces, 
providing stability to the three-dimensional structure of the 
biofilm. Additionally, EPS facilitates the clustering of cells 
together, offering protection against various stresses such 
as the immune system response of the host, antimicrobial 
agents, oxidative damage, and metallic cations. Furthermore, 
EPS serves as a protective capsule, encapsulating signalling 
molecules necessary for quorum sensing, as well as meta-
bolic products and enzymes essential for biofilm function 
(Toyofuku et al. 2016). Ultimately, mature biofilms undergo 
dispersion, either actively through mechanisms involving 
motility and degradation of the extracellular polymeric sub-
stance (EPS), or passively through physical factors such as 
liquid flow. This dispersion process allows the microorgan-
isms within the biofilm to disperse and initiate a new cycle 
of biofilm formation elsewhere. Several factors contribute to 
the dispersion of mature biofilms, including an overgrown 
population, intense competition among microorganisms, 
and a scarcity of nutrients. These factors primarily drive 
the dispersal of the mature biofilm, facilitating the coloni-
zation of new surfaces and the initiation of biofilm forma-
tion (Rabin et al. 2015) Biofilm formation is a significant 
virulence mechanism and a hallmark feature of problematic 
pathogens that are multidrug resistant (MDR) in hospital 
settings (Roy et al. 2022). Microorganisms that can form 
complex structures called biofilms can colonize biotic and 
abiotic surfaces for prolonged periods of time, and can grow 
and replicate even under unfavourable conditions (Eze et al. 
2018). These organisms could persist in adverse environ-
mental conditions such as hospital settings where there is 
excessive use of antibiotics and disinfectants (Roy et al. 
2022). They also have diverse tools to facilitate and maintain 
the formation of biofilms in the hospital environment. The 
development of biofilm is a highly regulated process that is 
due to the relative contributions and interactions of genet-
ics (active response) and environmental conditions (passive 
response) (Bjarnsholt et al. 2018).

Chronic infections caused by multidrug-resistant (MDR) 
pathogens present a great challenge for eradication due to 
their resistance to conventional antibiotics, as well as their 
ability to form biofilms and persistance over time. Further-
more, these infections can also influence the host's immune 
response. (Singh et al. 2022). Persistent biofilm-related 
infections pose a clinical threat in terms of the morbidity and 
mortality rates of patients and healthcare-associated costs 
(Assefa and Amare 2022). Microbial biofilms in hospital 
settings can be produced in the hospital wastewater, solid 
surfaces, and medical devices (Assefa and Amare 2022). It 
is noteworthy to mention that device-related infections with 
a biofilm aetiology were the first clinical infections to be rec-
ognized (Hall-Stoodley et al. 2004). Several biofilm-related 
infections such as foreign body-located blood stream infec-
tions due to central venous catheter, ventilator-associated 
pneumonia due to endotracheal tubes, foreign body-located 
chronic wounds due to soft tissue implants, tissue-located 
sinusitis due to cystic fibrosis, chronic urinary tract infec-
tions due to urinary tract catheterization, and foreign body-
located infection due to drainage associated infections have 
been recognized in the clinical settings (Ciofu et al. 2022). 
Examples of common pathogens that are involved in the 
biofilm-related infections are Escherichia coli, Staphylococ-
cus aureus, Pseudomonas aeruginosa, Enterobacteriaceae, 
coagulase-negative staphylococci, Acinetobacter spp. and 
Enterococcus spp. (Ciofu et al. 2022). Additionally, the 
establishment of biofilms will consequently lead to tolerance 
to both immune system by shielding the embedded microbes 
even in the presence of both innate and adaptive immune 
response and tolerance to antimicrobials which necessitates 
elevated concentrations of antibiotics administered for a 
longer period, resulting in chronic persistent infections.

Accordingly, the implementation of new antimicrobial 
strategies to eradicate microbial biofilms as natural prod-
ucts such as phytochemicals and antimicrobial peptides will 
facilitate the tackling of biofilm-related infections (Quintieri 
et al. 2022). These natural compounds possess a broad spec-
trum of activity, are more stable, reliable, and less liable 
to produce resistance, and may be subjected to chemical 
modification to achieve better pharmacological and phar-
macokinetic properties. Many studies have worked on bio-
active compounds from medicinal plants for finding novel 
natural compounds that act on biofilms with very promising 
results (Lu et al. 2019; Panda et al. 2020). Unfortunately, not 
a single FDA-approved drug was manufactured even with 
this huge work. The solution might be the combination of 
natural agents together with antibiotics to achieve an inhibi-
tory effect on biofilms (Mishra et al. 2020).

Further investigation is still needed to understand the 
relationship between biofilms and emerging treatment 
approaches. As a result, there is a growing interest in 
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studying the ecology of microbial biofilms, especially in the 
context of their exposure to antibiotics. This review sum-
marizes the recent research on biofilm-associated chronic 
infections, methods to detect biofilm production, recent 
approaches to combat biofilms, and future outlook of thera-
peutic strategy including the development of antimicrobial 
strategies such as antimicrobial peptides, bacteriophages and 
biofilm-disrupting agents.

Biofilms: challenges in antibiotic treatment

Antimicrobial resistance mechanisms can be categorized 
into four primary groups: (1) restricting the entry of a drug; 
(2) modifying the target of a drug; (3) rendering a drug 
inactive; and (4) actively expelling a drug from the cell. 
Intrinsic resistance relies on limiting drug uptake, drug inac-
tivation, and drug efflux, while acquired resistance mecha-
nisms may involve drug target modification, drug inactiva-
tion, and drug efflux. The specific mechanisms utilized by 
Gram-negative bacteria and Gram-positive bacteria exhibit 
variations due to differences in their structures and other 

factors. Gram-negative bacteria employ all four major resist-
ance mechanisms, whereas Gram-positive bacteria less fre-
quently employ strategies to limit drug uptake (as they lack 
an outer membrane composed of lipopolysaccharides) and 
may have limitations in certain types of drug efflux mecha-
nisms (Fig. 1) (Chancey et al. 2012).

It is well known that microbes demonstrating a biofilm 
phenotype are difficult to manage and their response to anti-
microbial therapy is challenging. Consequently, the biofilm 
development and the resistance to antimicrobial treatment 
is quietly related (Sharma et al. 2019). The management of 
microbial resistance is threatened by three main conditions: 
increase of persistent biofilm-related infections, expansion 
of antimicrobial resistance and the lack of appropriate ther-
apy (Blanco-Cabra et al. 2021).

It was mentioned that almost 80% of chronic infections 
in animals and humans are associated with biofilm forma-
tion (Sharma et al. 2019). By 2050, the death of 10 million 
people is expected due to increased rates of morbidity and 
mortality because of infections caused by MDR pathogens 
that are the outcome of the misuse of antibiotics together 
with chronic biofilm-related infections (Inoue 2019). 

Fig. 1   Cartoon representation of biofilm-mediated antibiotic resistance mechanisms
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There is significant difference in the susceptibility to anti-
microbial therapy of free-living microbes and microbes 
growing in biofilms. Microbes embedded in a biofilm show 
higher antibiotic resistance rates than planktonic microbes 
(Hall and Mah 2017). Importantly, one of the most cru-
cial mechanisms responsible for biofilm recalcitrance to 
antibiotics is the tolerance of biofilms to antimicrobials. 
The tolerance of biofilms to antibiotics is coupled to the 
biofilm’s mode of growth, and if microbes from a biofilm 
are cultured in planktonic conditions, they will demon-
strate susceptibility to the antimicrobial used (Roberts and 
Stewart 2004).

Therefore, biofilm-related antimicrobial tolerance differs 
basically from antimicrobial resistance, which can be shown 
by microbes grown in planktonic culture (Ciofu et al. 2017). 
This antimicrobial tolerance is attributed to many factors 
such as restricted penetration of the antibiotic through the 
biofilm matrix, physiological heterogenicity of microbial 
cells (it is expected that biofilms hold cells in several states 
simultaneously: growing, stress adapted, dormant, inactive), 
expression of biofilm-specific genes in the microbes and the 
reduced metabolism of the persisters (Ciofu et al. 2017). In 
addition to all the mentioned mechanisms, in vivo antimi-
crobial tolerance of biofilms does exist which is much com-
plicated due to the host immune system, access to nutrients 
and oxygen, and the antibiotics must penetrate different com-
partments to get the biofilm microbes (Crabbé et al. 2019).

Lately, biofilm was considered as a third compartment, 
after the tissue (second compartment) and blood (first com-
partment) that the antibiotics should pass to reach their 
microbial cells (Cao et al. 2015). The concentration of the 
local biofilm antibiotic depends on the size and location of 
the biofilm and on individual drug metabolization. Subin-
hibitory concentrations of antibiotics at the biofilm site of 
infection possibly will increase the chance of the occur-
rence of antibiotic resistance due to selective pressure and 
increased mutagenesis (Wassermann et al. 2016). Therefore, 
longer periods of antibiotic therapy together with increasing 
dosages of antibiotic combinations are highly recommended 
(Crabbé et al. 2019).

The increased activation of antibiotic resistance mecha-
nisms in biofilms when exposed to antibiotics, as well as 
their decreased activity in the absence of antibiotic mol-
ecules due to metabolism and elimination, plays a signifi-
cant role in the persistent resistance of biofilms to antibiotic 
therapy (Ciofu et al. 2017). All the above-mentioned factors 
related to tolerance of biofilm to antibiotic treatment play a 
role in the rise of antibiotic-resistant mutants in the normal 
microbial flora and at the site of infection of the biofilm 
(Giwercman et al. 1990; Gustafsson et al. 2003).

Quorum sensing and biofilm formation

Microbial attachment to both living organisms and inanimate 
surfaces has become a growing concern in our daily lives 
(Drenkard 2003). The quorum sensing signalling is vital at 
different stages of biofilm growth, encompassing initiation, 
formation of the matrix, maturation and detachment. It also 
has an impact on collective behaviours that shape the struc-
tural properties of biofilms, such as surface movement, as 
well as the synthesis of exopolysaccharides (EPSs) and other 
adhesive molecules (Hooshdar et al. 2020). As a result, diag-
nosing and treating biofilm infections can be challenging, 
often necessitating complex multidrug treatment approaches 
that frequently prove ineffective in resolving the infection. 
Targeting individual cells and their quorum sensing (QS) 
mechanisms has emerged as a highly promising approach 
for discovering innovative and effective strategies against 
biofilms (Thabit et al. 2022a, b; Cavalu et al. 2022; Elfaky 
et al. 2023).

Microbial biofilms associated with chronic 
infections

Chronic infections progress more slowly than acute infec-
tions, and they frequently have ambiguous signs. With anti-
biotics, they are extremely challenging to treat. An acquired 
inflammatory response, which is predominately composed 
of IgG antibodies and mononuclear leucocytes, is typi-
cally what distinguishes chronic inflammation. A persistent 
inflammatory response and ongoing recruitment of poly-
morphonuclear leucocytes are features of the inflammatory 
response in several chronic infections (PMNs). Before the 
discovery of antibiotics, the most common chronic illnesses 
were leprosy and tuberculosis, which steadily deteriorated 
the tissue and damaged the organs (such as the lungs) of 
patients before causing death (William Costerton 2007).

Patients with illnesses or disorders that impair the princi-
pal protective barriers are susceptible to developing chronic 
infections (innate immunity). The inflammatory anatomical 
and physiological barriers, such as the skin, mucous mem-
branes and cilia, as well as phagocytic abnormalities, are all 
affected by this (e.g. PMNs and macrophages). (And et al. 
1987; Anwar et al. 1989; Costerton et al. 1999; Donlan 2002; 
Zimmerli and Trampuz 2011).

Chronic wounds

Diabetes and cardiovascular disorders have also increased in 
tandem with the global rise in obesity. These individuals are 
especially vulnerable to developing chronic wounds, which 
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may host a variety of microbial species (Davies et al. 2004; 
Gjødsbøl et al. 2006; James et al. 2008; Dowd et al. 2008). 
Numerous microbial species are found in the deep dermal 
tissues of all chronic wounds, according to many reported 
studies (Gjødsbøl et al. 2006; Dowd et al. 2008; Price et al. 
2009; Frankel et al. 2009; Thomsen et al. 2010). S. aureus 
is the most frequent bacterium discovered in wounds, while 
P. aeruginosa was found in more than half of the chronic 
wounds examined (V) (Gjødsbøl et al. 2006; Dowd et al. 
2008; Price et al. 2009; Frankel et al. 2009; Thomsen et al. 
2010). The area of P. aeruginosa-infected wounds was like-
wise noticeably bigger than that of uninfected wounds, and 
P. aeruginosa similarly appeared to slow or perhaps impede 
the healing process (Halbert et al. 1992; Madsen et al. 1996; 
Høgsberg et al. 2011).

According to estimates, 1% and 2% of the populations in 
Denmark and the USA, respectively, have a wound that is 
not healing (Gottrup 2004). As a result, chronic wounds are 
a burden on the healthcare system, and patients who have 
them suffer, lose their jobs and have a lower quality of life.

Cystic fibrosis

At the Copenhagen CF Centre, rigorous treatment with high 
antibiotic doses has been used successfully since 1976 to 
treat CF patients with persistent P. aeruginosa lung infec-
tion. Initially, 14 days of routine intravenous anti-P. aerugi-
nosa therapy was administered every third month to accom-
plish this. Daily antibiotic inhalation has been added since 
1987. Before 1976, only 50% of CF patients would make it 
through a persistent P. aeruginosa lung infection of 5 years. 
Most CF patients today have chronic P. aeruginosa infec-
tions and live for decades (Burmølle et al. 2010).

Chronic P. aeruginosa infections require aggressive ther-
apy, yet the germs still exist. The intense treatment delays 
and lessens the harm that the persistent infection causes, 
but cannot completely cure it. The lung tissue continues to 
deteriorate in CF patients with a persistent P. aeruginosa 
infection. Both the infection and the inflammatory processes 
contribute to the development of this. Lung function dete-
rioration, which is CF patients' leading cause of death, is the 
result. It is thought that while the Copenhagen CF Centre's 
current aggressive antibiotic therapy for chronic P. aerugi-
nosa infections confines microorganisms to the conductive 
zone, but does not completely eradicate them. The remaining 
healthy respiratory zone seems to have long been shielded 
from severe biofilm infection. This clearly shows that the 
conductive zone functions as a microbial reservoir, with the 
microbes structured in mucoid biofilms within the mucus 
and shielded from antibiotics and host defences (Burmølle 
et al. 2010).

The idea that biofilms grow in the lungs of CF patients is 
supported by quite a lot of in vivo investigations. Autopsies, 

endobronchial lung tissue sections, lung abscesses, freshly 
removed lung sections and sputum from CF patients have 
all yielded P. aeruginosa clusters. P. aeruginosa clusters 
are comparable to the microbial microcolonies that form a 
biofilm on inanimate surfaces (Høiby et al. 2010). Addition-
ally, anaerobic or microaerophilic conditions are thought to 
exist on the mucosal surfaces where P. aeruginosa strains 
have been diagnosed.

P. aeruginosa thrives in anaerobic mucosal layers of CF 
patients' lungs and low oxygen settings in general (Hassett 
et al. 2009).

Chronic otitis media

Chronic suppurative otitis media (CSOM) refers to a persis-
tent infection in the middle ear characterized by the presence 
of a perforated tympanic membrane and the secretion of 
fluid or discharge from the ear lasting for a duration exceed-
ing 2 months, occurring either continuously or periodically 
(Artono et al. 2020).

The middle ear infection known without tympanostomy 
tube insertion is characterized by recurring chronic suppu-
ration, followed by silent dry intervals of varied lengths. 
Patients with chronic otitis media with dry perforations 
(COM) or those who have had episodes of acute otitis 
media (AOM) where treatment has failed or has not been 
started are at risk for developing CSOM. Once CSOM has 
developed, the condition is frequently difficult to treat and 
resistant. Polymicrobial aerobic and anaerobic microbes fre-
quently cause CSOM (Swords et al. 2004). P. aeruginosa, 
E. coli, S. aureus, and other common aerobic pathogenic 
microbes found in CSOM, such as pneumococci and Hae-
mophilus influenzae, are all recognized as potential biofilm 
makers. In many chronic middle ear infections over the past 
10 years, biofilm is morphologically established experimen-
tally and clinically. The first demonstration was done exper-
imentally on chinchillas having chronic otitis media with 
effusion (COME) in their middle ear (Rayner et al. 1998; 
Jurcisek et al. 2005; Reid et al. 2009) and later directly on 
human clinical mucosal surface lining samples from kids 
with COME and recurring acute otitis media (rAOM) (Post 
2001; Chole and Faddis 2002; Hall-Stoodley et al. 2006).

A common middle ear condition in young children is 
COME. Additionally, biofilm has been discovered in experi-
mentally produced cholesteatomas in gerbils as well as in 
human cholesteatoma, a different chronic middle ear con-
dition (Saidi et al. 2016). Biofilm is regularly discovered 
on prostheses and implanted medical equipment, and it was 
also discovered on a human cochlear implant (Pawlowski 
et al. 2005; Bakaletz 2007; Bothwell et al. 2016). Conse-
quently, several chronic infectious middle ear illnesses have 
been linked to biofilm (Brady et al. 2008). The source and 
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connection of these disorders, as well as the potential harm-
ful role of biofilm, still need to be clarified.

Osteomyelitis (Perloff and Palmer 2018), rhinosinusitis 
(Connell et al. 2016), urinary tract infections (Trampuz and 
Zimmerli 2008), and all infections related to foreign bodies 
inserted into the human body are other chronic infections 
that have been linked to the biofilm phenotype.

Infective endocarditis

The mortality rate for infective endocarditis in hospitals is 
over 20%, despite advances in surgical and medical treat-
ment methods (Beynon et al. 2006). Infective endocarditis 
is notoriously difficult to treat because it frequently remains 
resistant to high-concentration intravenous antibiotics for 
extended periods of time. Up to 50% of infective endocar-
ditis cases require surgical interventions to improve car-
diac function and control the infections (Yusuf et al. 2014). 
The pathogenicity of this infection has been attributed to 
the microbial ability to bind to damaged prosthetic and 
natural valves as well as other foreign devices, producing 
colonization.

The ability of microbes to build biofilms is one of the 
microbial virulence factors linked to infective endocarditis 
that is crucially important. There is evidence to support the 
idea that the infectious colonization that many microbes cre-
ate on cardiac surfaces to cause infective endocarditis are in 
fact massive biofilms (Elgharably et al. 2016; Polewczyk 
et al. 2017).

The following table (Table 1) summarizes some impor-
tant studies of biofilm associated with chronic infections.

Detection of biofilm formation

Phenotypic detection of biofilm formation

Biofilm formation is considered to be one of the major 
batteries of saprophytic microbiota to become opportun-
istic pathogen (Kloos and Bannerman 1994; Mertens and 
Ghebremedhin 2013; Manandhar et al. 2021). Some of 
the bacteria, such as coagulase-negative staphylococci 
(CNS) (Staphylococcus epidermis and S. aureus) possess 
the ability to aggregate and form biofilms by virtue of 
their secreted mucoid extracellular polymeric substance 
called polysaccharide intercellular adhesion (PIA) matrix 
encoded by the icaA, icaD icaB, and icaC genes (Arciola 
et al. 2014; Manandhar et al. 2021). On the other hand, 
the biofilm-associated protein (bap) found in A. bauman-
nii is both a cell surface protein and a virulence factor. It 
is a large protein (854 kDa) that shares similarities with 
proteins found in Staphylococcus bacteria. Bap has been 

extensively studied in other bacterial genera, particularly 
in those associated with hospital-acquired infections, 
including Enterococcus spp. and Pseudomonas spp. The 
presence of bap is crucial for the formation and maturation 
of biofilms on both living (biotic) and non-living (abiotic) 
surfaces (Sharon Goh et al. 2013). Candida albicans pos-
sesses a diverse array of virulence factors and adaptive 
characteristics that enable it to successfully infect hosts 
residing in various environments. The virulence character-
istics of C. albicans arise from its ability to undergo mor-
phological transitions between two primary forms: yeast 
and hyphae. The yeast form is crucial for clonal expan-
sion, whereas the invasive hyphal form plays a critical 
role in promoting virulence. Furthermore, the success of 
C. albicans as a pathogen is attributed to various factors, 
including the presence of adhesins and invasions on its 
cell surface, the ability to form biofilms, thigmotropism 
(response to physical contact), secretion of hydrolytic 
enzymes, rapid adaptation to changes in environmental 
pH, metabolic versatility, efficient nutrient acquisition sys-
tems, and robust stress responses (Sudbery et al. 2004).
The detection of these biofilms could be phenotypic or 
genotypic (Fig. 2).

Microtitre plate test

Among the phenotypic techniques, the microtitre plate 
(MtP) test is one of the quantitative tests, conducted 
in 1970 on the biofilm, especially caused by CNS. The 
MtP test involves the inoculation of biofilm-produc-
ing microbes in the 96-well microtitre plate containing 
tryptic soy broth medium. The inoculated broth is incu-
bated for 18 h. Following the incubation, the microbial 
layer coating the plastic surface of the wells is washed, 
fixed and stained with crystal violet and alcian blue or 
safranin-o that binds to the microbial cell and slime (gly-
cosoaminoglycans), respectively. After the excess stain is 
removed, the spectrophotometric (OD570 nm) measurements 
are performed with different OD thresholds that classi-
fies the strains as non-adherent non-producers of slime 
(OD ≤ 0.120), low adherent intermediary slime producers 
(0.120 < OD < 0.240) or strongly adherent slime produc-
ers (OD > 0.240) (Christensen et al. 1985; Deighton et al. 
2001; Arciola et al. 2014). Notably, the values chosen for 
intermediary slime producers are based on the statistical 
analysis and not on phenotypic observation, which could 
be one of the limitations of this technique.

Congo red agar test

The other phenotypic quantitative in  vitro chromatic 
assessment approach, Congo red agar (CRA) test, has been 
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Table 1   Studies of biofilm associated with chronic infections

Chronic infections Study Refs.

Chronic wounds A study done by Kwiecinski et al. has demonstrated that 
the clinical signs of microbial biofilm that colonize 
wounds, such as a pale wound bed, yellow exudate, 
necrotic tissue, and clear tissue fluid, are comparable to 
those of chronic infection wounds

Kwiecinski et al. (2015), Schultz et al. (2017)

The clinical diagnostic criteria for a biofilm infection were 
outlined in a World Biofilm Seminar report in 2012 as 
follows: (1) a pale and edematous wound bed; (2) fragile 
granulation tissue; (3) a significant amount of yellow 
exudate; (4) necrotic and rotting tissue; (5) wound pain; 
and (6) a pungent odour. This criterion was updated in 
2017 to include: (1) resistance to treatment with antibiot-
ics or antiseptics; (2) treatment failure

Cystic fibrosis According to multiple studies, people with CF may acquire 
P. aeruginosa after visiting hospitals or CF clinics

Römling et al. (1994), Worlitzsch et al. (2002), Campana 
et al. (2004)

Römling et al. reported that current antibiotic regimens are 
unable to completely eliminate P. aeruginosa infections 
in CF airways once they have been established. Chronic 
P. aeruginosa infections are linked to CF patients' clinical 
state deteriorating and their prognosis getting worse

According to Worlitzsch et al.’s study, the hypersecretion 
of a viscous mucus layer in the CF airway, which creates 
a low oxygen environment, and the presence of DNA 
and actin in the CF airway as a result of the necrosis of 
neutrophils that are recruited into the CF lung as part of 
the innate immune response are thought to facilitate P. 
aeruginosa ability to grow and establish drug-resistant 
biofilms in the lungs of CF patients

Chronic otitis media Rayner et al. were the first to show a connection between 
otitis media and biofilm

Rayner et al. (1998), Chole and Faddis (2002), Dohar et al. 
(2005), Homøe et al. (2009), Lee et al. (2009)

Dohar et al. first reported chronic otitis media with per-
forated tympanic membrane using a nonhuman primate 
model. After the tympanic membrane was punctured and 
a biofilm-forming strain of P. aeruginosa was injected 
into the middle ear of cynomolgus monkeys, biofilm for-
mation was successfully established in this animal model

Chole and Faddis reported that 67 and 95%, respectively, 
of human cholesteatoma specimens and experimental 
cholesteatoma from gerbils showed biofilm development 
frequency

Nine out of ten adult chronic otitis media cases and five 
out of six paediatric chronic otitis media cases that Home 
et al. described in 2009 had biofilm formation

Lee et al. investigated the development of biofilms in ten 
chronic otitis media patients and ten controls and discov-
ered that biofilms were present in 60% of the study group 
and 10% of the control group
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Table 1   (continued)

Chronic infections Study Refs.

Infective endocarditis Gram staining, culture, and histopathology were used in a 
comprehensive retrospective investigation on 506 heart 
valves removed from patients with infective endocarditis, 
and most of the samples had microscopic positive Gram 
staining of visible microbes. More than 60% of the valves 
were microscopically positive even after finishing antibi-
otic treatment; this number rose to 88% if less than 25% 
of the course of treatment was completed

ANGRIST et al. (1960), Marrie et al. (1987), Morris et al. 
(2003)

The microbes were found to be arranged in colonization as 
biofilm-like microcolony aggregates, according to his-
topathological examinations of surgically removed heart 
valves from infected endocarditis patients as well as heart 
valves from experimentally infected endocarditis animal 
investigations according to a study done by Angrist et al.

Numerous microbes were found in locations where the 
surface of the implant was damaged in a study on the 
ultrastructure of six aortic valves. Even with poor culture 
results, transmission electron microscopy showed that the 
microbes were immersed in an electron dense matrix, and 
that the cell wall and cell division were aberrant

Fig. 2   Schematic representation of the biofilm formation and their various detection techniques (phenotypic and genotypic)
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developed as an alternative to MtP test and is also used to 
screen the biofilm producing microbes. Precisely, the micro-
bial colonies are cultured on the CRA plates and incubated 
for 24–48 h, followed by the colour determination of the 
microbial colonies with deep black to almost black and pink 
to Bordeaux for slime producers and non-producers, respec-
tively (Freeman et al. 1989). In the recent past a six-colour 
reference scale has been proposed to facilitate the assess-
ment of colony colour classifications (Arciola et al. 2002). 
However, the molecular mechanisms underpinning the col-
our formation of the microbes is still in its initial stage.

It could be possible that Congo red dye directly interacts 
with certain polysaccharides that brings some metabolic 
changes in the dye to form a secondary product causing col-
our variation of the colonies. Notably, this technique also 
allows direct monitoring of the colonies on the plate of the 
phase-variant microbes, which is evidenced as pink spikes 
(virulence factor) on the surface of dark colonies (Ziebuhr 
et al. 1997) and makes this technique unique for research on 
microbial physiology. Although the incubation time is pro-
longed, the CRA approach is still considered to be sensitive 
and easy to perform in comparison to MtP.

Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) has emerged 
as a powerful tool for the label-free and real-time monitor-
ing of biofilm formation and growth. EIS is a non-destruc-
tive and label-free technique that measures the impedance 
response of an electrochemical system to an applied alternat-
ing current (AC) signal. By analysing the impedance spectra, 
valuable information about the physicochemical properties 
of the system under study, including biofilm formation and 
growth, can be obtained (Koo et al. 2022).

Several EIS-based biosensors have been developed for the 
phenotypic detection of microbial biofilms. These biosensors 
typically consist of an electrode surface modified with bio-
film-specific ligands or antibodies, which selectively capture 
the target microbes or biofilm components. The impedance 
changes resulting from microbial binding and biofilm forma-
tion are then measured and analysed (Naresh and Lee 2021).

Isobaric tags for relative and absolute quantitation‑based 
proteomics

iTRAQ (Isobaric Tags for Relative and Absolute 
Quantitation)-based quantitative proteomics has emerged 
as a powerful tool for studying the proteome of microbial 
biofilms. iTRAQ is a mass spectrometry-based technique 
that enables relative and absolute quantification of pro-
teins in complex samples. It involves labelling peptides 
from different samples with isobaric tags, which allows 

multiplexing and simultaneous analysis. The labelled pep-
tides are then combined, digested, and analysed by mass 
spectrometry for protein identification and quantification 
(Asma et al. 2022).

The workflow of iTRAQ-based proteomics for biofilm 
analysis typically involves biofilm sample collection, 
protein extraction, digestion, iTRAQ labelling, peptide 
fractionation, mass spectrometry analysis, and data inter-
pretation. Various sample preparation techniques, such as 
sonication and enzymatic digestion, can be employed to 
ensure efficient protein extraction and digestion from bio-
film samples. iTRAQ-based proteomics has been widely 
used to investigate the proteome dynamics of microbial 
biofilms. It enables the identification and quantification 
of differentially expressed proteins during biofilm forma-
tion, maturation, and dispersal stages. This approach has 
provided insights into the mechanisms underlying biofilm 
development, interactions with host cells, and antibiotic 
resistance. Additionally, iTRAQ-based proteomics has 
been employed to compare the proteomes of biofilm-asso-
ciated drug-resistant strains with their planktonic coun-
terparts, revealing potential drug targets and resistance 
mechanisms (Scorza et al. 2008).

Antibodies targeting EPS

Antibodies targeting specific EPS components have 
emerged as valuable tools for the detection and charac-
terization of microbial biofilms. Antibodies are versa-
tile biomolecules that can recognize and bind to specific 
target molecules with high affinity and specificity. Anti-
body-based detection methods, such as enzyme-linked 
immunosorbent assays (ELISAs), immunofluorescence 
microscopy, and flow cytometry, can be employed for 
the detection and quantification of biofilms. By targeting 
specific EPS components, these antibodies allow selec-
tive detection of biofilm structures. The EPS matrix of 
microbial biofilms consist of various components, includ-
ing polysaccharides, proteins, and DNA. Antibodies can 
be generated against specific EPS components, such as 
exopolysaccharides (e.g. alginate, cellulose), adhesive 
proteins (e.g. lectins, adhesins), and extracellular DNA 
(eDNA). These antibodies can be used individually or in 
combination to target different aspects of biofilm structure 
and function (Flemming et al. 2016).

Genotypic detection of biofilm formation

On the other hand, the genotypic approach is based on the 
identification of the genes encoding for the PIA production 
as indicated above (Gerke et al. 1998; Götz 2002). All the 
four genes icaA, icaD icaB, and icaC are organized as the 
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intercellular adhesion icaADBC operon along with icaR, 
which is the repressor gene. The individual functionalities 
of these genes have not been deciphered yet, but it has been 
known that the contrascription of icaA and icaD is required 
for the N-acetyl-glucosaminyltransfarese activity for the PIA 
polysaccharides oligomer (20 amino acids residues) synthe-
sis. Furthermore, icaC gene essentially extends the polysac-
charide oligomer to long chain PIA (Gerke et al. 1998).

Notably, the function of icaB is still at its infancy; how-
ever a plausible hypothesis of de-acetylation of the amino 
sugars of the PIA chain has been cited. The first typing of 
these gene was carried out by Southern blotting and hybrid-
ization. Thereafter, several primer sets were designed to 
PCR-amplify icaA, icaD and icaC genes on the extracted 
genomic DNA directly from the microbial colony and found 
to be effective in identifying the virulent strains such as of 
S. epidermis and S. aureus (Arciola et al. 2014). However, 
it has been observed that in the phase variant microbes, 
despite the presence of ica genes, a slime-negative pheno-
type was evidenced. This is possible because although the 
ica genes are responsible for the polysaccharide production, 
it has been hypothesized that the phenotypic expression and 
the virulence effect of the polysaccharide is conditioned by 
certain regulatory genes such as atlE, sarA, agrA and mecA 
that could potentially modulate PIA functions (Mack et al. 
2000). Despite all these limitations, the PCR-based approach 
is more reliable and accurate in comparison to the pheno-
typic observation. However, it should be noted that both phe-
notypic and genotypic approaches should be conducted in 
parallel to obtain the best biofilm detection option (Arciola 
et al. 2014).

Natural compounds with biofilm formation 
inhibitory potential

For centuries, different civilizations have used natural 
metabolites and herbal treatments to prevent and treat 
infectious diseases (Lau and Plotkin 2013; Dhama et al. 
2018; Anand et al. 2019). Plants, fungi, and marine organ-
isms demonstrated their potential as abundant sources of 
novel compounds for preventing the formation of biofilms 
by various microbial strains (Lu et al. 2019). It has been 
demonstrated that several of these metabolites prevent QS 
and control the development of biofilm (Artini et al. 2012; 
Kouidhi et al. 2015; Asfour 2018). Natural metabolites were 
said to be able to prevent the development of biofilms in 
numerous ways, including by preventing the synthesis of 
peptidoglycans and polymer matrix, interrupting the pro-
duction of extracellular matrix, repressing cell adhesion and 
attachment, damaging the structure of microbial membranes, 
and reducing the production of virulence factors. This would 

prevent the QS network and biofilm formation (Artini et al. 
2012; Asfour 2018; Dong et al. 2018).

Fortunately, clinical and preclinical evaluations of 
some of them have shown that they have a significant abil-
ity to treat or prevent a variety of infectious diseases. It is 
imperative to create fresh antibiofilm from natural source 
to increase the microbial resistance resulting from biofilm 
formation. An overview of a few of the most recent reports 
on natural biofilm inhibitors was provided in the current 
review. These metabolites may be used as potent therapeu-
tic agents to increase the effectiveness of antibiotics against 
biofilm-related illnesses (Figs. 3, 4). Significant antibiofilm 
potential was found in phenolics, polyacetylenes, terpenoids, 
alkaloids, lectins, and polypeptides (Yong et al. 2019). Con-
densed tannins particularly among the phenolics demon-
strated antibiofilm activity (Trentin et al. 2011).

In recent years, rising rates of HIV infection, organ trans-
plantation, diabetes, dentures, and the use of anti-cancer, 
corticosteroid, and broad-spectrum antibiotics have all been 
linked to rising oral candidiasis occurrence (Chanda et al. 
2017). Due to the potential toxicity of clinically used anti-
fungals and the emergence of drug resistance, their treatment 
is a significant challenge.

Flavonoids

One of the main flavones isolated from the root of Scutel-
laria baicalensis is called baicalin (1) (Zhao et al. 2016). It 
repressed the QS system by reducing the expression of the 
rpoS (sigma-S) and H-NS (histone-like nucleoid-structur-
ing) genes through prohibition of AI-2 (autoinducer-2) pro-
duction. By interfering with the curli-specific genes (csgB 
and csgA) (Guan et al. 2015), it also interfered with the 
growth of curli pili and negatively impacted microbial bind-
ing and biofilm formation (Peng et al. 2019). In a different 
investigation, it was found that decreasing the expression 
of the fimB gene might suppress the synthesis of type 1 pili 
(Brackman et al. 2009). The Burkholderia cepacian gene 
CepI increases the production of the QS system-enhancing 
AHLs (N-acyl-homoserine lactone) signalling molecules 
C8-HSL (Noctanoyl-homoserine lactone) and C6-HSL 
(N-hexanoyl-homoserine lactone) by complex formation 
with their receptors. Baicalin's CepI inhibition suppressed 
the growth of biofilm by inhibiting the QS system, which 
prevented the microbial cells from adhering to body surfaces 
(Slachmuylders et al. 2018).

In addition, the flavonoid-C-glucoside isovitexin (2) 
shows significant Srt-A inhibition (IC50 28.98 µg/mL) 
capacity, resulting in a decrease in the amount of SpA 
(staphylococcal-protein A, which was discovered in S. 
aureus 40 years ago, and has the ability to bind to the 
constant regions of antibodies, making it a valuable tool 
for extracting immunoglobulins) on the cell surface, 
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indicating the possibility of using it as an anti-S. aureus 
infection agent (Mu et al. 2018). Additionally, it was dis-
covered that the flavonoid, morin (3) may be able to inhibit 
Srt-A in S. aureus. Huang et al. showed that it likewise 
had an inhibitory effect on S. mutans Srt-A (IC50 27.2 
µM), but had no effect on the survival or expansion of 
the microbes. At Conc. 30 µM, it partially increased the 
release of the Pac protein, a cell surface protein antigen 
c of S. mutans, which is determined by the pac gene, has 
been found to show a connection with cellular hydropho-
bicity and adhesion to tooth surfaces that is not dependent 
on sucrose, and decreased the mass of the S. mutans bio-
film without affecting viability. These findings suggested 
that morin could be valuable as a novel caries-prevention 
agent (Huang et al. 2009).

The dihydrochalcone, phloretin (4), prohibited L. mono-
cytogenes biofilm generation (%inhibition 60%, conc. 20 
μg/mL), biofilm adhesion, and aggregation, as well as the 

biofilm thickness as it reduced the agr-system genes by 50% 
in QS (Wei et al. 2020).

In comparison to tetracycline and ciprofloxacin, the fla-
vanone glycoside naringin (5) isolated from grape and cit-
rus fruits showed more effective biofilms influence against 
P. aeruginosa. On catheter surfaces, it was discovered to 
reduce EPS (extra polymeric substance) biofilm, speed 
up antimicrobial diffusion, reduce pellicle formation, and 
reduce microbial flagellar movement. Its combination with 
antibiotics may be advantageous for newly developed, effec-
tive topical antimicrobials as well as for catheter wrapping 
to fend off infection brought on by biofilms as a result of 
catheterization (Dey et al. 2020).

Phenolics

Magnolol (6), a previously described polyphenol from the 
bark of Magnolia officinalis, was evaluated in comparison 
to many oral and common Candida spp. isolates. Magno-
lol displayed significant antifungal (MICs 16.0–64.0 g/mL) 

Fig. 3   Chemical structures of natural metabolites (1–12) with biofilm inhibitory potential
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and antibiofilm capability against four tested strains with 
an average 69.5% inhibition was discovered. Addition-
ally, it resulted in the rupture of plasma membranes and 
cell walls, the release of intracellular contents, and swelling 
of the cell walls. It also demonstrated reduced haemolytic 
activity (%lysis = 11.9%) against red blood cells compared 
to amphotericin B (%lysis = 25.4%). The molecular docking 
investigation showed that it interacted with the ergosterol 
in fungal cell walls to produce its effects (Behbehani et al. 
2017). Furthermore, it demonstrated synergism with azoles 
against C. albicans (Sun et al. 2015a) and showed consid-
erable suppression on yeast hyphal transformation, adhe-
sion, and biofilm formation (Sun et al. 2015b). Through pili 
proteins and/or surface proteins, some pathogenic microbes 
influence the tissues and cells of the host, playing a crucial 
role in the infection (Asadi et al. 2018). Staphylococcal spe-
cies use the sortase A enzyme to adhere surface proteins 
to their cell walls (Thappeta et al. 2020). Consequently, 
the binding capacity of S. aureus to lgG, fibrinogen, and 
fibronectin is hindered, thereby diminishing the pathogenic-
ity of the bacterium. The presence of Srt-A also enhances 
the rate of biofilm formation in certain species of Staphy-
lococci. (Thappeta et al. 2020). In a study conducted by Hu 
et al. (2013), the potential of curcumin (7) to suppress S. 
mutans biofilm was examined. The findings revealed that 
curcumin effectively inhibited S. mutans Srt-A, with an IC50 
value of 10.2 µM/L. Moreover, when applied at a concen-
tration of 15 µM/L, curcumin reduced the formation of S. 

mutans biofilm and led to the release of the PAc protein. 
These results indicate that curcumin exhibits anti-inflam-
matory effects through a mechanism that hinders bacterial 
adhesion. (Hu et al. 2013).

Macrocyclic bisbibenzyls (MBBs)

Riccardin D (8), a naturally occurring macrocyclic-bisbiben-
zyl derivative, was discovered in Dumortiera hirsuta and 
demonstrated in vitro antibiofilm efficacy. Based on XTT 
(2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-
5-carboxanilide) reduction assay results using CVC (central 
venous catheter)-infected rabbit model, it has therapeutic 
and preventative capacity against C. albicans biofilm devel-
opment. This substance inhibited the expression of hypha-
related genes, including as ALS3, ALS1, EFG1, ECE1, 
CDC35, and HWP1, demonstrating that the inhibition of the 
Ras/cAMP/Efg pathway was the cause of the delayed hypha 
formation and the defect in biofilm development. Addi-
tionally, the fluconazole–riccardin D combination showed 
increased antifungal potential (Li et al. 2012).

Stilbenes

Wu et al. evaluated the efficiency of oxyresveratrol (9), 
which was isolated from the heartwood of Artocarpus 
lakoocha, in comparison to S. mutans in 2020. The find-
ings showed that this substance (Conc. 250 µg/ mL) 

Fig. 4   Chemical structures of 
natural metabolites (13–18) 
with biofilm inhibitory potential
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decreased bacterial survival rates, hampered the synthesis of 
H2O-insoluble glucans, disrupted the formation of biofilms, 
and noticeably suppressed the expression of gtfB (glucosyl-
transferase-I) and gtfC (glucosyltransferase-SI). On the other 
hand, it increased the expression of ldh and atpD (ATP-syn-
thase subunit-beta) (lactate- dehydrogenase). Additionally, 
it increased gtfD (glucosyltransferase-S) expression, which 
aided in the production of glucan that is water soluble. LiaR, 
vicR, comE, and comD were activated, which improved the 
self-protective process (Wu et al. 2020). In 2018, Dong et al. 
demonstrated that tannic acid (10), a phenolic molecule, 
exhibited an exceptional antibiofilm efficiency against S. 
aureus at sub-MIC concentrations by targeting peptidogly-
can and causing the integrity of the cell wall to be destroyed. 
Because of this, it may be a good choice for treating infec-
tions brought on by MDR S. aureus (Dong et al. 2018). Wu 
et al. investigation confirmed that it also prevented FabG 
(β-ketoacyl-ACP-reductase), a crucial enzyme in the produc-
tion of fatty acids by bacteria (Wu et al. 2010).

Anthraquinones

Chrysazin (11) and alizarin (12), according to Manoharan 
et al. (2017), have antibiofilm capability against C. albicans 
due to a C1 hydroxyl group with toxic influence. Various 
biofilm-related and hyphal-specific genes are downregu-
lated by it (e.g. ECE1, ALS3, RBT1, and ECE2). Addition-
ally, they (Conc. 2 mg/mL) effectively reduced yeast, to, 
and hyphal development and increased the Caenorhabditis 
elegans survival rate when infected with C. albicans (Mano-
haran et al. 2017).

In 2019, Jin et al. stated that concanavalin A (Canavalia 
ensiformis`s lectin) had notable antibiofilm effectiveness 
versus Listeria monocytogenes and E. coli through its man-
nose-bound affinity (Jin et al. 2019).

Monoterpenes

Sabinene (13), a component of Chamaecyparis obtusa 
essential oil was reported to repress Streptococcus mutans 
biofilm production and related genes (e.g. gtfB, gtfD, gtfC, 
brpA, relA, and vicR) expression, suggesting its usage S. 
mutans cariogenic potential inhibitor in oral care products 
c (Park et al. 2019).

Aspergillus fumigatus is a pathogenic fungus that causes 
a number of serious lung conditions, such as aspergilloma, 
allergic bronchopulmonary aspergillosis, and invasive pul-
monary aspergillosis in people with weakened immune sys-
tems who are also hypersensitive to it. It was discovered 
that this fungus creates a hydrophobic biofilm in the lungs 
that is made up of several coils of hyphae wrapped in ECM 
(Tseung and Zhao 2016).

Fatty aldehydes

Thuja orientalis, Myristica fragrans, Cuminum cyminum, 
and Pentaclethra macrophylla all included the compound 
cis-9-hexadecenal (14). In the broth micro-dilution assay, it 
prevented 90% of A. fumigatus planktonic growth at 0.078 
mg/mL (Hoda 2019). In vitro, the checkerboard assay dem-
onstrated that its combination with amphotericin B had 
increased activity against A. fumigatus. In the MTT experi-
ment, it had a 0.156 mg/mL MBEC80 (minimal-biofilm-
eradicating concentration-80) vs A. fumigatus and scan-
ning electron microscopy revealed the absence of tangled 
hyphae and ECM in the cis 9-hexadecenal-treated biofilm 
(Hoda 2019). Additionally, it was harmless to L-132 (a 
normal human lung epithelial cell line) up to 0.62 mg/mL 
in the cytotoxicity experiment, suggesting that it could be 
an exceptional therapeutic agent for disorders linked to A. 
fumigatus (Hoda 2019).

Sulphonates

Besides sodium houttuyfonate (15), a compound produced 
by Houttuynia cordata, inhibited P. aeruginosa motility 
and biofilm formation while also significantly obstructing 
the growth of S. epidermidis and C. albicans (Shao et al. 
2012, 2013). It also worked in concert with levofloxacin and 
Na2-EDTA to prevent the formation of biofilms (Huang et al. 
2009; Shao et al. 2012). It effectively prevented P. aerugi-
nosa biofilm dispersion and BdlA (biofilm dispersion locus 
A) gene and protein expression, which allowed it to infiltrate 
P. aeruginosa biofilm and suppress the biofilm's life cycle 
in in vitro research.

Saponins

Dioscin (16), a natural saponin isolated from Dioscorea 
panthaica, suppressed the generation of extracellular phos-
pholipase, the yeast-to-hyphal transition, adhesion to abiotic 
surfaces, and the formation of biofilms. At high concentra-
tions, it even decreased the viability of preformed biofilms 
(Yang et al. 2018).

It is noteworthy that several metabolites produced by dif-
ferent actinomycete species demonstrated antibiofilm capa-
bility by disrupting cell wall and cell–cell communication 
(Azman et al. 2019).

Benzoyl nitrophenylpiperazines

According to Fazly et  al., filastatin (17) prevented the 
yeast-to-hyphal transition and hindered the adherence of 
fungal cells to diverse biomaterials by suppressing HWP1, 
a hyphal-specific promoter. It's interesting to note that its 
combination with fluconazole protected C. elegans from 
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C. albicans infection in vivo. Additionally, it prevented the 
growth of biofilm in mice with vulvovaginal Candida infec-
tion (Fazly et al. 2013).

Methylxanthines

Additionally, caffeine (18) has shown a strong antimicro-
bial effect against P. aeruginosa (MIC 200 µg/mL). Using 
swarming motility targeting, which was discovered to 
interact with QS proteins (LasI and LasR), it demonstrated 
considerable inhibition (Conc. 40 and 80 µg/mL) of P. aer-
uginosa biofilm development and decreased the release of 
virulence factors. However, it can yet be improved as an anti-
biofilm agent to manage infections caused by P. aeruginosa 
(Chakraborty et al. 2020).

Recent advances in biofilm control

Alternative therapies have been sought in an effort to remove 
or inhibit biofilms because the majority of antibiotics do 
not work to treat them. From the time the biofilm is formed 
until it has reached maturity, there are several points where 
intervention is feasible. Numerous natural substances impair 
QS, have anti-adhesin activity, stop the formation of films, or 
have general antimicrobial characteristics. Other treatments 
involve the use of bacteriophages, viruses that target particu-
lar microbes, or enzymes that break down the extracellular 
biofilm matrix (Sahli et al. 2022).

Phage therapy

The basis of phage therapy is the use of bacteriophages. The 
risk of opportunistic infections is decreased because these 
viruses do not infect humans. Their size typically ranges 
from 20 to 200 nm, and they are made up of a protein capsid, 
a typically variable-length tail via which the genetic mate-
rial is delivered, and fibres at the tail that ensure the host is 
recognized (pili can be receptors) (Pires et al. 2016).

By utilizing depolymerases, bacteriophages are capa-
ble of modifying polysaccharides in biofilms, boosting 
their penetration into the matrix of the biofilm and hence 
their effectiveness (Pires et al. 2016). Bacteriophages can 
also readily move through the biofilm's water channels. 
Bacteriophages do not have the same antibiotic-like spec-
trum of action and are specific to certain species popula-
tion (Sutherland et al. 2004).

Phage-resistant subpopulations can develop within the 
biofilm community similarly to how they do in plank-
tonic cultures (Fu et al. 2010). After being exposed to 
anti-Pseudomonas bacteriophages, P. aeruginosa biofilms 

develop phage-resistant mutants due to mutations in the 
genes encoding the phage receptors (Oechslin et al. 2017).

The Soviet Union (USSR) invested in bacteriophages 
during the twentieth century to treat microbial illnesses. 
The USSR concentrated on alternative methods of treating 
its population since it could not afford antibiotics, which 
are mostly produced by Western nations. Because of this, 
the Eliava Institute in Georgia, which was formerly a part 
of the USSR, today boasts one of the largest collections of 
bacteriophages. The institute began its research on bacte-
riophages in 1923, just a few years after they were discov-
ered (Oechslin et al. 2017).

Bacteriophages exhibit a high degree of specificity 
towards their target microbes. They can recognize and 
infect the specific microbial strains present in biofilms, 
while leaving beneficial microbes unharmed. This speci-
ficity reduces the risk of disrupting the natural microbiota 
and helps avoid collateral damage to the host. They also 
have the ability to penetrate the extracellular polymeric 
matrix that surrounds microbial biofilms. They can tar-
get and infect microbes residing deep within the biofilm 
structure, where antibiotics often struggle to reach. They 
have the capacity to rapidly evolve and adapt to changes 
in microbial populations. They can develop new phage 
variants that overcome microbial resistance mechanisms, 
including those present in biofilms. This adaptability 
allows phage therapy to potentially overcome the antibi-
otic resistance commonly observed in biofilm-associated 
infections (Furfaro et al. 2018).

While phage therapy holds significant potential for 
various applications, it is not without its inherent limita-
tions. These limitations include a limited range of hosts, 
clearance by the immune system, and the emergence of 
bacterial strains that are resistant to phage treatment (Lin 
et al. 2022). To advance this rapidly growing industry, it 
is crucial to address these limitations by implementing 
well-considered strategies. A comprehensive understand-
ing of phage properties and their interactions with the host 
is essential to overcome these challenges and drive further 
development in this field.

Biofilm‑dispersing enzymes

The matrix of the biofilm is a desirable target for antibiofilm 
therapy because of its porous structure and exposure to the 
outside environment. The polymers in the biofilm matrix 
are capable of being broken down by certain enzymes. This 
stops them from forming, loosens the matrix that has built up 
on a surface, and makes the microbes in the biofilms more 
susceptible to antimicrobials (Sahli et al. 2022).

ROCHE laboratory sells Pulmozyme®, a medication, 
in France as a solution. It is used to treat P. aeruginosa 
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infections in people with cystic fibrosis and is based on 
DNase I. When used against S. aureus and P. aeruginosa, 
this medication demonstrates biofilm detachment action 
(Sahli et al. 2022).

A naturally produced dispersin B by A. actinomycet-
emcomitans which break downs the extracellular polysac-
charide poly-(1,6)-N-acetylglucosamine (PNAG), which is 
generated by a variety of microbes, including S. aureus, S. 
epidermidis and a variety of Gram-negative Proteobacte-
ria. The breakdown of the biofilm matrix causes it to dis-
perse and makes the remaining microbes more susceptible 
to an antibiotic's effect (Izano et al. 2008).

The clinical translation of biofilm-dispersing enzymes 
faces several challenges, including their vulnerability to 
denaturation, degradation, and clearance when adminis-
tered in living organisms. To overcome these limitations, 
drug delivery systems are being developed to encapsulate 
and protect the enzymes, thereby preserving their enzymatic 
activity. These systems aim to stabilize the enzymes and 
shield them from the external environment. Additionally, 
smart drug delivery systems provide the advantage of tar-
geted specificity, enabling the release of therapeutic pay-
loads specifically at the site of infection while minimizing 
unnecessary systemic exposure (Thorn et al. 2021).

Nanotechnology and biofilm prevention

In addition to the traditional approaches for treating micro-
bial biofilms, innovative technologies have also been devel-
oped. The design and study of materials at the nanoscale 
scale, typically between 1 and 1000 nm, can be referred to 
as nanotechnology. Unique physicochemical and biological 
features are produced by the nanoscale nature. Their high 
surface-to-volume ratios, which give properties distinct from 
those of the bulk, are to blame for this. Nanotechnologies 
have a wide range of uses, including in the fields of health, 
energy, military,  environment, and information storage 
(Juang and Bogy 2005; Hussein 2015; Sharon 2019; Khan 
2020; Saleem and Zaidi 2020).

In the area of medicine delivery, nanoformulations have 
various benefits because they allow delivery of medica-
tions with low water solubility, safeguarding the medica-
tion against enzymatic reactions and medication delivery 
to the targeted organ, and hence minimizing potential harm 
and crossing of several membranes that are impervious to 
conventional drugs; large macromolecules can be deliv-
ered intracellularly and transcellularly. Since biofilm pores 
typically have a width of 50 nm (this value depends on the 
density of the biofilm), nanomaterials with diameters below 
this value can easily penetrate the biofilm matrix and get 
to the microbes that are present in its interior. Drugs that 
are encapsulated have a distinct biokinetics from those that 
are free, which concentrates antibiotic action on the biofilm 

and reduces exposure to human cells. Nanomedicines can 
decrease doses and toxicity of related medication formu-
lations while also improving the efficacy, specificity, and 
biodistribution (Peulen and Wilkinson 2011).

Nanomaterial surface functionalization also affects dif-
fusion inside the biofilm. Hydrophobic particles are more 
evenly distributed within biofilms than hydrophilic ones, 
and positively charged nanomaterials are better able to 
enter biofilms with a negatively charged matrix. Addition-
ally, nanoparticles' physical characteristics can be used to 
combat biofilm. It is possible to employ some inorganic 
nanomaterials' inherent microbial toxicity or their ability to 
locally create heat to kill microbes. The concept of a mul-
tifunctional nanomaterial combining therapy and diagnosis 
(theranostics) has evolved in the ongoing quest to enhance 
therapies while lowering the doses delivered (Li et al. 2014).

Nanoformulations encounter several challenges as they 
progress from the laboratory to the market. These challenges 
include the unclear understanding of how nanomedicines 
interact with biofilms, the complex biological environment 
within the body, potential toxicity associated with nanomate-
rials, and limitations in batch production (Thorn et al. 2021). 
In the future, one potential solution is to utilize more nano-
carriers that incorporate biofilm dispersants. This approach 
can address issues related to the poor stability and hydro-
phobicity of dispersants, while also potentially mitigating 
the development of drug resistance.

Photothermal therapy and photodynamic therapy

Photodynamic therapy (PDT) and photothermal therapy 
(PTT) have garnered considerable attention and are recog-
nized as successful approaches for treating biofilm infec-
tions. PTT enhances the infiltration of antimicrobial agents 
into biofilms and hampers the emergence of antibiotic resist-
ance. Near-infrared (NIR) light reduces biofilm by approxi-
mately 50%, indicating the therapeutic efficacy of heat and 
precise antimicrobial exposure, with a substantial reduction 
of up to 90%. However, the high doses of irradiation and 
concentrations of photosensitizers employed in PTT and 
PDT to eliminate biofilms can potentially lead to severe tis-
sue damage and inflammation (García et al. 2021; Cai et al. 
2021).

Although there is substantial interest in photothermal 
therapy (PTT), there are still significant challenges that need 
to be addressed before PTT can be widely implemented in 
practical applications. One major obstacle is the need for 
high temperatures (≥ 60 °C) to effectively eliminate bacteria 
(Huo et al. 2021). However, prolonged exposure to such high 
temperatures can lead to thermal damage to normal tissues 
surrounding the bacterial infection sites (Zhu et al. 2016). To 
overcome this, a more strategic approach is required, involv-
ing the optimization of treatment conditions. For instance, 
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shorter treatment times at lower temperatures (around 50 °C) 
could be explored as a means to achieve effective bacte-
rial eradication while minimizing thermal harm to healthy 
tissues.

On the other hand, the thickness of human tissue poses a 
challenge to the application of PDT for antimicrobial infec-
tions. This is due to the limited penetration ability or shallow 
depth of short-wavelength light, or sometimes both factors 
combined (Gao et al. 2022). To overcome this limitation, the 
use of longer-wavelength light sources could offer improved 
tissue penetration, enabling the effective application of PDT 
in human tissues.

Laser irradiation

Complete degradation of S. aureus and P. aeruginosa bio-
films is made possible by hybrid metal–polymer nanopar-
ticles (NPs), using laser-induced forward transfer (LIFT). 
The LIFT method, driven by a pulsed laser beam, deposits 
a thin layer of an organic or inorganic donor substrate onto 
a material with high spatial resolution. This transfer might 
take place in either the solid or liquid phases. S. aureus and 
P. aeruginosa biofilms were in contact with a metal NP–pol-
ymer composite with LIFT that was constructed of a thin 
polyethylene terephthalate substrate covered in a layer of 
silver, copper, or gold metal. These biofilms serve as recep-
tors. The biofilms were not impacted by the laser alone. In 
contrast, the copper and silver NPs killed them entirely (Nas-
tulyavichus et al. 2020).

Magnetic disturbance

The matrix of methicillin-resistant S. aureus (MRSA) bio-
films is damaged by IONPs (Fe3O4 and γ-Fe2O3) when a 
magnetic field is applied, according to a recent article (Li 
et al. 2019). The IONPs are directed and focused at a specific 
location by the magnetic field. In comparison to 8 nm and 
70 nm, 11 nm IONPs exhibit the highest antibiofilm activ-
ity, and both the AC and DC magnetic fields that are used 
to remove the biofilm are more effective than direct contact. 
IONPs only operate upon the physical breakdown of the 
biofilm, removing the biofilm from the surface, failing to 
kill the planktonic MRSA germs. Biofilms can be best dis-
persed by a spinning DC magnetic field. Due to the IONPs' 
extended contact with the matrix made possible by the low 
rotation rate, the biofilm is subjected to strong shearing 
stresses. Therefore, the IONPs and magnetic field serve as 
"shield breakers." S. epidermidis is penetrated by a nanocar-
rier called a polymersome that contains IONPS and methi-
cillin. By enhancing the antibiotic's interaction with the 
biofilm, the IONPs partially deconstruct it, which enhances 
the synergistic destruction of the sessile population by the 

antibiotic (Geilich et al. 2017). Magnetic hyperthermia is 
the process of heating IONPs by applying an AC magnetic 
field. The separation of the biofilm is caused by local heating 
caused by IONPs that is substantially greater than that of the 
medium. The sensitivity of S. aureus towards conventional 
antibiotics is enhanced by mild magnetic NP hyperthermia 
(Alumutairi et al. 2020). Figure 5 summarizes the advanced 
control strategies against biofilms.

Future perspectives

Many studies have worked on bioactive compounds from 
medicinal plants to find novel natural compounds that act on 
biofilms, and the results were promising. Unfortunately, not 
a single FDA-approved drug has been manufactured, even 
with the considerable amount of research done. Therefore, 
extended antibiotic therapy and increased antibiotic combi-
nations are highly recommended at the moment, and physi-
cians should be made aware of this.

There are many questions regarding the mechanisms 
through which microbes maintain a balance between bio-
film formation capacity and antibiotic resistance, as well as 
how resistant strains achieve high levels of biofilm-specific 
resistance despite producing weak biofilms. Further studies 
are also needed to determine how the gain of antimicrobial 
resistance affects biofilm formation. Deeper explorations of 
plasmid maps and genetic regulation, such as identifying 
genes involved in biofilm-specific resistance and persisters, 
would improve our understanding of these processes.

Looking ahead, from our perspectives, there are several 
promising future strategies for biofilm control, most impor-
tantly, combining different treatment modalities, such as 
PDT, PTT, or other biofilm-targeting strategies, with conven-
tional antibiotics or antimicrobial agents that may prove to 
be more effective in eradicating biofilms. Synergistic effects 
between different treatments could enhance biofilm penetra-
tion and reduce the risk of antibiotic resistance; developing 
antibiotics that specifically target biofilms is another poten-
tial avenue. These antibiotics would be designed to pene-
trate biofilm matrices and effectively eradicate the microbes 
within the biofilm, addressing the challenge of antibiotic 
tolerance exhibited by biofilm-associated microorganisms.

Conclusion

The management of microbial resistance is threatened by 
three main conditions: increased biofilm-related infections, 
expansion of antimicrobial resistance, and the lack of appro-
priate therapy. It was mentioned that almost 80% of chronic 
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infections in animals and humans are associated with biofilm 
formation. Biofilm-related antimicrobial tolerance differs 
from antimicrobial resistance, shown by microbes grown in 
planktonic culture.

Alternative therapies have been sought to remove or 
inhibit biofilms because most antibiotics are not able to 
treat them. From the time the biofilm is formed until it has 
reached maturity, there are several points where interven-
tion is feasible. Natural metabolites were able to prevent 
the development of biofilms in several ways,  by preventing 
the synthesis of peptidoglycans and polymer matrix, inter-
rupting the production of the extracellular matrix, repress-
ing cell adhesion and attachment, damaging the structure of 
microbial membranes, and reducing the production of viru-
lence factors. A significant antibiofilm potential was found 
in phenolics, polyacetylenes, terpenoids, alkaloids, lectins, 
and polypeptides. Condensed tannins, in particular among 
the phenolics, demonstrated antibiofilm activity.

Some microbes, such as coagulase-negative staphylo-
cocci (CNS) (S. epidermis) and S. aureus, possess the abil-
ity to aggregate and form biofilms by their secreted mucoid 
extracellular polymeric substance called polysaccharide 
intercellular adhesion (PIA) matrix. Among the phenotypic 
techniques, the microtitre plate (MtP) test is one of the quan-
titative tests. Another phenotypic quantitative in vitro chro-
matic assessment approach, Congo red agar (CRA) test, has 
been developed as an alternative to the MtP test.

Extended antibiotic therapy and increased antibiotic 
combinations are highly recommended to deal with biofilm 
formations. Future studies should focus on the dynamic 

between biofilm formation and MDR, by, for example, inves-
tigating plasmid maps and genetic regulation.
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