Skip to main content

Advertisement

Log in

An insights into emerging trends to control the threats of antimicrobial resistance (AMR): an address to public health risks

  • Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial agents are used to treat microbial ailments, but increased use of antibiotics and exposure to infections in healthcare facilities and hospitals as well as the excessive and inappropriate use of antibiotics at the society level lead to the emergence of multidrug-resistant (MDR) bacteria. Antimicrobial resistance (AMR) is considered a public health concern and has rendered the treatment of different infections more challenging. The bacterial strains develop resistance against antimicrobial agents by limiting intracellular drug accumulation (increasing efflux or decreasing influx of antibiotics), modification and inactivation of drugs and its targets, enzymatic inhibition, and biofilm formation. However, the driving factors of AMR include the sociocultural and economic circumstances of a country, the use of falsified and substandard medicines, the use of antibiotics in farm animals, and food processing technologies. These factors make AMR one of the major menaces faced by mankind. In order to promote reciprocal learning, this article summarizes the current AMR situation in Pakistan and how it interacts with the health issues related to the COVID-19 pandemic. The COVID-19 pandemic aids in illuminating the possible long-term impacts of AMR, which are less immediate but not less severe since their measures and effects are equivalent. Impact on other sectors, including the health industry, the economy, and trade are also discussed. We conclude by summarizing the several approaches that could be used to address this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

MDR:

Multidrug-resistant bacteria

AMR:

Antimicrobial resistance

GNB:

Gram negative bacteria

GPB:

Gram positive bacteria

EU:

European Union

IR:

Intrinsic resistance

E. coli:

Escherichia coli

MATE:

Multidrug and toxic compound extrusion

A. baumannii:

Acinetobacter baumannii

PBPs:

Penicillin-binding proteins

rRNA:

Ribosomal RNA

LPS:

Lipopolysaccharides

LTAs:

Lipoteichoic acids

BM:

Bacterial meningitis

CSF:

Cerebrospinal fluid

NAP:

National action plan

IPC:

Infection prevention and control practices

LMIC:

Middle or lower-income countries

NDM-1:

New Delhi metallo-beta-lactamase-1

WHO:

World health organization

PCV7:

7-Valent pneumococcal conjugate vaccination

AMPs:

Antimicrobial peptides

IPD:

Invasive pneumococcal disease

T3SS:

Bacterial type III secretion system

TCS:

Two-component systems

References

  • Abdi SN, Ghotaslou R, Ganbarov K, Mobed A, Tanomand A, Yousefi M, Asgharzadeh M, Kafil HSJI (2020) Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect Drug Resist 13:423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abelenda-Alonso G, Padullés A, Rombauts A, Gudiol C, Pujol M, Alvarez-Pouso C, Jodar R, Carratalà JJIC, Epidemiology H (2020) Antibiotic prescription during the COVID-19 pandemic: a biphasic pattern. Infect Control Hospital Empidemiol 41(11):1371–1372

    Article  Google Scholar 

  • Abushaheen MA, Fatani AJ, Alosaimi M, Mansy W, George M, Acharya S, Rathod S, Divakar DD, Jhugroo C, Vellappally SJ (2020) Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon 66(6):100971

    Article  PubMed  Google Scholar 

  • Adam M, Murali B, Glenn NO, Potter SS (2008) Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BMC Evolut Biol 8(1):1–12

    Article  Google Scholar 

  • Ahmad M, Khan AU (2019) Global economic impact of antibiotic resistance: a review. J Global Antimicrob Resist 19:313–316

    Article  Google Scholar 

  • Ahmed SA, Barış E, Go DS, Lofgren H, Osorio-Rodarte I, Thierfelder KJWD (2018) Assessing the global poverty effects of antimicrobial resistance. World Dev 111:148–160

    Article  Google Scholar 

  • Ahmad I, Malak HA, Abulreesh HH (2021) Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Global Antimicrob Resist 27:101–111

    Article  Google Scholar 

  • Ali SA, Taj MK, Ali SHJI, Resistance D (2021) Antimicrobial resistance pattern of bacterial meningitis among patients in Quetta. Pakistan, Infect Drug Resist 14:5107

    Article  CAS  PubMed  Google Scholar 

  • Alshalchi SA, Anderson GG (2015) Expression of the lipopolysaccharide biosynthesis gene lpxD affects biofilm formation of Pseudomonas aeruginosa. Arch Microbiol 197(2):135–145

    Article  CAS  PubMed  Google Scholar 

  • Bartsch A, Ives CM, Kattner C, Pein F, Diehn M, Tanabe M, Munk A, Zachariae U, Steinem C, Llabrés SJ (2021) An antibiotic-resistance conferring mutation in a neisserial porin: structure, ion flux, and ampicillin binding. Biochimica Et Biophysica Acta (BBA)-Biomembranes 1863(6):183601

    Article  CAS  PubMed  Google Scholar 

  • Bassetti M, Peghin M, Vena A, Giacobbe DR (2019) Treatment of infections due to MDR Gram-negative bacteria. Front Med 6:74

    Article  Google Scholar 

  • Bengoechea JA, Bamford CG (2020) SARS-CoV-2, bacterial co-infections, and AMR: the deadly trio in COVID-19? EMBO Mol Med 12(7):e12560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilal H, Khan MN, Rehman T, Hameed MF, Yang XJ (2021) Antibiotic resistance in Pakistan: a systematic review of past decade. BMC Infect Dis 21(1):1–19

    Article  Google Scholar 

  • Bloom DE, Black S, Salisbury D, Rappuoli RJ (2018) Antimicrobial resistance and the role of vaccines. Proc Nat Acad Sci 115(51):12868–12871

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Bouchoucha S, Whatman E, Johnstone M-JJI (2019) Disease, health, media representation of the antimicrobial resistance (AMR) crisis: an Australian perspective. Infect, Dis Health 24(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Bucher T, Oppenheimer-Shaanan Y, Savidor A, Bloom-Ackermann Z, Kolodkin-Gal IJ (2015) Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ Microbiol Rep 7(6):990–1004

    Article  CAS  PubMed  Google Scholar 

  • Buchy P, Ascioglu S, Buisson Y, Datta S, Nissen M, Tambyah PA, Vong SJ (2020) Impact of vaccines on antimicrobial resistance. Int J Infect Dis 90:188–196

    Article  CAS  PubMed  Google Scholar 

  • Cantón R, Gijón D, Ruiz-Garbajosa PJ (2020) Antimicrobial resistance in ICUs: an update in the light of the COVID-19 pandemic. Curr Open Crit Care 26(5):433–441

    Article  Google Scholar 

  • Cassiolato AP, Almeida SCG, Andrade AL, Minamisava R, Brandileone MC (2018) Expansion of the multidrug-resistant clonal complex 320 among invasive Streptococcus pneumoniae serotype 19A after the introduction of a ten-valent pneumococcal conjugate vaccine in Brazil. PLoS ONE 13(11):e0208211

    Article  PubMed  PubMed Central  Google Scholar 

  • Cepas V, López Y, Muñoz E, Rolo D, Ardanuy C, Martí S, Xercavins M, Horcajada JP, Bosch J, Soto SM (2019) Relationship between biofilm formation and antimicrobial resistance in gram-negative bacteria. Microb Drug Resist 25(1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY (2015) Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev 28(2):465–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng G, Ning J, Ahmed S, Huang J, Ullah R, An B, Hao H, Dai M, Huang L, Wang XJAR, Control I (2019) Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob Resist Infect Control 8(1):1–13

    Article  CAS  Google Scholar 

  • Choi U, Lee CR (2019) Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol 10:953

    Article  PubMed  PubMed Central  Google Scholar 

  • Chouhan S, Sharma K, Guleria S (2017) Antimicrobial activity of some essential oils—present status and future perspectives. Medicines 4(3):58

    Article  PubMed  PubMed Central  Google Scholar 

  • Christaki E, Marcou M, Tofarides AJ (2020) Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Med Evol 88(1):26–40

    Article  CAS  ADS  Google Scholar 

  • Collignon P, Beggs JJJA (2019) Socioeconomic enablers for contagion: factors impelling the antimicrobial resistance epidemic. Antibiotics 8(3):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadgostar PJI (2019) Antimicrobial resistance: implications and costs. Infect Drug Resist 12:3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan GH, Mohamed N, Scully IL, Cooper D, Begier E, Eiden J, Jansen KU, Gurtman A, Anderson AS (2016) Staphylococcus aureus: the current state of disease, pathophysiology and strategies for prevention. Expert Rev Vaccines 15(11):1373–1392

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Wachino J-I, Arakawa YJ (2016) Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin 30(2):523–537

    Article  Google Scholar 

  • Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, Brown TS, der Nigoghossian C, Zidar DA, Haythe JJ (2020) Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am College Cardiol 75(18):2352–2371

    Article  CAS  Google Scholar 

  • Duan C, Cao H, Zhang L-H, Xu ZJ (2021) Harnessing the CRISPR-Cas systems to combat antimicrobial resistance. Front Microbiol 12:716064

    Article  PubMed  PubMed Central  Google Scholar 

  • Duval RE, Grare M, Demoré BJM (2019) Fight against antimicrobial resistance: we always need new antibacterials but for right bacteria. Molecules 24(17):3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egorov A, Ulyashova M, Rubtsova MY (2018) Bacterial enzymes and antibiotic resistance. Acta Naturae 10(4(39)):33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ejaz S, Zubair M, Rasool N, Ahmed F, Bilal M, Ahmad G, Altaf AA, Shah SAA, Rizwan K (2021) N-([1,1ʹ-biaryl]-4-yl)-1-naphthamide-based scaffolds synthesis, their cheminformatics analyses, and screening as bacterial biofilm inhibitor. J Basic Microbiol 62(9):1–13

    Google Scholar 

  • Faleiro ML (2011) The mode of antibacterial action of essential oils. Sci against Microbial Pathogens: Commun Curr Res Technol Adv 2:1143–1156

    Google Scholar 

  • Fasciano AC, Shaban L, Mecsas JJ (2019) Promises and challenges of the type three secretion system injectisome as an antivirulence target. Protein Sectretion Bacteria 8(2):261–276

    Article  Google Scholar 

  • Fattorini L, Creti R, Palma C, Pantosti AJ (2020) Bacterial coinfections in COVID-19: an underestimated adversary. Annali Dell’lstituto Supeeriore Di Sanita 56(3):359–364

    CAS  Google Scholar 

  • Flemming H-C, Wingender JJ (2001) Relevance of microbial extracellular polymeric substances (EPSs)-Part I: structural and ecological aspects. Wate Sci Technol 43(6):1–8

    Article  CAS  Google Scholar 

  • Founou LL, Founou RC, Essack SY (2016) Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol 7:1881

    Article  PubMed  PubMed Central  Google Scholar 

  • Furukawa D, Graber CJ (2021) Antimicrobial stewardship in a pandemic: picking up the pieces. Clinical infectious diseases. Oxford University Press, US, pp e542–e544

    Google Scholar 

  • Galán JE, Waksman GJC (2018) Protein-injection machines in bacteria. Cell 172(6):1306–1318

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad AJ (2019) Gut microbiota as a source of novel antimicrobials. Gut Microbes 10(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vidal C, Sanjuan G, Moreno-García E, Puerta-Alcalde P, Garcia-Pouton N, Chumbita M, Fernandez-Pittol M, Pitart C, Inciarte A, Bodro MJCM (2021) Infection, Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin Microbiol Infect 27(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • Gaviria-Agudelo CL, Jordan-Villegas A, Garcia C, McCracken GH Jr (2017) The effect of 13-valent pneumococcal conjugate vaccine on the serotype distribution and antibiotic resistance profiles in children with invasive pneumococcal disease. J Pediatr Infect Diseases Soc 6(3):253–259

    Article  Google Scholar 

  • George AJ (2019) Antimicrobial resistance (AMR) in the food chain: trade, one health and codex. Tropical Med Infect Dis 4(1):54

    Article  Google Scholar 

  • Getahun H, Smith I, Trivedi K, Paulin S, Balkhy HH (2020) Tackling antimicrobial resistance in the COVID-19 pandemic. Bull World Health Organ 98(7):442

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:203–256. https://www.sciencedirect.com/science/article/pii/S0065291102460055

    Article  CAS  Google Scholar 

  • Gillings MR (2017) Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Ann N Y Acad Sci 1389(1):20–36

    Article  PubMed  ADS  Google Scholar 

  • Gwenzi W, Musiyiwa K, Mangori L (2020) Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: a hotspot reservoir. J Environ Chem Eng 8(1):102220

    Article  CAS  Google Scholar 

  • Hall CW, Mah T-FJ (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276–301

    Article  CAS  PubMed  Google Scholar 

  • Hameed F, Khan MA, Muhammad H, Sarwar T, Bilal H, Rehman TU (2019) Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Revista Da Sociedade Brasileira De Medicine Tropical 52:e20190237

    Article  Google Scholar 

  • Hartley DM, Perencevich EN (2020) Public health interventions for COVID-19: emerging evidence and implications for an evolving public health crisis. JAMA 323(19):1908–1909

    Article  CAS  PubMed  Google Scholar 

  • Havers FP, Hicks LA, Chung JR, Gaglani M, Murthy K, Zimmerman RK, Jackson LA, Petrie JG, McLean HQ, Nowalk MP (2018) Outpatient antibiotic prescribing for acute respiratory infections during influenza seasons. JAMA Netw Open 1(2):e180243–e180243

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda HJ (2022) Research, antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environ Sci Pollut Res 29:1–22

    Article  Google Scholar 

  • Howard E, Orhurhu V, Huang L, Guthrie B, Phipatanakul WJ (2019) The impact of ambient environmental exposures to microbial products on asthma outcomes from birth to childhood. Curr Allergy Asthma Rep 19(12):1–14

    Article  Google Scholar 

  • Hussain HI, Aqib AI, Seleem MN, Shabbir MA, Hao H, Iqbal Z, Kulyar MF, Zaheer T, Li K (2021) Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb Pathog 158:105040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igbinosa EO, Beshiru A (2019) Antimicrobial resistance, virulence determinants, and biofilm formation of Enterococcus species from ready-to-eat seafood. Front Microbiol 10:728

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue HJGH (2019) Medicine, Strategic approach for combating antimicrobial resistance (AMR). Global Healtyh Med 1(2):61–64

    Article  Google Scholar 

  • Jones LS, Carvalho MJ, Toleman MA, White PL, Connor TR, Mushtaq A, Weeks JL, Kumarasamy KK, Raven KE, Török ME (2015) Characterization of plasmids in extensively drug-resistant Acinetobacter strains isolated in India and Pakistan. Antimicrob Agents Chemother 59(2):923–929

    Article  PubMed  PubMed Central  Google Scholar 

  • Jubair N, Rajagopal M, Chinnappan S, Abdullah NB, Fatima AJE-BC (2021) Medicine, review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evidence-Based Complent Altern Med 2021:1–30

    Article  Google Scholar 

  • Kanerva M, Blom M, Tuominen U, Kolho E, Anttila VJ, Vaara M, Virolainen-Julkunen A, Lyytikäinen O (2007) Costs of an outbreak of meticillin-resistant Staphylococcus aureus. J Hosp Infect 66(1):22–28

    Article  CAS  PubMed  Google Scholar 

  • Kennedy DA, Read AF (2017) Why does drug resistance readily evolve but vaccine resistance does not? Proc of Royal Soc B: Biol Sci 284(1851):20162562

    Article  Google Scholar 

  • Khalifa SM, Abd El-Aziz AM, Hassan R, Abdelmegeed ES (2021) β-lactam resistance associated with β-lactamase production and porin alteration in clinical isolates of E. coli and K pneumoniae. PLoS ONE 16(5):e0251594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Lee JS, Park SB, Lee AR, Jung JW, Chun JH, Jassy Mary S, Jung TS (2020) The importance of porins and β-lactamase in outer membrane vesicles on the hydrolysis of β-lactam antibiotics. Int J Mol Sci 21(8):2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhelle CJPC (2018) Pharming animals: a global history of antibiotics in food production. Palgrave Commun (1935–2017) 4(1):1–13

    Google Scholar 

  • Kliemann BS, Levin AS, Moura ML, Boszczowski I, Lewis JJJPO (2016) Socioeconomic determinants of antibiotic consumption in the state of São Paulo, Brazil: the effect of restricting over-the-counter sales. PLoS ONE 11(12):e0167885

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Viviani SL, Ismail J, Agarwal S, Bonomo RA, van den Akker FJ (2021a) Structural analysis of the boronic acid β-lactamase inhibitor vaborbactam binding to Pseudomonas aeruginosa penicillin-binding protein. PLoS ONE 16(10):e0258359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, Jp D, Kumar S, Singh B, Tiwari RR (2021b) Futuristic non-antibiotic therapies to combat antibiotic resistance: a review. Front Microbiol 12:609459

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon HI, Kim S, Oh MH, Na SH, Kim YJ, Jeon YH, Lee JCC (2017) Outer membrane protein A contributes to antimicrobial resistance of Acinetobacter baumannii through the OmpA-like domain. J Antimicrob Chemother 72(11):3012–3015

    Article  CAS  PubMed  Google Scholar 

  • Laverty G, Gorman SP, Gilmore BFJP (2014) Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 3(3):596–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawani BT, Bayode MT, Sadibo ME, Awodire EF, Aro OP, Akindel AA (2023) Antibiotic resistance microbes’(ARM) mechanisms and management: a phytomedicinal approach. Proc Nat Acad Sci, India Sect B: Biol Sci 93(4):1–8

    Google Scholar 

  • Lee K-J, Lee M-A, Hwang W, Park H, Lee K-HJB (2016) Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bacteria. Biofouling 32(7):711–723

    Article  CAS  PubMed  Google Scholar 

  • Leitmeyer KC, Espinosa L, Broberg EK, Struelens MJ (2020) Automated digital reporting of clinical laboratory information to national public health surveillance systems, results of a EU/EEA survey. Eurosurveilance 2018 25(39):1900591

    Google Scholar 

  • Lesho EP, Laguio-Vila M (2019) The slow-motion catastrophe of antimicrobial resistance and practical interventions for all prescribers. Mayo Clinic Proceedings. Elsevier, pp 1040–1047

    Google Scholar 

  • Li H, Luo Y-F, Williams BJ, Blackwell TS, Xie C-M (2012) Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Microbiol 302(2):63–68

    CAS  Google Scholar 

  • Lin MF, Lin YY, Tu CC, Lan CY (2017) Immunology, infection, distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. J Microbiol, Immunol Infect 50(2):224–231

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Romero JC, González-Ríos H, Borges A, Simões M (2015) Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complement Altern Med 2015:795435. https://doi.org/10.1155/2015/795435

    Article  Google Scholar 

  • Ma F, Xu S, Tang Z, Li Z, Zhang LJB (2021) Health use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety Health 3(01):32–38

    Article  Google Scholar 

  • Malik B, Bhattacharyya SJ (2019) Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci Rep 9(1):1–12

    Google Scholar 

  • Martinez JL (2014) General principles of antibiotic resistance in bacteria. Drug Discov Today Technol 11:33–39

    Article  PubMed  Google Scholar 

  • Masadeh MM, Gharaibeh SF, Alzoubi KH, Al-Azzam SI, Obeidat WM (2013) Antimicrobial activity of common mouthwash solutions on multidrug-resistance bacterial biofilms. J Clin Med Res 5(5):389

    PubMed  PubMed Central  Google Scholar 

  • Monnet DL, Harbarth SJE (2020) Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? Euroservelence 25(45):2001886

    CAS  Google Scholar 

  • Motta SS, Cluzel P, Aldana M (2015) Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PLoS ONE 10(3):e0118464

    Article  PubMed  PubMed Central  Google Scholar 

  • Moya-Torres A, Mulvey MR, Kumar A, Oresnik IJ, Brassinga AKCJM (2014) The lack of OmpF, but not OmpC, contributes to increased antibiotic resistance in Serratia marcescens. Microbiology 160(9):1882–1892

    Article  CAS  PubMed  Google Scholar 

  • Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang TJ (2020) Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol 11:928

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulholland RH, Wood R, Stagg HR, Fischbacher C, Villacampa J, Simpson CR, Vasileiou E, McCowan C, Stock SJ, Docherty AB (2020) Impact of COVID-19 on accident and emergency attendances and emergency and planned hospital admissions in Scotland: an interrupted time-series analysis. J Royal Soc Med 113(11):444–453

    Article  Google Scholar 

  • Murray AK (2020) The novel coronavirus COVID-19 outbreak: global implications for antimicrobial resistance. Front Microbiol 11:1020

    Article  PubMed  PubMed Central  Google Scholar 

  • Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, Mohsen Y, Adukkadukkam S, Awuah WA, Jose RAM, Sylvia N (2022) Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics 11(2):200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naclerio GA, Onyedibe KI, Sintim HO (2020) Lipoteichoic acid biosynthesis inhibitors as potent inhibitors of S. aureus and E. faecalis growth and biofilm formation. Molecules 25(10):2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasir M, Chowdhury A, Zahan TJ (2020) Self-medication during COVID-19 outbreak: a cross sectional online survey in Dhaka city. Int J Basic Clin Pharmacol 9(9):1325–1330

    Article  Google Scholar 

  • Nayyar GM, Breman JG, Mackey TK, Clark JP, Hajjou M, Littrell M, Herrington JE (2019) Falsified and substandard drugs: stopping the pandemic. Am J Tropical Med Hygiene 100(5):1058

    Article  Google Scholar 

  • Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko YJ (2018) In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int J Gen Med 11:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwlaat R, Mbuagbaw L, Mertz D, Burrows LL, Bowdish DM, Moja L, Wright GD, Schünemann HJ (2021) Coronavirus disease 2019 and antimicrobial resistance: parallel and interacting health emergencies. Clin Infect Dis 72(9):1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Nilsson M, Givskov M, Twetman S, Tolker-Nielsen TJM (2019) Inactivation of the pgmA gene in Streptococcus mutans significantly decreases biofilm-associated antimicrobial tolerance. Microorganisms 7(9):310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olaimat AN, Al-Holy MA, Shahbaz HM, Al-Nabulsi AA, Abu Ghoush MH, Osaili TM, Ayyash MM, Holley RA (2018) Safety Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products. Compr Rev Food Sci Food Safety 17(5):1277–1292

    Article  Google Scholar 

  • O’Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance. Wellcome Trust and HM Government. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf

  • Oniciuc E-A, Likotrafiti E, Alvarez-Molina A, Prieto M, López M, Alvarez-Ordóñez AJ (2019) Food processing as a risk factor for antimicrobial resistance spread along the food chain. Curr Openion Food Sci 30:21–26

    Article  Google Scholar 

  • O’Reilly-Shah VN, Van Cleve W, Long DR, Moll V, Evans FM, Sunshine JE, Kassebaum NJ, Harrison EM, Jabaley CS (2020) Impact of COVID-19 response on global surgical volumes: an ongoing observational study. Bull World Health Organ 98(10):671

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson JT, Stacey HL, MacNair JE, Li J, Hartzel JS, Sterling TM, Benner P, Tamms GM, Musey LK (2019) Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine compared to 13-valent pneumococcal conjugate vaccine in adults≥ 65 years of age previously vaccinated with 23-valent pneumococcal polysaccharide vaccine. Human Vaccines Immunother 15(3):540–548

    Article  Google Scholar 

  • Podolsky SH (2018) The evolving response to antibiotic resistance. Talgrave Commun (1945–2018) 4(1):1–8

    Google Scholar 

  • Pontes DS, de Araujo RS, Dantas N, Scotti L, Scotti MT, de Moura RO, MendoncaJunior FJ (2018) Genetic mechanisms of antibiotic resistance and the role of antibiotic adjuvants. Curr Topics Med Chem 18(1):42–74

    Article  CAS  Google Scholar 

  • Qamar FN, Yousafzai MT, Khalid M, Kazi AM, Lohana H, Karim S, Khan A, Hotwani A, Qureshi S, Kabir FJ (2018) Outbreak investigation of ceftriaxone-resistant Salmonella enterica serotype Typhi and its risk factors among the general population in Hyderabad, Pakistan: a matched case-control study. Lancet Infect Dis 18(12):1368–1376

    Article  PubMed  Google Scholar 

  • Redgrave LS, Sutton SB, Webber MA, Piddock LJ (2014) Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22(8):438–445

    Article  CAS  PubMed  Google Scholar 

  • Regea GJ (2018) Review on antibiotics resistance and its economic impacts. J Pharmacol Clin Res 5:555675

    ADS  Google Scholar 

  • Renschler JP, Walters KM, Newton PN, Laxminarayan RJT (2015) hygiene, Estimated under-five deaths associated with poor-quality antimalarials in sub-Saharan Africa. Am J Tropical Med Hygiene 92(Suppl 6):119

    Article  Google Scholar 

  • Reygaert WJAM (2018) Department of biomedical sciences, oakland university william beaumont school of medicine, Rochester, MI, USA, an overview of the antimicrobial resistance mechanisms of bacteria, AIMS. Microbiology 4:482–501

    CAS  Google Scholar 

  • Ricci V, Loman N, Pallen M, Ivens A, Fookes M, Langridge GC, Wain J, Piddock LJ (2012) The TCA cycle is not required for selection or survival of multidrug-resistant Salmonella. J Antimicrob Chemother 67(3):589–599

    Article  CAS  PubMed  Google Scholar 

  • KS Rizi, K Ghazvini, M kouhi Noghondar, (2018) J Infect Dis Ther

  • Rizi KS, Ghazvini K, Noghondar MK (2018) Adaptive antibiotic resistance: overview and perspectives. J Infect Dis Ther 6:363. https://doi.org/10.4172/2332-0877.1000363

    Article  Google Scholar 

  • Rizwan K, Zubair M, Rasool N, Riaz M, Zia-Ul-Haq M, de Feo V (2012) Phytochemical and biological studies of Agave attenuata. Int J Mol Sci 13(5):6440–6451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosini R, Nicchi S, Pizza M, Rappuoli RJ (2020) Vaccines against antimicrobial resistance. Front Immunol 11:1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rzewuska M, Charani E, Clarkson JE, Davey PG, Duncan EM, Francis JJ, Gillies K, Kern WV, Lorencatto F, Marwick CA (2019) Infection prioritizing research areas for antibiotic stewardship programmes in hospitals: a behavioural perspective consensus paper. Clin Microbiol Infect 25(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Saleem Z, Hassali MA, Hashmi FK, Godman B, Saleem FJ (2019) Antimicrobial dispensing practices and determinants of antimicrobial resistance: a qualitative study among community pharmacists in Pakistan. Family Med Community Health 7(3):e000138. https://doi.org/10.1136/fmch-2019-000138

    Article  Google Scholar 

  • Saleem Z, Godman B, Azhar F, Kalungia AC, Fadare J, Opanga S, Markovic-Pekovic V, Hoxha I, Saeed A, Al-Gethamy MJ (2022) Progress on the national action plan of Pakistan on antimicrobial resistance (AMR): a narrative review and the implications. Expert Rev Anti-Infect Ther 20(1):71–93

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Romero MA, Casadesús J (2014) Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci 111(1):355–360

    Article  PubMed  ADS  Google Scholar 

  • Sattar M, Cheema FA, Awan UA, Aftab MN, Shah ZH, Afzal MSJD, Syndrome M (2021) COVID-19 and emergence of antimicrobial resistance: a most neglected aspect of health emergency in Pakistan. Diabetes Metabolic Syndrome 15(4):102179

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarz S, Cloeckaert A, Roberts MC (2005) Mechanisms and spread of bacterial resistance to antimicrobial agents. Antimicrobial Resist Bacyeria Animal Origin 1(6):73–98. https://doi.org/10.1128/9781555817534

    Article  Google Scholar 

  • Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, Shirvani F, Houri HJ (2016) Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol 9(1):e30682. https://doi.org/10.5812/jjm.30682

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar HJ (2018) Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vetrinary Sci 4:237

    Article  Google Scholar 

  • Sharma M, P Yadav, D Tripathi (2022) Bacterial Biofilm: contribution to AMR and approaches to tackle. IntechOpen. https://doi.org/10.5772/intechopen.103951

  • Sharma J, Sharma D, Singh A, Sunita K (2022) Colistin resistance and management of drug resistant infections. Can J Infect Dis Med Microbiol 2022:4315030. https://doi.org/10.1155/2022/4315030

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha P, Cooper BS, Coast J, Oppong R, Thi Thuy ND, Phodha T, Celhay O, Guerin PJ, Wertheim H, Lubell YJ (2018) Control, Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob Resist Infec Control 7(1):1–9

    Article  Google Scholar 

  • Sial N, Rasool N, Rizwan K, Altaf AA, Ali S, Malik A, Zubair M, Akhtar A, Kausar S, Shah SAA (2020) Efficient synthesis of 2,3-diarylbenzo[b]thiophene molecules through palladium (0) Suzuki-Miyaura cross-coupling reaction and their antithrombolyitc, biofilm inhibition, hemolytic potential and molecular docking studies. Med Chem Res 29:1486–1496

    Article  CAS  Google Scholar 

  • Singh R, Swick MC, Ledesma KR, Yang Z, Hu M, Zechiedrich L, Tam VH (2012) Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli. Antimicrob Agents Chemother 56(4):1680–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto SMJV (2013) Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4(3):223–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulis G, Sayood S, Gandra S (2022a) Antimicrobial resistance in low-and middle-income countries: current status and future directions. Expert Rev Anti Infect Ther 20(2):147–160

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Deng Z, Yan AJBBRC (2014) Biochemical and biophysical research communications bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267

    Article  CAS  PubMed  Google Scholar 

  • Tagliabue A, Rappuoli RJ (2018) Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol 9:1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Tariq S, Saira W, Waseem R, Khushbo S, Muzzaffar AB, Anil P, Aabid HS, Manzoor AR (2019) A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog 134:103580

    Article  CAS  PubMed  Google Scholar 

  • Tiri B, Sensi E, Marsiliani V, Cantarini M, Priante G, Vernelli C, Martella LA, Costantini M, Mariottini A, Andreani PJ (2020) Antimicrobial stewardship program, COVID-19, and infection control: spread of carbapenem-resistant Klebsiella pneumoniae colonization in ICU COVID-19 patients. What did not work? J Clin Med 9(9):2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TPJA (2020) Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9(12):918

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd A, Akhter N, Cairns J-M, Kasim A, Walton N, Ellison A, Chazot P, Eldabe S, Bambra CJ (2018) The pain divide: a cross-sectional analysis of chronic pain prevalence, pain intensity and opioid utilisation in England. BMG Open 8(7):e023391

    Article  Google Scholar 

  • Tomasz A, McDonnell M, Westphal M, Zanati EJ (1975) (1975) Coordinated incorporation of nascent peptidoglycan and teichoic acid into pneumococcal cell walls and conservation of peptidoglycan during growth. J Biol Chem 250(1):337–341

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y-K, Fung C-P, Lin J-C, Chen J-H, Chang F-Y, Chen T-L, Siu LK (2011) chemotherapy, Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother 55(4):1485–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vt Nair D, Venkitanarayanan K, Kollanoor Johny AJF (2018) Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 7(10):167

    Article  Google Scholar 

  • Waddington C, Carey ME, Boinett CJ, Higginson E, Veeraraghavan B, Baker S (2022) Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med 14(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Biswas S, Paudyal N, Pan H, Li X, Fang W, Yue MJ (2019) Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Front Microbiol 10:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams D, Spring L, Collins L, Miller L, Heifets L, Gangadharam P, Gillis TJ (1998) Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 42(7):1853–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong EHJ, Ng CG, Chua EG, Tay ACY, Peters F, Marshall BJ, Ho B, Goh KL, Vadivelu J, Loke MF (2016) Comparative genomics revealed multiple Helicobacter pylori genes associated with biofilm formation in vitro. PLoS ONE 11(11):e0166835

    Article  PubMed  PubMed Central  Google Scholar 

  • Wozniak TM, Barnsbee L, Lee XJ, Pacella RE (2019) Control using the best available data to estimate the cost of antimicrobial resistance: a systematic review. Antimicrob Resist Infect Control 8(1):1–12

    Article  Google Scholar 

  • Yin L, Li Q, Xue M, Wang Z, Tu J, Song X, Shao Y, Han X, Xue T, Liu HJAP (2019) The role of the phoP transcriptional regulator on biofilm formation of avian pathogenic Escherichia coli. Evian Pathol 48(4):362–370

    CAS  Google Scholar 

  • Zhou G, Shi QS, Huang X-M, Xie XB (2015) The three bacterial lines of defense against antimicrobial agents. Int J Mol Sci 16(9):21711–21733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu XJ (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 395(10229):1054–1062

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The listed authors are obliged to their representative universities for providing the literature services.

Funding

This work receives no external funding.

Author information

Authors and Affiliations

Authors

Contributions

NH: conceptualization, visualization, writing—original draft. NH; ZB: project administration, writing—original draft. AA; AK; NH; KR: investigation, formal analysis, writing-review and editing. AK; ZB; KR: writing—review and editing. S; MZS: formal analysis, writing—review and editing. All authors reviewed the manuscript and approved it for publication.

Corresponding authors

Correspondence to Nazim Hussain or Komal Rizwan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, A., Khalid, A., Baqar, Z. et al. An insights into emerging trends to control the threats of antimicrobial resistance (AMR): an address to public health risks. Arch Microbiol 206, 72 (2024). https://doi.org/10.1007/s00203-023-03800-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03800-9

Keywords

Navigation