
Vol.:(0123456789)1 3

Archives of Microbiology (2023) 205:173 
https://doi.org/10.1007/s00203-023-03525-9

ORIGINAL PAPER

Morphological and molecular comparison as a useful 
tool for identification of the three centric marine diatoms 
(Bacillariophyceae: Chaetoceros)

Maliwan Kutako1 · Rachanimuk Hiransuchalert1,2   · Sarayut Watchasit3 · Mookthida Kaewduang1 · 
Orawan Hanchana1 · Pakawan Setthamongkol1 · Parinya Chindudsadeegul4 · Vichaya Gunbua5 · 
Somtawin Jaritkhuan5

Received: 13 January 2023 / Revised: 17 March 2023 / Accepted: 28 March 2023 / Published online: 5 April 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The objective of this study was to identify morphological and molecular comparison of three marine Chaetoceros species 
using microscopic observations, sequence analysis of 18S rDNA, random amplified polymorphic DNA (RAPD-PCR) barcod-
ing and nuclear magnetic resonance (NMR) spectroscopy. Chaetoceros were obtained from three different algae laboratories: 
Center of Excellence for Marine Biotechnology (CEMB), Chanthaburi Coastal Fisheries Research and Development (CHAN) 
and Institute of Marine Science, Burapha University (BIM). Genomic DNA for the RAPD-PCR analysis was extracted using 
the phenol–chloroform method, followed by 18S rDNA amplification. The blast results of 18S rDNA sequence confirmed the 
significantly matched to C. gracilis for Chaetoceros BIM and CHAN and C. muelleri for Chaetoceros CEMB(e-value = 0.0, 
identity = 99%). The RAPD-PCR results revealed differences in the three Chaetoceros isolates with polymorphisms between 
30.43% and 60.00%, and Chaetoceros CEMB showed high polymorphic bands. Scanning electron microscopy revealed that 
Chaetoceros CEMB were larger and had larger setae compared to the other isolates (P < 0.05). The results of the NMR char-
acterization of metabolites were consistent with the results of the sequence and morphological analyses. The concentrations 
of several metabolites, including chlorophyll c1, chlorophyll a, Myo-inositol, fucoxanthin, astaxanthin, lutein and zeaxanthin, 
were lower in Chaetoceros CEMB than in Chaetoceros BIM and CHAN. However, high concentrations of fatty acids, such 
as oleic acid, linoleic acid, α-linolenic acid and arachidic acid, were observed in all isolates. Generally, the results of this 
study will aid future studies examining the diversity of Chaetoceros in various cultural environments.
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Introduction

Ocean’s diatoms are an important group of eukaryotic phy-
toplankton that dominate phytoplankton communities in 
upwelling regions and at high latitudes (Benoiston et al. 
2017). Diatoms are commonly fed to the larvae of aquatic 
animals in the aquaculture industry. The main species of 
diatoms used as food in the shrimp aquaculture industry 
are Chaetoceros, Thalassionema, Closterium and Thalas-
siosira. The genus Chaetoceros is highly representative 
in the marine plankton all over the world, in terms of 
diversity, abundance and distribution. The genus includes 
more than 225 recognized species and about 376 validly 
published names (Rines and Theriot 2003; Guiry 2020). 
The genus Chaetoceros is characterized by the presence of 
setae, which are long and hollow silicate spine-like projec-
tions protruding from the valve surface (Assmy et al. 2008; 
Kooistra et al. 2010). It is an ecologically important genus 
of marine planktonic diatoms that are found in coastal and 
upwelling regions (Jensen and Moestrup 1998). Moreover, 
Chaetoceros has been used for biofuel production because 
of its high growth rates and high lipid yield (Spaulding 
and Edlund 2008). Their utility stems in part from their 
small size and their high n-3 polyunsaturated fatty acids 
(PUFA) content; these properties also make Chaetoceros 
an important source of lipids and fatty acids for marine 
fish, bivalves and crustaceans (Xu et al. 1993; Zhou et al. 
2007). Among Chaetoceros species, C. muelleri and C. 
gracilis have been cultivated for use as food for Litope-
naeus vannamei larvae (Sangha et al. 2000). Rotifers fed 
C. gracilis showed increased viability, larger size, and 
low ciliate contamination (Knu 2004). Freeze-dried C. 
muelleri is commercially available as feed for shrimp, sea 
cucumbers and oysters and can be used in green water 
techniques in fish larviculture (e.g., https://​algae.​provi​
ron.​com). Previous research has indicated that C. muel-
leri shows antimicrobial activity against Staphyloccocus 
aureus, Escherichia coli and Candida albicans (Mendiola 
et. al. 2007). C. gracilis has the ability to produce high-
quality fatty acids for the lipid industry (Rika Partiwi et. 
al. 2009).

Chaetoceros cells have a silica cell wall in the form 
of two valves called the frustule. Microscopic identifi-
cation of diatoms has been traditionally used based on 
morphological characters such as frustule shape (Rine 
and Hargraves, 1988). Although there are several detailed 
taxonomic descriptions of the microstructure of their 
silica frustules, diatoms are time-consuming and difficult 
to identify. New approaches (e.g. the use of combined 
morphological and molecular tools) have been recently 
used which have revealed a cryptic diversity of the genus 
(Gaonkar et al. 2018).

DNA barcoding is a fast, accurate and standardized 
method for species-level identification that uses short 
DNA sequences. DNA barcoding has become an effective 
tool for assessing global biodiversity patterns and permits 
non-taxonomic biologists to diagnose species challeng-
ing to identify (Siddall et al. 2009). Diatoms are an ideal 
model group for developing DNA barcoding methods that 
provide easy-to-use, standardized and fast identification 
tools. Nuclear 18S rRNA is the most widely used sequence 
that has been used in phylogenetic analyses of diatoms 
(Evans et al. 2007; Gaonkar et al. 2018). Random ampli-
fied polymorphic (RAPD) markers are also highly useful 
for the study of populations within species because of their 
low cost and the fact that they do not require large sample 
sizes to generate preliminary results (Godhe et al. 2006).

In this study, the morphological and molecular taxonomic 
characteristics of Chaetoceros isolated from the coast of 
Eastern Thailand were investigated through microscopic 
observations, DNA barcoding using RAPD-PCR techniques, 
and molecular phylogenetic approaches using 18S rDNA. 
In addition, we present NMR patterns as well as chemical 
information on Chaetoceros.

Materials and methods

Diatom propagation and culturing system

Chaetoceros were obtained from three different algae labo-
ratories: the Center of Excellence for Marine Biotechnol-
ogy (CEMB), Faculty of Science, Chulalongkorn Univer-
sity, which originally isolated Chaetoceros from natural 
sea water in Angsila, Chon Buri province (13°20′22.5" N 
and 100°55′26.5" E) (hereafter referred to as Chaetoceros 
CEMB); Institute of Marine Science, Burapha University 
(BIM), which originally isolated Chaetoceros from natu-
ral sea water in Bang Saen, Chon Buri (13°16′10.0" N and 
100°55′20.6" E) (hereafter referred to as Chaetoceros BIM); 
and Chanthaburi Coastal Fisheries Research and Develop-
ment (CHAN), Department of Fisheries, Ministry of Agri-
culture and cooperatives, which originally isolated Chae-
toceros from natural sea water in Laemsing, Chanthaburi 
province (12°31′46.1" N and 102°03′02.0" E) (hereafter 
referred to as Chaetoceros CHAN).

Diatom culture procedures were carried out under sterile 
conditions to avoid contamination. The diatom samples from 
the laboratory collections were purified using the centrifu-
gation and streaking method. The samples were washed 12 
times by RO water (30 ppt salinity), followed by centrifuga-
tion at 2000 × g for 1–2 min, and the supernatants were dis-
carded every round. Each diatom strain was then aseptically 
streaked onto a sterile plate containing F/2 (Guillard 1975) 
media with water at 30 ppt salinity and 1.2–1.5% agar. The 
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plate was incubated at 25 °C until diatom colonies appeared. 
A single colony was transferred into test tubes containing 
10 mL of fresh media. The diatom propagation process was 
first carried out in a 100-mL flask, followed by 500 mL in 
F/2 (Guillard 1975) media with water at 30 ppt salinity. The 
room was maintained at 25 °C and under continuous illu-
mination at a low light intensity (1000 µ mol m-2 s-1). To 
accelerate growth, diatom cultures were vigorously aerated 
until they reached the stationary phase. Diatom cultures 
were then centrifugated at 12,000 × g for 1–2 min, and the 
supernatants were discarded. The cells were kept at − 20 °C 
until DNA extraction.

Morphological observations

Monoclonal cultures of diatom strains were identified to 
the genus or species level by morphological features based 
on observations using a light and scanning electron micro-
scope. For light microscopy, diatom cultures were treated 
with concentrated hydrochloric acids (1:1, sample:HCl). A 
mixture was washed with distilled water 5 times and leave 
to sediment for 2 h to prepare cleaned frustules. The slides 
were examined using light microscopy under a 100 × oil 
immersion objective lens (model BX53, Olympus). For 
scanning electron microscopy, diatom cells were placed 
on glass plates coated with 0.5% Alcian blue, fixed with 
2.5% glutaraldehyde in 0.1 M phosphate buffer saline (PBS) 
solution for 1 h and then washed with distilled water. Cells 
were further fixed under dark conditions with 1% osmium 
tetroxide in 0.1 M PBS solution for 1 h and then washed with 
distilled water. The samples were dehydrated in a graded 
ethanol series (70%, 80%, 90%, 95% and 100%) and dried 
using the critical point drying method. Finally, the samples 
were mounted onto stubs and sputter-coated with 99.99% 
pure gold. The specimens were examined under a scanning 
electron microscope (LEO1450VP, Zeiss, Oberkochen, Ger-
many) with a 205-nm resolution at 10 kV. Morphological 
comparisons followed the procedures described in previous 
studies. Cell size (length, width and setae length, in µM) 
measurements of Chaetoceros were taken.

Genomic DNA extraction

Fifty nanograms of diatom cells were placed in a prechilled 
microcentrifuge tube containing 500 μL of the extraction 
buffer (100 mM Tris–HCl, 100 mM EDTA, and 250 mM 
NaCl; pH 8.0). High molecular weight genomic DNA 
(gDNA) was extracted from the washed diatom cells using 
the phenol–chloroform-proteinase K method (Sambrook and 
Russell 2001). The DNA pellet was resuspended in 100 μL 
of TE buffer (10 mM Tris–HCl, pH 8.0 and 0.1 mM EDTA). 
The DNA solution was incubated at 37 °C for 1–2 h and kept 
at 4 °C until used.

RAPD‑PCR analysis

Polymerase chain reaction (PCR) amplification was per-
formed in 25-µL volumes containing 50 ng of genomic 
DNA; 2.5 µL of 10X Taq DNA polymerase buffer; 200 µM 
each of dNTP; 0.2  µM primer (UBC101, 5′-GCG​CCT​
GGAG-3′ and OPB01, 5′-GTT​TCG​CTCC-3′) [the Uni-
versity of British-Columbia pool (University of British-
Columbia, Canada) and Operon (Operon Technologies, Inc., 
USA)]; 2.0 mM MgCl2; and 1.0 unit of Dynazyme™ Taq 
DNA polymerase (FINNZYMES, Finland). PCR thermo-
cycling conditions were as follows: initial denaturation at 
94 °C for 3 min, followed by 40 cycles of denaturation at 
94 °C for 15 s; annealing at 36 °C for 1 min and extension at 
72 °C for 1.30 min; and final extension at 72 °C for 7 min. 
Twelve µl of PCR products were electrophoresed on a 2.0% 
(w/v) agarose gel using a 1-kb DNA ladder (Promega) for 
size comparison before being stored at − 20 °C.

PCR amplification, gene cloning and sequencing

The 18S rDNA locus from the genomic DNA of each dia-
tom was amplified using universal diatom 18S rDNA-spe-
cific primers (Ki et al. 2009) (forward AT18F01, 5′-TAC​
CTG​GTT​GAT​CCT​GCC​AGTAG-3′ and reverse AT18R01, 
5′-GCT​TGA​TCC​TTC​TGC​AGG​TTC​ACC​-3′). PCR amplifi-
cation was carried out in 25-µL volumes containing 50 ng of 
genomic DNA; 2.5 µL of 10X Taq DNA polymerase buffer; 
200 µM each of dNTP; 0.2 µM of each primer; 2.0 mM 
MgCl2; and 1.0 unit of Dynazyme™ II Hot Start Taq DNA 
polymerase (FINNZYMES, Finland). PCR thermocycling 
conditions were as follows: initial denaturation at 94 °C for 
3 min, followed by 35 cycles of denaturation at 94 °C for 
30 s; annealing at 50 °C for 1 min and extension at 72 °C for 
2.30 min; and final extension at 72 °C for 7 min. The PCR 
products were electrophoresed on 1.5% (w/v) agarose gel 
using a 1-kb DNA ladder (Promega) for size comparison 
before being stored at − 20 °C.

Successful amplification products were purified, cloned 
and unidirectionally sequenced (AITBiotech Pte. Ltd., 
Singapore). Nucleotide sequences were analyzed against 
molecular reference databases using the BLAST® algorithm 
(Basic Local Alignment Search Tool) (www.​ncbi.​nlm.​nih.​
gov/​BLAST); similarity was considered significant when the 
probability (E) value recovered was less than 10–4 (Altschul 
et al. 1990).

DNA sequence characteristics and phylogenetic 
analyses

Intraspecific variation in Chaetoceros was investigated by 
comparing the DNA similarities and genetic distances of 18S 
rDNA sequences. Multiple alignments were performed with 
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each dataset using the ClustalW algorithm (Thompson et al. 
1994). The aligned sequences were trimmed at each end to the 
same length, and obvious base errors that were only found in 
single strands were manually removed. Identical positions of 
the aligned sequences were used. The corrected pairwise (p-) 
genetic distances were calculated using the Kimura 2-param-
eter model (MEGA 10.0, Tamura et al. 2007).

An 18S rDNA phylogeny was constructed using the 
unweighted pair group method with arithmetic mean and 
Maximum Likelihood algorithms (MEGA 10.0, Tamura et al. 
2007) based on the Kimura two-parameter distance matrix; 
1000 bootstrap replicates were performed to assess the reli-
ability of the topology. The similarity of GenBank sequences 
and sequences obtained in our study were also compared. A 
total of 12 rDNA sequences from Chaetoceros were used in 
analyses. The 18S rDNA sequences were retrieved from eight 
Chaetoceros species (Supplementary Fig. 1).

Sample preparation for NMR analysis

Approximately 10 mg of methanol crude extract was dissolved 
in 600 µL of deuterated acetone, which included the internal 
standard tetramethylsilane (TMS). The mixture was sonicated 
for 5 min and centrifuged at 1400 × g for 5 min. Next, 550 µL 
of supernatant was collected with a pipette and placed in a 
5-mm NMR tube. All experiments (1D and 2D experiments) 
were performed using a Bruker Avance III HD 400 MHz NMR 
spectrometer, equipped with a 5-mm BBFO probe (Double 
Resonance Broadband Observe with 19F probe) at 25 °C. The 
1H-NMR spectra of Chaetoceros extract were collected using 
the following parameters: pulse program zg30; relaxation 
delay 1 s; pulse width 8.90 µs; number of scans 64; sweep 
width 18 ppm; and center of spectrum 6.50 ppm. The 13C-
NMR spectrum of Chaetoceros extract was collected using the 
following parameters: pulse program zgpg30; relaxation delay 
2 s; pulse width 7.50 µs; number of scans 8900; sweep width 
240 ppm; and center of spectrum 100 ppm. Parameters of the 
2D J-resolved NMR were as follows: pulse program jresgp-
prqf; relaxation delay 2 s; 128 increments; 16 transients; sweep 
width 18 ppm; and center of spectrum for 1H was 8.0 ppm 
in both dimensions. The parameters for HMBC are as fol-
lows: pulse program hmbcetgpl3nd; relaxation delay 2 s; 512 
increments; 84 transients; sweep width and center of spec-
trum for 1H were 20.0 and 9.0 ppm, respectively. Sweep width 
and center of spectrum for 13C were 240.0 and 100.0 ppm, 
respectively.

Results and discussion

Growth pattern of Chaetoceros

Chaetoceros CHAN had the greatest cell numbers between 
day 3 (183 × 104 cells/mL) and day 6 (192 × 104 cells/mL) 
during the culture period (Supplementary Fig. 2). The 
growth of Chaetoceros CHAN and Chaetoceros BIM 
exponentially increased during days 2–3, and Chaetoc-
eros CEMB exponentially increased during days 3–5. At 
day 6, the numbers of cells of Chaetoceros CEMB and 
Chaetoceros BIM were 168 × 104 and 150 × 104 cells/mL, 
respectively.

Morphological characterization of Chaetoceros

The most abundant phytoplankton in the Central Gulf of 
Thailand are diatoms and blue-green algae (Kajonwat-
tanakul et al. 2008). In this study, Chaetoceros from this 
study were isolated from the Gulf of Thailand: Chaetoc-
eros CEMB and Chaetoceros BIM were isolated from 
Chonburi province, and Chaetoceros CHAN was isolated 
from Chanthaburi province.

Light microscope images are shown in Figs. 1a–c. The 
sizes of the three Chaetoceros isolates were small (ca. 
5 µM). They were delicate and nearly square or rectangu-
lar in girdle view, with the pervalvar axis longer than the 
apical axis. Traditionally, the identification of diatoms at 
the species level has been based on morphological features 
determined with the aid of light microscopy, including the 
morphology of the colonies, the shape and dimensions 
of cells, the thickness and direction of setae, the number 
and shape of chloroplasts and the presence and morphol-
ogy of resting spores. However, other features that can 
only be resolved with electron microscopy, such as the 
fine structure of valves and setae and the location and 
number of rimoportulae, are now considered important 
(Sunesen et al. 2008). To minimize possible misidentifi-
cations, we used both scanning electron microscopy and 
light microscopy.

Scanning electron microscopy shows that the cells of 
Chaetoceros CEMB, CHAN and BIM were usually soli-
tary with flat or slightly convex valves (Figs. 1d–l). The 
setae are straight and narrow in diameter and arise from 
the poles of the cells. The surfaces of the frustules or cell 
walls were smooth and rectangular in girdle view. Chae-
toceros CEMB cells were shallow rectangular, whereas 
those of Chaetoceros CHAN and Chaetoceros BIM were 
square to rectangular. Setae size (18.37 ± 7.41 μM) and 
transapical axis (4.66 ± 1.25 μM) were significantly higher 
in Chaetoceros CEMB than in Chaetoceros CHAN and 
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Fig. 1   Light (a–c) and scanning electron (d–l) microscope images of Chaetoceros CEMB (a, d, g and j), Chaetoceros CHAN (b, e, h and k) and 
Chaetoceros BIM (c, f, i and l); the higher magnification shows the shape of entire cells (scale bars 5 µM)

Table 1   Morphological 
characters for differentiating the 
Chaetoceros isolates in this 
study

*indicates statistically significant differences between isolates (p < 0.05)

Character Chaetoceros CEMB Chaetoceros CHAN Chaetoceros BIM

Cell shape Shallow rectangular Square to rectangular Square to rectangular
Setae shape Round Round Round
Setae size (μM) 11.56–28.93

(18.37 ± 7.41)*
10.25–13.58
(12.01 ± 1.50)

10.27–11.14
(10.62 ± 0.36)

Transapical axis (μM) 3.24–6.16
(4.66 ± 1.25)*

3.50–4.05
(3.70 ± 0.25)

3.27–3.90
(3.53 ± 0.25)

Apical axis (μM) 4.15–8.26
(6.29 ± 1.50)

4.77–6.18
(5.33 ± 0.58)

4.42–5.49
(4.90 ± 0.49)
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Chaetoceros BIM (Table  1). Chaetoceros is a centric 
diatom with lightly silicified frustules. Each frustule pos-
sesses four long, thin spines or setae. The setae link the 
frustules together to form colonies of several cells. Frus-
tules can usually be seen in girdle view. Distinguishing 
Chaetoceros species is difficult using a light microscope. 
The form of the chains, the sizes of the apical axis and 
valve shape are some of the most important morphologi-
cal characters for recognizing species in this genus (Lee 
et al. 2014). All Chaetoceros isolates were confirmed to be 
Chaetoceros based on observation of their morphological 
features with a scanning electron microscope (Table 2).

Cells of C. debilis are roughly rectangular in girdle view 
and connected in spiraling chains. The basal part of the 
setae is distinct, and setae extend outward from the spi-
ral. Valves are flat or slightly convex (although the spines 
make it appear concave). Apertures are narrowly oval and 
sometimes slightly constricted in the middle. Their diameter 
ranges from 8 to 40 µM; although they are distributed world-
wide, they mainly occur in cold waters (Hasle and Syvertsen 
1996). Species like C. debilis include C. curvisetus, which 
forms spirals wider in diameter; in addition, the apertures 
are larger and widely oval in C. curvisetus (Guiry and Guiry 
2012; Tas and Hernández-Becerril 2017). The cells of C. 
gracilis and C. muelleri have an apical axis that ranges from 
6 to 8 and 8–9 μM and transapical axis that ranges from 3 
to 6 and 6–7 μM, respectively, while C. calcitrans has a cell 
diameter that ranges from 2 to 5 µM (Olenina et al. 2006). 
C. debilis is larger than C. gracilis and C. muelleri. Light 
and scanning microscope observations showed that Chae-
toceros CEMB may be a different species compared with 
Chaetoceros CHAN and Chaetoceros BIM. Nevertheless, 
light microscopy is still faster and more reliable for diatom 
identification in a mixed sample for trained diatomologists.

C. gracilis and C. calcitrans are extensively used as food 
sources for rearing prawn larvae (Seraspe et al. 2014). C. 
gracilis is the phytoplankton species most commonly used 
in bivalve mollusk and fish hatcheries (Helm et al. 2004). 
Their effectiveness stems in part from their small size and 
n-3 HUFA content.

Nucleotide sequences and 18S rDNA phylogeny 
of Chaetoceros

The 18S rDNA sequences of Chaetoceros were obtained 
from gene cloning and unidirectional sequencing. Chae-
toceros CEMB contained 18S rDNA sequences that were 
1794  bp in length (Accession number MW513719.1), 
which were similar to those of C.muelleri (e-value = 0.0, 
identity = 99%). Chaetoceros CHAN had 18S rDNA 
sequences that were 1788 bp in length (Accession number 
MW513720.1), which were similar to those of C. gracilis 
(e-value = 0.0, identity = 99%). Chaetoceros BIM contained 
18S rDNA sequences that were 1789 bp in length (Acces-
sion number MW513721.1), which were similar to those of 
C. gracilis (e-value = 0.0, identity = 99%). The 18S rDNA 
sequences of the three Chaetoceros showed high similarity 
(Supplementary Fig. 3).

The BLAST analysis revealed high similarity between 
the Chaetoceros sequences obtained in our study and Gen-
bank sequences. We characterized partial nuclear 18S rDNA 
sequences of three Chaetoceros and compared them with 
available DNA sequences (12 sequences) obtained from 
GenBank (www.​ncbi.​nlm.​nih.​gov) (Fig. 2). Chaetoceros 
CHAN and BIM were clustered in the same clade with 
C. gracilis, and Chaetoceros CEMB was distinct from the 
others. This result was consistent with morphological data 
suggesting that Chaetoceros CEMB contained significantly 
larger setae and apical axes than Chaetoceros CHAN and 
BIM. The lack of complete consistency between molecular 
and morphological identification may stem from morpho-
logical shifts that occur between environmental species and 
cultured ones. Thus, species identification both before and 
after culture might be required to ensure the accuracy of 
identification (Kesici et al. 2013).

Chaetoceros is a diverse genus of marine diatoms. 
Although the morphology of many members of the genus 
has been well described, molecular taxonomic studies of 
Chaetoceros are scarce. However, the use of new approaches 
by combination of morphological and molecular tools, have 
been recently used which have revealed a cryptic diversity 

Table 2   Comparison of the morphological features of Chaetoceros CEMB, CHAN and BIM by scanning electron microscopy

Characteristic Chaetoceros CEMB Chaetoceros CHAN Chaetoceros BIM

Cell Thick and stiff cells that are shallow 
rectangular

Thick and stiff cells that are rectangular Thick and stiff cells that are rectangular

Valve face Oval Rectangular to oval Rectangular to oval
Cell Length (μM) 4–8 4–6 4–6
Apical axis (μM) 3–6 3–4 3–4
Setae 4 long and thin intercalary setae with 

rounded terminal parts
4 long and thin intercalary setae with 

slender terminal parts
4 long and thin intercalary setae with 

slender terminal parts
Spines Invisible spine Invisible spine Invisible spine

http://www.ncbi.nlm.nih.gov
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of the genus (Gaonkar et al. 2018). The 18S and 28S rDNA 
phylogenies might provide suitable markers for resolving 
the species-level taxonomy of Chaetoceros (Oh et al. 2010).

RAPD profiles of Chaetoceros

Amplified fragments 300–2000 bp in size were obtained 
using RAPD-PCR analysis with UBC10 and OPB01 prim-
ers (Fig. 3). A dendrogram based on the RAPD-PCR band 
was created. In the study of the interpopulational variability 
of the three Chaetoceros culture populations, the selection 
of the RAPD primers was based on the quantity, intensity 
and repetition of the amplified fragments. These amplified 
fragments ranged in size from 50 to 2200 bp. A total of 
80 fragments were identified, and 113 of these fragments 
(42.5%) were polymorphic. The average number of frag-
ments per primer was relatively high. The percentage of 
polymorphic bands was 33.33%, 60.00% and 30.43% for 
Chaetoceros CHAN, Chaetoceros CEMB and Chaetoc-
eros BIM, respectively (Table 3). DNA barcoding requires 
molecular loci that are variable enough to discriminate spe-
cies and a molecular reference database for comparison. The 

similarity or divergence of the molecular sequence of an 
unknown organism to a vouchered reference sequence in 
the database is used for species identification. DNA bar-
coding of environmental samples involves the extraction of 
DNA from a pooled sample, PCR amplification of a target 
locus, cloning of the resulting PCR products, sequencing and 
analysis. With DNA barcoding techniques, even morpho-
logically similar strains can be identified at the species level. 
These molecular phylogenetic analyses also enable the rapid, 
convenient, and accurate classification of diatoms and have 
thus contributed considerably to studies of diatom diversity.

RAPD-PCR has been used for the molecular characteriza-
tion and identification of 17 samples of Sargassum spp. (Ho 
et al. 1995). A 450-bp fragment generated using OPA13 was 
detected in 12 of 17 samples of Sargassum. This fragment 
was present in profiles from Turbinaria (Sargassaceae). This 
study showed that RAPD-PCR is useful for discriminating 
Sargassum samples and developing fingerprints for them. 
PCR–RFLP analysis has been used to resolve the species-
level differences of 18 isolates of Chaetoceros Ehrenberg 
(Bacillariophyceae) by targeting the rbcL region of chlo-
roplast DNA, which encodes the Rubisco large subunit 

Fig. 2   Partial sequences 18S rDNA Maximum Likelihood phylo-
genetic hypothesis inferred for the species of Chaetoceros CEMB 
(Accession number MW513719.1), CHAN (Accession number 
MW513720.1) and BIM (Accession number MW513721.1) (black 

dots) and Chaetoceros 18S rDNA sequences (12 diatom taxa) from 
GenBank; 1000 bootstrap replicates were performed to assess the 
reliability of the topology. A partial sequence 18S rDNA of Chlorella 
vulgaris (Accession number X13688.1) was used as the outgroup
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(Toyoda et al. 2011). RAPD patterns for the species-level 
differences of Chaetoceros have not been reported to date. 
Molecular identification appears to be relatively effective for 
diatom identification given the similar efficacies of molecu-
lar and morphological identification in this study. However, 
more work is needed to optimize morphological and molecu-
lar approaches for diatom identification.

Identification of metabolites extracted 
from Chaetoceros by NMR spectroscopy

The 1H-NMR spectra of methanol extract from all Chaetoc-
eros isolates showed similar characteristic chemical shift 
peaks. There was a total of 27 metabolites that were clearly 
identified based on comparison with previous research, a free 
NMR database (The Human Metabolome Database, HMDB) 
and a commercial NMR database (Bruker AssureNMR). The 
1H-NMR spectra shown in Fig. 4 contain different groups of 
metabolites, including amino acids, sugars, carboxylic acids, 
fatty acids, vitamins and carotenoids. The peaks correspond-
ing to the structures of each metabolite are summarized in 
Supplementary data.

The characteristic chemical shifts of eight amino acids 
and sugars were observed around the region 4.10–1.98 ppm, 
which correspond to the -CH2- protons of amino acids, and 
1.48–0.96 ppm, which correspond to the -CH- and -CH3 
protons of amino acids (Azizan et al. 2018; Ma et al. 2019; 
Iglesias et al. 2019). The peaks around 5.20–3.82 ppm cor-
respond to the -CH- protons of glucose and sucrose, and 
the peaks around 3.82–3.67 ppm correspond to the -CH2- 
protons of glucose and sucrose (Richter and Berger 2013). 
The representative proton signals of fucoxanthin (olefinic-
H), astaxanthin, lutein and zeaxanthin were observed at a 
chemical shift around 7.01–6.10 ppm (Zailanie and Purnomo 
2017; Shumilina et al. 2020; Otaka et al. 2016; Iwai et al. 
2008). The identifications of these carotenoids have been 
confirmed by 2D-NMR (HMBC and JRES); the JRES spec-
trum showed the singlet signals of fucoxanthin and astaxan-
thin at 2.01 and 1.98 ppm, respectively, which correspond 
to the methyl groups (Supplementary Fig. 4) (Subramanian 
et al. 2015). The correlation between the proton and carbon 
signals in the HMBC spectrum is consistent with the results 
of previous studies (Azizan et al. 2018) (Supplementary 
Figs. 5–6). The signals of chlorophyll a and chlorophyll c1 

Fig. 3   A 2.0% agarose gel 
showing RAPD patterns of 
Chaetoceros using UBC10 (left) 
and OPB01 (right). Lanes 1 and 
2 Chaetoceros CHAN, Lanes 
3 and 4 Chaetoceros CEMB, 
Lanes 5 and 6 Chaetoceros 
BIM; M is the 100 bp DNA 
Marker

Table 3   Number of RAPD fragments and polymorphic products obtained in the analysis of three Chaetoceros populations

Primer Total number of 
fragments

Number of amplified fragments Number of polymorphic fragments

Chaetoceros 
CHAN

Chaetoceros 
CEMB

Chaetoceros 
BIM

Chaetoceros 
CHAN

Chaetoceros 
CEMB

Chaetoceros BIM

UBC10 39 14 14 11 5 6 2
OPB01 41 13 16 12 4 12 5
Total 80 27 30 23 9 18 7
Polymorphism 33.33% 60.00% 30.43%
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observed around 9.77–8.20 ppm correspond to the -NH- pro-
tons of chlorophyll structures.

1H-NMR and 2D-NMR spectra of the crude extract 
revealed signals for six fatty acids, including palmitic acid, 
oleic acid, linoleic acid, α-linolenic acid, arachidic acid and 
stearic acid (Fig. 5). The characteristic peaks were similar to 
the results of previous studies (Roswanda et al. 2017; Otto 
et al. 2014; Singer et al. 1996). The correlation between 
proton and carbon signals observed around 1.73–1.29 ppm 
corresponded to arachidic acid, palmitic acid and stearic 
acid. Other valuable metabolites, such as myo-inositol, 
cholesterol and choline, were detected by 1D and 2D-NMR 
spectroscopy. The results indicated that further purification 
was not required for the identification of some major and 
minor small metabolites by NMR spectroscopy.

Lipids play an important role in larval growth and sur-
vival. Eicosapentaenoic acid (EPA) and docosahexaenoic 
acid (DHA) are considered essential fatty acids because 
they are integral components of the plasma membrane and 
marine fish larvae cannot synthesize them from linoleic acid 
18:3 (n-3). M. rosenbergii also lacks the ability to synthe-
size linolenic acid and linoleic acid (D’Abramo and Sheen 
1993) and has a limited ability to elongate and desaturate 

short-chain n-3 and n-6 polyunsaturated fatty acids (e.g., 
C18) to long-chain polyunsaturated fatty acids (e.g., C20) 
(Reigh and Stickney 1989). Thus, marine fish larvae must 
acquire PUFAs through their diet of zooplankton (e.g., 
rotifers and crustaceans), which are enriched in these nutri-
ents. Increasing the PUFA content of zooplankton before 
feeding larval fish and shrimp is a regular practice in the 
aquaculture industry (Apt and Behrens 1999).

The supply of EPA and DHA traditionally produced by 
marine fisheries will be insufficient to meet their market 
demand in food industry. Consequently, a sustainable alter-
native source is urgently required. Moreover, EPA and DHA 
as n-3 supplements can potentially be used as an adjuvant 
for cardiac issues associated with coronavirus disease 2019 
(COVID-19) (Oliver et al. 2020). Through adaptive labo-
ratory semi-continuous cultures condition, the smaller C. 
gracilis cells can accumulate relatively higher EPA (41.5% 
EPA content per total fatty acid) and fucoxanthin (Tachi-
hana et al. 2020). In this study, unsaturated fatty acids and 
fucoxanthin in Chaetoceros were found. The results from 
this study suggesting that, high biomass production of unsat-
urated fatty acids and Fucoxanthin contents in Chaetoceros 
CHAN and BIM may achieve in semi-continuous culture at a 
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Fig. 4   1H-NMR spectra of Chaetoceros methanol extract in acetone-
D6: (a) Chaetoceros CEMB (b) Chaetoceros BIM and (c) Chaetoc-
eros CHAN where 1, glutamate; 2, proline; 3, alanine; 4, isoleucine; 
5, methionine; 6, choline; 7, glycine; 8, cholesterol; 9, palmitic acid; 
10, oleic acid; 11, linolenic acid; 12, α-linolenic acid; 13, arachidic 

acid; 14, glucose; 15, sucrose; 16, myo-inositol; 17, fucoxanthin; 18, 
astaxanthin; 19, lutein; 20, zeaxanthin; 21, violaxanthin; 22, chloro-
phyll c1; 23, chlorophyll a.; 24, glutamine; 25, valine; 26, leucine; 
and 27, steric acid
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low dilution and providing sufficient nutrients, to obtain high 
biomass production and valuable bio-compounds contents.

Conclusions

This study demonstrates the potential for DNA barcoding, 
coupled with microscopic observation and NMR characteri-
zation, for assessing Chaetoceros biodiversity. The RAPD 
barcodes, 18S rDNA sequences and NMR profiles of the 
three diatom isolates from this study can be used to identify 
Chaetoceros species when morphological differences are 
ambiguous.
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tary material available at https://​doi.​org/​10.​1007/​s00203-​023-​03525-9.
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