Skip to main content

Advertisement

Log in

Antibacterial and biofilm-inhibitory effects of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant staphylococcus aureus and gram-negative bacteria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The present study aimed to prepare and characterize vancomycin-loaded mesoporous silica nanoparticles (Van-MSNs) to detect inhibitory effects on the planktonic and biofilm forms of methicillin-resistant Staphylococcus aureus (MRSA) isolates, and study the biocompatibility and toxicity of Van-MSNs in vitro as well as antibacterial activity of Van-MSNs against Gram-negative bacteria. The inhibitory effects of Van-MSNs were investigated on MRSA using the determination of minimum inhibitory (MIC) and minimum biofilm-inhibitory concentrations (MBIC) as well as the effect on bacterial attachment. Biocompatibility was studied by examining the effect of Van-MSNs on the lysis and sedimentation rate of red blood cells (RBC). The interaction of Van-MSNs with human blood plasma was detected by the SDS-PAGE approach. The cytotoxic effect of the Van-MSNs on human bone marrow mesenchymal stem cells (hBM-MSCs) was evaluated by the MTT assay. The antibacterial effects of vancomycin and Van-MSNs on Gram-negative bacteria were also investigated using MIC determination using the broth microdilution method. Furthermore, bacteria outer membrane (OM) permeabilization was determined. Van-MSNs showed inhibitory effects on planktonic and biofilm forms of bacteria on all isolates at levels lower than MICs and MBICs of free vancomycin, but the antibiofilm effect of Van-MSNs was not significant. However, Van-MSNs did not affect bacterial attachment to surfaces. Van-loaded MSNs did not show a considerable effect on the lysis and sedimentation of RBC. A low interaction of Van-MSNs was detected with albumin (66.5 kDa). The hBM-MSCs viability in exposure to different levels of Van-MSNs was 91–100%. MICs of ≥ 128 µg/mL were observed for vancomycin against all Gram-negative bacteria. In contrast, Van-MSNs exhibited modest antibacterial activity inhibiting the tested Gram-negative bacterial strains, at concentrations of ≤ 16 µg/mL. Van-MSNs increased the OM permeability of bacteria that can increase the antimicrobial effect of vancomycin. According to our findings, Van-loaded MSNs have low cytotoxicity, desirable biocompatibility, and antibacterial effects and can be an option for the battle against planktonic MRSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data of this study are available from the corresponding author on reasonable request.

References

  • Achilli C et al (2014) Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application. Nanomed Nanotechnol Biol Med 10(3):589–597

    CAS  Google Scholar 

  • Ahmadian E et al (2018) Local treatment of the dental caries using nanomaterials. Biomed Pharmacother 108:443–447

    CAS  PubMed  Google Scholar 

  • Ahmadian E et al (2019) The potential of nanomaterials in theranostics of oral squamous cell carcinoma: recent progress. TrAC Trends Anal Chem 116:167–176

    CAS  Google Scholar 

  • Akhi MT et al (2017) High frequency of MRSA in surgical site infections and elevated vancomycin MIC. Wound Med 17:7–10

    Google Scholar 

  • Barzegari A et al (2020) The battle of probiotics and their derivatives against biofilms. Infection Drug Resist 13:659

    CAS  Google Scholar 

  • Braun K et al (2016) Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci 475:161–170

    CAS  PubMed  Google Scholar 

  • Chen Y et al (2011) Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv Func Mater 21(2):270–278

    CAS  Google Scholar 

  • Colilla M et al (2014) A novel zwitterionic bioceramic with dual antibacterial capability. J Mater Chem B 2(34):5639–5651

    CAS  PubMed  Google Scholar 

  • Cooper J, Hunt J (2006) The significance of zeta potential in osteogenesis. In Annual Meeting-Society for Biomaterials in Conjunction with the International Biomaterials Symposium

  • Cristian RE et al (2019) Analyzing the interaction between two different types of nanoparticles and serum albumin. Materials 12(19):3183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J et al (2013) Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS One 8(4):e62087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick F, Humphreys H, O’gara J (2005) The genetics of staphylococcal biofilm formation—will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infect 11(12):967–973

    CAS  PubMed  Google Scholar 

  • Ghavimi MA et al (2020) Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci Rep 10(1):1–15

    Google Scholar 

  • Ghorbani H et al (2017) In vitro synergy of antibiotic combinations against planktonic and biofilm Pseudomonas aeruginosa. GMS Hyg Infect Control. https://doi.org/10.3205/dgkh000302

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibney KA et al (2012) Poly (ethylene imine) s as antimicrobial agents with selective activity. Macromol Biosci 12(9):1279–1289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golezani AS, Fateh AS, Mehrabi HA (2016) Synthesis and characterization of silica mesoporous material produced by hydrothermal continues pH adjusting path way. Prog Nat Sci Mater Int 26(4):411–414

    CAS  Google Scholar 

  • Gounani Z et al (2018) Loading of polymyxin B onto anionic mesoporous silica nanoparticles retains antibacterial activity and enhances biocompatibility. Int J Pharm 537(1–2):148–161

    CAS  PubMed  Google Scholar 

  • Gounani Z et al (2019) Mesoporous silica nanoparticles carrying multiple antibiotics provide enhanced synergistic effect and improved biocompatibility. Colloids Surf B 175:498–508

    CAS  Google Scholar 

  • Gu B et al (2013) The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 68(1):4–11

    CAS  PubMed  Google Scholar 

  • Hamidi A et al (2012) Novel aldehyde-terminated dendrimers; synthesis and cytotoxicity assay. BioImpacts 2(2):97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanafi-Bojd MY et al (2015) Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur J Pharm Biopharm 89:248–258

    CAS  PubMed  Google Scholar 

  • Hanafi-Bojd MY et al (2017) The effect of mesoporous silica nanoparticles loaded with epirubicin on drug-resistant cancer cells. Nanomed J 4(3):135–141

    CAS  Google Scholar 

  • Harkins CP et al (2017) Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 18(1):130

    PubMed  PubMed Central  Google Scholar 

  • He Q et al (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31(6):1085–1092

    CAS  PubMed  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    CAS  PubMed  Google Scholar 

  • Hwang I-S et al (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61(12):1719–1726

    CAS  PubMed  Google Scholar 

  • In, C (2018) Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • Kamba SA et al (2013) In vitro delivery and controlled release of doxorubicin for targeting osteosarcoma bone cancer. Molecules 18(9):10580–10598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karimzadeh M, Rashidi L, Ganji F (2017) Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev Ind Pharm 43(4):628–636

    CAS  PubMed  Google Scholar 

  • Kayan A (2016) Polymers, and Materials, Synthesis, characterization, and application of hybrid inorganic–organic composites composites (K/Na) ZrSi (R) O x. J Inorg Organomet Polym 26:640–647

    CAS  Google Scholar 

  • Koneru B et al (2015) Tetracycline-containing MCM-41 mesoporous silica nanoparticles for the treatment of Escherichia coli. Molecules 20(11):19690–19698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruk M et al (1999) Characterization of highly ordered MCM-41 silicas using X-ray diffraction and nitrogen adsorption. Langmuir 15(16):5279–5284

    CAS  Google Scholar 

  • Le P et al (2020) Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nat Chem 12(2):145–158

    CAS  PubMed  Google Scholar 

  • Li X et al (2007) Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior. Microporous Mesoporous Mater 102(1–3):151–158

    CAS  Google Scholar 

  • Liu Y et al (2017) A multifunctional nanoplatform based on mesoporous silica nanoparticles for imaging-guided chemo/photodynamic synergetic therapy. RSC Adv 7(49):31133–31141

    Google Scholar 

  • Lu J et al (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346

    CAS  PubMed  Google Scholar 

  • Luo G-F et al (2014) Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci Rep 4(1):1–10

    Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47

    CAS  Google Scholar 

  • Maleki Dizaj S et al (2017) Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: preparation, solid state characterization, and evaluation of antimicrobial effect against Staphylococcus aureus. Artif Cells Nanomed Biotechnol 45(3):535–543

    CAS  PubMed  Google Scholar 

  • Maleki Dizaj S et al (2019) An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv 16(4):331–345

    CAS  PubMed  Google Scholar 

  • Maleki Dizaj S, Sharifi S, Jahangiri A (2019) Electrospun nanofibers as versatile platform in antimicrobial delivery: current state and perspectives. Pharm Dev Technol 24(10):1187–1199

    CAS  PubMed  Google Scholar 

  • Martínez-Carmona M, Gun’ko YK, Vallet-Regí M (2018) Mesoporous silica materials as drug delivery:“The Nightmare” of bacterial infection. Pharmaceutics 10(4):279

    PubMed  PubMed Central  Google Scholar 

  • Memar MY et al (2016) Colistin, an option for treatment of multiple drug resistant Pseudomonas aeruginosa. Physiol Pharmacol 20(2):130–136

    Google Scholar 

  • Memar MY et al (2018) Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist 11:567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Memar MY et al (2019) Biocompatibility, cytotoxicity and antimicrobial effects of gentamicin-loaded CaCO3 as a drug delivery to osteomyelitis. J Drug Delivery Sci Technol 54:101307

    CAS  Google Scholar 

  • Memar MY et al (2020) Biocompatibility, cytotoxicity and antibacterial effects of meropenem-loaded mesoporous silica nanoparticles against carbapenem-resistant Enterobacteriaceae. Artif Cells Nanomed Biotechnol 48(1):1354–1361

    CAS  PubMed  Google Scholar 

  • Memar MY et al (2020) The central role of the SOS DNA repair system in antibiotics resistance: a new target for a new infectious treatment strategy. Life Sci 262:118562

    CAS  PubMed  Google Scholar 

  • Memar MY et al (2021) Antimicrobial and antibiofilm activities of meropenem loaded-mesoporous silica nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. J Biomater Appl. https://doi.org/10.1177/08853282211003848

    Article  PubMed  Google Scholar 

  • Menon N, Leong DT (2016) Cytotoxic effects of phosphonate-functionalized mesoporous silica nanoparticles. ACS Appl Mater Interfaces 8(3):2416–2422

    CAS  PubMed  Google Scholar 

  • Mensa B et al (2011) Antibacterial mechanism of action of arylamide foldamers. Antimicrob Agents Chemother 55(11):5043–5053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitran R-A, Matei C, Berger D (2016) Correlation of mesoporous silica structural and morphological features with theoretical three-parameter model for drug release kinetics. J Phys Chem C 120(51):29202–29209

    CAS  Google Scholar 

  • Mitran R-A et al (2019) Mesoporous silica as carrier for drug-delivery systems. Nanocarriers for Drug Delivery. Elsevier, pp 351–374

    Google Scholar 

  • Molina-Manso D et al (2012) Usefulness of SBA-15 mesoporous ceramics as a delivery system for vancomycin, rifampicin and linezolid: a preliminary report. Int J Antimicrob Agents 40(3):252–256

    CAS  PubMed  Google Scholar 

  • Murashov V, Harper M, Demchuk E (2006) Impact of silanol surface density on the toxicity of silica aerosols measured by erythrocyte haemolysis. J Occup Environ Hyg 3(12):718–723

    CAS  PubMed  Google Scholar 

  • Nair S et al (2016) Antibiofilm activity and synergistic inhibition of Staphylococcus aureus biofilms by bactericidal protein P128 in combination with antibiotics. Antimicrob Agents Chemother 60(12):7280–7289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan L et al (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134(13):5722–5725

    CAS  PubMed  Google Scholar 

  • Pedraza D et al (2018) Amine-functionalized mesoporous silica nanoparticles: a new nanoantibiotic for bone infection treatment. Biomed Glasses 4(1):1–12

    Google Scholar 

  • Radin S et al (2005) In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials 26(9):1043–1052

    CAS  PubMed  Google Scholar 

  • Rădulescu D et al (2016) Mesoporous silica coatings for cephalosporin active release at the bone-implant interface. Appl Surf Sci 374:165–171

    Google Scholar 

  • Rashidi L et al (2014) A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells. J Nanopart Res 16(3):1–14

    Google Scholar 

  • Roy I et al (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug− carrier system for photodynamic therapy. J Am Chem Soc 125(26):7860–7865

    CAS  PubMed  Google Scholar 

  • Samiei M et al (2016) Nanoparticles for antimicrobial purposes in endodontics: a systematic review of in vitro studies. Mater Sci Eng C 58:1269–1278

    CAS  Google Scholar 

  • Sharifi S et al (2020) Anti-microbial activity of curcumin nanoformulations: new trends and future perspectives. Phytother Res 34(8):1926–1946

    CAS  PubMed  Google Scholar 

  • Shegokar R, Al Shaal L, Mitri K (2011) Present status of nanoparticle research for treatment of tuberculosis. J Pharm Pharm Sci 14(1):100–116

    CAS  PubMed  Google Scholar 

  • Slowing II et al (2009) Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5(1):57–62

    CAS  PubMed  Google Scholar 

  • Son Y-H et al (2007) One-pot synthetic route to polymer–silica assembled capsule encased with nonionic drug molecule. Chem Commun 27:2799–2801

    Google Scholar 

  • Sun F et al (2013) Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Future Microbiol 8(7):877–886

    CAS  PubMed  Google Scholar 

  • Sun M et al (2022) Preparation and characterization of vancomycin hydrochloride-loaded mesoporous silica composite hydrogels. Front Bioeng Biotechnol 10:4

    Google Scholar 

  • Taraszkiewicz A et al (2013) Innovative strategies to overcome biofilm resistance. BioMed Res International 2013:1–13

    Google Scholar 

  • Thwaites GE et al (2011) Clinical management of Staphylococcus aureus bacteraemia. Lancet Infect Dis 11(3):208–222

    PubMed  Google Scholar 

  • Turner NA et al (2019) Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17(4):203–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vega-Jiménez AL et al (2019) In vitro antimicrobial activity evaluation of metal oxide nanoparticles. Nanoemulsions-properties, fabrications and applications. IntechOpen, London

    Google Scholar 

  • Wang J et al (2017) A decomposable silica-based antibacterial coating for percutaneous titanium implant. Int J Nanomed 12:371

    CAS  Google Scholar 

  • Weinstein MP, (2018) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. National Committee for Clinical Laboratory Standards

  • Wu H et al (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7(1):1

    PubMed  Google Scholar 

  • Xu C et al (2018) Nanoengineered hollow mesoporous silica nanoparticles for the delivery of antimicrobial proteins into biofilms. J Mate Chem B 6(13):1899–1902

    CAS  Google Scholar 

  • Yoncheva K et al (2014) Functionalized mesoporous silica nanoparticles for oral delivery of budesonide. J Solid State Chem 211:154–161

    CAS  Google Scholar 

  • Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, An L, Wu X (2011) Modeling drug-carrier interaction in the drug release from nanocarriers. J Drug Deliv 2011:1–15

    Google Scholar 

Download references

Acknowledgements

The present article obtained financial support from the Tabriz University of Medical Sciences Research Vice-Chancellor (No. 61957), to which the authors are grateful.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

This study was planned and collected by MYM, SSH, and SMD. MY, SF, EN, and FGM contributed to the research stages of drafting and revising the manuscript. SSH and SMD are the corresponding authors. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Simin Sharifi or Solmaz Maleki Dizaj.

Ethics declarations

Conflict of interest

No conflict of interest was declared by the authors.

Ethical approval

The Ethics Committee of the Tabriz University of Medical Sciences (IR.TBZMED.REC.1398.798) approved this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memar, M., Yekani, M., Farajnia, S. et al. Antibacterial and biofilm-inhibitory effects of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant staphylococcus aureus and gram-negative bacteria. Arch Microbiol 205, 109 (2023). https://doi.org/10.1007/s00203-023-03447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03447-6

Keywords

Navigation