Skip to main content

Advertisement

Log in

Cyclo(L-Leucyl-L-Prolyl) from Lactobacillus coryniformis BCH-4 inhibits the proliferation of Aspergillus flavus: an in vitro to in silico approach

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Fungal spoilage led to a considerable economic loss of foodstuff which ultimately affects public health due to mycotoxins production. Moreover, the consumption of commercial antifungal drugs creates side effects and develops antifungal resistance. To overcome these challenges, the current work was aimed to investigate novel antifungal cyclic dipeptide (CDP) from Lactobacillus coryniformis (Loigolactobacillus coryniformis) BCH-4. CDPs have flexible, cyclic, and stable conformation. The proline-based CDPs provide additional structural compatibility and bio-functional values. Keeping in view, high-performance liquid chromatography (HPLC) was performed to explore cyclo(L-Leu-L-Pro) from L. coryniformis BCH-4. The HPLC detected concentration (135 ± 7.07 mg/mL) exhibited in vitro antifungal activity of 5.66 ± 0.57 mm (inhibitory zone) against Aspergillus flavus. Based on these results, cyclo(L-Leu-L-Pro) was used as a bioprotectant for selected food samples (grapes, lemon, cashew nuts, and almonds). A significant impact of cyclo(L-Leu-L-Pro) was observed in contrast with MRS broth (control) and cell-free supernatant. In silico molecular docking analysis of this CDP was carried out against FAD glucose dehydrogenase, dihydrofolate reductase, and urate oxidase of A. flavus as target proteins. Among these proteins, FAD glucose dehydrogenase exerted strong interactions with cyclo(L-Leu-L-Pro) having S-score of  – 8.21. The results evaluated that the detected CDP has strong interactions with selected proteins, causing excellent growth inhibition of A. flavus. Therefore, cyclo(L-Leu-L-Pro) could be used as a potent bioprotectant against food-borne pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A. flavus :

Aspergillus flavus

CDPs:

Cyclic dipeptides

CFS:

Cell-free supernatant

DHFR:

Dihydrofolate reductase

DKP:

2,5-Diketopiperazines

FAD:

Flavin adenine dinucleotide

GRAS:

Generally recognized as safe

L. coryniformis :

Lactobacillus coryniformis

LAB:

Lactic acid bacteria

MOE:

Molecular operating environment

RMSD:

Root mean squared deviation

THF:

Tetrahydro-folic acid

References

  • Abouloifa H, Gaamouche S, Rokni Y, Hasnaoui I, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, D’Hallewin G, Salah RB, Saalaoui E, Asehraou A (2021) Antifungal activity of probiotic Lactobacillus strains isolated from natural fermented green olives and their application as food bio-preservative. Biol Control 152:104450

    Article  CAS  Google Scholar 

  • AOAC (1990) Official methods of analysis (13th edition). Association of Official Analytical Chemist, Washington DC, USA

  • Arif R, Ahmad S, Mustafa G, Mahrosh HS, Ali M, Tahir ul Qamar M, Dar HR (2021) Molecular docking and simulation studies of antidiabetic agents devised from hypoglycemic polypeptide-p of Momordica charantia. Biomed Res Int 2021:5561129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asgher M, Qamar SA, Bilal M, Iqbal HM (2020) Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 137:109625

    Article  CAS  PubMed  Google Scholar 

  • Azat R, Liu Y, Li W, Kayir A, Lin DB, Zhou WW, Zheng XD (2016) Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese. J Zhejiang Univ Sci B 17(8):597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcenilla C, Ducic M, López M, Prieto M, Álvarez-Ordóñez A (2022) Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci 183:108661

    Article  CAS  PubMed  Google Scholar 

  • Bashir O, Bhat SA, Basharat A, Qamar M, Qamar SA, Bilal M, Iqbal HM (2022) Nano-engineered materials for sensing food pollutants: Technological advancements and safety issues. Chemosphere 292:133320

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Gul I, Basharat A, Qamar SA (2021) Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 176:540–557

    Article  CAS  PubMed  Google Scholar 

  • Bojarska J, Mieczkowski A, Ziora Z, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM (2021) Cyclic dipeptides: The biological and structural landscape with special focus on the anti-cancer proline-based scaffold. Biomolecules 11(10):1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukhari SA, Salman M, Numan M, Javed MR, Zubair M, Mustafa G (2020) Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water. Mol Biol Rep 47(3):1871–1881

    Article  CAS  PubMed  Google Scholar 

  • Crowley S, Mahony J, van Sinderen D (2013) Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci Technol 33(2):93–109

    Article  CAS  Google Scholar 

  • Cui CB, Kakeya H, Osada H (1997) Novel mammalian cell cycle inhibitors, cyclotroprostatins A-D, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 53(1):59–72

    Article  CAS  Google Scholar 

  • Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström K, Sjögren J, van Sinderen D, Arendt Schnürerc J (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45(3):309–318

    Article  CAS  Google Scholar 

  • Dopazo V, Luz C, Mañes J, Quiles JM, Carbonell R, Calpe J, Meca G (2021) Bio-preservative potential of microorganisms isolated from red grape against food contaminant fungi. Toxins 13(6):412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dopazo V, Luz C, Quiles JM, Calpe J, Romano R, Manes J, Meca G (2022) Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. J Sci Food Agric 102(3):898–907

    Article  CAS  PubMed  Google Scholar 

  • El Oirdi S, Lakhlifi T, Bahar AA, Yatim M, Rachid Z, Belhaj A (2021) Isolation and identification of Lactobacillus plantarum 4F, a strain with high antifungal activity, fungicidal effect, and biopreservation properties of food. J Food Process Preserv 45(6):e15517

    Article  CAS  Google Scholar 

  • El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Alswah M, Ahmed HE, Al-Karmalamy AA, Abulkhair HS (2021) The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: Synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. New J Chem 45(31):13986–14004

    Article  CAS  Google Scholar 

  • Fahim AM, Farag AM (2020) Synthesis, antimicrobial evaluation, molecular docking and theoretical calculations of novel pyrazolo [1, 5-a] pyrimidine derivatives. J Mol Struct 1199:127025

    Article  CAS  Google Scholar 

  • Fazel R, Zarei N, Ghaemi N, Namvaran MM, Enayati S, Ardakani EM, Azizi M, Khalaj V (2014) Cloning and expression of Aspergillus flavus urate oxidase in Pichia pastoris. Springerplus 3(1):1–7

    Article  CAS  Google Scholar 

  • Hipólito A, da Silva RAA, de Oliveira Caretta T, Silveira VAI, Amador IR, Panagio LA, Borsato D, Celligoi MAPC (2020) Evaluation of the antifungal activity of sophorolipids from Starmerella bombicola against food spoilage fungi. Biocatal Agric Biotechnol 29:101797

    Article  Google Scholar 

  • Hussein MA, El-Said AH, Yassein AS (2020) Mycobiota associated with strawberry fruits, their mycotoxin potential and pectinase activity. Mycology 11(2):158–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishola RO, Adebayo-Tayo BC (2012) Screening of lactic acid bacteria isolated from fermented food for bio-molecules production. AU J Technol 15(4):205–217

    Google Scholar 

  • Khalil N, Dabour N, Kheadr E (2021) Food bio-preservation: an overview with particular attention to Lactobacillus plantarum. Alex J Food Sci Tech 18(1):33–50

    Google Scholar 

  • Kim S, Thiessen PA, Bolton E, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Bo YuB, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213

    Article  CAS  PubMed  Google Scholar 

  • Klich MA (2007) Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol 8(6):713–722

    Article  CAS  PubMed  Google Scholar 

  • Krejcarek GE, Dominy BW, Lawton RG (1968) The interaction of reactive functional groups along peptide chains; a model for alkaloid biosynthesis. Chem Commun (London) 22:1450–1452

    Article  Google Scholar 

  • Kumar SN, Mohandas C, Nambisan B (2013) Purification of an antifungal compound, cyclo (l-Pro-d-Leu) for cereals produced by Bacillus cereus subsp. thuringiensis associated with entomopathogenic nematode. Microbiol Res 168(5):278–288

    Article  CAS  Google Scholar 

  • Kumari PK, Akhila S, Rao YS, Devi BR (2019) Alternative to artificial preservatives. Syst Rev Pharm 10:99–102

    Google Scholar 

  • Kwak MK, Liu R, Kwon JO, Kim MK, Kim AH, Kang SO (2013) Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza A virus. J Microbiol 51(6):836–843

    Article  CAS  PubMed  Google Scholar 

  • Kwak MK, Liu R, Kim MK, Moon D, Kim AH, Song SH, Kang SO (2014) Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi. J Microbiol 52(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Larrigaudiere C, Pons J, Torres R, Usall J (2002) Storage performance of clementines treated with hot water, sodium carbonate and sodium bicarbonate dips. J Hortic Sci Biotechnol 77(3):314–319

    Article  Google Scholar 

  • Le Lay C, Coton E, Le Blay G, Chobert JM, Haertlé T, Choiset Y, Mounier J (2016) Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int J Food Microbiol 239:79–85

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Kim CJ, Kunz B (2006) Identification of lactic acid bacteria isolated from kimchi and studies on their suitability for application as starter culture in the production of fermented sausages. Meat Sci 72(3):437–445

    Article  CAS  PubMed  Google Scholar 

  • Magnusson J, Schnürer J (2001) Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl Environ Microbiol 67(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins MB (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63:9923–9932

    Article  CAS  Google Scholar 

  • McCleland K, Milne PJ, Lucieto FR, Frost C, Brauns SC, Van De Venter M, Dyason K (2004) An investigation into the biological activity of the selected histidine-containing diketopiperazines cyclo (His-Phe) and cyclo (His-Tyr). J Pharm Pharmacol 56(9):1143–1153

    Article  CAS  PubMed  Google Scholar 

  • Mirza SK, Asema UK, Kasim SS (2017) To study the harmful effects of food preservatives on human health. J Med Chem Drug Discovery 2:610–616

    Google Scholar 

  • Montesinos-Herrero C, del Río MÁ, Pastor C, Brunetti O, Palou L (2009) Evaluation of brief potassium sorbate dips to control postharvest Penicillium decay on major citrus species and cultivars. Postharvest Biol Technol 52(1):117–125

    Article  CAS  Google Scholar 

  • Muhialdin BJ, Algboory HL, Kadum H, Mohammed NK, Saari N, Hassan Z, Hussin ASM (2020) Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds. Food Control 109:106898

    Article  CAS  Google Scholar 

  • Mustafa G, Mahrosh HS, Salman M, Sharif S, Jabeen R, Majeed T, Tahir H (2021) Identification of peptides as novel inhibitors to target IFN-γ, IL-3, and TNF-α in systemic lupus erythematosus. Biomed Res Int 2021:1124055

    PubMed  PubMed Central  Google Scholar 

  • Ortiz A, Sansinenea E (2017) Cyclic dipeptides: secondary metabolites isolated from different microorganisms with diverse biological activities. Curr Med Chem 24(25):2773–2780

    Article  CAS  PubMed  Google Scholar 

  • Palou L, Usall J, Smilanick JL, Aguilar MJ, Vinas I (2002) Evaluation of food additives and low-toxicity compounds as alternative chemicals for the control of Penicillium digitatum and Penicillium italicum on citrus fruit. Pest Manag Sci 58(5):459–466

    Article  CAS  PubMed  Google Scholar 

  • Palou L, Smilanick JL, Droby S (2008) Alternatives to conventional fungicides for the control of citrus postharvest green and blue moulds. Stewart Postharvest Rev 2(2):1–16

    Google Scholar 

  • Rana KM, Maowa J, Alam A, Dey S, Hosen A, Hasan I, Kawsar S (2021) In silico DFT study, molecular docking, and ADMET predictions of cytidine analogs with antimicrobial and anticancer properties. In Silico Pharmacol 9(1):1–24

    Article  Google Scholar 

  • Saithong P, Panthavee W, Boonyaratanakornkit M, Sikkhamondhol C (2010) Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. J Biosci Bioeng 110(5):553–557

    Article  CAS  PubMed  Google Scholar 

  • Salman M, Tariq A, Ijaz A, Naheed S, Hashem A, Abdllah E, Javed MR (2020) In Vitro Antimicrobial and Antioxidant Activities of Lactobacillus coryniformis BCH-4 Bioactive Compounds and Determination of Their Bioprotective Effects on Nutritional Components of Maize (Zea Mays L). Molecules 25(20):4685

    Article  CAS  PubMed Central  Google Scholar 

  • Sammes PG (1975) Naturally occurring 2, 5-dioxopiperazines and related compounds. Fortschr Chem Org Naturst 32:51–118

    CAS  PubMed  Google Scholar 

  • Ström K, Sjögren J, Broberg A, Schnürer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol 68(9):4322–4327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE (1998) Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr 54(6):1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Valencia-Chamorro SA, Perez-Gago MB, Del Rio MA, Palou L (2009) Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coatings containing antifungal food additives to control citrus postharvest green and blue molds. J Agric Food Chem 57(7):2770–2777

    Article  CAS  PubMed  Google Scholar 

  • Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8(18):1555–1572

    Article  CAS  PubMed  Google Scholar 

  • Yang E, Chang H (2010) Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol 139(1–2):56–63

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Sakai G, Mori K, Kojima K, Kamitori S, Sode K (2015) Structural analysis of fungus-derived FAD glucose dehydrogenase. Sci Rep 5(1):1–13

    Google Scholar 

Download references

Funding

This study was funded by Higher Education Commission, Pakistan under Government College University Faisalabad-Research Support Program (GCUF-RSP), award letter no. GCUF/Reg/17/3655 and project code: 19-ACH-19.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahwish Salman or Sarmad Ahmad Qamar.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, M., Tariq, A., Mustafa, G. et al. Cyclo(L-Leucyl-L-Prolyl) from Lactobacillus coryniformis BCH-4 inhibits the proliferation of Aspergillus flavus: an in vitro to in silico approach. Arch Microbiol 204, 267 (2022). https://doi.org/10.1007/s00203-022-02884-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-02884-z

Keywords

Navigation