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phytopathogenic bacterium ever described (Vanneste 
2000). E. amylovora is the aetiological agent of the fire 
blight disease in Rosaceae and represents a major global 
threat to commercial apple and pear production (Norelli 
et  al. 2003; Van der Zwet et  al. 2012; Vanneste 2000). A 
fire blight outbreak may cause the loss of the entire annual 
harvest and lead to a dramatic economic damage (e.g., in 
the year 2000 Michigan economy lost $42 million) (Norelli 
et  al. 2003). Weather condition markedly influence E. 
amylovora growth. Therefore, disease-forecasting models 
have been developed to prevent the disease onset by spray-
ing chemicals when the weather conditions are predicted 
favorable to E. amylovora proliferation (Shtienberg et  al. 
2003; Van der Zwet et  al. 1994). The infection usually 
occurs in spring when the temperature increases over 18 °C 
and it spreads by both insects and rain. The disease starts 
when the bacteria infect the plant through the flower nec-
tarthodes, or through wounds. Within a few days, the infec-
tion diffuse rapidly to the whole blossom and young shoots. 
In a few months, the disease spreads to the whole plant 
becoming systemic (Smits et  al. 2013; Vanneste 2000). 
Typical symptoms include flower necrosis, blighted shoots 
and woody tissues cankers. Besides, a common sign of fire 
blight is the appearance of bacterial ooze. Currently, the 
main methods to control fire blight are quarantine, prun-
ing and/or eradication of the plants, the use of biological 
and chemical pesticides, antibiotics and resistant cultivars 
obtained by classical breeding, or by genetic engineering 
(Gusberti et al. 2015). However, antibiotics and genetically 
modified plants are not allowed in most countries where 
prevention of infections is still the main control method. 
Several studies upon E. amylovora physiology and genetics 
have shed light on its pathogenicity at the molecular level, 
bringing out the major virulence factors (Piqué et al. 2015; 
Smits et al. 2011). Aiming to a better understanding of the 
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Introduction

Erwinia amylovora is a Gram negative bacterium affili-
ated to the Enterobacteriaceae family and the first 
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gene-pathogenicity and gene–host relationships, we have 
selected the DNA sequences encoding proteins that are 
reported to be important in the pathogenesis of E. amylo-
vora and we investigated their presence/absence within 
the strains of Erwinia whose genomes are sequenced and 
assembled (Ancona et  al. 2013, 2015, 2016; Bereswill 
and Geider 1997; Coyne et al. 2013; Du and Geider 2002; 
Edmunds et al. 2013; Kube et al. 2008, 2010; Mann et al. 
2013; Nissinen et al. 2007; Oh and Beer 2005; Pester et al. 
2012; Piqué et al. 2015, Smits et al. 2011; Wang et al. 2009, 
2011; Zeng et al. 2013; Zhao and Qi 2011).

Material and methods

The DNA sequences of 59 genes belonging to Erwinia 
amylovora CFBP1430 (reference genome) and encoding 
proteins, reported to be important for pathogenicity in E. 
amylovora, were extracted from the European Nucleotide 
Archive (ENA; http://www.ebi.ac.uk/ena). The genomes 
of the 38 Erwinia strains analyzed in this study derived 
from the NCBI-Genome database (Table 1). The 59 DNA 
sequences were BLASTed against the 38 Erwinia genomes 
DNA via the command-line annotation tool Blast, using 
default settings. A Heatmap Hierarchical Clustering based 
on Euclidean Distance method was generated via the R 
software using the heatmap() function from the R Base 
Package (Fig. 1) (R Core Team 2012). The identity thresh-
old was set according to the following criteria: (1) DNA 
sequences with a coverage ≥80% and identity ≥75% were 
marked in green. (2) Sequences with a coverage ≥80% and 
identity <75% are marked in yellow. (3) Sequences with a 
coverage <75% were interpreted as the absence of the para-
logue and are marked in red. The sequences were grouped 
according to the following functional systems: exopolysac-
charide metabolism, type 3 secretion system (T3SS), posi-
tive regulator of virulence factor, desferrioxamine pathway, 
guanine derivative regulation, sRNA chaperone, two-com-
ponent signal transduction system, type 1 secretion system, 
transcription regulator, sorbitol metabolism. 

Results and discussion

Herein, we supply an overview on the conservation of 
genes important for the pathogenicity of E. amylovora 
among different amylovora strains and other Erwinia 
strains with deposited genomes. In Fig. 1, a heatmap shows 
the absence (red, <80% coverage), or presence (green, 
≥80% coverage and ≥75% identity; yellow, ≥80% cover-
age and <75% identity) of a specific gene (bottom) within 
a certain Erwinia strain (right), and also the hierarchical 
relationship between the strains and the analysis outcome 

(left). Information about the analyzed strains is reported in 
Table 1, where the habitat/host and the relative plant patho-
genicity are specified.

General considerations

It is evident from the heatmap that there is a distinct separa-
tion between the group of Rosaceae-infecting strains (upper 
half of the figure) and the other strains. E. tasmaniensis 
ET1/99 is epiphytic and not pathogenic to plants and marks 
the boundary between the two groups (a wider discus-
sion on this strain can be found below in a dedicated para-
graph). The separation indicates that the genes involved 
in the Rosaceae-infecting strains are mostly not present, 
or present with a low sequence identity, in the strains not 
pathogenic to Rosaceae. This observation suggests that the 
proteins reported to be important for Erwinia amylovora 
pathogenicity are very specific to the fire blight develop-
ment in Rosaceae.

Erwinia amylovora strains

Most of the analyzed E. amylovora strains look identical to 
each other. However, the Rubus-infecting strains E. amylo-
vora Ea644 and MR1 make an exception.

First, our results show that these strains lack of the srlB 
gene. The srlB gene is part of the sorbitol operon and codi-
fies for a protein (SrlB) responsible for sorbitol phospho-
rylation during translocation into the cell (Aldridge et  al. 
1997). Sorbitol phosphorylation by SrlB is necessary for 
its internalization so that it can be exploited in the biosyn-
thesis pathway of the exopolysaccharide (EPS) amylovoran, 
which is the main protective biofilm component during 
infection (Aldridge et al. 1997; Langlotz et al. 2011). Inter-
estingly, unless Spiraeoideae, the Rubus plants (e.g., rasp-
berries and blackberries) contain little to no sorbitol (Lee 
2015; Wallaart 1980). It has been demonstrated for five 
tested strains of E. amylovora that the pathogen is able to 
infect apple plants with the same severity independently of 
sorbitol concentration (Duffy and Dandekar 2007). Moreo-
ver, it has been shown that the inability of the cells to use 
the sorbitol in apple shoots prevented efficient colonization 
of host plant tissue (Aldridge et  al. 1997). Therefore, the 
sorbitol operon confers the ability to cope with and take 
advantage of the high sorbitol concentrations present inside 
Spiraeoideae. Consequently, the Rubus-infecting strains are 
not able to deal with one of the main carbohydrate source 
(i.e., sorbitol) in Spiraeoideae, precluding their ability to 
infect these hosts.

Second, the rlsA gene is absent in E. amylovora MR1 
and has <75% identity in E. amylovora Ea644 when com-
pared to the reference gene of E. amylovora CFBP1430. 
The rlsA product is a regulator of levan production (Zhang 

http://www.ebi.ac.uk/ena
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Table 1   Characteristic of the Erwinia genome strains analyzed in this study

Strain Accession number Habitat/host Plant pathogenicity

E. amylovora ATCC 49946# GCA_000027205.1 Malus sp. (apple tree) Pathogen of Spiraeoideaea (Mann et al. 2013)
E. amylovora CFBP1430*,# GCA_000091565.1 Crataegus (hawthorn) Pathogen of Spiraeoideae (Mann et al. 2013)
E. amylovora LA637# GCA_000513355.1 Malus sp. (apple tree) Pathogen of Malus sp. (Smits et al. 2014)
E. amylovora LA636# GCA_000513395.1 Malus sp. (apple tree) Pathogen of Malus sp. (Smits et al. 2014)
E. amylovora LA635# GCF_000513415.1 Malus sp. (apple tree) Pathogen of Malus sp. (Smits et al. 2014)
E. amylovora ACW56400# GCF_000240705.2 Pyrus communis (pear tree) Pathogen of Spiraeoideae (Mann et al. 2013)
E. amylovora Ea356# GCF_000367545.1 Cotoneaster sp. (garden shrubs) Pathogen of Spiraeoideae (Mann et al. 2013)
E. amylovora Ea266# GCA_000367565.2 Malus sp. (apple tree) Pathogen of Spiraeoideae (Mann et al. 2013)
E. amylovora CFBP 2585# GCF_000367585.2 Sorbus sp. (rowan) Pathogen of Spiraeoideae (Mann et al. 2013)
E. amylovora 01SFR BO# GCA_000367605.2 Sorbus sp. (rowan) Pathogen of Spiraeoideae (Mann et al. 2013)
E. amylovora CFBP 1232# GCA_000367625.2 Pyrus communis (pear tree) Pathogen of Spiraeoideae (Mann et al. 2013)
E. amylovora UPN527# GCA_000367645.1 Malus sp. (apple tree) Pathogen of Spiraeoideae (Mann et al. 2013)
E. amylovora NBRC 12687b,# GCA_000696075.1 Pyrus communis (pear tree)c –
E. amylovora Ea644# GCA_000696075.1 Rubus idaeus (raspberry) Pathogen of Rubus (Mann et al. 2013)
E. amylovora MR1# GCA_000367685.2 Rubus idaeus (raspberry) Pathogen of Rubus (Mann et al. 2013)
E. pyrifoliae Ep1/96# GCA_000027265.1 Pyrus pyrofolia (asian pear tree/nashi) Pathogen of Pyrus pyrifolia (Kube et al. 

2010)
E. pyrifoliae DSM-12163# GCA_000026985.1 Pyrus pyrifolia (asian pear tree/nashi) Pathogen of Pyrus pyrifolia (Geider et al. 

2009)
Erwinia sp. Ejp617# GCA_000165815.1 Pyrus pyrifolia (asian pear tree/nashi) Pathogen of Pyrus pyrifolia (Park et al. 2011)
E. piriflorinigrans CFBP-

5888#
GCA_001050515.1 Pyrus communis (pear tree) Pathogen of Pyrus communis (López et al. 

2011)
E. tasmaniensis ET1/99 GCA_000026185.1 Malus sp. (apple tree) Non-pathogen (Kube et al. 2008, 2010)
E. typographi M043b GCA_000773975.1 Ips typographus (bark beetle) Non-pathogen (Skrodenyte-Arbaciauskiene 

et al. 2012)
E. billingiae OSU19-1 GCF_001269445.1 Pyrus communis (pear tree) Non-pathogen (Klein et al. 2015)
E. billingiae Eb661 GCA_000196615.1 Malus sp. (apple tree) Non-pathogen (Kube et al. 2008)
E. toletana DAPP-PG-7351 GCA_000336255.1 Olea sp. (olive tree) Pathogen associatedd of Olea sp. (Passos da 

Silva et al. 2013)
Erwinia teleogrylli SCU-B244 GCF_001484765.1 Teleogryllus occipitalis (mole cricket) Non-pathogen (Liu et al. 2016)
Erwinia sp. 9145 GCA_000745075.1 Facultative endohyphal bacterium Non-pathogen (Baltrus et al. 2017)
E. oleae DAPP-PG531 GCA_000770305.1 Olea europaea (olive tree) Non-pathogen (Moretti et al. 2011, 2014)
E. tracheiphila BuffGH GCA_000975275.1 Cucurbita pepo ssp. Texana (squash plant) Pathogen of Cucurbitaceae (Shapiro et al. 

2016)
E. tracheiphila PSU-1 GCA_000404125.1 Cucurbita pepo ssp. Texana (squash plant) Pathogen of Cucurbitaceae (Shapiro et al. 

2016)
E. mallotivora BT-MARDI GCA_000590885.1 Carica sp. (papaya tree) Pathogen of Carica sp. (Redzuan et al. 2014)
E. persicina NBRC-102418 GCA_001571305.1 Piezodorus guildinii (guts of redbanded 

stink bug) and Leguminosae (legume 
plants)

Pathogen of Leguminosae (González et al. 
2007; Zhang and Nan 2014)

Erwinia sp. ErVv1 GCA_900068895.1 Vitis vinifera (grapevine) Non-pathogen (Lopez-Fernandez et al. 2015)
Erwinia sp. EM595 GCA_001517405.1 Malus sp. (pome fruit trees) Non-pathogen (Rezzonico et al. 2016)
E. dacicola Erw SC GCA_001689725.1 Bactrocera oleae (olive fruit fly) Non-pathogen (Blow et al. 2016; Estes et al. 

2009)
E. dacicola IL GCA_001756855.1 Bactrocera oleae (olive fruit fly) Non-pathogene

Erwinia sp. Leaf53 GCA_001422605.1 Arabidopsis thaliana Non-pathogen (Bai et al. 2015)
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and Geider 1999). Levan is required for the formation of a 
protective biofilm and its misregulation leads to impaired 
infectivity in apple (Koczan et al. 2009). Our observations 
rise the hypothesis about the inability of E. amylovora 
Ea644 and MR1 to infect Spiraeoideae.

Furthermore, Rezzonico et al. (2012) found differences 
within the lipopolysaccharide (LPS) gene cluster between a 
Rubus- and a Spiraeoideae-infecting strains of E amylovora 
and they suggested that the LPS gene cluster may be used 
as a molecular marker to distinguish between Rubus- and 
Spiraeoideae-infecting strains of E. amylovora (Rezzonico 
et  al. 2012). Herein, we suggest that also the differences 
in the srlB and rlsA genes loci may be used together with 
the analysis of the LPS gene cluster to distinguish between 
Rubus- and Spiraeoideae-infecting strains.

Erwinia pyrifoliae Ep1/96, DSM‑12163 and Erwinia sp. 
Ejp617

Erwinia pyrifoliae Ep1/96 and DSM-12163 are pathogens 
of Pyrus pyrifoliae and responsible of the Asian pear shoot 
blight (Geider et al. 2009; Park et al. 2011). The main dif-
ference with E. amylovora is that these strains have no 
levansucrase gene lsc3 and no PrtA metalloprotease type 
1 secretion pathway genes prtDEF. It was shown that E. 
amylovora Δlsc3 mutant cells were not detected in the 
xylem vessels of apple trees and were reduced in mov-
ing through apple shoots (Koczan et al. 2009). In fact, the 
levansucrase allows E. amylovora to cope with the high 
level of sucrose present in the Rosaceous plants as prin-
cipal storage and transport carbohydrate together with 
sorbitol (Bogs and Geider 2000; Geier and Geider 1993; 
Gross et al. 1992). While, the missing PrtA protease secre-
tion was reported to reduce colonization of E. amylovora 
in the parenchyma of apple leaves (Zhang et  al. 1999). 
Therefore, the lack of lsc3 and prtDEF genes may be cor-
related with the limited host-range and decreased virulence 

of E. pyrifoliae respect the fire blight-causing bacteria. 
The DSM-12163 strain is also missing the cysteine pro-
tease effector-gene avrRpt2, which is believed to have been 
acquired by E. amylovora after the separation from E. pyri-
foliae species (Zhao et al. 2006). However, we found that E. 
pyrifoliae Ep1/96 harbors the avrRpt2 gene, indicating that 
the hypothesis about its acquisition should be still consid-
ered controversial.

Erwinia sp. Ejp617 is a pathogen of Pyrus pyrifolia 
and causes the bacterial shoot blight of pear (BSBP) (Park 
et al. 2011). It shows a heatmap profile similar to E. pyri-
foliae DSM-12163, but it also lacks of the eop2 and the 
hsvC genes. Eop2 codifies for a type 3 secreted effector/
helper protein bearing a pectate lyase domain (Asselin et al. 
2006), while the missing hsvC (hrp-associated systemic 
virulence protein C) gene codifies for a carboxylate lyase 
required for full virulence in apple (Oh et al. 2005). These 
observations are consistent with the fact that Erwinia sp. 
Ejp617 is not able to cause fire blight and indicate that the 
eop2, hsvC, lsc3 and avrRpt2 genes are not necessary to 
infect Pyrus shoots, but discriminating when it comes to 
spread the infection to the whole plant.

Erwinia piriflorinigrans CFBP‑5888

Erwinia piriflorinigrans is a Pyrus communis pathogen 
whose infection is limited to the blossoms (López et  al. 
2011; Roselló et  al. 2006). Infected blossoms are similar 
in appearance to those affected by the fire blight caused 
by Erwinia amylovora. The E. piriflorinigrans CFBP-
5888 strain is lacking of a number of genes present in E. 
amylovora.

The entire sorbitol operon is missing and can be related 
to its inability to infect the internal part of the plant. In 
fact, as already mentioned, the srl operon is important to 
exploit sorbitol within Spiraeoideae (Aldridge et al. 1997). 
The missing hrpY gene product is part of an upstream 

Table 1   (continued)

Strain Accession number Habitat/host Plant pathogenicity

E. iniecta B149 GCA_001267545.1 Diuraphis noxia (wheat aphid) Non-pathogen (Campillo et al. 2015)
E. iniecta B120 GCA_001267535.1 Diuraphis noxia (wheat aphid) Non-pathogen (Campillo et al. 2015)

a Nomenclature that follows Potter et al., Plant Syst. Evol., 2007 (Potter et al. 2007). However, some authors define the subfamily as Amygda-
loideae
b No reference available
c Information derived from https://www.ncbi.nlm.nih.gov/biosample/SAMD00016891/ on February the 15th 2017
d Found on olive knots caused by the plant bacterium Pseudomonas savastanoi pv. savastanoi. The presence of E. toletana is correlated with the 
virulence of the disease suggesting a possible interactions with P. savastanoi pv. Savastanoi
e Here we assume that this strain is non-pathogenic based on E. dacicola Erw SC
*E. amylovora CFBP1430 is the reference genome where all the DNA gene sequences were extracted
# These strains are Rosaceae-infecting

https://www.ncbi.nlm.nih.gov/biosample/SAMD00016891/
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Fig. 1   Heatmap hierarchical clustering: on the right, Erwinia strains 
are listed; on the bottom, genes important for virulence within E. 
amylovora are reported. Color code: green indicates a coverage ≥80% 
with an identity between 100% and 80%, yellow indicates a cover-
age ≥80% with an identity lower than 75%, red indicates a coverage 
lower than 75% that is interpreted as the absence of the paralogue. 
The genes are grouped according to the functional system: a exopoly-

saccharide metabolism, b sorbitol metabolism, c guanine derivative 
regulation, d desferrioxamine pathway, e type 1 secretion system, f 
type 3 secretion system, g others (transcription regulator, two-com-
ponent transduction, positive regulator of virulence factor and sRNA 
chaperone). #These strains are Rosaceae-infecting apart from E. tasm-
aniensis ET1/99. The figure was rendered with the Krita software
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2-component system regulating the hrp gene cluster 
together with HrpX (Wei et al. 2000). The latter works as 
a sensor protein and HrpY works as the response regulator 
partner. This means that in E. piriflorinigrans CFBP-5888 
there is an impaired regulation of the hrp gene cluster.

The hsvABC genes are missing. They are required for 
full virulence in apple (Oh et al. 2005). Then, the missing 
hrpW gene codifies for a pectate lyase-like harpin protein 
and thereby is an effector of infection (Gaudriault et  al. 
1998). The missing avrRpt2 gene, as already mentioned, 
codifies for a cysteine protease T3SS effector important 
for virulence in apple trees (Zhao et  al. 2006). Moreover, 
E. piriflorinigrans CFBP-5888 lacks the prtABCDE gene 
cluster. As previously discussed, the products of this clus-
ter form a type 1 secretion system where the PrtA protein 
is a secreted metalloprotease demonstrated to influence the 
ability to colonize the parenchyma of apple leaves (Zhang 
et  al. 1999). The missing eop1-2 genes encode for type 3 
effector proteins, whose role remains unknown (Zhao and 
Qi 2011). Based on sequence divergence among Rubus 
or Spiraeoideae-infecting strains and mutational stud-
ies, Asselin et al. suggested that the Eop1/YopJ protein is 
a host-range-limiting factor that could act as a host speci-
ficity determinant towards, either Rubus, or Spiraeoideae 
(Asselin et al. 2011). In fact, sequencing of the orfA-eop1 
regions of several strains of E. amylovora revealed that 
different forms of eop1 are conserved among strains with 
similar host ranges. In addition, mutational experiments 
showed that eop1 can otherwise influence virulence when 
heterologously expressed in Rubus or Spiraeoideae based 
on the strain it comes from. However, a transposon inser-
tion mutant in the eop1 gene of the Spiraeoideae-infecting 
strain E. amylovora Ea273/ATCC-49946 (Ea273 eop1::Tn) 
caused symptoms similar to those of the wild-type strain. 
Therefore, it is plausible that the lack of eop1 has no 
effect on the infectivity of E. piriflorinigrans CFBP-5888. 
The missing edcE gene codifies for a diguanylate cyclase 
involved in the production of c-di-GMP, which positively 
regulates the secretion of amylovoran, leading to increase 
biofilm formation and negatively regulating flagellar swim-
ming motility (Edmunds et  al. 2013). The missing rlsB 
gene product is a positive regulator of levan synthesis and 
its absence may downregulate levansucrase expression and 
suppress levan production (Du and Geider 2002). The miss-
ing amsD gene codifies for a glycosyltransferase part of the 
amylovoran biosynthesis machinery. The AmsD protein 
attaches the second galactose residue to the growing repeat-
ing unit of the amylovoran precursor (Langlotz et al. 2011). 
Overall, the lack of both edcE, rlsB and amsD can lead to a 
lower or impaired EPS production in the E. piriflorinigrans 
CFBP-5888 strain that could correlate to the inability of 
this species to colonize the phloem. The missing ycfA gene 
codifies for a protein crucial for the 6-thioguanine (6TG) 

biosynthesis, which is a cytotoxin released from E. amylo-
vora (Coyne et  al. 2013). The ΔyfcA mutant revealed the 
crucial role of 6TG and, therefore, of YfcA in the develop-
ment of the fire blight disease in apple plants.

Overall, our results on the E. piriflorinigrans CFBP-
5888 strain suggest that the lack of the described genes 
may have drifted the pathogenicity towards Pyrus blossoms 
infections.

Intriguingly, the common missing genes among the 
Pyrus-infecting strains are restricted to the metalloprotease 
PrtA secretion system that, being an important player in the 
colonization of the parenchyma of apple, might represent 
one of the principal determinants in host specificity. On the 
other hand, we showed that the missing genes in E. piriflo-
rinigrans CFBP-5888 are not necessary to infect blossoms.

Erwinia tasmaniensis ET1/99 strain

Erwinia tasmaniensis ET1/99 strain marks the border 
between the Rosaceae pathogens and the other strains. It is 
evident that E. tasmaniensis ET1/99 presents many simi-
larities to the pear tree pathogen E. piriflorinigrans CFBP-
5888. However, the ycfA, hrpW and hrpY genes are missing 
in E. piriflorinigrans CFBP-5888 and present in E. tasm-
aniensis ET1/99. Conversely, several genes that are present 
in the piriflorinigrans strain are missing in the tasmaniensis 
strain: dspF, hrpA, hrpK, amsE, amsK and edcC. Besides, 
the dspE gene in E. tasmaniensis ET1/99 has a <75% 
sequence identity compared to the reference sequence. 
Hence, the further absences of E. tasmaniensis ET1/99 
may correlate to its inability to be infective. The disease 
specific (dsp) Hrp-associated pathogenicity-avirulence pro-
teins DspE/A and DspF/B are among the principal effector 
in the fire blight disease and required for pathogenesis in 
Maloideae (Bogdanove et al. 1998; Gaudriault et al. 1997). 
The hrpA gene is part of the hrp operon, which is required 
for secretion of harpins and/or effectors and predicted to be 
an ATP-dependent helicase (Choi et  al. 2013; Kim et  al. 
1997). The hrpK gene is part of the E. amylovora patho-
genicity island. The codified protein HrpK is secreted and 
was suggested to be a translocator able to create channels 
in the plasma membrane of plant cells, although its actual 
function in fire blight remains to be determined (Oh et al. 
2005). The amsE and amsK genes are part of the amylo-
voran-synthesis operon. The encoded AmsE and AmsK 
proteins are glucoside transferases that transfer the third 
and the last galactose residues, respectively, on the amylo-
voran precursor (Langlotz et al. 2011). Hence, their impor-
tance in proper amylovoran production and thereafter bio-
film formations are clear. Eventually, as the edcE gene, the 
missing ecdC gene codifies for a diguanylate cyclase that 
positively regulates the secretion of amylovoran. There-
after, the lack of genes whose products are considered to 
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be critical for Rosaceae infection, well explain why the E. 
tasmaniensis ET1/99 strain is non-pathogenic respect the 
E. piriflorinigrans CFBP-5888 strain.

Non‑Rosaceae pathogens and non‑pathogens

Four strains, E. tracheiphila BuffGH, E. tracheiphila PSU-
1, E. mallotivora BT-MARDI and E. persicina NBRC-
102418, are reported to be pathogens of Cucurbitaceae 
(the first two), papaya tree and Leguminosae, respectively. 
However, they show no evident difference from the non-
pathogenic strains in respect the heatmap outcome, again 
suggesting that most of the analyzed genes are not neces-
sary for general pathogenesis, but they are host-specific. 
Only three genes (relA, dskA, csrA) have been found in 
most of the analyzed strains, pointing towards an impor-
tant role besides pathogenesis. The relA gene codifies for 
a ribosome-associated protein engaged in the synthesis of 
ppGpp (Zhang and Geider 1999) and is present in all ana-
lyzed strains of Erwinia. The ppGpp interacts with the 
RNA polymerase (RNAP) to inhibit, or activate genes. The 
dskA gene product modulates the ppGpp-RNAP interac-
tion enhancing the ppGpp effect (Ancona et al. 2015). The 
dksA gene is missing only in Erwinia sp. Leaf53. The csrA 
gene product is a post-transcriptional regulator of motility, 
amylovoran production, T3SS and virulence (Ancona et al. 
2016). The csrA is not present in Erwinia sp. SCU-B244.

Conclusion

The Erwinia amylovora species can be divided into two 
host-specific groupings: the Spiraeoideae-infecting (e.g., 
Malus, Pyrus, Crataegus, Sorbus) and the Rubus-infecting 
strains such as E. amylovora Ea644 and MR1 (Mann et al. 
2013). We suggest that the difference in host specificity 
could be correlated with the lack in the Rubus-infecting 
bacteria of a complete sorbitol operon. Thus, restricting 
the infectivity of E. amylovora Ea644 and MR1 to Rubus 
plants, which have little to no sugar alcohols, respect to 
other Rosaceae such as Malus and Pyrus (Lee 2015). Then, 
we suggested that the analysis of the srlB and rlsA loci may 
be used together with the analysis of the LPS gene cluster 
to distinguish between Rubus- and Spiraeoideae-infecting 
strains.

We hint that the host specificity of the Pyrus-infecting 
strains may be guided by the lack of genes involved in 
biofilm formation and virulence in apple. Intriguingly, 
all the Pyrus-infecting strains are impaired in the PrtA 
secretion system and, therefore, it would be interesting 
to investigate the virulence variation of E. amylovora 
apple infecting strains when mutated in the prt operon. 
Then, under the light of our observations, we advise that 

the hypothesis of the avrRpt2 acquisition after the phy-
logenetic separation of E. amylovora from E. pyrifoliae 
should be reconsidered. We discovered that the eop2, 
hsvC, lsc3 and avrRpt2 genes are not necessary to infect 
Pyrus shoots, but they are required for the whole plant 
infection. We proposed that the lack of both edcE, rlsB 
and amsD in E. piriflorinigrans CFBP-5888 might have 
drifted the pathogenicity towards Pyrus blossoms infec-
tions. Then, we suggest that the PrtA type 1 secretion 
system might represent one of the principal determinants 
in the host specificity towards the pear plants., Consid-
ering that the virulence of the Pyrus-infecting strains is 
lower than the virulence of the fire blight-causing bac-
teria (Smits et  al. 2011; Zhao et  al. 2006), we propose 
that their pathogenicity towards pear trees could be 
addressed to the loss of ability to infect apple trees due to 
the described gene loss, rather than to a spontaneous evo-
lutionary drift towards a different host. However, more 
studies are needed to clarify this interesting issue.

Our observations on E. tasmaniensis ET1/99, which 
is an epiphytic bacterium marking the boundary with the 
Rosaceae-infecting and non-infecting bacteria, hint that the 
lack of genes whose products are considered to be crucial 
for Rosaceae infection, well explain why the E. tasmanien-
sis ET1/99 strain is non-pathogenic.

The most conserved genes among all the considered 
Erwinia strains are relA, dksA and csrA/rsmA. However, 
they are not always present, indicating that they are not 
necessary for survival, but important in Erwinia amylovora 
pathogenicity for their general role in regulating transcrip-
tion and translation.

In conclusion, our results indicate that most of the ana-
lyzed genes are not necessary for general pathogenesis, but 
they are specific for the infection of Rosaceae plants. Future 
studies should aim to clarify the correlations highlighted 
within the presented work to increase our knowledge about 
host specificity and pathogenesis within the Erwinia genus.
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